WorldWideScience

Sample records for biomedical real-time monitoring

  1. Real Time Network Traffic Monitoring

    OpenAIRE

    Tripp, Gerald

    1999-01-01

    This paper looks at the problems of real time network traffic monitoring. Some of the existing approaches are reviewed, looking at both simple filtering systems and also systems based on the use of finite state machines that can report specific events or capture data only when in particular states. Finally, some existing implementation techniques are examined and an outline proposal made for the design of a network monitoring system that uses finite state machines implemented using associativ...

  2. A real time monitoring system

    International Nuclear Information System (INIS)

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author)

  3. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    OpenAIRE

    Raja Vara Prasad Y; Mirza Sami Baig; Mishra, Rahul K; Rajalakshmi, P.; U. B. Desai; S. N. Merchant

    2011-01-01

    Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN) on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for ...

  4. Integrated real-time roof monitoring

    Institute of Scientific and Technical Information of China (English)

    SHEN Bao-tang; GUO Hua; KING Andrew

    2009-01-01

    CSIRO has recently developed a real-time roof monitoring system for under-ground coal mines and successfully tried the system in gate roads at Ulan Mine. The sys-tem integrated displacement monitoring, stress monitoring and seismic monitoring in one package. It included GEL multianchor extensometers, vibrating wire uniaxial stress meters, ESG seismic monitoring system with microseismic sensors and high-frequency AE sen-sors. The monitoring system automated and the data can be automatically collected by a central computer located in an underground nonhazardous area. The data are then trans-ferred to the surface via an optical fiber cable. The real-time data were accessed at any location with an Internet connection. The trials of the system in two tailgates at Ulan Mine demonstrate that the system is effective for monitoring the behavior and stability of read-ways during Iongwall mining. The continuous roof displacement/stress data show clear precursors of roof falls. The seismic data (event count and locations) provide insights into the roof failure process during roof fall.

  5. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  6. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  7. Real Time Health Monitoring Using GPRS Technology

    Directory of Open Access Journals (Sweden)

    Shubhangi M. Verulkar

    2012-06-01

    Full Text Available Advances in sensor technology, personal mobile devices, andwireless broadband communications are enabling thedevelopment of an integrated personal mobile healthmonitoring system that can provide patients with a usefultool to assess their own health and manage their personalhealth information anytime and anywhere. Personal mobiledevices, such as PDAs and mobile phones, are becomingmore powerful integrated information management tools andplay a major role in many people's lives. Here I focus ondesigning a Mobile health-monitoring system for people whostay alone at home or suffering from Heart Disease. Thissystem presents a complete unified and mobile platformbased connectivity solution for unobtrusive healthmonitoring. Developing a hardware which will sense heartrate and temperature of a patient, using Bluetooth modem allinformation lively transmitted to smart phone, from smartphone all information transmitted to server using GPRS. Atserver the received data compared with the standardthreshold minimum and maximum value. The normal rangeof heart rate is 60 to 135 and the temperature of the patient issaid to be normal above 95^F and below 104^F. If at all therate increases above 145 or decreases below 55,it may befatal and if it crossed this threshold limit then SMS will besent to the relative of patient and Doctors along withmeasured values.The build-in GPS further provides the position informationof the monitored person. The remote server not only collectsphysiological measurements but also tracks the position ofthe monitored person in real time.For transmitting data from Smartphone to the server usingGPRS, here we need to create a website on data will becontinuously transmitted from Smartphone to the website andfrom website data will be downloaded continuously on theserver.Thus the system helps in tracking down the patient withoutgetting the patient into any sort of communication. Unduemishaps can be avoided within the golden hours after apatient

  8. Instrumentation development for real time brainwave monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could

  9. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  10. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  11. RadNet Real-Time Monitoring Spectrometry Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The RadNet Real-Time Monitoring Spectrometry Data Inventory contains measured data used to identify and measure specific radioactive materials in the atmosphere at...

  12. Ozone Monitoring Instrument Near Real Time Data for v3

    Data.gov (United States)

    National Aeronautics and Space Administration — This collection contains Near Real Time Data from the Ozone Monitoring Instrument(OMI).The OMI instrument employs hyperspectral imaging in a push-broom mode to...

  13. A Remote Real-Time Monitoring System for Power Quality

    Institute of Scientific and Technical Information of China (English)

    黄治清; 贺建闽

    2003-01-01

    An introduction is made to the composition, design method and engineering application of a remote real-time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real-time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.

  14. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time

    Directory of Open Access Journals (Sweden)

    Fernando Seoane

    2014-04-01

    Full Text Available The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants’ operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.

  16. Real-time web-based telerehabilitation monitoring.

    Science.gov (United States)

    Lewis, Jeffrey; Boian, Rares; Burdea, Grigore; Deutsch, Judith

    2003-01-01

    Distance monitoring of rehabilitation exercises has been primarily conducted using two-way video conferencing. This paper presents a real-time web-based monitoring system that greatly enhances the capability of the clinician to direct rehabilitation therapies. PMID:15455890

  17. Real-time optoacoustic monitoring of temperature in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States)

    2005-08-07

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser ({lambda} = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1{sup 0}C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy.

  18. Real-time vehicle emission monitoring along roadsides

    NARCIS (Netherlands)

    Stelwagen, U.; Lange, R. de; Ligterink, N.E.; Klunder, G.A.; Bigazzi, A.; Duyzer, J.H.; Baalen, J. van; Katwijk, R.T. van; Kruithof, M.C.; Ratingen, S. van; Weststrate, J.H.; Wilmink, I.R.

    2010-01-01

    In the worldwide efforts to reduce the emissions of greenhouse gasses in general and those emitted by vehicles in particular, vehicle emission monitoring is important. It provides accurate knowledge of real-world emissions of vehicles as input for vehicle emission models. Real-time emission monitori

  19. Simultaneous real-time monitoring of multiple cortical systems

    Science.gov (United States)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  20. Real time nanogravimetric monitoring of corrosion for nuclear decommissioning

    OpenAIRE

    Tzagkaroulakis, I.; Boxall, C.

    2015-01-01

    Monitoring and understanding of corrosion on nuclear sites plays a key role in safe asset management (predicting plant life, assessing efficacy of corrosion inhibitors for plant lifetime extension) and supporting informed choice of decontamination methods for steels due for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer a means to monitor corrosion in-situ in radiologically harsh environments, in real time and with high sensitivity. Oxalic acid has been ...

  1. Real-time well condition monitoring in extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Kucs, R.; Spoerker, H.F. [OMV Austria Exploration and Production GmbH, Gaenserndorf (Austria); Thonhauser, G. [Montanuniversitaet Leoben (Austria)

    2008-10-23

    Ever rising daily operating cost for offshore operations make the risk of running into drilling problems due to torque and drag developments in extended reach applications a growing concern. One option to reduce cost related to torque and drag problems can be to monitor torque and drag trends in real time without additional workload on the platform drilling team. To evaluate observed torque or drag trends it is necessary to automatically recognize operations and to have a 'standard value' to compare the measurements to. The presented systematic approach features both options - fully automated operations recognition and real time analysis. Trends can be discussed between rig- and shore-based teams, and decisions can be based on up to date information. Since the system is focused on visualization of real-time torque and drag trends, instead of highly complex and repeated simulations, calculation time is reduced by comparing the real-time rig data against predictions imported from a commercial drilling engineering application. The system allows reacting to emerging stuck pipe situations or developing cuttings beds long before the situations become severe enough to result in substantial lost time. The ability to compare real-time data with historical data from the same or other wells makes the system a valuable tool in supporting a learning organization. The system has been developed in a joint research initiative for field application on the development of an offshore heavy oil field in New Zealand. (orig.)

  2. Real-time moving object detection for video monitoring systems

    Institute of Scientific and Technical Information of China (English)

    Wei Zhiqiang; Ji Xiaopeng; Wang Peng

    2006-01-01

    Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. A method for real-time moving object detection is described. A new background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving objects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video monitoring systems.

  3. Real-time trend monitoring of gas compressor stations

    Energy Technology Data Exchange (ETDEWEB)

    Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  4. Real-time GNSS volcano deformation monitoring (Invited)

    Science.gov (United States)

    Lisowski, M.; Langbein, J. O.; Hudnut, K. W.

    2013-12-01

    We present comparisons of the precision obtained from several alternative real-time GNSS processing methods, and show how offsets caused by snow and ice on an antenna can be automatically identified in real time using signal-to-noise ratio (SNR) data. We monitor ground deformation using continuous GNSS stations installed on several volcanoes in the Cascade Range and elsewhere, and many of these stations transmit high-rate (1s) data in real-time. We examine real-time, high-rate station position solutions obtained with two implementations of centralized RTNet (GPS Solutions, Inc.) processing, and find that the precision is roughly the same for ambiguity-fixed network solutions and for ambiguity-fixed precise point position solutions (PPPAR). The PPPAR method uses satellite clock corrections provided by GPS Solutions from a network of Plate Boundary Observatory (PBO) stations in western Oregon. The precision of network solutions that include GPS and GLONASS data is similar to the GPS-only solutions, except at stations with a relatively poor view of the sky. An alternative method of processing the real-time GPS data uses clock corrections transmitted directly to the receiver, which then autonomously calculates and transmits positions. We will compare our RTNet results with autonomous point position solutions calculated using Trimble's CenterPoint RTX corrections. RTX performance in repeated, controlled, large antenna-motion tests by USGS and UNAVCO indicates that it meets requirements of USGS volcano-monitoring applications; more thorough testing and performance checks on an ongoing basis would be desirable. GNSS antennas on volcanoes often become temporarily coated with ice or buried by snow in the winter. In these situations, signal delays introduce an apparent offset in the monitoring station's position. We address this problem by implementing in real time a technique developed by Kristine Larson that uses changes in the signal-to-noise ratio (SNR) of GNSS signals

  5. Network Based Real Time Condition Monitoring of Rotating Machinery

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents the development of a network based real time condition monitoring system of rotating machinery. The system is built up in a double net structure consisting of local net (including client and server) and intranet. The client serves as a field data collector and processor that samples the vibration signals and process parameters of a machine monitored in the net and processes the sampled data. The data collected by the client are transmitted to the server that processes the data further and provides the results of the diagnosis of each machine to any distant terminals through intranet or internet. Such a structure of the monitoring system is advantageous in safety, reliability and reasonably shares the existing net resources. In order to ensure real time transmission of the data, two procedures of data transmission, virtual channel and data pool, are developed and applied in the monitoring system. The experimental results show that the monitoring system works well and is suitable to monitor a large group of rotating machines.

  6. Real Time and Multiple Location Radon (222Rn Monitoring System

    Directory of Open Access Journals (Sweden)

    MORARIU, G.

    2010-11-01

    Full Text Available The paper presents a Radon monitoring system. The system is designed for real time multiple location monitoring. The paper presents in the first part a method and an instrument for measuring radon concentration in air. Simulink simulations and implementation of the measurement principle are presented. Instrument position is determined by GPS and transmitted over GPRS along with the measurements results. Data management is accomplished by a software component of the system. The paper presents as an application, an investigation on nanomaterials to be used for Radon mitigation.

  7. Real-Time Beam Loss Monitor Display Using FPGA Technology

    CERN Document Server

    North, Matt R W

    2005-01-01

    This paper outlines the design of a Real-time Beam Loss Monitor Display for the ISIS Synchrotron based at Rutherford Appleton Laboratory (Oxon, UK). Beam loss is monitored using 39 argon filled ionisation chambers positioned around the synchrotron, the levels of which are sampled four times in each cycle. The new BLM display acquires the signals and displays four histograms, each relating to an individual sample period; the data acquisition and signal processing required to build the display fields are completed within each machine cycle (50 Hz). Attributes of the new system include setting limits for individual monitors; displaying over-limit detection, and freezing the display field when a beam trip has occurred. The design is based around a reconfigurable Field Programmable Gate Array, interfacing to a desktop monitor via the VGA standard. Results gained using simulated monitor signals have proven the system.

  8. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  9. Real-Time Deposition Monitor for Ultrathin Conductive Films

    Science.gov (United States)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  10. Real-time monitoring data for real-time multi-model validation: coupling ENSEMBLE and EURDEP

    International Nuclear Information System (INIS)

    The ENSEMBLE system has been considerably expanded and improved. The system that allows the real-time collection of atmospheric dispersion forecasts their real-time consultation and ensemble dispersion analysis has been coupled with the EUropean Radiological Data Exchange Platform (EURDEP) for the acquisition of real-time monitoring data on environmental (mainly in air) radiological measurements. This paper explains how the coupling has been realized and presents the potentials of this unique system that is presently in use in more than 25 countries around the world

  11. Monitor for displaying the status of Real-Time simulation.

    OpenAIRE

    Tulu, Nigussie Girma

    2014-01-01

    This paper presents a design and implementation of a monitor to display the status of real-time simulation and modelling for discrete event dynamic systems, DEDS. The modelling and simulation of DEDS in this thesis are implemented using two kinds tools called Petri net and GpenSIM. Petri Nets are tools that are widely used now a day to model and simulate discrete events of concurrent and dynamic systems. [1] Petri net has a graphical formalism that is getting popularity in recent years as a t...

  12. Real-Time GPS Network Monitors Bayou Corne Sinkhole Event

    Science.gov (United States)

    Kent, Joshua D.; Dunaway, Larry

    2013-10-01

    In August 2012 a sinkhole developed in the swampy marshland near the rural community of Bayou Corne in Assumption Parish (i.e., county), Louisiana. The area was evacuated, and some residents have still not been able to return. The sinkhole—which now measures about 450 meters wide and is continuing to grow—is being monitored by multiple systems, including four rapid-response GPS continuously operating reference stations (CORS) called CORS911. The real-time data provided by this system are used by scientists and decision makers to help ensure public safety.

  13. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Science.gov (United States)

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  14. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Directory of Open Access Journals (Sweden)

    Guenter Karl Schiepek

    2016-05-01

    Full Text Available AbstractObjective. The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients’ compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific surveys. Methods. The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results. We found high compliance rates (mean: 78.3%, median: 89.4% amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion. The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities.

  15. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  16. Expert Systems for Real-Time Volcano Monitoring

    Science.gov (United States)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  17. Monitoring external beam radiotherapy using real-time beam visualization

    International Nuclear Information System (INIS)

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd2O2S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure

  18. Real-time monitoring for human clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Harker, Y.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    On August 3-4, 1994, an INEL team made measurements related to a real-time monitoring system for use on the epithermal beam facility at the BMRR. BNL has installed two fission chambers in front of the beam collimator, which are to monitor the beam coming from the reactor. These two monitors are located with one just above the 16-cm dia. front aperture and the other is just below. The fission chambers contain depleted uranium, but because of the small amount of U-235 present, they respond to thermal and near thermal neutrons rather than fast neutrons. This feature combined with their relatively small size (0.6 cm dia x 4 cm long) makes them very good monitors in the BMRR epithermal neutron beam. The INEL team worked with H.B. Lui (BNL) in performing initial tests of these monitors and established the settings to achieve stable operation. The main purpose of the measurement studies was to establish a basis for a monitoring method that tracks the dose the patient is receiving rather than the neutron fluence being delivered down the beam line.

  19. A high sensitivity real-time NVR monitor. [Nonvolatile Residue

    Science.gov (United States)

    Bowers, William D.; Chuan, R. L.

    1992-01-01

    The use of a temperature-controlled 200-MHz SAW resonator piezoelectric mass microbalance to monitor the mass of nonvolatile residue (NVR) deposited on its surface in real time is reported. The fundamental frequency of this device is mainly dependent on the configuration of the transducers and not on the thickness of the substrate. Therefore, higher operating frequencies can be achieved without reducing the thickness of the crystal. The real-time instrument was integrated onto a conventional stainless steel NVR plate and operated flawlessly over a 14-d period at Kennedy Space Center and successfully measured less than 1 ng/sq cm d NVR contamination. Contamination episodes detected by the instrument were correlated with scheduled activities on the test stand. Under the assumption of a baseline noise level of +/- 2 Hz, the absolute mass lower limit of detection would be 0.065 ng/sq cm. This would enable the detection of a daily NVR deposition rate of less than 0.1 ng/sq cm d.

  20. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  1. Real-time bioacoustics monitoring and automated species identification

    Directory of Open Access Journals (Sweden)

    T. Mitchell Aide

    2013-07-01

    Full Text Available Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON, a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net. Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica.

  2. Real-time satellite monitoring of volcanic hot spots

    Science.gov (United States)

    Harris, Andrew J. L.; Flynn, Luke P.; Dean, Ken; Pilger, Eric; Wooster, Martin; Okubo, Chris; Mouginis-Mark, Peter; Garbeil, Harold; Thornber, Carl; De la Cruz-Reyna, Servando; Rothery, Dave; Wright, Robert

    Direct satellite data reception at high temporal frequencies and automated processing enable near-real-time, near-continuous thermal monitoring of volcanoes. We review what has been achieved in terms of turning this capability into real-time tools of use to volcano monitoring agencies. Current capabilities focus on 2 instruments: the advanced very high resolution radiometer (AVHRR) and the Geostationary Operational Environmental Satellite (GOES) imager. Collection of lO AVHRR images per day covering Alaska, the Aleutians, and Kamchatka allows routine, on-reception analysis of volcanic hot spots across this region. Data collected between 1996 and 1998 detected 302 hot spots due to lava flows, lava domes, pyroclastic flows, fumaroles, and geothermally heated lakes at 12 different volcanoes. Information was used for hazard mitigation by the Alaskan Volcano Observatory. GOES provides data for North and South American volcanoes every 15-30 minutes. Automated processing allows eruption information and alerts to be posted on the Internet within 15-60 minutes of reception. We use June 1998 to demonstrate the frequency of data acquisition. During this month 2879 GOES images were collected from which 14,832 sub-images of 6 active volcanoes were processed. Although 82% (12,200) of these sub-images were cloud covered, hot spots were still evident on 11% (1634) of the sub-images. Analysis of GOES data for 1998 identified hot spots due to (1) lava flows at Kilauea and Cerro Azul, (2) dome extrusion and explosive activity at Lascar, Popocatepetl, Colima and Pacaya, and (3) dome cooling and collapse at Soufriere Hills. We were also able to suggest that reports of lava flow activity at Cerro Negro were false. This information was supplied to, and used by, various agencies whose task it is to monitor these volcanoes. Global thermal monitoring will become a reality with the launch of the Earth Observing System's moderate resolution imaging spectrometer (MODIS). An automated thermal

  3. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  4. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    Science.gov (United States)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  5. Rapid and real-time detection technologies for emerging viruses of biomedical importance

    Indian Academy of Sciences (India)

    M M Parida

    2008-11-01

    The development of technologies with rapid and sensitive detection capabilities and increased throughput have become crucial for responding to greater number threats posed by emerging and re-emerging viruses in the recent past. The conventional identification methods require time-consuming culturing, and/ or detection of antibodies, which are not very sensitive and specific. The recent advances in molecular biology techniques in the field of genomics and proteomics greatly facilitate the rapid identification with more accuracy. We have developed two real-time assays i.e., SYBR green I based real time reverse transcription polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (LAMP) assay for rapid detection as well as typing of some of the emerging viruses of biomedical importance viz. dengue, Japanese encephalitis, chikungunya, west Nile, severe acute respiratory syndrome virus (SARS) etc. Both these techniques are capable of detection and differentiation as well as quantifying viral load with higher sensitivity, rapidity, specificity. One of the most important advantages of LAMP is its field applicability, without requirement of any sophisticated equipments. Both these assays have been extensively evaluated and validated with clinical samples of recent epidemics from different parts of India. The establishment of these real time molecular assays will certainly facilitate the rapid detection of viruses with high degree of precision and accuracy in future.

  6. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  7. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    Science.gov (United States)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  8. FPGA Based Real Time Monitoring System for Agricultural Field

    Directory of Open Access Journals (Sweden)

    M. Dinesh,

    2012-06-01

    Full Text Available The most important factors for the quality and productivity of plant growth are temperature, humidity, light and the level of the carbon dioxide. Continuous monitoring of these environmental variables gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness .The optimal greenhouse climate adjustment can enable us to improve productivity and to achieve remarkable energy savings - especially during the winter in northern countries. The system itself was usually simple without opportunities to control locally heating, lights, ventilation or some other activity, which was affecting the greenhouse interior climate. This all has changed in the modern greenhouses. The typical size of the greenhouse itself is much bigger what it was before, and the greenhouse facilities provide several options to make local adjustments to the lights, ventilation, heating and other greenhouse support systems.However, more measurement data is also needed to make this kind of automation system work properly. Increased number of measurement points should not dramatically increase the automation system cost. It should also be possible to easily change the location of the measurement points according to the particular needs, which depend on the specific plant, on the possible changes in the external weather or greenhouse structure and on the plant placement in the greenhouse. For the implementation of agricultural technologies, low cost and real time remote monitoring are needed, in this sense, programmable Logic Devices (PLDs present as a good option for the technology development and implementation, because PLDs allow fast development of prototypes and the design of complex hardware systems using FPGAs (Field Programmable Gate Arrays and Complex Programmable Logic Devices.

  9. Optical Real-Time Space Radiation Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  10. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  11. NOAA Satellite Based Real Time Forest Fire Monitoring System for Russia and North Asian Region

    OpenAIRE

    Kalpoma,Kazi A. / Kawano,Koichi / Kudoh,Jun-ichi; / カワノ,コウイチ / クドウ,ジュンイチ

    2007-01-01

    Forest fires cause severe damages to natural resources and human lives all over the world. Though a lot of forest fires occur in Russia and North Asia every year, there is no system available that monitors forest fire in real time processing. However the MODIS Land Rapid Response System provides near-real time fire observations globally, currently forest fire monitoring techniques are not efficient enough to optimally monitor this disaster. For a real-time forest fire monitor system an effici...

  12. Monitoring gene expression: quantitative real-time rt-PCR.

    Science.gov (United States)

    Wagner, Elke M

    2013-01-01

    Two-step quantitative real-time RT-PCR (RT-qPCR), also known as real-time RT-PCR, kinetic RT-PCR, or quantitative fluorescent RT-PCR, has become the method of choice for gene expression analysis during the last few years. It is a fast and convenient PCR method that combines traditional RT-PCR with the phenomenon of fluorescence resonance energy transfer (FRET) using fluorogenic primers. The detection of changes in fluorescence intensity during the reaction enables the user to follow the PCR reaction in real time.RT-qPCR comprises several steps: (1) RNA is isolated from target tissue/cells; (2) mRNA is reverse-transcribed to cDNA; (3) modified gene-specific PCR primers are used to amplify a segment of the cDNA of interest, following the reaction in real time; and (4) the initial concentration of the selected transcript in a specific tissue or cell type is calculated from the exponential phase of the reaction. Relative quantification or absolute quantification compared to standards that are run in parallel can be performed.This chapter describes the entire procedure from isolation of total RNA from liver and fatty tissues/cells to the use of RT-qPCR to study gene expression in these tissues. We perform relative quantification of transcripts to calculate the fold-difference of a certain mRNA level between different samples. In addition, tips for choosing primers and performing analyses are provided to help the beginner in understanding the technique.

  13. Monitoring and Acquisition Real-time System (MARS)

    Science.gov (United States)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  14. Dynamic Modeling and Real-Time Monitoring of Froth Flotation

    Directory of Open Access Journals (Sweden)

    Khushaal Popli

    2015-08-01

    Full Text Available A dynamic fundamental model was developed linking processes from the microscopic scale to the equipment scale for batch froth flotation. State estimation, fault detection, and disturbance identification were implemented using the extended Kalman filter (EKF, which reconciles real-time measurements with dynamic models. The online measurements for the EKF were obtained through image analysis of froth images that were captured and analyzed using the commercial package VisioFroth (Metsor Minerals. The extracted image features were then correlated to recovery using principal component analysis and partial least squares regression. The performance of real-time state estimation and fault detection was validated using batch flotation of pure galena at various operating conditions. The image features that were strongly representative of recovery were identified, and calibration and validation were performed against off-line measurements of recovery. The EKF successfully captured the dynamics of the process by updating the model states and parameters using the online measurements. Finally, disturbances in the air flow rate and impeller speed were introduced into the system, and the dynamic behavior of the flotation process was successfully tracked and the disturbances were identified using state estimation.

  15. Unmanned airborne system in real-time radiological monitoring

    International Nuclear Information System (INIS)

    The unmanned airborne vehicle (UAV) platform, equipped with an appropriate payload and capable of carrying a variety of modular sensors, is an effective tool for real-time control of environmental disasters of different types (e.g. nuclear or chemical accidents). The suggested payloads consist of a miniaturised self-collimating nuclear spectrometry sensor and electro-optical sensors for day and night imagery. The system provides means of both real-time field data acquisition in an endangered environment and on-line hazard assessment computation from the down link raw data. All the processing, including flight planning using an expert system, is performed by a dedicated microcomputer located in a Mobile Ground Control Station (MGCS) situated outside the hazardous area. The UAV equipment is part of a system designed especially for the critically important early phase of emergency response. Decisions by the Emergency Response Manager (ERM) are also based on the ability to estimate the potential dose to individuals and the mitigation of dose when protection measures are implemented. (author)

  16. Development of Real-Time Coal Monitoring Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  17. The effect of real-time continuous glucose monitoring in pregnant women with diabetes

    DEFF Research Database (Denmark)

    Secher, Anna L; Ringholm, Lene; Damm, Peter;

    2013-01-01

    To assess whether intermittent real-time continuous glucose monitoring (CGM) improves glycemic control and pregnancy outcome in unselected women with pregestational diabetes.......To assess whether intermittent real-time continuous glucose monitoring (CGM) improves glycemic control and pregnancy outcome in unselected women with pregestational diabetes....

  18. Research on Web-based Real-time Monitoring System on SVG and Comet

    Directory of Open Access Journals (Sweden)

    Xuehui Xian

    2012-09-01

    Full Text Available For the lack of real-time performance of browser technology in existing Web-based real-time monitoring system, takes use of SVG (Scalable Vector Graphics and the Comet to design a new Web-based real-time monitoring system. In this system, JSON (JavaScript Object Notation is the data transmission carrier, Comet is the key technology for system communication and data transmission, and SVG is a chart drawing tool in the browser side. So this system has a good real-time and is rich in the form of show.

  19. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A real-time life-use consumption monitor is proposed for aircraft engine systems. The life monitor will process power data available on the aircraft to calculate...

  20. Monitoring Ion Channel Function In Real Time Through Quantum Decoherence

    CERN Document Server

    Hall, L T; Cole, J H; Städler, B; Caruso, F; Mulvaney, P; Wrachtrup, J; Hollenberg, L C L

    2009-01-01

    In drug discovery research there is a clear and urgent need for non-invasive detection of cell membrane ion channel operation with wide-field capability. Existing techniques are generally invasive, require specialized nano structures, or are only applicable to certain ion channel species. We show that quantum nanotechnology has enormous potential to provide a novel solution to this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of great interest as a novel single atom quantum probe for nanoscale processes. However, until now, beyond the use of diamond nanocrystals as fluorescence markers, nothing was known about the quantum behaviour of a NV probe in the complex room temperature extra-cellular environment. For the first time we explore in detail the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion channel operation at millisecond resolution is possible by d...

  1. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam construction quality monitoring with high-techs is urgently needed. The paper makes theoretical research on construction quality real-time monitoring and system integration of core rockfill dam, proposes implementation method and integrated solution of construction quality real-time monitoring of core rockfill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  2. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; CUI Bo; LIU DongHai; TONG DaWei

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the Improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam con-struction quality monitoring with high-techs is urgently needed.The paper makes theoretical research on construction quality real-time monitoring and system integration of core rock/ill dam, proposes im-plementation method and integrated solution of construction quality real-time monitoring of core rock-fill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  3. Real-Time Remote Monitoring with Data Acquisition System

    Science.gov (United States)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  4. The Real Time Mission Monitor: A Platform for Real Time Environmental Data Integration and Display during NASA Field Campaigns

    Science.gov (United States)

    He, M.; Hardin, D. M.; Goodman, M.; Blakeslee, R.

    2008-05-01

    The Real Time Mission Monitor (RTMM) is an interactive visualization application based on Google Earth, that provides situational awareness and field asset management during NASA field campaigns. The RTMM can integrate data and imagery from numerous sources including GOES-12, GOES-10, and TRMM satellites. Simultaneously, it can display data and imagery from surface observations including Nexrad, NPOL and SMART- R radars. In addition to all these it can display output from models and real-time flight tracks of all aircraft involved in the experiment. In some instances the RTMM can also display measurements from scientific instruments as they are being flown. All data are recorded and archived in an on-line system enabling playback and review of all sorties. This is invaluable in preparing for future deployments and in exercising case studies. The RTMM facilitates pre-flight planning, in-flight monitoring, development of adaptive flight strategies and post- flight data analyses and assessments. Since the RTMM is available via the internet - during the actual experiment - project managers, scientists and mission planners can collaborate no matter where they are located as long as they have a viable internet connection. In addition, the system is open so that the general public can also view the experiment, in-progress, with Google Earth. Predecessors of RTMM were originally deployed in 2002 as part of the Altus Cumulus Electrification Study (ACES) to monitor uninhabited aerial vehicles near thunderstorms. In 2005 an interactive Java-based web prototype supported the airborne Lightning Instrument Package (LIP) during the Tropical Cloud Systems and Processes (TCSP) experiment. In 2006 the technology was adapted to the 3D Google Earth virtual globe and in 2007 its capabilities were extended to support multiple NASA aircraft (ER-2, WB-57, DC-8) during Tropical Composition, Clouds and Climate Coupling (TC4) experiment and 2007 Summer Aerosonde field study. In April 2008

  5. RadMonitor: Radiology Operations Data Mining in Real Time

    OpenAIRE

    Chen, Richard; Mongkolwat, Pattanasak; Channin, David S.

    2007-01-01

    This paper describes the web-based visualization interface of RadMonitor, a platform-independent web application designed to help manage the complexity of information flow within a health care enterprise. The system eavesdrops on Health Layer 7 traffic and parses statistical operational information into a database. The information is then presented to the user as a treemap—a graphical visualization scheme that simplifies the display of hierarchical information. While RadMonitor has been imple...

  6. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A., E-mail: anaf@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, V. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, C.M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2014-03-15

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented.

  7. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    Science.gov (United States)

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  8. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  9. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Science.gov (United States)

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  10. Research and implementation of a web-based RealTime monitoring system on EPICS data

    International Nuclear Information System (INIS)

    It studied and implemented a RealTime Monitoring system based on Web, using Flex and BlazeDS technology. Capturing EPICS data through CAJ interface, the system displays a RealTime linchart on the web page, updates data without manual intervention and enables you to adjust the time span and zoom the chart. (authors)

  11. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  12. Real Time Distributed Embedded Oscillator Operating Frequency Monitoring

    Science.gov (United States)

    Pollock, Julie (Inventor); Oliver, Brett D. (Inventor); Brickner, Christopher (Inventor)

    2013-01-01

    A method for clock monitoring in a network is provided. The method comprises receiving a first network clock signal at a network device and comparing the first network clock signal to a local clock signal from a primary oscillator coupled to the network device.

  13. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    Science.gov (United States)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  14. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    as an advanced power cycling test setup, where both power module characterization and field emulated testing are proposed. As temperature is identified as a major stressor, transforming on-state forward voltage drop to die temperature for each individual chip is presented at a nominal rated power level. The wear...... out is monitored online and also the evolution of degradation in interconnects are studied extensively in order to understand the failure process in high power modules under sinusoidal loading conditions. A number of power modules are tested in active power or thermal cycling for different number...... of cycles under similar loadings. Afterwards degradation evolutions in each power module are assessed and correlated with the results obtained from the online monitoring. Bond wire and solder fatigue are two major expected low thermal cycle fatigues. A data evaluation theory is proposed to separate two...

  15. Real-time monitoring of seismic data using satellite telemetry

    OpenAIRE

    L. Merucci; F. M. De Simoni; Simoni, B.; G. Calderoni

    1997-01-01

    This article describes the ARGO Satellite Seismic Network (ARGO SSN) as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion) located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica), Rome. The task of the peripheral stations is to d...

  16. Real-time monitoring of personal exposures to carbon dioxide

    OpenAIRE

    Gall, Elliott T.; Cheung, Toby; Luhung, Irvan; Schiavon, Stefano; Nazaroff, William W.

    2016-01-01

    Elevated indoor CO2 levels are indicative of insufficient ventilation in occupied spaces and correlate with elevated concentrations of pollutants of indoor origin. Adverse health and well-being outcomes associated with elevated indoor CO2 levels are based on CO2 as a proxy, although some emerging evidence suggests CO2 itself may impact human cognition. Using portable monitors, we conducted an exposure study with 16 subjects in Singapore to understand the levels, dynamics and influencing facto...

  17. A Real-time Monitoring System for the Pipeline Network of Coalmine

    Science.gov (United States)

    Zhao, H. L.; Wang, J. K.; Jiang, X.

    2012-05-01

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  18. A Real-time Monitoring System for the Pipeline Network of Coalmine

    International Nuclear Information System (INIS)

    The pipeline network of coalmine has the characteristics of widespread distribution and complex structure. It is difficult to detect abnormalities in time by manual when the faults occurred, which often lead to reduction in production. In this paper, a monitoring system is developed to monitor the operating conditions of the pipeline network in real-time. The system has abilities to dynamic monitoring, real-time display, and failure alarm and leakage location. Therefore, the faults detection and maintenance can be implemented timely to ensure the safety of coalmine production due to the real-time condition monitoring of the pipeline network. Moreover, the resources allocation, production efficiency and management level can also be improved obviously. In addition, this real-time monitoring system has shown significant performance in applying it in Dongtan Coal Mine, Yanzhou Coal Mining Co., Ltd and Wennan Coal Mine, Shandong Energy Xinwen Mining Group Co., Ltd, China.

  19. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  20. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  1. Reusable Floating-Electrode Sensor for Real-Time Electrophysiological Monitoring of Nonadherent Cells

    Science.gov (United States)

    Pham Ba, Viet Anh; Ta, Van-Thao; Park, Juhun; Park, Eun Jin; Hong, Seunghun

    2015-03-01

    We herein report the development of a reusable floating-electrode sensor (FES) based on aligned single-walled carbon nanotubes, which allowed quantitatively monitoring the electrophysiological responses from nonadherent cells. The FES was used to measure the real-time responses of normal lung cells and small-cell lung cancer (SCLC) cells to the addition of nicotine. The SCLC cells exhibited rather large electrophysiological responses to nicotine compared to normal cells, which was attributed to the overexpressed nicotinic acetylcholine receptors (nAChRs) in the SCLC cells. Importantly, using only a single device could measure repeatedly the responses of multiple individual cells to various drugs, enabling statistically meaningful measurements without errors from the device-to-device variations of the sensor characteristics. As results, that the treatment with drugs such as genistin or daidzein reduced Ca2+ influx in SCLC cells was found. Moreover, tamoxifen, has been known as an anti-estrogen compound, was found to only partly block the binding of daidzein to nAChRs. Our FES can be a promising tool for various biomedical applications such as drug screening and therapy monitoring.

  2. Real-time monitoring and diagnosis of scintillation dosimeters using an ultraviolet light emitting diode

    Science.gov (United States)

    Yin, Y.; Lambert, J.; McKenzie, D. R.; Suchowerska, N.

    2008-05-01

    Plastic scintillator fibre optic dosimeters (FODs) have advantages for both brachytherapy and external beam radiotherapy applications. Convenient real-time monitoring and diagnosis of such dosimeters are desirable because of changes in the optical circuit that may arise in use. In this paper, we propose and demonstrate a real-time method using ultraviolet light emitting diodes (LED) to stimulate the scintillator and to diagnose failures of FODs. Key aspects of the LED FOD dosimetry design are investigated, enabling the design of a stable and accurate real-time monitoring dosimetry system. We demonstrate experimentally that the real-time monitoring FOD system is convenient to be used to monitor FOD dosimeters and to diagnose their failures resulted from different mechanisms.

  3. Alternate Data Acquisition and Real-time Monitoring System on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Wei Peijie; Luo Jiarong; Wang Hua; Li Guiming

    2005-01-01

    A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.

  4. Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande

    OpenAIRE

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M; Suzuki, Y

    2016-01-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst dete...

  5. A Statistical Approach to Performance Monitoring in Soft Real-Time Distributed Systems

    CERN Document Server

    Bickson, Danny; Hoch, Ezra N; Shagin, Konstantin

    2009-01-01

    Soft real-time applications require timely delivery of messages conforming to the soft real-time constraints. Satisfying such requirements is a complex task both due to the volatile nature of distributed environments, as well as due to numerous domain-specific factors that affect message latency. Prompt detection of the root-cause of excessive message delay allows a distributed system to react accordingly. This may significantly improve compliance with the required timeliness constraints. In this work, we present a novel approach for distributed performance monitoring of soft-real time distributed systems. We propose to employ recent distributed algorithms from the statistical signal processing and learning domains, and to utilize them in a different context of online performance monitoring and root-cause analysis, for pinpointing the reasons for violation of performance requirements. Our approach is general and can be used for monitoring of any distributed system, and is not limited to the soft real-time dom...

  6. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    Science.gov (United States)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  7. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  8. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research. PMID:26894757

  9. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik;

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...... the system real-time states with good robustness and can address several kinds of BD....

  10. Real-time parameters monitoring system for underground equipment based on panoramic images

    Institute of Scientific and Technical Information of China (English)

    Chen-guang ZHAO; Bo-qiang SHI; Zhi-jun HAO; Ming-chong XU; Chen-tong BIAN

    2013-01-01

    Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety.In this paper,the way to monitor the real-time status of underground equipment was put forward,and it was proved to be effective as commanding and dispatching system.Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding,which not only realizes real-time status monitoring for underground equipment,but also gets a direct scene for underground surrounding.B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment.Meantime,it can reduce the waste of the data resource.

  11. Method for monitoring rhe roughness of a part in real time during a machining process

    OpenAIRE

    Toro Matamoros, Raúl Mario del; Haber Guerra, Rodolfo E.; Alique López, José Ramón

    2012-01-01

    [EN] The invention relates to a method for monitoring the surface roughness of a part in real time during a machining process carried out by a machine-tool. The method comprises the following steps: obtaining an incremental hybrid model representing the machining process and evaluating the incremental hybrid model in real time in order to obtain the surface roughness. This method is especially useful in micro-machining processes, where the operator cannot personally check the results of the o...

  12. Development of graphic user interface for monitoring electrocardiographic signals in real time

    OpenAIRE

    Lango, Bojana

    2011-01-01

    The topic of this thesis is development of a graphical user interface for real-time monitoring of electrocardiographic signals. Our main goal was to design, implement and evaluate the graphical user interface. We developed a graphical user interface which allows us to browse, add, edit and delete patients in the patient's database. It also allows us to assign the measurement devices to the patients. It supports real-time displaying of electrocardiographic curves and alarm notifications in...

  13. Introducing WebSocket-Based Real-Time Monitoring System for Remote Intelligent Buildings

    OpenAIRE

    Kun Ma; Runyuan Sun

    2013-01-01

    Today, wireless sensor networks (WSNs) in electronic engineering are used in the monitoring of remote intelligent buildings, and the need for emerging Web 3.0 is becoming more and more in every aspect of electronic engineering. However, the key challenges of monitoring are the monitoring approaches and storage models of huge historical monitoring data. To address these limitations, we attempt to design a WebSocket-based real-time monitoring system for remote intelligent buildings. On one hand...

  14. Monitor of dynamic parameters in real time; Monitor de parametros dinamicos en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In the complex physical systems exist parameters that are necessary for monitoring in real time. In the nuclear industry, particularly in a reactor this surveillance is important, where the times of the reactions are almost instantaneous. Although many of these parameters are monitored, given the advance of the computer systems the monitoring could either be enlarged direct or indirect of other parameters. The analysis of the neutron noise in the nuclear reactors, plays an important role, the noise signal it contains information about the operation conditions of a system, when analyzing it with analysis methodologies of analogical signals to provide important information for the early detection of possible flaws and to indicate the permissible operation levels. To show the characteristics of the operation of the system of Monitoring of Dynamic Parameters in Real Time, oscillations of neutron noise of the TRIGA Mark III of the ININ were analyzed, these were caused with the control bar to a power of 10 Watts, the oscillations were carried out to a frequency of 1Hz, signal of low frequency. In this work a virtual instrument that allows by means of the spectral analysis method in frequency point by point is presented, to indicate in real time periodic variations that could be presented in the neutron noise signal, visualizing in advance the dynamic behavior of the system or nuclear plant. Another of the tests of the monitoring system presented is that of the oscillatory event happened in the reactor of Laguna Verde Nucleo electric Central, would be convenient to have an instrument of surveillance for monitoring through the neutron noise signal the behavior of some important parameter to predict and to indicate in an immediate way an abnormal condition in the reactor operation or in the plant system. These parameters can be the power, the recirculation water flow, etc. The monitor is based on a personal computer (PC), a data acquisition card (ADC) and a computer program

  15. Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.

    Science.gov (United States)

    Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios

    2016-03-01

    New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.

  16. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network

    NARCIS (Netherlands)

    Hiemstra, P.H.; Pebesma, E.J.; Twenhöfel, C.J.W.; Heuvelink, G.B.M.

    2009-01-01

    Detection of radiological accidents and monitoring the spread of the contamination is of great importance. Following the Chernobyl accident many European countries have installed monitoring networks to perform this task. Real-time availability of automatically interpolated maps showing the spread of

  17. On Line Real Time Health Monitoring of ICU Patients using ARM7

    Directory of Open Access Journals (Sweden)

    Rajashri Patil

    2012-06-01

    Full Text Available Care of critically ill patient requires prompt & accuratedecisions so that life-protecting & lifesaving therapy can beproperly applied. Because of these requirements, ICUs havebecome widely established in hospitals. Difficulty found in mosthospitals is that Expert has to frequently visit the patient &asses his/her condition by measuring different parameters.These systems works when there is any emergency by usingdifferent wireless technologies. This paper is mainly based oncontinuous monitoring aspect of ICU patients.I have designed, developed a reliable, energy efficient patientmonitoring system. It is able to send parameters of patient inreal time. It enables the doctors to monitor patients parameters(temp, heart beat , ECG in real time using http protocol Thetimely manner of conveying real time monitored parameter todoctor is given highest priority. Hence On line Real time Healthmonitoring is becoming popular for the ICU patients.

  18. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  19. Autonomous global sky monitoring with real-time robotic follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Vestrand, W Thomas [Los Alamos National Laboratory; Davis, H [Los Alamos National Laboratory; Wren, J [Los Alamos National Laboratory; Wozniak, P [Los Alamos National Laboratory; Norman, B [Los Alamos National Laboratory; White, R [Los Alamos National Laboratory; Bloch, J [Los Alamos National Laboratory; Fenimore, E [Los Alamos National Laboratory; Hodge, Barry [AFRL; Jah, Moriba [AFRL; Rast, Richard [AFRL

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  20. Real-time supernova neutrino burst monitor at Super-Kamiokande

    Science.gov (United States)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Wilking, M. J.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.

    2016-08-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.

  1. Real-time Stack Monitoring at the BaTek Medical Isotope Production Facility

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Justin I.; Agusbudiman, A.; Cameron, Ian M.; Dumais, Johannes R.; Eslinger, Paul W.; Gheddou, A.; Khrustalev, Kirill; Marsoem, Pujadi; Miley, Harry S.; Nikkinen, Mika; Prinke, Amanda M.; Ripplinger, Mike D.; Schrom, Brian T.; Sliger, William A.; Stoehlker, Ulrich; Suhariyono, G.; Warren, Glen A.; Widodo, Susilo; Woods, Vincent T.

    2016-04-01

    Radioxenon emissions from radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the International Monitoring System (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and PNNL team at the BaTek medical isotope production facility near Jakarta, Indonesia.

  2. Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande

    CERN Document Server

    Abe, K; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tanaka, H; Tomura, T; Ueno, K; Wendell, R A; Yokozawa, T; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; McLachlan, T; Nishimura, Y; Richard, E; Okumura, K; Labarga, L; Fernandez, P; Berkman, S; Tanaka, H A; Tobayama, S; Gustafson, J; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Weatherly, P; Renshaw, A; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Kikawa, T; Minamino, A; Murakami, A; Nakaya, T; Suzuki, K; Takahashi, S; Tateishi, K; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Wilking, M J; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yamaguchi, R; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Suda, Y; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Chen, S; Zhang, Y; Connolly, K; Wilkes, R J

    2016-01-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.

  3. Design of an irradiation facility with a real-time radiation effects monitoring capability

    Science.gov (United States)

    Braisted, J.; Schneider, E.; O'Kelly, S.; van der Hoeven, C.

    2011-12-01

    An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the 1.1 MW TRIGA Mark II research reactor at The University of Texas at Austin. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This article presents the layout and characterization of the large in-core irradiation facility and the real-time electronics performance monitoring capability it is designed to support. To demonstrate this capability, an experimental campaign was conducted where the real-time current transfer ratio for 4N25 general-purpose optocouplers was obtained from in-situ voltage measurements. The resultant radiation effects data - current transfer ratio as a function of neutron and gamma dose - was seen to be repeatable and exceptionally finely resolved. Therefore, the real-time capability at UT TRIGA appears competitive with other effects characterization facilities in terms of number and size of testable samples while additionally offering a novel real-time, in-core monitoring capability.

  4. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  5. Comprehensive Real-Time Bridge Health Monitoring System of Tongtai Bridge

    OpenAIRE

    Lei Su-su; Gao Yong-tao; Pan Dan-guang

    2015-01-01

    Tongtai Bridge is the world’s largest suspension curve-girder-skew-arch bridge, which is located in Zhangjiakou, China. The understanding of mechanics characteristics is limited to such complex bridges, so it is necessary to establish reliable health monitoring system to investigate the static and dynamic responses and monitor the safety of the bridge. A comprehensive real-time bridge health monitoring system is establish, which includes four aspects: sensor system, data acquisition and trans...

  6. The new Athens center on data processing from the neutron monitor network in real time

    OpenAIRE

    Mavromichalaki; Souvatzoglou; Sarlanis; Mariatos; Gerontidou; Papaioannou; Plainaki; Tatsis; Belov; Eroshenko; Yanke

    2005-01-01

    International audience The ground-based neutron monitors (NMs) record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP) takes advantage of this unique multi-directional dev...

  7. Study of Real-Time Slope Stability Monitoring System Using Wireless Sensor Network(WSN)

    OpenAIRE

    Dave Ta Teh Chang; Yuh-Show Tsai; Kai-Chun Yang

    2013-01-01

    Traditional monitoring instruments have been found difficult to meet the requirement for real-time monitoring. This study applied Wireless Sensor Network (WSN) to slope stability monitoring, In recent years, the slopes in Taiwan have frequently caused disasters after heavy rains, and traand understand the process of slope instability from the characterization variation of new concepts. In the first stage, the Mems Sensors were selected and calibrated, and the accuracy was selected as 0.1 。...

  8. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring; FINAL

    International Nuclear Information System (INIS)

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features

  9. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  10. Pump less wearable microfluidic device for real time pH sweat monitoring

    OpenAIRE

    Benito-Lopez, Fernando; Coyle, Shirley; Byrne, Robert; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot

    2009-01-01

    This paper presents the fabrication and the performance of a novel, wearable, robust, flexible and disposable microfluidic device which incorporates micro-Light Emitting Diodes (μ-LEDs) as a detection system, for monitoring in real time mode the pH of the sweat generated during an exercising period.

  11. Real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    At Lawrence Livermore National Laboratory (LLNL) we have developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation, which computes a three-dimensional numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 yr within the U.S. Department of Energy's Atmospheric Release Advisory Capability (ARAC) project. Faster workstations and real-time instruments allow utilization of more complex three-dimensional models, which provides a foundation for building a real-time monitoring and emergency response workstation for a tritium facility. The stack monitors are two ion chambers per stack

  12. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. It co...

  13. Improvements in real time {sup 222}Rn monitoring at Stromboli volcano

    Energy Technology Data Exchange (ETDEWEB)

    Lavagno, A., E-mail: andrea.lavagno@polito.it [Dipartimento di Scienze Applicata e Tecnologia, Politecnico di Torino (Italy); INFN, Sezione di Torino (Italy); Laiolo, M. [Dipartimento di Scienze della Terra, Università di Torino (Italy); Gervino, G. [Dipartimento di Fisica, Università di Torino (Italy); INFN, Sezione di Torino (Italy); Cigolini, C.; Coppola, D.; Piscopo, D. [Dipartimento di Scienze della Terra, Università di Torino (Italy); Marino, C. [Dipartimento di Fisica, Università di Torino (Italy); INFN, Sezione di Torino (Italy)

    2013-08-01

    Monitoring gas emissions from soil allow to get information on volcanic activity, hidden faults and hydrothermal dynamics. Radon activities at Stromboli were collected by means of multi-parametric real-time stations, that measure radon as well as environmental parameters. The last improvements on the detection system are presented and discussed.

  14. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  15. Optimized Distributed Feedback Dye Laser Sensor for Real-Time Monitoring of Small Molecule Diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Dufva, Martin;

    2014-01-01

    parameter for optimization. Using such laser sensors in an imaging spectroscopy setup, real-time label-free monitoring of sugar molecule diffusion in water is demonstrated. This method could potentially pave the way towards the analysis of small molecule diffusion in various media, e.g. protein signaling...... processes in tissue....

  16. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  17. Accuracy evaluation of a new real-time continuous glucose monitoring algorithm in hypoglycemia

    DEFF Research Database (Denmark)

    Mahmoudi, Zeinab; Jensen, Morten Hasselstrøm; Johansen, Mette Dencker;

    2014-01-01

    UNLABELLED: Abstract Background: The purpose of this study was to evaluate the performance of a new continuous glucose monitoring (CGM) calibration algorithm and to compare it with the Guardian(®) REAL-Time (RT) (Medtronic Diabetes, Northridge, CA) calibration algorithm in hypoglycemia. SUBJECTS...

  18. A study on real-time fault monitoring detection method of bearing using the infrared thermography

    International Nuclear Information System (INIS)

    Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

  19. Real-time non-destructive microwave sensor for nutrient monitoring in wastewater treatment

    Science.gov (United States)

    Al-Dasoqi, N.; Mason, A.; Alkhaddar, R.; Shaw, A.; Al-Shamma'a, A.

    2011-08-01

    A real-time non intrusive microwave sensor system able to monitor the nutrients found in wastewater has been designed, simulated and implemented. These liquids are continuously flowing through a PTFE pipe and the properties of these liquids gradually degraded in time. Microwaves have the ability to give real-time changes in any material permittivity by means of changing the velocity of the signal, attenuating or reflecting it. The primarily measurements show promising results for future sensor developments which lead to a novel system that can be used in wastewater treatment plants.

  20. ARGOS - Near Real Time Airborne Monitoring System for Disaster and Traffic Applications

    OpenAIRE

    Reinartz, Peter; Kurz, Franz; Rosenbaum, Dominik; Leitloff, Jens; Palubinskas, Gintautas

    2010-01-01

    Near real time monitoring of natural disasters, mass events, and large traffic disasters with airborne optical sensors is a focus of research and development at the German Aerospace Center (DLR). For this purpose, a new airborne camera system was developed named 3K camera system (3K = “3Kopf-Kamera”). Image data are processed onboard on five onboard processing units using data from a real time GPS/IMU system. Processed data are sent to ground via two types of datalinks, a commercial microwave...

  1. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  2. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    DEFF Research Database (Denmark)

    Keall, Paul J.; Aun Ng, Jin; O'Brien, Ricky;

    2015-01-01

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred...... system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal...... to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction...

  3. Real-time hypoglycemia detection from continuous glucose monitoring data of subjects with type 1 diabetes

    DEFF Research Database (Denmark)

    Jensen, Morten Hasselstrøm; Christensen, Toke Folke; Tarnow, Lise;

    2013-01-01

    BACKGROUND: Hypoglycemia is a potentially fatal condition. Continuous glucose monitoring (CGM) has the potential to detect hypoglycemia in real time and thereby reduce time in hypoglycemia and avoid any further decline in blood glucose level. However, CGM is inaccurate and shows a substantial...... number of cases in which the hypoglycemic event is not detected by the CGM. The aim of this study was to develop a pattern classification model to optimize real-time hypoglycemia detection. MATERIALS AND METHODS: Features such as time since last insulin injection and linear regression, kurtosis, and...... 12 of 17 hypoglycemic events with zero false-positives for the CGM alone. Lead-time was 14 min and 0 min for the model and the CGM alone, respectively. CONCLUSIONS: This optimized real-time hypoglycemia detection provides a unique approach for the diabetes patient to reduce time in hypoglycemia and...

  4. Real-time monitoring of DNAzyme cleavage process using fluorescent assay

    Institute of Scientific and Technical Information of China (English)

    Xiang Xian Meng; Xiao Hai Yang; Ke Min Wang; Wei Hong Tan; Qiu Ping Guo

    2009-01-01

    Detection of deoxyribozyme (DNAzyme) cleavage process usually needs complex and time-consuming radial labeling, gel electrophoresis and autoradiography. This paper reported an approach to detect DNAzyme cleavage process in real time using a fluorescence probe. The probe was employed as DNAzyme substrate to convert directly the cleavage information into fluorescence signal in real time. Compared with traditional approach, this non-isotope method not only brought a convenient means to monitor the DNAzyme cleavage reaction, but also offered abundant dynamic data for choosing potential gene therapeutic agents. It provides a new tool for DNAzyme research, as well as a new insight into research on human disease diagnosis. Based on this method, 8-17deoxyribozyme (8-17DNAzyme) against hepatitis C virus RNA (HCV-RNA) was designed and the cleavage process was studied in real time.

  5. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  6. Real-time Diesel Particulate Matter ambient monitoring in underground mines

    Institute of Scientific and Technical Information of China (English)

    Gillies A D S

    2011-01-01

    A real-time Diesel Particulate Matter (DPM) monitor has been developed on the base of the successful National Institute of Occupational Health and Safety (NIOSH) designed Personal Dust Monitor (PDM) unit.The objectives of a recently completed Australian Coal Association Research Program (ACARP) study was to modify the PDM to measure the submicrometre fraction of the aerosol in a real-time monitoring underground instrunent.Mine testing focused on use of the monitor in engineering evaluations of Longwall (LW) moves demonstrated how DPM concentrations from vehicles fluctuate under varying ventilation and operational conditions.The strong influence of mine ventilation systems is reviewed.Correlation between the current SKC DPM measurement system and real-time DPM monitors were conducted and results from eight mines show a correlation between elemental carbon (EC) and the new monitor DPM mass ranging from 0.45 to 0.82 with R2>0.86 in all but two cases.This differences in suspected to be due to variations from mine to mine in aspects such as mine atmospheric contamination,vehicle fleet variations,fuel type,engine maintenance,engine combustion efficiency,engine behavior or interference from other submicrometre aerosol.Real-time monitoring clearly reflects the movement of individual diesel vehicles and allows pin-pointing of high exposure zones such as those encountered where various vehicles engage in intense work in areas of constrained or difficult ventilation.DPM shift average monitoring approaches do not readily allow successful engineering evaluation exercises to determine acceptability of pollution levels.Identification of high DPM concentration zones allows efficient modification of mine ventilation,operator positioning and other work practices to reduce miners' exposures without waiting for laboratory analysis results.

  7. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    Science.gov (United States)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  8. A Wireless and Real-Time Monitoring System Design for Car Networking Applications

    Directory of Open Access Journals (Sweden)

    Li Wenjun

    2013-01-01

    Full Text Available We described a wireless and monitoring system to obtain several classes of vehicle data and send them to the server via General Packet Radio Service (GPRS in real-time. These data are consisted by on-board diagnostic (OBD which get from the vehicle’s OBD interface, Tire-Pressure Monitoring system (TPMS and Global Positioning System (GPS. The main content of this paper is the hardware design of the system, especially RF modules and antennas.

  9. Improvements to Web Toolkits for Antelope-based Real-time Monitoring Systems

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Vernon, F. L.; Hansen, T. S.; Orcutt, J.

    2005-12-01

    The Antelope Environmental Monitoring System (http://www.brtt.com) is a robust middleware architecture for near-real-time data collection, analysis, archiving and distribution. Antelope has an extensive toolkit allowing users to interact directly with their datasets. A rudimentary interface was developed in previous work between Antelope and the web-scripting language PHP (The PHP language is described in more detail at http://www.php.net). This interface allowed basic application development for remote access to and interaction with near-real-time data through a World Wide Web interface. We have added over 70 new functions for the Antelope interface to PHP, providing a solid base for web-scripting of near-real-time Antelope database applications. In addition, we have designed a new structure for web sites to be created from the Antelope platform, including PHP applications and Perl CGI scripts as well as static pages. Finally we have constructed the first version of the dbwebproject program, designed to dynamically create and maintain web-sites from specified recipes. These tools have already proven valuable for the creation of web tools for the dissemination of and interaction with near-real-time data streams from multi-signal-domain real-time sensor networks. We discuss current and future directions of this work in the context of the ROADNet project. Examples and applications of these core tools are elaborated in a companion presentation in this session (Newman et al., AGU 2005, session IN06).

  10. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    International Nuclear Information System (INIS)

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based PanDA job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job's owner immedeatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehavior. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitoring data to provide job and site health summary information to users and admins is presented. Finally, the provision of a secure real-time control and steering channel to the job as extension of the presented monitoring software is considered and a possible model of such the control method is presented.

  11. Neonatal Non-contact Respiratory Monitoring based on Real-Time Infrared Thermography

    OpenAIRE

    Abbas Abbas K; Heimann Konrad; Jergus Katrin; Orlikowsky Thorsten; Leonhardt Steffen

    2011-01-01

    Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration ra...

  12. Monitoring and Diagnostics for C/C++ Real-Time Applications

    CERN Document Server

    Fischer, Yves

    Knowledge about the internal state of computational processes is essential for problem diagnostics as well as for constant monitoring and pre-failure recognition. The CMX li- brary provides monitoring capabilities similiar to the Java Management Extensions (JMX) for C and C++ applications. This thesis provides a detailed analysis of the requirements for monitoring and diagnos- tics of the C/C++ processes at CERN. The developed CMX library enables real-time C/C++ processes to expose values with- out harming their normal execution. CMX is portable and can be integrated in different monitoring architectures.

  13. STUDY OF REAL-TIME EXPERT SYSTEM TOOL FOR INDUSTRIAL FAULT MONITORING AND DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    谢桂林; 周建荣

    1992-01-01

    From the requirements ot industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment,strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the realtime requirement of DC hoist,but also can give correct diagnosis results.

  14. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    International Nuclear Information System (INIS)

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  15. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  16. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    Science.gov (United States)

    Walsh, P. T.; Forth, A. R.; Clark, R. D. R.; Dowker, K. P.; Thorpe, A.

    2009-02-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  17. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    International Nuclear Information System (INIS)

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  18. Atlas-based multichannel monitoring of functional MRI signals in real-time: automated approach.

    Science.gov (United States)

    Lee, Jong-Hwan; O'Leary, Heather M; Park, Hyunwook; Jolesz, Ferenc A; Yoo, Seung-Schik

    2008-02-01

    We report an automated method to simultaneously monitor blood-oxygenation-level-dependent (BOLD) MR signals from multiple cortical areas in real-time. Individual brain anatomy was normalized and registered to a pre-segmented atlas in standardized anatomical space. Subsequently, using real-time fMRI (rtfMRI) data acquisition, localized BOLD signals were measured and displayed from user-selected areas labeled with anatomical and Brodmann's Area (BA) nomenclature. The method was tested on healthy volunteers during the performance of hand motor and internal speech generation tasks employing a trial-based design. Our data normalization and registration algorithm, along with image reconstruction, movement correction and a data display routine were executed with enough processing and communication bandwidth necessary for real-time operation. Task-specific BOLD signals were observed from the hand motor and language areas. One of the study participants was allowed to freely engage in hand clenching tasks, and associated brain activities were detected from the motor-related neural substrates without prior knowledge of the task onset time. The proposed method may be applied to various applications such as neurofeedback, brain-computer-interface, and functional mapping for surgical planning where real-time monitoring of region-specific brain activity is needed. PMID:17370340

  19. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    Energy Technology Data Exchange (ETDEWEB)

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  20. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  1. Digital Image Support in the ROADNet Real-time Monitoring Platform

    Science.gov (United States)

    Lindquist, K. G.; Hansen, T. S.; Newman, R. L.; Vernon, F. L.; Nayak, A.; Foley, S.; Fricke, T.; Orcutt, J.; Rajasekar, A.

    2004-12-01

    The ROADNet real-time monitoring infrastructure has allowed researchers to integrate geophysical monitoring data from a wide variety of signal domains. Antelope-based data transport, relational-database buffering and archiving, backup/replication/archiving through the Storage Resource Broker, and a variety of web-based distribution tools create a powerful monitoring platform. In this work we discuss our use of the ROADNet system for the collection and processing of digital image data. Remote cameras have been deployed at approximately 32 locations as of September 2004, including the SDSU Santa Margarita Ecological Reserve, the Imperial Beach pier, and the Pinon Flats geophysical observatory. Fire monitoring imagery has been obtained through a connection to the HPWREN project. Near-real-time images obtained from the R/V Roger Revelle include records of seafloor operations by the JASON submersible, as part of a maintenance mission for the H2O underwater seismic observatory. We discuss acquisition mechanisms and the packet architecture for image transport via Antelope orbservers, including multi-packet support for arbitrarily large images. Relational database storage supports archiving of timestamped images, image-processing operations, grouping of related images and cameras, support for motion-detect triggers, thumbnail images, pre-computed video frames, support for time-lapse movie generation and storage of time-lapse movies. Available ROADNet monitoring tools include both orbserver-based display of incoming real-time images and web-accessible searching and distribution of images and movies driven by the relational database (http://mercali.ucsd.edu/rtapps/rtimbank.php). An extension to the Kepler Scientific Workflow System also allows real-time image display via the Ptolemy project. Custom time-lapse movies may be made from the ROADNet web pages.

  2. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  3. Mobile Embedded Real Time System (RTTCS for Monitoring and Controlling in Telemedicine

    Directory of Open Access Journals (Sweden)

    Basim Mohammed

    2010-10-01

    Full Text Available A real time system embedded in mobile phone was designed In this work, called (Real Time Telemonitoring and Controlling System RTTCS to telemonitor and control a patient's case in level two of telemedicine. The signals (ECG, Arterial Oxygen Saturation and Blood Pressure were transferred out of the patient's monitoring equipments to NOKIA12 unit. Then they were send wirelessly through GPRS to be received by the mobile phone interpreted by the specialist physician who is far a way from the patient. By which the physician can evaluate the patient's case through parameters displaced on the mobile phone screen, so he can provide the necessary medical orders. The suggested system consists of three units. The first is the NOKIA12 unit (T-Box N12 R which contains an embedded real time program works as its operating system. That depends upon two principles multithreading and preemptive and uses a proposed dynamic scheduling algorithm called (RTT with real time constraints to schedule the signals and to send them according to identified priorities to meet the deadline of signals. The second unit represents a web site which is the middle storage for the patient's data. The third unit is a mobile unit (mobile phone which receives the coming signals from the patient monitor accordingly through the previously mentioned first and second units, then the physician can evaluate and diagnose the patient’s case and order the necessary interventions. The system was applied on many cases of abnormal cardiac rhythm cases, where it had been send successfully to a mobile phone in it's real time, and had been read by the physician where it was clear and reliable for the medical diagnosis.

  4. A NEAR REAL-TIME BERYLLIUM MONITOR WITH CAM AND WIPE ANALYSIS CAPABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Kendrick; Steven Saggese

    2002-12-01

    Science & Engineering Associates, Inc. (SEA), under contract No. DE-AC26-00NT40768, was tasked by the US Department of Energy--National Energy Technology Laboratory to develop and test a near real-time beryllium monitor for airborne and surface measurements. Recent public awareness of the health risks associated with exposure to beryllium has underscored the need for better, faster beryllium monitoring capabilities within the DOE. A near real-time beryllium monitor will offer significant improvements over the baseline monitoring technology currently in use. Whereas the baseline technology relies upon collecting an air sample on a filter and the subsequent analysis of the filter by an analytical laboratory, this effort developed a monitor that offers near real-time measurement results while work is in progress. Since the baseline typically only offers after-the-fact documentation of exposure levels, the near real-time capability provides a significant increase in worker protection. The beryllium monitor developed utilizes laser induced breakdown spectroscopy, or LIBS as the fundamental measurement technology. LIBS has been used in a variety of laboratory and field based instrumentation to provide real-time, and near-real-time elemental analysis capabilities. LIBS is an analytical technique where a pulsed high energy laser beam is focused to a point on the sample to be interrogated. The high energy density produces a small high temperature plasma plume, sometimes called a spark. The conditions within this plasma plume result in the constituent atoms becoming excited and emitting their characteristic optical emissions. The emission light is collected and routed to an optical spectrometer for quantitative spectral analysis. Each element has optical emissions, or lines, of a specific wavelength that can be used to uniquely identify that element. In this application, the intensity of the beryllium emission is used to provide a quantitative measure of the abundance of the

  5. Advanced Visualization System for Monitoring the ATLAS TDAQ Network in real-time

    CERN Document Server

    Batraneanu, S M; The ATLAS collaboration; Martin, B; Savu, D O; Stancu, S N; Leahu, L

    2012-01-01

    The trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN comprises approximately 2500 servers interconnected by three separate Ethernet networks, totaling 250 switches. Due to its real-time nature, there are additional requirements in comparison to conventional networks in terms of speed and performance. A comprehensive monitoring framework has been developed for expert use. However, non experts may experience difficulties in using it and interpreting data. Moreover, specific performance issues, such as single component saturation or unbalanced workload, need to be spotted with ease, in real-time, and understood in the context of the full system view. We addressed these issues by developing an innovative visualization system where the users benefit from the advantages of 3D graphics to visualize the large monitoring parameter space associated with our system. This has been done by developing a hierarchical model of the complete system onto which we overlaid geographical, logical and real...

  6. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release

    Science.gov (United States)

    Fan, Zhen; Sun, Leming; Huang, Yujian; Wang, Yongzhong; Zhang, Mingjun

    2016-04-01

    Peptide nanostructures are biodegradable and are suitable for many biomedical applications. However, to be useful imaging probes, the limited intrinsic optical properties of peptides must be overcome. Here we show the formation of tryptophan-phenylalanine dipeptide nanoparticles (DNPs) that can shift the peptide's intrinsic fluorescent signal from the ultraviolet to the visible range. The visible emission signal allows the DNPs to act as imaging and sensing probes. The peptide design is inspired by the red shift seen in the yellow fluorescent protein that results from π-π stacking and by the enhanced fluorescence intensity seen in the green fluorescent protein mutant, BFPms1, which results from the structure rigidification by Zn(II). We show that DNPs are photostable, biocompatible and have a narrow emission bandwidth and visible fluorescence properties. DNPs functionalized with the MUC1 aptamer and doxorubicin can target cancer cells and can be used to image and monitor drug release in real time.

  7. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release

    Science.gov (United States)

    Fan, Zhen; Sun, Leming; Huang, Yujian; Wang, Yongzhong; Zhang, Mingjun

    2016-04-01

    Peptide nanostructures are biodegradable and are suitable for many biomedical applications. However, to be useful imaging probes, the limited intrinsic optical properties of peptides must be overcome. Here we show the formation of tryptophan–phenylalanine dipeptide nanoparticles (DNPs) that can shift the peptide's intrinsic fluorescent signal from the ultraviolet to the visible range. The visible emission signal allows the DNPs to act as imaging and sensing probes. The peptide design is inspired by the red shift seen in the yellow fluorescent protein that results from π–π stacking and by the enhanced fluorescence intensity seen in the green fluorescent protein mutant, BFPms1, which results from the structure rigidification by Zn(II). We show that DNPs are photostable, biocompatible and have a narrow emission bandwidth and visible fluorescence properties. DNPs functionalized with the MUC1 aptamer and doxorubicin can target cancer cells and can be used to image and monitor drug release in real time.

  8. Real Time Monitoring of Carbon Monoxide Using Value-at-Risk Measure and Control Charting

    OpenAIRE

    Bersimis, Sotirios; Degiannakis, Stavros; Georgakellos, Dimitrios

    2015-01-01

    One of the most important environmental health issues is air pollution, causing the deterioration of the population’s quality of life, principally in cities where the urbanization level seems limitless. Among ambient pollutants, carbon monoxide (CO) is well known for its biological toxicity. Many studies report associations between exposure to CO and excess mortality. In this context, the present work provides an advanced modelling scheme for real time monitoring of pollution data and especia...

  9. Simulation of a nuclear measurement system around a multi-task mode real-time monitor

    International Nuclear Information System (INIS)

    When debugging and testing material and software for the automation of systems, the non-availability of this last one states important logistic problems. A simulator of the system to be automatized, conceived around a multi-task mode real-time monitor, allowing the debugging of the software of automation without the physical presence of the system to be automatized, is proposed in the present report

  10. Real-time Prescription Surveillance and its Application to Monitoring Seasonal Influenza Activity in Japan

    OpenAIRE

    Sugawara, Tamie; Ohkusa, Yasushi; Ibuka, Yoko; Kawanohara, Hirokazu; Taniguchi, Kiyosu; Okabe, Nobuhiko

    2012-01-01

    Background Real-time surveillance is fundamental for effective control of disease outbreaks, but the official sentinel surveillance in Japan collects information related to disease activity only weekly and updates it with a 1-week time lag. Objective To report on a prescription surveillance system using electronic records related to prescription drugs that was started in 2008 in Japan, and to evaluate the surveillance system for monitoring influenza activity during the 2009–2010 and 2010–2011...

  11. A real-time assay for monitoring nucleic acid cleavage by quadruplex formation

    OpenAIRE

    Kankia, Besik I.

    2006-01-01

    Direct and straightforward methods to follow nucleic acid cleavage are needed. A spectrophotometric quadruplex formation assay (QFA) was developed, which allows real-time monitoring of site-specific cleavage of nucleic acids. QFA was applied to study both protein and nucleic acid restriction enzymes, and was demonstrated to accurately determine Michaelis–Menten parameters for the cleavage reaction catalyzed by EcoRI. QFA can be used to study the mechanisms of protein–nucleic acid recognition....

  12. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    Science.gov (United States)

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control.

  13. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  14. Real-time capability of GEONET system and its application to crust monitoring

    Science.gov (United States)

    Yamagiwa, Atsushi; Hatanaka, Yuki; Yutsudo, Toru; Miyahara, Basara

    2006-03-01

    The GPS Earth Observation Network system (GEONET) has been playing an important role in monitoring the crustal deformation of Japan. Since its start of operation, the requirements for accuracy and timeliness have become higher and higher. On the other hand, recent broadband communication infrastructure has had capability to realize real-time crust monitoring and to aid the development of a location-based service. In early 2003, the Geographical Survey Institute (GSI) upgraded the GEONET system to meet new requirements. The number of stations became 1200 in total by March, 2003. The antennas were unified to the choke ring antennas of Dorne Margolin T-type and the receivers were replaced with new ones that are capable of real-time observation and data transfer. The new system uses IP-connection through IP-VPN (Internet Protocol Virtual Private Network) for data transfer, which is provided by communication companies. The Data Processing System, which manages the observation data and analyses in GEONET, has 7 units. GEONET carries out three kinds of routine analyses and an analysis of RTK-type for emergencies. The new system has shown its capability for real-time crust monitoring, for example, the precise and rapid detection of coseismic (and post-seismic) motion caused by 2003 Tokachi-Oki earthquake.

  15. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    International Nuclear Information System (INIS)

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  16. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    International Nuclear Information System (INIS)

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  17. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    Science.gov (United States)

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. PMID:24908516

  18. Design and characterization of an irradiation facility with real-time monitoring

    Science.gov (United States)

    Braisted, Jonathan David

    Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The

  19. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  20. Performance results of cooperating expert systems in a distributed real-time monitoring system

    Science.gov (United States)

    Schwuttke, U. M.; Veregge, J. R.; Quan, A. G.

    1994-01-01

    There are numerous definitions for real-time systems, the most stringent of which involve guaranteeing correct system response within a domain-dependent or situationally defined period of time. For applications such as diagnosis, in which the time required to produce a solution can be non-deterministic, this requirement poses a unique set of challenges in dynamic modification of solution strategy that conforms with maximum possible latencies. However, another definition of real time is relevant in the case of monitoring systems where failure to supply a response in the proper (and often infinitesimal) amount of time allowed does not make the solution less useful (or, in the extreme example of a monitoring system responsible for detecting and deflecting enemy missiles, completely irrelevant). This more casual definition involves responding to data at the same rate at which it is produced, and is more appropriate for monitoring applications with softer real-time constraints, such as interplanetary exploration, which results in massive quantities of data transmitted at the speed of light for a number of hours before it even reaches the monitoring system. The latter definition of real time has been applied to the MARVEL system for automated monitoring and diagnosis of spacecraft telemetry. An early version of this system has been in continuous operational use since it was first deployed in 1989 for the Voyager encounter with Neptune. This system remained under incremental development until 1991 and has been under routine maintenance in operations since then, while continuing to serve as an artificial intelligence (AI) testbed in the laboratory. The system architecture has been designed to facilitate concurrent and cooperative processing by multiple diagnostic expert systems in a hierarchical organization. The diagnostic modules adhere to concepts of data-driven reasoning, constrained but complete nonoverlapping domains, metaknowledge of global consequences of anomalous

  1. Study of Real-Time Slope Stability Monitoring System Using Wireless Sensor Network(WSN

    Directory of Open Access Journals (Sweden)

    Dave Ta Teh Chang

    2013-01-01

    Full Text Available Traditional monitoring instruments have been found difficult to meet the requirement for real-time monitoring. This study applied Wireless Sensor Network (WSN to slope stability monitoring, In recent years, the slopes in Taiwan have frequently caused disasters after heavy rains, and traand understand the process of slope instability from the characterization variation of new concepts. In the first stage, the Mems Sensors were selected and calibrated, and the accuracy was selected as 0.1 。and 0.5。. The self-made tilt calibration apparatus was used to calibrate the accuracy of 33 Mems Sensors respectively placed on the side slope. The stability and repeatability were validated multiple times. The field monitoring was carried out at the second stage. National Highway No. 3 3K+100 and TW PHW62 were selected at test locations, and 23 and 10 sensors were placed at these locations respectively. The data were collected in the in-situ industrial computer, and were transmitted via 3G wireless network card to the remote management unit as the basis of monitoring side slope. This study is now at the overall distribution stage, hoping to use the wireless sensor technology to develop an effective, real-time and energy-saving environmental monitoring system and management platform, so as to construct an intelligent WSN early warning and reporting system, which can be applied to the slope disaster prevention engineering.

  2. The new Athens center on data processing from the neutron monitor network in real time

    Directory of Open Access Journals (Sweden)

    Mavromichalaki

    2005-11-01

    Full Text Available The ground-based neutron monitors (NMs record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work.

  3. Preparation of Nanoporous Polymer Films for Real-Time Viability Monitoring of Cells

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2011-01-01

    Full Text Available We have demonstrated an alternative way to monitor the viability of cells adhered on a nanoporous polymer film in real time. The nanoporous polymer films were prepared by laser interference pattering. During exposure of holographic patterning, the dissolved solvents were phase separated with photocured polymer and the nanopores were created as the solvents evaporated. The diffracted spectra from the nanoporous polymer film responded to each activity of the cell cycle, from initial cell seeding, through growth, and eventual cell death. This cell-based biosensor uses a nanoporous polymer film to noninvasively monitor cell viability and may prove useful for biotechnological applications.

  4. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    Science.gov (United States)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  5. Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Day, Iain J. [University of Sussex, Department of Chemistry and Biochemistry, School of Life Sciences (United Kingdom); Maeda, Kiminori; Paisley, Howard J. [University of Oxford, Department of Chemistry, Physical and Theoretical Chemistry Laboratory (United Kingdom); Mok, K. Hun [University of Dublin, Trinity College, School of Biochemistry and Immunology (Ireland)], E-mail: mok1@tcd.ie; Hore, P. J. [University of Oxford, Department of Chemistry, Physical and Theoretical Chemistry Laboratory (United Kingdom)], E-mail: peter.hore@chem.ox.ac.uk

    2009-06-15

    Photo-CIDNP NMR spectroscopy is a powerful method for investigating the solvent accessibility of histidine, tyrosine and tryptophan residues in a protein. When coupled to real-time NMR, this technique allows changes in the environments of these residues to be used as a probe of protein folding. In this paper we describe experiments performed to monitor the refolding of ribonuclease A following dilution from a high concentration of chemical denaturant. These experiments provide a good example of the utility of this technique which provides information that is difficult to obtain by other biophysical methods. Real-time photo-CIDNP measurements yield residue-specific kinetic data pertaining to the folding reaction, interpreted in terms of current knowledge of the folding of bovine pancreatic ribonuclease A.

  6. Real-time deformation monitoring by a wireless network of low-cost GPS

    Science.gov (United States)

    Benoit, Lionel; Briole, Pierre; Martin, Olivier; Thom, Christian

    2014-06-01

    Monitoring small size area deformations calls for increasingly precise data with greater space and time resolution. To this aim, a GPS data processing method designed for wireless networks of mono-frequency GPS receivers is proposed. The different steps of the method are explained: the GPS processing is first detailed with the design of parametric and stochastic models, their inversion by an extended Kalman filter and the mitigation of the main errors: multipath. A parsimonious radio data transfer protocol is then proposed. It allows a real-time positioning thanks to a wireless transfer of GPS carrier phases data from receivers to a processing computer. Finally the method is tested on a network of mono-frequency receivers developed by the French National Mapping Agency (IGN). Tests prove its ability for real-time positioning with a fifteen receivers network, and a precision under the centimeter level is reached.

  7. Ribozyme probe based on molecular beacon for real time monitoring of enzymatic cleavage process

    Institute of Scientific and Technical Information of China (English)

    MENG Xiangxian; WANG Kemin; TAN Weihong; LI Jun; TANG Zhiwen; GUO Qiuping; HUANG Shasheng; LI Du

    2003-01-01

    Ribozyme probe based on molecular beacon (MBR) for monitoring enzymatic cleavage process in real time is designed and studied. The approach relies on ribozyme substrates modified at the two arms, with a fluorescent moiety attached to the end of one arm and a non-fluorescent quenching moiety attached to the end of the other arm. MBR is employed to directly convert the cleavage information into fluorescence signal in real time. Compared with traditional approach, this method provides a no-radiolabeling, sensitive and effective way to research on the ribozyme activity, enzymatic dynamic process and ribozyme function during gene therapy. The activity of the ribozyme against hepatitis C virus RNA (HCV-RNA) is studied based on this assay.

  8. A Method for Real Time Monitoring of Charged Particle Beam Profile and Fluence

    CERN Document Server

    Palni, Prabhakar; Taylor, Aaron; Vora, Sandip; McDuff, Haley; Gu, Qufei; Seidel, Sally

    2013-01-01

    Detectors planned for use at the Large Hadron Collider will operate in a radiation field produced by beam collisions. To predict the radiation damage to the components of the detectors, prototype devices are irradiated at test beam facilities that reproduce the radiation conditions expected. The profile of the test beam and the fluence applied per unit time must be known. Techniques such as thin metal foil activation and radiographic image analysis have been used to measure these; however, some of these techniques do not operate in real time, have low sensitivity, or have large uncertainties. We have developed a technique to monitor in real time the beam profile and fluence using an array of $p-i-n$ semiconductor diodes whose forward voltage is linear with fluence over the fluence regime relevant to, for example, tracking in the LHC Upgrade era. We have demonstrated this technique in the 800 MeV proton beam at the LANSCE facility of Los Alamos National Laboratory.

  9. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    International Nuclear Information System (INIS)

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  10. On-line, real-time monitoring for petrochemical and pipeline process control applications

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D.; Eden, D.C.; Cayard, M.S.; Eden, D.A.; Mclean, D.T. [InterCorr International, Inc., 14503 Bammel N. Houston, Suite 300, Houston Texas 77014 (United States); Kintz, J. [BASF Corporation, 602 Copper Rd., Freeport, Texas 77541 (United States)

    2004-07-01

    Corrosion problems in petroleum and petrochemical plants and pipeline may be inherent to the processes, but costly and damaging equipment losses are not. With the continual drive to increase productivity, while protecting both product quality, safety and the environment, corrosion must become a variable that can be continuously monitored and assessed. This millennium has seen the introduction of new 'real-time', online measurement technologies and vast improvements in methods of electronic data handling. The 'replace when it fails' approach is receding into a distant memory; facilities management today is embracing new technology, and rapidly appreciating the value it has to offer. It has offered the capabilities to increase system run time between major inspections, reduce the time and expense associated with turnaround or in-line inspections, and reduce major upsets which cause unplanned shut downs. The end result is the ability to know on a practical basis of how 'hard' facilities can be pushed before excessive corrosion damage will result, so that process engineers can understand the impact of their process control actions and implement true asset management. This paper makes reference to use of a online, real-time electrochemical corrosion monitoring system - SmartCET 1- in a plant running a mostly organic process media. It also highlights other pertinent examples where similar systems have been used to provide useful real-time information to detect system upsets, which would not have been possible otherwise. This monitoring/process control approach has operators and engineers to see, for the first time, changes in corrosion behavior caused by specific variations in process parameters. Process adjustments have been identified that reduce corrosion rates while maintaining acceptable yields and quality. The monitoring system has provided a new window into the chemistry of the process, helping chemical engineers improve their process

  11. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  12. Comprehensive Real-Time Bridge Health Monitoring System of Tongtai Bridge

    Directory of Open Access Journals (Sweden)

    Lei Su-su

    2015-01-01

    Full Text Available Tongtai Bridge is the world’s largest suspension curve-girder-skew-arch bridge, which is located in Zhangjiakou, China. The understanding of mechanics characteristics is limited to such complex bridges, so it is necessary to establish reliable health monitoring system to investigate the static and dynamic responses and monitor the safety of the bridge. A comprehensive real-time bridge health monitoring system is establish, which includes four aspects: sensor system, data acquisition and transmission system, data processing and control system, structure early warning and security assessment system. The paper systematically describes the system design principles, sensor layout, and monitoring content, then expounds system integration and function of each subsystem.

  13. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    Energy Technology Data Exchange (ETDEWEB)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and

  14. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  15. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  16. Soil Monitor: an open source web application for real-time soil sealing monitoring and assessment

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Giannecchini, Simone; Iamarino, Michela; Munafò, Michele; Terribile, Fabio

    2016-04-01

    Soil sealing is one of the most important causes of land degradation and desertification. In Europe, soil covered by impermeable materials has increased by about 80% from the Second World War till nowadays, while population has only grown by one third. There is an increasing concern at the high political levels about the need to attenuate imperviousness itself and its effects on soil functions. European Commission promulgated a roadmap (COM(2011) 571) by which the net land take would be zero by 2050. Furthermore, European Commission also published a report in 2011 providing best practices and guidelines for limiting soil sealing and imperviousness. In this scenario, we developed an open source and an open source based Soil Sealing Geospatial Cyber Infrastructure (SS-GCI) named as "Soil Monitor". This tool merges a webGIS with parallel geospatial computation in a fast and dynamic fashion in order to provide real-time assessments of soil sealing at high spatial resolution (20 meters and below) over the whole Italy. Common open source webGIS packages are used to implement both the data management and visualization infrastructures, such as GeoServer and MapStore. The high-speed geospatial computation is ensured by a GPU parallelism using the CUDA (Computing Unified Device Architecture) framework by NVIDIA®. This kind of parallelism required the writing - from scratch - all codes needed to fulfil the geospatial computation built behind the soil sealing toolbox. The combination of GPU computing with webGIS infrastructures is relatively novel and required particular attention at the Java-CUDA programming interface. As a result, Soil Monitor is smart because it can perform very high time-consuming calculations (querying for instance an Italian administrative region as area of interest) in less than one minute. The web application is embedded in a web browser and nothing must be installed before using it. Potentially everybody can use it, but the main targets are the

  17. New Products for Near Real-Time Enhanced Landslide Identification and Precipitation Monitoring

    Science.gov (United States)

    Roberts-Pierel, J.; Ahamed, A.; Fayne, J.; Rumsey, A.

    2015-12-01

    Nepal and the Himalayan region are hotspots for landslide activity due to mountainous topography, complex terrain, and monsoon rains. Current research in landslide modeling and detection generally requires high resolution imagery with software aided classification or manual digitization by analysts. These methods are plagued by low spatial and temporal accuracy. Addressing issues in conventional measurement, this study combined optical data from Landsat 8, a Digital Elevation Model (DEM) generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and precipitation data from the Global Precipitation Measurement Mission (GPM) to create two products. The Sudden Landslide Identification Product (SLIP) uses Landsat 8 and the ASTER DEM to identify landslides in near real-time, and provides damage assessments by mapping landslides triggered by precipitation. Detecting Real-time Increased Precipitation (DRIP) monitors precipitation levels extracted from the GPM-IMERG 30-minute product to create alerts in near real-time when current rainfall levels exceed regional threshold values. After a landslide detection is made by SLIP, historical rainfall data from DRIP is analyzed to estimate a date for the detected landslide. Together, DRIP and SLIP will be used by local and regional organizations in Nepal such as the International Centre for Integrated Mountain Development (ICIMOD), as well as the international scientific community to protect lives, preserve infrastructure, and manage local ecosystems.

  18. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    Science.gov (United States)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  19. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    Science.gov (United States)

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  20. Towards Online Visualization and Interactive Monitoring of Real-Time CFD Simulations on Commodity Hardware

    Directory of Open Access Journals (Sweden)

    Nils Koliha

    2015-09-01

    Full Text Available Real-time rendering in the realm of computational fluid dynamics (CFD in particular and scientific high performance computing (HPC in general is a comparably young field of research, as the complexity of most problems with practical relevance is too high for a real-time numerical simulation. However, recent advances in HPC and the development of very efficient numerical techniques allow running first optimized numerical simulations in or near real-time, which in return requires integrated and optimized visualization techniques that do not affect performance. In this contribution, we present concepts, implementation details and several application examples of a minimally-invasive, efficient visualization tool for the interactive monitoring of 2D and 3D turbulent flow simulations on commodity hardware. The numerical simulations are conducted with ELBE, an efficient lattice Boltzmann environment based on NVIDIA CUDA (Compute Unified Device Architecture, which provides optimized numerical kernels for 2D and 3D computational fluid dynamics with fluid-structure interactions and turbulence.

  1. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  2. Real-Time Monitoring System Using Unmanned Aerial Vehicle Integrated with Sensor Observation Service

    Science.gov (United States)

    Witayangkurn, A.; Nagai, M.; Honda, K.; Dailey, M.; Shibasaki, R.

    2011-09-01

    The Unmanned Aerial Vehicle (UAV) is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service) makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS) and Sensor Service Grid (SSG) to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  3. Long-term and real-time monitoring system of the East/Japan sea

    Science.gov (United States)

    Kim, Kuh; Kim, Yun Bae; Park, Jong Jin; Nam, Sunghyun; Park, Kyung-Ae; Chang, Kyung-Il

    2005-03-01

    Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-term current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a

  4. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(doubleprime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(doubleprime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  5. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  6. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    Directory of Open Access Journals (Sweden)

    Holger Klinck

    Full Text Available In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical

  7. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  8. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  9. Assessment of the accuracy of real-time continuous glucose monitoring system and its correlated factors

    Institute of Scientific and Technical Information of China (English)

    洛佩

    2014-01-01

    Objective To assess the factors that influence the accuracy of real-time continuous glucose monitoring system(RT-CGM).Methods A total of 79 diabetic patients wore RT-CGM for three days continuously while calibrating by interphalangeal glucose values 4-8 times a day.We counted matching rate of interphalangeal glucose values and RT-CGM probe value,and analyzed correlation of the matching rate with MAGE,SDBG,MBG,AUC10,AUC3.9,and NGE by Pearson correlation analysis and multiple linear

  10. In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry

    Science.gov (United States)

    Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping

    2013-07-01

    Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.

  11. A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes

    Directory of Open Access Journals (Sweden)

    Pietro Mario Lugarà

    2009-05-01

    Full Text Available In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.

  12. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Frouin, J.; Maurer, J.; Sathish, S.; Eylon, D.; Na, J.K.; Matikas, T.E.

    2000-07-01

    Variation in acoustic nonlinearity has been monitored in real time during fatigue, on four dog-bone specimens of Ti-6Al-4V, under low cycle fatigue conditions, from the virgin state all the way to fracture. The results of these experiments show that the acoustic nonlinearity undergoes large changes during the fatigue and follows a similar trend for the material under given fatigue test conditions. Transmission electron microscopic (TEM) examination of the samples with similar composition fatigues to different stages indicates a gradual change in the microstructure and dislocation density, which correlates with the changes in acoustic nonlinearity.

  13. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    Science.gov (United States)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  14. Real-time impedimetric monitoring of Poly(ethylenimine)s-mediated cytotoxicity during gene transfection

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, Marco; Heiskanen, Arto;

    according to their physiological and morphological changes. In this work, EIS has been used to evaluate impedance changes due to the polycation perturbations on a cell population. HeLa cells have been cultured on laminin-coated gold interdigitated electrode arrays integrated into a tailor-made microfluidic......-time by following impedance changes. Microscopic imaging and MTS assays have been combined to the electrochemical detection. Complementary ongoing experiments aim to monitor in real-time gene transfection in order to detect the cytotoxic effects (apoptosis and necrosis) induced by different cationic polyplexes...

  15. Real-Time Dry Beach Length Monitoring for Tailings Dams Based on Visual Measurement

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-01-01

    Full Text Available The length of dry beach is an important factor that influences the safety of tailings dams. However, there still is no accurate and reliable method that can conveniently measure the length of dry beach. In this paper, the authors focus on developing a novel method for dry beach length determination. The proposed method can effectively measure the dry beach length through an ordinary camera and four marking rods placed on the dry beach. Experimental results show that the proposed method can conveniently measure the dry beach length with high accuracy, and therefore it can be adopted as an effective method in tailings dam real-time health monitoring.

  16. Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer.

    Science.gov (United States)

    Gouilleux, Boris; Charrier, Benoît; Danieli, Ernesto; Dumez, Jean-Nicolas; Akoka, Serge; Felpin, François-Xavier; Rodriguez-Zubiri, Mireia; Giraudeau, Patrick

    2015-12-01

    Reaction monitoring is widely used to follow chemical processes in a broad range of application fields. Recently, the development of robust benchtop NMR spectrometers has brought NMR under the fume hood, making it possible to monitor chemical reactions in a safe and accessible environment. However, these low-field NMR approaches suffer from limited resolution leading to strong peak overlaps, which can limit their application range. Here, we propose an approach capable of recording ultrafast 2D NMR spectra on a compact spectrometer and of following in real time reactions in the synthetic chemistry laboratory. This approach--whose potential is shown here on a Heck-Matsuda reaction--is highly versatile; the duration of the measurement can be optimized to follow reactions whose time scale ranges from between a few tens of seconds to a few hours. It makes it possible to monitor complex reactions in non-deuterated solvents, and to confirm in real time the molecular structure of the compounds involved in the reaction while giving access to relevant kinetic parameters. PMID:26501887

  17. Real-time eye lens dose monitoring during cerebral angiography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J.; Wong, J.H.D.; Kadir, K.A.A.; Ng, K.H. [University of Malaya, Department of Biomedical Imaging, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, University of Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Thorpe, N.K.; Cutajar, D.L.; Petasecca, M.; Lerch, M.L.F.; Rosenfeld, A.B. [University of Wollongong, Centre for Medical Radiation Physics (CMRP), Wollongong, NSW (Australia)

    2016-01-15

    To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R{sup 2}) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AK{sub L}: 0.93, AK{sub F}: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. (orig.)

  18. Study of weld quality real-time monitoring system for auto-body assembly

    Science.gov (United States)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  19. Development of on package indicator sensor for real-time monitoring of meat quality

    Directory of Open Access Journals (Sweden)

    Vivek Shukla

    2015-03-01

    Full Text Available Aim: The aim was to develop an indicator sensor for real-time monitoring of meat quality and to compare the response of indicator sensor with meat quality parameters at ambient temperature. Materials and Methods: Indicator sensor was prepared using bromophenol blue (1% w/v as indicator solution and filter paper as indicator carrier. Indicator sensor was fabricated by coating indicator solution onto carrier by centrifugation. To observe the response of indicator sensor buffalo meat was packed in polystyrene foam trays covered with PVC film and indicator sensor was attached to the inner side of packaging film. The pattern of color change in indicator sensor was monitored and compared with meat quality parameters viz. total volatile basic nitrogen, D-glucose, standard plate count and tyrosine value to correlate ability of indicator sensor for its suitability to predict the meat quality and storage life. Results: The indicator sensor changed its color from yellow to blue starting from margins during the storage period of 24 h at ambient temperature and this correlated well with changes in meat quality parameters. Conclusions: The indicator sensor can be used for real-time monitoring of meat quality as the color of indicator sensor changed from yellow to blue starting from margins when meat deteriorates with advancement of the storage period. Thus by observing the color of indicator sensor quality of meat and shelf life can be predicted.

  20. 3D Road Scene Monitoring Based on Real-Time Panorama

    Directory of Open Access Journals (Sweden)

    Yuezhou Wu

    2014-01-01

    Full Text Available Road monitoring helps to control the regional traffic situation so as to adjust the traffic flow. Real-time panorama is conducive to timely treat traffic accidents and to greatly improve traffic capacity. This paper designs a 3D road scene monitoring framework based on real-time panorama. The system is the combination of large scale panorama, satellite map textures, and 3D scene model, in which users can ramble freely. This paper has the following contributions. Firstly, land-points were extracted followed by motion detection, then comotion algorithm was applied to land-points from adjacent cameras, and homography matrix was constructed. Secondly, reference camera was chosen and transformed to overhead viewpoint; subsequently multiviews were morphed to the same viewpoint and stitched to panorama. Finally, the registration based on high-precision GPS information between 2D road panorama and 3D scene model was also proposed. The proposed framework has been successfully applied to a large road intersection monitoring. Experimental results are furnished at the end of the paper.

  1. Real-time eye lens dose monitoring during cerebral angiography procedures

    International Nuclear Information System (INIS)

    To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R2) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. (orig.)

  2. Real-Time Load Monitoring By Microcontroller to Optimize Electric Power Utilization

    Directory of Open Access Journals (Sweden)

    Karthik Sai Reddy Cherlo

    2016-08-01

    Full Text Available This paper describes the design and working of a cost and energy efficient power meter that monitor the usage of electrical energy consumed by any appliance or machine at any given time. The precise knowledge of the consumption of each device will let us identify the devices that increases the cost of our electricity bill. The circuit designed evaluates the consumption of the load of a particular device. As this is real-time monitoring, the evaluation is instantaneous such that the user can monitor the readings at any given time. The load is displayed in terms of Watts and the cost can be programmed according to tariff plan and slab rates

  3. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jiachen Yang

    2015-11-01

    Full Text Available Carbon monoxide (CO burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  4. Gun Launch System: efficient and low-cost means of research and real-time monitoring

    Science.gov (United States)

    Degtyarev, Alexander; Ventskovsky, Oleg; Korostelev, Oleg; Yakovenko, Peter; Kanevsky, Valery; Tselinko, Alexander

    2005-08-01

    The Gun Launch System with a reusable sub-orbital launch vehicle as a central element is proposed by a consortium of several Ukrainian high-tech companies as an effective, fast-response and low-cost means of research and real-time monitoring. The system is described in details, with the emphasis on its most important advantages. Multiple applications of the system are presented, including ones for the purposes of microgravity research; chemical, bacteriological and radiation monitoring and research of atmosphere and ionosphere; operational monitoring of natural and man-made disasters, as well as for some other areas of great practical interest. The current level of the system development is given, and the way ahead towards full system's implementation is prescribed.

  5. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  6. Real-time monitoring of plutonium content in uranium-plutonium alloys

    Science.gov (United States)

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  7. Experiences with an expert system technology for real-time monitoring and diagnosis of industrial processes

    International Nuclear Information System (INIS)

    The complexity of modern industrial processes and the large amount of data available to their operators make it difficult to monitor their status and diagnose potential failures. Although there have been many attempts to apply knowledge-based technologies to this problem, there have not been any convincing success. This paper describes recent experiences with a technology that combines artificial intelligence and simulation techniques for building real-time monitoring and diagnosis systems. A prototype system for monitoring and diagnosing the feedwater system of a nuclear power plant built using this technology is described. The paper then describes several interesting classes of failures that the prototype is capable of diagnosing. (author). 19 refs, 6 figs

  8. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release

    Science.gov (United States)

    Cao, Han; Yang, Yuhong; Chen, Xin; Shao, Zhengzhong

    2016-03-01

    Stimuli-responsive nanomaterials have been receiving much attention as drug delivery carriers, however understanding of multi-drug release from the carriers for efficient therapeutics is highly challenging. Here, we report a novel nanosystem, Janus particle Dox-CMR-MS/Au-6MP (Dox: doxorubicin, CMR: 7-hydroxycoumarin-3-carboxylate, MS: mesoporous silica, Au: gold, 6MP: 6-mercaptopurine) with opposing MS and Au faces, which can monitor intracellular dual-drug (Dox and 6MP) controlled release in real time based on fluorescence resonance energy transfer (FRET) and surface-enhanced Raman scattering (SERS). The FRET acceptor Dox is attached to CMR (as a FRET donor) conjugated MS with a pH-responsive linker hydrazone, and 6MP is conjugated to the Au surface through the gold-thiol interaction. As the Janus nanoparticle enters into tumor cells, the breakage of the hydrazone bond in an acidic environment and the substitution of glutathione (GSH) overexpressed in cancer cells give rise to the release of Dox and 6MP, respectively. Thus, the change of the CMR fluorescence signal and the SERS decrease of 6MP can be used to monitor the dual-drug release within living cells in real time. In addition, this work demonstrates the enhanced anticancer effect of the designed dual-drug loaded nanosystem. Therefore, the current study may provide new perspectives for the real-time study of intelligent multi-drug delivery and release, as well as cellular responses to drug treatment.Stimuli-responsive nanomaterials have been receiving much attention as drug delivery carriers, however understanding of multi-drug release from the carriers for efficient therapeutics is highly challenging. Here, we report a novel nanosystem, Janus particle Dox-CMR-MS/Au-6MP (Dox: doxorubicin, CMR: 7-hydroxycoumarin-3-carboxylate, MS: mesoporous silica, Au: gold, 6MP: 6-mercaptopurine) with opposing MS and Au faces, which can monitor intracellular dual-drug (Dox and 6MP) controlled release in real time based on

  9. Real-time Environmental Monitoring from a Wind Farm Platform in the Texas Hypoxic Zone

    Science.gov (United States)

    Mullins, R. L.; Dimarco, S. F.; Walpert, J. N.; Guinasso, N. L.; Howard, M. K.

    2009-12-01

    Ocean observing systems (OOS) provide coastal managers with data for informed decision-making. OOS are designed to monitor oceanographic and atmospheric conditions from a variety of offshore platforms. In the summer of 2009, a multi-disciplinary system, the Galveston Instrument Garden for Environmental Monitoring (GIGEM), was deployed off the coast of Galveston, Texas (Location: 29o 08’ 29.654’’N, 94o 44’ 51.339’’W) to monitor coastal waters and provide real-time observations for investigating processes responsible for coastal Texas hypoxia. Hypoxia occurs in the Gulf of Mexico over the continental shelf and refers to low dissolved oxygen concentrations in the bottom waters caused by a combination of environmental and physical parameters. Events form rapidly, last for a few days to weeks, and commonly occur along the Louisiana and Texas coasts; however, little research has been conducted to investigate the processes responsible for Texas hypoxia formation. GIGEM was designed to study this problem by contributing real-time measurements to compare with historical coastal data series. Unlike most coastal OOS, GIGEM is installed on an experimental wind farm platform operated by Wind Energy System Technologies Inc. This platform is the first executed offshore wind energy lease in the United States. GIGEM is comprised of two components, the subsurface mooring and a nearby bottom package. The data telemetry system includes a unique design of underwater and surface inductive modems. GIGEM is the only coastal OOS currently collecting real-time environmental water quality measurements on the Texas shelf. The work presented describes: the obstacles and challenges associated with deploying GIGEM, the flow of information from the water column to the user, and how this type of OOS fulfills the societal goals for protecting coastal ecosystems and improving coastal weather and ocean predictions envisioned by the Integrated Ocean Observing System (IOOS). Data and

  10. Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments

    Science.gov (United States)

    Blackmon, Richard L.; Kreda, Silvia M.; Sears, Patrick R.; Ostrowski, Lawrence E.; Hill, David B.; Chapman, Brian S.; Tracy, Joseph B.; Oldenburg, Amy L.

    2016-03-01

    Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of >=3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

  11. The JET real-time plasma-wall load monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, D.F., E-mail: daniel.valcarcel@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Alves, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Card, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Carvalho, B.B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Devaux, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Felton, R.; Goodyear, A.; Lomas, P.J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Reux, C. [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); Rimini, F.; Stephen, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St., Paul Lez Durance (France); and others

    2014-03-15

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented.

  12. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  13. Real time in-line monitoring of large scale Bacillus fermentations with near-infrared spectroscopy.

    Science.gov (United States)

    Alves-Rausch, José; Bienert, Roland; Grimm, Christian; Bergmaier, Dirk

    2014-11-10

    NIR spectroscopy was used to monitor Bacillus fermentations in 50 m(3) reactors under harsh industrial conditions. The BioPAT(®) Spectro NIR sensor was attached directly to the bioreactor and provided fast, sensitive, non-destructive and robust measurements without interfering with the microorganism metabolism. Multivariate data analysis techniques related the spectra collected in real time during the fermentation with reference analyte concentrations. Analyte concentrations of future batches can be determined in real time with these models. The SugarSUM parameter was modeled with a SEP of 1.33 g/L in a range of 0-35 g/L. The models for AnalyteSUM (SEP = 0.81 g/L in 0.5-43 g/L range), OD(600) (SEP = 2.88 OD in 3.5-50 OD range), dry mass (SEP = 0.09 in 0.4-1.7% range) and Acetoin (SEP = 0.94 g/L in 0-11 g/L range) also show a great prediction performance in the complex media matrix. Sophisticated process control strategies such as a feeding control of the sugar source can be implemented in the future, potentially increasing spore yield due to a reduction of carbon overflow mechanisms. Media classification with PCA identified media formulation errors. Batch evolution models, built with spectra data only, monitored the evolution of new batches by comparing it with a "golden batch" trajectory.

  14. Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring.

    Science.gov (United States)

    Li, Yue; Shea, Steven M; Lorenz, Christine H; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called "corrected Inter-Slice Intensity Discontinuity" (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies.

  15. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  16. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  17. A web-based modular framework for real-time monitoring of large scale sensor networks

    Science.gov (United States)

    Newman, R. L.; Lindquist, K. G.; Vernon, F. L.

    2007-12-01

    The Antelope Real Time System (ARTS) is an integrated combination of protocols, acquisition systems and applications designed for real-time data collection and analysis from an array of deployed field sensors. Historically these were seismic sensors, however the open architecture of the ARTS facilitated development of acquisition protocols for a diverse group of sensors, including data streams from hf radar, meteorological instrumentation and cameras. In parallel with the expansion of data-type ingestion, a web-based interface to the ARTS was developed in PHP, a popular HTML embedded scripting language. The application-driven development of web-based software to Antelope-stored data has risen exponentially over the last four years, from simple database interactions to web-based AJAX applications similar in look and feel to desktop software. As the web-based applications have grown in complexity, the architecture around their development has matured into an extensible framework with "plug'n'play" capabilities. Their modular design has allowed multiple institutions to deploy the same web-based applications, tailored for their specific requirements. Examples include the NSF Earthscope USArray Transportable Array, ROADNet's Realtime Imagebank, the broadband seismic network monitoring of the University of Nevada Reno and University of California San Diego, and monitoring of the downhole arrays maintained by the University of California Santa Barbara. The success of these deployments suggest that such a framework could be applicable to other large scale sensor networks, including the developing Ocean Observatories project.

  18. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  19. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  20. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    International Nuclear Information System (INIS)

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  1. Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond

    Science.gov (United States)

    Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Harjadi, P.; Fauzi; Gitews Seismology Group

    2010-12-01

    The Mw = 9.3 Sumatra earthquake of 26 December 2004 generated a tsunami that affected the entire Indian Ocean region and caused approximately 230 000 fatalities. In the response to this tragedy the German government funded the German Indonesian Tsunami Early Warning System (GITEWS) Project. The task of the GEOFON group of GFZ Potsdam was to develop and implement the seismological component. In this paper we describe the concept of the GITEWS earthquake monitoring system and report on its present status. The major challenge for earthquake monitoring within a tsunami warning system is to deliver rapid information about location, depth, size and possibly other source parameters. This is particularly true for coast lines adjacent to the potential source areas such as the Sunda trench where these parameters are required within a few minutes after the event in order to be able to warn the population before the potential tsunami hits the neighbouring coastal areas. Therefore, the key for a seismic monitoring system with short warning times adequate for Indonesia is a dense real-time seismic network across Indonesia with densifications close to the Sunda trench. A substantial number of supplementary stations in other Indian Ocean rim countries are added to strengthen the teleseismic monitoring capabilities. The installation of the new GITEWS seismic network - consisting of 31 combined broadband and strong motion stations - out of these 21 stations in Indonesia - is almost completed. The real-time data collection is using a private VSAT communication system with hubs in Jakarta and Vienna. In addition, all available seismic real-time data from the other seismic networks in Indonesia and other Indian Ocean rim countries are acquired also directly by VSAT or by Internet at the Indonesian Tsunami Warning Centre in Jakarta and the resulting "virtual" network of more than 230 stations can jointly be used for seismic data processing. The seismological processing software as part

  2. Real-time monitoring of weld penetration quality in roboticarc welding process

    Institute of Scientific and Technical Information of China (English)

    Wu Chuansong; Jia Chuanbao; Duan Xiaoning

    2008-01-01

    It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector S10 is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.

  3. A Real time Data Acquisition and Monitoring Device for Medical Applications based on Android Platform

    Directory of Open Access Journals (Sweden)

    Jithin Krishnan

    2013-09-01

    Full Text Available An android based real time data acquisition and monitoring device is presented here. The system finds its initial application in medical field .it serves as a remote monitor for measuring and analysing along with logging of data from patients. The system comprises of two parts. A data acquisition (DaQ part connected to patient side and an android based display device on the receiving end. The Data Acquisition part contains sensors for picking up the vital signs from the patients, signal conditioning circuits and a Bluetooth transceiver to transmit data wirelessly to the display device. The Display Device then displays the data received from the transmitter in a readable form and also logs the data into a excel form so that it can be taken out digitally and analysed.

  4. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  5. A UAV based system for real time flash flood monitoring in desert environments using Lagrangian microsensors

    KAUST Repository

    Abdelkader, Mohamed

    2013-05-01

    Floods are the most common natural disasters, causing thousands of casualties every year in the world. In particular, flash flood events are particularly deadly because of the short timescales on which they occur. Most casualties could be avoided with advance warning, for which real time monitoring is critical. While satellite-based high resolution weather forecasts can help predict floods to a certain extent, they are not reliable enough, as flood models depend on a large number of parameters that cannot be estimated beforehand. In this article, we present a novel flood sensing architecture to monitor large scale desert hydrological basins surrounding metropolitan areas, based on unmanned air vehicles. The system relies on Lagrangian (mobile) microsensors, that are released by a swarm of UAVs. A preliminary testbed implementing this technology is briefly described, and future research directions and problems are discussed. © 2013 IEEE.

  6. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    Science.gov (United States)

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration.

  7. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    Science.gov (United States)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  8. Test plan for glove box testing with the real-time transuranic dust monitor

    International Nuclear Information System (INIS)

    This test plan describes the objectives, instrumentation, and testing procedures used to prove the feasibility of a real-time transuranic dust monitor (RTDM). The RTDM is under development at the Idaho National Engineering Laboratory (INEL) as a Waste Characterization Technology funded by the Buried Waste Integrated Demonstration Project. The instrument is an in situ monitor that uses optical techniques to establish particle size, particle number density, and mass and species of heavy metal contamination. US Department of Energy orders mandate the assessment of radiological exposure and contamination spread during the remediation of radioactive waste. Of particular concern is heavy metal contamination of dust, both radioactive and nonradioactive. Small particles of metal, particularly the radioactive species, tend to become electrically charged and consequently attach themselves to dust particles. This airborne activated dust is a primary means of contamination transport during remediation activities, and therefore, must be continuously monitored to protect personnel involved in the operations and to control the spread of contamination. If real-time monitoring is not available there is increased likelihood of generating unacceptably high levels of contamination and being forced to shut down costly retrieval operations to decontaminate. A series of experiments are described to determine the optimal experimental design, operational parameters, and levels of detection for the RTDM. Initial screening will be performed using monodisperse particle standards to set parameters and calibrate the instrument. Additional testing will be performed using INEL soil samples spiked with a surrogate, cerium oxide, to prove the design before transporting the apparatus to the Test Reactor Area for testing with plutonium-contaminated dusts

  9. Monitoring and simulating real-time electric power system operation with phasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, A.G. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Thorp, J.S. [American Electric Power Corp. (United States)

    1995-01-01

    In this research project, two important results have been achieved. The concept of generator axis load flow has been developed more fully, and has been tested through simulations on the 39-bus system (with 10 generators). Generator axis load flow is a load flow calculation which views the entire network from a few retained buses such as the internal nodes of the generators. As these nodes can be indirectly monitored in real time through phasor measurements of generator terminal quantities, it becomes possible to track and predict the behavior of the entire network from these few observation points. This is extremely valuable in the task of predicting network instability in real time. The task of instability prediction of a multi-machine power system is one of the most difficult analytical exercises. We investigated two of the most promising approaches: the extended equal area method, and the transient energy function method. Although both of these methods work well in many instances, we have shown that in other cases, the predictions made by the two methods are incorrect. The failure of the methods can be traced to their inability to deal with the behavior of the system after the first turning point of the motor swing curves. Instead of using these methods, we propose the direct integration of the machine swing equations following the start of a disturbance. Coupled with the generator aids load flow developed above, and using the high speed computers available now, we show that for systems of significant size (39 bus system), accurate predictions through direct computation are possible. The report also includes results on computational efficiency of the method of faster-than-real-time integration using machine equations and the generator aids load flow. It is anticipated that this technique will be useful in most practical applications in power system control centers of the future.

  10. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  11. Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios

    Science.gov (United States)

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-04-01

    Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term

  12. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    Science.gov (United States)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine

  13. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    Science.gov (United States)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring

  14. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    Energy Technology Data Exchange (ETDEWEB)

    Keall, Paul J., E-mail: paul.keall@sydney.edu.au; O’Brien, Ricky; Huang, Chen-Yu [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006 (Australia); Aun Ng, Jin [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia and School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia); Colvill, Emma [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia); Rugaard Poulsen, Per; Fledelius, Walther [Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, 8000 Aarhus C (Denmark); Juneja, Prabhjot; Booth, Jeremy T. [School of Physics, University of Sydney, Camperdown, New South Wales 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia); Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia)

    2015-01-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and

  15. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS

    Directory of Open Access Journals (Sweden)

    Cécile Renier

    2015-06-01

    both time and space and is affected by several factors, such as vegetation density, the north-south climatic gradient and the relief. Smoothing the vegetation time series resulted in an increase of the overall accuracy of about 5% at the expense of a loss in timeliness of ten days. To simulate near-real-time monitoring conditions, the decision tree was applied to the decade of 2010. Overall, the seasonal vegetation cycle appeared clear and consistent. The results obtained pave the way for an operational implementation of the senescence dynamic mapping and, consequently, to further strengthen the capacity of the locust control management.

  16. A new method for real-time monitoring of grout spread through fractured rocks

    International Nuclear Information System (INIS)

    Reducing water ingress into the Shaft at Dounreay is essential for the success of future intermediate level waste (ILW) recovery using the dry retrieval method. The reduction is being realised by forming an engineered barrier of ultrafine cementitious grout injected into the fractured rock surrounding the Shaft. Grout penetration of 6 m in <50μm fractures is being reliably achieved, with a pattern of repeated injections ultimately reducing rock mass permeability by up to three orders of magnitude. An extensive field trials period, involving over 200 grout mix designs and the construction of a full scale demonstration barrier, has yielded several new field techniques that improve the quality and reliability of cementitious grout injection for engineered barriers. In particular, a new method has been developed for tracking in real-time the spread of ultrafine cementitious grout through fractured rock and relating the injection characteristics to barrier design. Fieldwork by the multi-disciplinary international team included developing the injection and real-time monitoring techniques, pre- and post injection hydro-geological testing to quantify the magnitude and extent of changes in rock mass permeability, and correlation of grout spread with injection parameters to inform the main works grouting programme. (authors)

  17. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor.

    Science.gov (United States)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-01-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min(-1). The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min(-1), which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555

  18. The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets

    Science.gov (United States)

    Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt

    2007-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.

  19. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    Science.gov (United States)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-01-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min−1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min−1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555

  20. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes.

    Science.gov (United States)

    Morgan, Bruce; Van Laer, Koen; Owusu, Theresa N E; Ezeriņa, Daria; Pastor-Flores, Daniel; Amponsah, Prince Saforo; Tursch, Anja; Dick, Tobias P

    2016-06-01

    Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate. PMID:27089028

  1. Real time processing of neutron monitor data using the edge editor algorithm

    Directory of Open Access Journals (Sweden)

    Mavromichalaki Helen

    2012-09-01

    Full Text Available The nucleonic component of the secondary cosmic rays is measured by the worldwide network of neutron monitors (NMs. In most cases, a NM station publishes the measured data in a real time basis in order to be available for instant use from the scientific community. The space weather centers and the online applications such as the ground level enhancement (GLE alert make use of the online data and are highly dependent on their quality. However, the primary data in some cases are distorted due to unpredictable instrument variations. For this reason, the real time primary data processing of the measured data of a station is necessary. The general operational principle of the correction algorithms is the comparison between the different channels of a NM, taking advantage of the fact that a station hosts a number of identical detectors. Median editor, Median editor plus and Super editor are some of the correction algorithms that are being used with satisfactory results. In this work an alternative algorithm is proposed and analyzed. The new algorithm uses a statistical approach to define the distribution of the measurements and introduces an error index which is used for the correction of the measurements that deviate from this distribution.

  2. Real-time monitoring of progression towards renal failure in primary care patients.

    Science.gov (United States)

    Diggle, Peter J; Sousa, Inês; Asar, Özgür

    2015-07-01

    Chronic renal failure is a progressive condition that, typically, is asymptomatic for many years. Early detection of incipient kidney failure enables ameliorative treatment that can slow the rate of progression to end-stage renal failure, at which point expensive and invasive renal replacement therapy (dialysis or transplantation) is required. We use routinely collected clinical data from a large sample of primary care patients to develop a system for real-time monitoring of the progression of undiagnosed incipient renal failure. Progression is characterized as the rate of change in a person's kidney function as measured by the estimated glomerular filtration rate, an adjusted version of serum creatinine level in a blood sample. Clinical guidelines in the UK suggest that a person who is losing kidney function at a relative rate of at least 5% per year should be referred to specialist secondary care. We model the time-course of a person's underlying kidney function through a combination of explanatory variables, a random intercept and a continuous-time, non-stationary stochastic process. We then use the model to calculate for each person the predictive probability that they meet the clinical guideline for referral to secondary care. We suggest that probabilistic predictive inference linked to clinical criteria can be a useful component of a real-time surveillance system to guide, but not dictate, clinical decision-making.

  3. A real-time monitoring system for airborne particle shape and size analysis

    Science.gov (United States)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  4. Real-Time Personalized Monitoring to Estimate Occupational Heat Stress in Ambient Assisted Working

    Directory of Open Access Journals (Sweden)

    Pablo Pancardo

    2015-07-01

    Full Text Available Ambient Assisted Working (AAW is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers’ comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.

  5. Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor

    Science.gov (United States)

    Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao

    2016-06-01

    Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min-1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min-1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts.

  6. Real-time monitoring of carbonarius DNA structured biochip by surface plasmon resonance imaging

    Science.gov (United States)

    Manera, M. G.; Rella, R.; Spadavecchia, J.; Moreau, J.; Canva, M.

    2008-06-01

    Surface plasmon resonance imaging (SPRI) studies, performed on a specially designed system exploiting the Kretschmann configuration, have been carried out to develop a DNA sensor for the detection of gene mutations accounting for the analysis of a fungin species which can proliferate especially in cereals, producing toxic compounds such as mycotoxins. The SPRI system has been used in order to study the hybridization process of ssDNA carbonarius probes immobilized onto a bio-functionalized Au surface in order to detect in real time the mutations in a DNA fragment. The SPRI system is a good choice for real-time monitoring of hybridization dynamics on an array of immobilized oligonucleotide probes because of the high sensitivity in characterization of ultra-thin films adsorbed onto gold or other noble metal surfaces. Using this technique, local changes in the reflectivity of a thin metal film describe the hybridization process between the molecules tethered to the surface and those sent in solution in the test chamber. The increase in the greyscale levels of the images (representing the functionalized gold traps) during the hybridization process demonstrated the occurrence of the binding event. The process has been proven to be reversible and specific for the investigated probes, since no signal has been detected in the presence of a negative control which is a non-complementary target.

  7. The Piston Compressor: The Methodology of the Real-Time Condition Monitoring

    Science.gov (United States)

    Naumenko, A. P.; Kostyukov, V. N.

    2012-05-01

    The methodology of a diagnostic signal processing, a function chart of the monitoring system are considered in the article. The methodology of monitoring and diagnosing is based on measurement of indirect processes' parameters (vibroacoustic oscillations) therefore no more than five sensors is established on the cylinder, measurement of direct structural and thermodynamic parameters is envisioned as well. The structure and principle of expert system's functioning of decision-making is given. Algorithm of automatic expert system includes the calculation diagnostic attributes values based on their normative values, formation sets of diagnostic attributes that correspond to individual classes to malfunction, formation of expert system messages. The scheme of a real-time condition monitoring system for piston compressors is considered. The system have consistently-parallel structure of information-measuring equipment, which allows to measure the vibroacoustic signal for condition monitoring of reciprocating compressors and modes of its work. Besides, the system allows to measure parameters of other physical processes, for example, system can measure and use for monitoring and statements of the diagnosis the pressure in decreasing spaces (the indicator diagram), the inlet pressure and flowing pressure of each cylinder, inlet and delivery temperature of gas, valves temperature, position of a rod, leakage through compression packing and others.

  8. Neural network with an expert system for real-time nuclear power plant monitoring

    International Nuclear Information System (INIS)

    The real-time condition monitoring in a nuclear reactor is of major concern for operational safety and maintenance. In a nuclear facility, monitoring requires a system for recognizing whether the quantities related to the plant's operational status are within expected, normal or off-normal ranges. Here hybrid artificial intelligence system, combining an artificial neural network (ANN) and an expert system, has been developed for the plant wide monitoring of Borssele Nuclear power Plant (NPP) in the Netherlands. In this monitoring system, a three-layered feed forward neural network, which can model the plant system by training various operational patterns of major measurement signals, is connected to the on-line data acquisition system. The expert system is used for man-machine interface as well as a decision agent which can take input from both the ANN and the human operator. In this study, it is shown that complex and dynamic system like nuclear power plant can be modelled by ANN and the hybrid monitoring system is effective to enhance the reliability and operability of nuclear power plant. (authors)

  9. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    Science.gov (United States)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  10. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  11. Real time health monitoring and control system methodology for flexible space structures

    Science.gov (United States)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  12. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  13. DESIGN OF ARM BASED REAL TIME PERSONNEL MONITORING SYSTEM USING WI-FI TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Rekha George

    2013-01-01

    Full Text Available Nowadays we constantly come across the need to transfer remote data to monitor center which will be far away from the place of data acquisition. Traditional data acquisition system using wires cannot satisfy these requirements due to its heavy cost and impracticability. Embedded devices with network communication which makes it more powerful and easier to monitor and control remote data, is one of the major outcomes of the developments in the field of communication and networking technologies. This study presents the design of a real time personnel monitoring system based on wireless technology. ARM embedded processor and Wi-Fi module are used as hardware platform in this project. Data transfer over the wireless network is based on the TCP/IP protocol which is a part of the Wi-Fi module. Using this designed system an officer can monitor the personnel in the organization by opening a web page from a place that is geographically far. This system is based on the conversion of serial to wireless data which could be transferred over the wireless network to the server and also over the internet. At the completion of the design, the result shows that data is transferred between the ARM processor and the host system using the wireless network.

  14. Real-time Web GIS to monitor marine water quality using wave glider

    Science.gov (United States)

    Maneesa Amiruddin, Siti

    2016-06-01

    In the past decade, Malaysia has experienced unprecedented economic development and associated socioeconomic changes. As environmentalists anticipate these changes could have negative impacts on the marine and coastal environment, a comprehensive, continuous and long term marine water quality monitoring programme needs to be strengthened to reflect the government's aggressive mind-set of enhancing its authority in protection, preservation, management and enrichment of vast resources of the ocean. Wave Glider, an autonomous, unmanned marine vehicle provides continuous ocean monitoring at all times and is durable in any weather condition. Geographic Information System (GIS) technology is ideally suited as a tool for the presentation of data derived from continuous monitoring of locations, and used to support and deliver information to environmental managers and the public. Combined with GeoEvent Processor, an extension from ArcGIS for Server, it extends the Web GIS capabilities in providing real-time data from the monitoring activities. Therefore, there is a growing need of Web GIS for easy and fast dissemination, sharing, displaying and processing of spatial information which in turn helps in decision making for various natural resources based applications.

  15. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  16. Real-time in-die compaction monitoring of dry-coated tablets.

    Science.gov (United States)

    Liu, Jingfei; Stephens, James D; Kowalczyk, Brian R; Cetinkaya, Cetin

    2011-07-29

    The practicability of a pulse-echo ultrasonic approach developed for the real-time quality monitoring of dry-coated tablets in the tablet press during compaction is evaluated. The punch-tablet interface (i.e., steel-tablet) is the boundary condition that dictates the viability of acoustic in-die compaction monitoring. The current study utilizes compacted tablets with a simulated punch-tablet interface to achieve the required waveform detectability levels needed for in-die compaction monitoring. The geometric and mechanical properties of a dry-coated tablet are crucial to its structural functions and therapeutic effectiveness, therefore they are monitored especially when the control of dissolution rates of their active ingredients are critically important. Acquired pulse-echo ultrasonic waveforms in the tablet could provide the time-of-flight information needed to determine the thickness, elasticity and/or integrity of the relevant layer, and bonding quality between layers depending on the given parameters. Since the amplitudes of the reflected waves are extremely low due to the high acoustic impedance mismatches of tablet materials and die/punch materials, signal processing techniques are required to extract the wave arrival times. In current study, it is demonstrated that the reflection of an ultrasonic pulse generated by a transducer embedded in a die or a punch from the coat-core interface can be acquired by the same transducer. PMID:21605647

  17. On-line stress monitoring in real time for a high pressure steam turbine rotor

    International Nuclear Information System (INIS)

    This paper reports on a computer program that has been written to run in real time and display the current stress and damage condition for a high pressure steam turbine rotor. The Rotor Stress Monitoring (RSM) program accesses the turbine instrumentation to obtain the boundary conditions necessary to calculate the temperature and stress distributions at each time step. The stress solution is linear elastic; however, a plastic strain concentration factor has been employed to describe the stress concentration on the outside surface of the rotor. The RSM program output is tailored to model the exit side of the first stage on the high pressure turbine rotor. Strains are tracked at the bore and surface locations and are arranged into strain ranges for the fatigue damage calculations by the rainflow cycle counting method. Creep damage is calculated from the Larson-Miller parameter at any time step when the bore or outside surface temperatures are about 900 degrees F

  18. The optothermal approach to a real time monitoring of glucose content during fermentation by brewers' yeast.

    Science.gov (United States)

    Favier, J P; Bicanic, D; Helander, P; van Iersel, M

    1997-06-01

    During production of both normal and low-alcohol beers, sugar is fermented to ethanol, carbon dioxide and several flavour products. Tight control of fermentation is necessary in order to keep production costs low, and to prevent formation of excessive ethanol in low-alcohol beer. Several types of control devices based on, e.g., determination of carbon dioxide, ethanol, and extract have been developed so far; the main disadvantage of these devices is their unsuitability for on-line applications. Here, the optothermal window was used in a laboratory experiment as a new sensor for real time monitoring fermentation of glucose by Saccharomyces cerevisiae, and the results were compared to those obtained by conventional techniques.

  19. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp.

    Science.gov (United States)

    Guo, Dong-Sheng; Ji, Xiao-Jun; Ren, Lu-Jing; Li, Gan-Lu; Yin, Feng-Wei; Huang, He

    2016-09-01

    Oxygen uptake rate (OUR) and respiratory quotient (RQ) are key respiratory parameters for docosahexaenoic acid (DHA) production by Schizochytrium sp. HX-308 under dissolved oxygen limited conditions. To investigate the relationship of OUR and RQ with culture status, three independent cultures with different aeration rates were performed in a 50L bioreactor. OUR was found to be positively correlated with the aeration rate, which reflected the oxygen supply level in each culture. The highest biomass, reaching 124.5g/L, was achieved under the highest OUR. DHA content was found to be highly correlated with the RQ value, and the highest DHA content (44.85% in total fatty acids, w/w) was achieved in the highest RQ level, which implies that the polyketide synthase pathway was more active. OUR and RQ, which reflect the physiological state of microorganisms, are suggested as synergistic real-time bioprocess monitoring parameters for DHA fermentation. PMID:27262097

  20. Real-Time Payload Control and Monitoring on the World Wide Web

    Science.gov (United States)

    Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1998-01-01

    World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.

  1. Integrated real-time PCR for detection and monitoring of Legionella pneumophila in water systems.

    Science.gov (United States)

    Yaradou, Diaraf Farba; Hallier-Soulier, Sylvie; Moreau, Sophie; Poty, Florence; Hillion, Yves; Reyrolle, Monique; André, Janine; Festoc, Gabriel; Delabre, Karine; Vandenesch, François; Etienne, Jerome; Jarraud, Sophie

    2007-03-01

    We evaluated a ready-to-use real-time quantitative Legionella pneumophila PCR assay system by testing 136 hot-water-system samples collected from 55 sites as well as 49 cooling tower samples collected from 20 different sites, in parallel with the standard culture method. The PCR assay was reproducible and suitable for routine quantification of L. pneumophila. An acceptable correlation between PCR and culture results was obtained for sanitary hot-water samples but not for cooling tower samples. We also monitored the same L. pneumophila-contaminated cooling tower for 13 months by analyzing 104 serial samples. The culture and PCR results were extremely variable over time, but the curves were similar. The differences between the PCR and culture results did not change over time and were not affected by regular biocide treatment. This ready-to-use PCR assay for L. pneumophila quantification could permit more timely disinfection of cooling towers. PMID:17194840

  2. MyNewsFlash: A System for Near Real-Time Variable Star Monitoring and Alerts

    Science.gov (United States)

    Price, A.; Turner, R.; Malatesta, K.; Simonsen, M. A.

    2004-12-01

    MyNewsFlash is an automated and customizable system for distributing timely variable star data. It supplies near real-time reports to the user of the latest activity of a variable star or class of stars. The stars it monitors, the frequency of report delivery, the delivery format, and more features are all completely customizable so the reader receives only reports of information he or she wants and nothing more or less. In addition, manually-generated alerts called Special MyNewsFlashes are occasionally sent out with additional information on special or abnormal behavior of a variable star. MyNewsFlash evolved from the AAVSO News Flash, an electronic publication dedicated to outbursts of popular cataclysmic variable stars

  3. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  4. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues.

    Science.gov (United States)

    Liu, Yan-Ling; Jin, Zi-He; Liu, Yan-Hong; Hu, Xue-Bo; Qin, Yu; Xu, Jia-Quan; Fan, Cui-Fang; Huang, Wei-Hua

    2016-03-24

    Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.

  5. Development of a real-time extremity dose monitor for personnel in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Nobuhiko; Kusama, Tomoko [Oita University of Nursing and Health Sciences, Oita (Japan); Adachi, Akiko [Oita Medical University, Oita (JP)] [and others

    2000-05-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  6. Accurate real-time PCR strategy for monitoring bloodstream parasitic loads in chagas disease patients.

    Directory of Open Access Journals (Sweden)

    Tomas Duffy

    Full Text Available BACKGROUND: This report describes a real-time PCR (Q-PCR strategy to quantify Trypanosoma cruzi (T. cruzi DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence. METHODOLOGY/PRINCIPAL FINDINGS: The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 10(6 and 10(7 for Silvio X10 cl1 (T. cruzi I and Cl Brener stocks (T. cruzi IIe, respectively, an efficiency of 99%, and a coefficient of determination (R(2 of 0.998. In order to express accurately the parasitic loads: (1 we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2 results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3 a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR. The Q-PCR strategy was applied (1 to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2 to follow-up 38 of them receiving treatment with benznidazole, and (3 to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression. CONCLUSION/SIGNIFICANCE: All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients.

  7. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    Science.gov (United States)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  8. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A. [Sandia National Labs., Albuquerque, NM (United States). Gas Analysis Lab.; Owen, T. [Intel Corp., Rio Rancho, NM (United States)

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  9. Real Time Web-based Data Monitoring and Manipulation System to Improve Translational Research Quality

    Directory of Open Access Journals (Sweden)

    Matthew Nwokejizie Anyanwu, Venkateswara Ra Nagisetty, Emin Kuscu, Teeradache Viangteeravat

    2011-02-01

    Full Text Available The use of the internet technology and web browser capabilities of the internethas provided researchers/scientists with many advantages, which includes butnot limited to ease of access, platform independence of computer systems,relatively low cost of web access etc. Hence online collaboration like socialnetworks and information/data exchange among individuals and organizationscan now be done seamlessly. In practice, many investigators rely heavily ondifferent data modalities for studying and analyzing their research/study and alsofor producing quality reports. The lack of coherency and inconsistencies in datasets can dramatically reduce the quality of research data. Thus to prevent loss ofdata quality and value and provide the needed functionality of data, we haveproposed a novel approach as an ad-hoc component for data monitoring andmanipulation called RTWebDMM (Real-Time Web-based Data Monitoring andManipulation system to improve the quality of translational research data. TheRTWebDMM is proposed as an auditor, monitor, and explorer for improving theway in which investigators access and interact with the data sets in real-timeusing a web browser. The performance of the proposed approach was evaluatedwith different data sets from various studies. It is demonstrated that the approachyields very promising results for data quality improvement while leveraging on aweb-enabled environment.

  10. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors].

    Science.gov (United States)

    Hori, Hajime; Ishematsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2012-12-01

    Measurements of organic solvents in the work environment are carried out by either direct sampling using plastic bags/gas chromatography, solid sorbent adsorption using charcoal tubes/gas chromatography, or by a direct reading method using detector tubes. However, these methods cannot always measure the work environment accurately because the concentration of hazardous materials changes from time to time, and from space to space. In this study, the sensor characteristics of a real time monitor using a photoionization detector that can monitor vapor concentration continuously were investigated for 52 organic solvent vapors that are required to be measured in the work environment by the Ordinance of Organic Solvent Poisoning Prevention in Japan. The sensitivity of the monitor was high for the solvents with low ionization potential. However, the sensitivity for the solvents with high ionization potential was low, and the sensor could not detected 7 solvents. Calibration of the sensor using a standard gas was desirable before being used for measurement because the sensitivity of the sensor was variable. PMID:23270260

  11. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    Science.gov (United States)

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  12. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Science.gov (United States)

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation. PMID:27242477

  13. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Pratihast

    Full Text Available This paper describes an interactive web-based near real-time (NRT forest monitoring system using four levels of geographic information services: 1 the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2 NRT forest disturbance detection based on satellite time-series, 3 presentation of forest disturbance data through a web-based application and social media and 4 interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.

  14. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Priyanka Kakria

    2015-01-01

    Full Text Available Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts. The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  15. Real time monitoring of urban surface water quality using a submersible, tryptophan-like fluorescence sensor

    Science.gov (United States)

    Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob

    2014-05-01

    Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent

  16. Preliminary Results from Real-Time GPS Monitoring in the San Francisco Bay Area

    Science.gov (United States)

    Langbein, J. O.; Guillemot, C.

    2013-12-01

    A web-based monitoring system has been implemented to display displacement estimates in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations in the San Francisco Bay area. Tools and utilities developed in-house are used to visually analyze the quality of estimated positions and gain a better understanding of the challenges involved in integrating displacement data into earthquake early warning (EEW) algorithms. Comparisons of results between differential and precise position estimates obtained from a variety of software packages have led to a closer examination of the epoch-per-epoch latencies, or delays with which those estimates are generated. For example, although position estimates from precise point positioning, with ambiguity resolution, (PPP-AR) computed in real-time are reasonably stable over short-time scales, latencies of 50 seconds or more currently preclude their useful incorporation into EEW algorithms. On the other hand, the latencies for differential position range between less than a second to 10 seconds. The large latencies for PPP-AR are partly due to the fact that displacement estimates obtained from GPS cannot yet be generated at the source but must rely on centralized processing that incorporates instantaneous clock corrections which, in turn must be obtained from external agencies. The latencies, however, are not as critical for the study of post-seismic deformation that occurs minutes to hours following an earthquake. Computation of the power spectra of time series provides a quantitative means to compare the precision of estimated positions that are obtained from various software that process the data in real-time. To first order, the current set of processing algorithms, including those using differential position and PPP-AR, provides nearly equal performance in terms of temporal correlations which is represented by their power spectra. At the shortest periods

  17. Real-time water and wastewater quality monitoring using LED-based fluorescence spectroscopy

    Science.gov (United States)

    Bridgeman, John; Zakharova, Yulia

    2016-04-01

    In recent years there have been a number of attempts to design and introduce into water management tools that are capable of measuring organic and microbial matter in real time and in situ. This is important, as the delivery of safe water to customers, and the discharge of good quality effluent to rivers are primary concerns to water undertakers. A novel, LED-based portable fluorimeter 'Duo Fluor' has been designed and constructed at the University of Birmingham to monitor the quality of (waste)water continuously and in real time, and its performance has been assessed in a range of environments. To be of use across a range of environments, special attention must be paid to two crucially important characteristics of such instruments, i.e. their sensitivity and robustness. Thus, the objectives of this study were: 1. To compare the performance (in terms of their sensitivity and robustness) of the Duo Fluor and two other commercial fluorescence devices in laboratory conditions. 2. To assess the performance of the Duo Fluor in situ, in real time at a 450,000PE WwTW. Initially, the impact of quinine sulphate (QS), a highly fluorescent alkaloid with high quantum fluorescence yield, on peak T fluorescence in environmental waters was examined for the Duo Fluor and two commercially available, chamber-based fluorimeters, (F1) and (F2). The instruments' responses to three scenarios were assessed: 1. Deionised water (DW) spiked with QS (from 0.05 to 0.4 mg/L); 2. Environmental water (pond water, PW) spiked with QS (from 0.05 to 0.4 mg/L); 3. Different water samples from various environmental source. The results show that the facility to amend gain settings and the suitable choice of gain are crucial to obtaining reliable data on both peaks T and C in a wide range of water types. The Duo Fluor offers both of these advantages whilst commercially available instruments currently do not. The Duo Fluor was subsequently fixed at the final effluent (FE) discharge point of a WwTW and FE

  18. Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond

    Directory of Open Access Journals (Sweden)

    W. Hanka

    2010-12-01

    Full Text Available The Mw = 9.3 Sumatra earthquake of 26 December 2004 generated a tsunami that affected the entire Indian Ocean region and caused approximately 230 000 fatalities. In the response to this tragedy the German government funded the German Indonesian Tsunami Early Warning System (GITEWS Project. The task of the GEOFON group of GFZ Potsdam was to develop and implement the seismological component. In this paper we describe the concept of the GITEWS earthquake monitoring system and report on its present status. The major challenge for earthquake monitoring within a tsunami warning system is to deliver rapid information about location, depth, size and possibly other source parameters. This is particularly true for coast lines adjacent to the potential source areas such as the Sunda trench where these parameters are required within a few minutes after the event in order to be able to warn the population before the potential tsunami hits the neighbouring coastal areas. Therefore, the key for a seismic monitoring system with short warning times adequate for Indonesia is a dense real-time seismic network across Indonesia with densifications close to the Sunda trench. A substantial number of supplementary stations in other Indian Ocean rim countries are added to strengthen the teleseismic monitoring capabilities. The installation of the new GITEWS seismic network – consisting of 31 combined broadband and strong motion stations – out of these 21 stations in Indonesia – is almost completed. The real-time data collection is using a private VSAT communication system with hubs in Jakarta and Vienna. In addition, all available seismic real-time data from the other seismic networks in Indonesia and other Indian Ocean rim countries are acquired also directly by VSAT or by Internet at the Indonesian Tsunami Warning Centre in Jakarta and the resulting "virtual" network of more than 230 stations can jointly be used for seismic data processing. The

  19. Wearable real-time ecg monitoring with emergency alert system for scuba diving.

    Science.gov (United States)

    Cibis, Tobias; Groh, Benjamin H; Gatermann, Heike; Leutheuser, Heike; Eskofier, Bjoern M

    2015-08-01

    Medical diagnosis is the first level for recognition and treatment of diseases. To realize fast diagnosis, we propose a concept of a basic framework for the underwater monitoring of a diver's ECG signal, including an alert system that warns the diver of predefined medical emergency situations. The framework contains QRS detection, heart rate calculation and an alert system. After performing a predefined study protocol, the algorithm's accuracy was evaluated with 10 subjects in a dry environment and with 5 subjects in an underwater environment. The results showed that, in 3 out of 5 dives as well as in dry environment, data transmission remained stable. In these cases, the subjects were able to trigger the alert system. The evaluated data showed a clear ECG signal with a QRS detection accuracy of 90 %. Thus, the proposed framework has the potential to detect and to warn of health risks. Further developments of this sample concept can imply an extension for monitoring different biomedical parameters. PMID:26737677

  20. Neonatal non-contact respiratory monitoring based on real-time infrared thermography

    Directory of Open Access Journals (Sweden)

    Abbas Abbas K

    2011-10-01

    Full Text Available Abstract Background Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical engineering application. One signal of clinical interest is the spontaneous respiration rate of the neonate. It will be shown that the respiration rate of neonates can be monitored based on analysis of the anterior naris (nostrils temperature profile associated with the inspiration and expiration phases successively. Objective The aim of this study is to develop and investigate a new non-contact respiration monitoring modality for neonatal intensive care unit (NICU using infrared thermography imaging. This development includes subsequent image processing (region of interest (ROI detection and optimization. Moreover, it includes further optimization of this non-contact respiration monitoring to be considered as physiological measurement inside NICU wards. Results Continuous wavelet transformation based on Debauches wavelet function was applied to detect the breathing signal within an image stream. Respiration was successfully monitored based on a 0.3°C to 0.5°C temperature difference between the inspiration and expiration phases. Conclusions Although this method has been applied to adults before, this is the first time it was used in a newborn infant population inside the neonatal intensive care unit (NICU. The promising results suggest to include this technology into advanced NICU monitors.

  1. Near real-time GRACE gravity field solutions for hydrological monitoring applications

    Science.gov (United States)

    Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas

    2016-04-01

    Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.

  2. Real-time optical monitoring of permanent lesion progression in radiofrequency ablated cardiac tissue (Conference Presentation)

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Hendon, Christine P.

    2016-02-01

    Despite considerable advances in guidance of radiofrequency ablation (RFA) therapies for atrial fibrillation, success rates have been hampered by an inability to intraoperatively characterize the extent of permanent injury. Insufficient lesions can elusively create transient conduction blockages that eventually reconduct. Prior studies suggest significantly greater met-myoglobin (Mmb) concentrations in the lesion core than those in the healthy myocardium and may serve as a marker for irreversible tissue damage. In this work, we present real-time monitoring of permanent injury through spectroscopic assessment of Mmb concentrations at the catheter tip. Atrial wedges (n=6) were excised from four fresh swine hearts and submerged under pulsatile flow of warm (37oC) phosphate buffered saline. A commercial RFA catheter inserted into a fiber optic sheath allowed for simultaneous measurement of tissue diffuse reflectance (DR) spectra (500-650nm) during application of RF energy. Optical measurements were continuously acquired before, during, and post-ablation, in addition to healthy neighboring tissue. Met-myoglobin, oxy-myoglobin, and deoxy-myoglobin concentrations were extracted from each spectrum using an inverse Monte Carlo method. Tissue injury was validated with Masson's trichrome and hematoxylin and eosin staining. Time courses revealed a rapid increase in tissue Mmb concentrations at the onset of RFA treatment and a gradual plateauing thereafter. Extracted Mmb concentrations were significantly greater post-ablation (p<0.0001) as compared to healthy tissue and correlated well with histological assessment of severe thermal tissue destruction. On going studies are aimed at integrating these findings with prior work on near infrared spectroscopic lesion depth assessment. These results support the use of spectroscopy-facilitated guidance of RFA therapies for real-time permanent injury estimation.

  3. A HyperSpectral Imaging (HSI) approach for bio-digestate real time monitoring

    Science.gov (United States)

    Bonifazi, Giuseppe; Fabbri, Andrea; Serranti, Silvia

    2014-05-01

    One of the key issues in developing Good Agricultural Practices (GAP) is represented by the optimal utilisation of fertilisers and herbicidal to reduce the impact of Nitrates in soils and the environment. In traditional agriculture practises, these substances were provided to the soils through the use of chemical products (inorganic/organic fertilizers, soil improvers/conditioners, etc.), usually associated to several major environmental problems, such as: water pollution and contamination, fertilizer dependency, soil acidification, trace mineral depletion, over-fertilization, high energy consumption, contribution to climate change, impacts on mycorrhizas, lack of long-term sustainability, etc. For this reason, the agricultural market is more and more interested in the utilisation of organic fertilisers and soil improvers. Among organic fertilizers, there is an emerging interest for the digestate, a sub-product resulting from anaerobic digestion (AD) processes. Several studies confirm the high properties of digestate if used as organic fertilizer and soil improver/conditioner. Digestate, in fact, is somehow similar to compost: AD converts a major part of organic nitrogen to ammonia, which is then directly available to plants as nitrogen. In this paper, new analytical tools, based on HyperSpectral Imaging (HSI) sensing devices, and related detection architectures, is presented and discussed in order to define and apply simple to use, reliable, robust and low cost strategies finalised to define and implement innovative smart detection engines for digestate characterization and monitoring. This approach is finalized to utilize this "waste product" as a valuable organic fertilizer and soil conditioner, in a reduced impact and an "ad hoc" soil fertilisation perspective. Furthermore, the possibility to contemporary utilize the HSI approach to realize a real time physicalchemical characterisation of agricultural soils (i.e. nitrogen, phosphorus, etc., detection) could

  4. Development of real-time monitoring system for printing registration based on μC/OS-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    马志艳

    2009-01-01

    After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ.According to functional requirements of registration system and the target development platform,we described the detailed process of task division, priority assignment,and synchronization and communication,and optimized the real-time performance of system in the premise of stability assurance.Fi...

  5. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires.

    Science.gov (United States)

    Liu, Jun-Tao; Hu, Liang-Sheng; Liu, Yan-Ling; Chen, Rong-Sheng; Cheng, Zhi; Chen, Shi-Jing; Amatore, Christian; Huang, Wei-Hua; Huo, Kai-Fu

    2014-03-01

    Recent biochemical results suggest that auxin (IAA) efflux is mediated by a vesicular cycling mechanism, but no direct detection of vesicular IAA release from single plant cells in real-time has been possible up to now. A TiC@C/Pt-QANFA micro-electrochemical sensor has been developed with high sensitivity in detection of IAA, and it allows real-time monitoring and quantification of the quantal release of auxin from single plant protoplast by exocytosis.

  6. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species

    OpenAIRE

    Antonella, Penna; Luca, Galluzzi

    2012-01-01

    In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins wit...

  7. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  8. Real time bridge scour monitoring with magneto-inductive field coupling

    Science.gov (United States)

    Radchenko, Andriy; Pommerenke, David; Chen, Genda; Maheshwari, Pratik; Shinde, Satyajeet; Pilla, Viswa; Zheng, Yahong R.

    2013-04-01

    Scour was responsible for most of the U.S. bridges that collapsed during the past 40 years. The maximum scour depth is the most critical parameter in bridge design and maintenance. Due to scouring and refilling of river-bed deposits, existing technologies face a challenge in measuring the maximum scour depth during a strong flood. In this study, a new methodology is proposed for real time scour monitoring of bridges. Smart Rocks with embedded electronics are deployed around the foundation of a bridge as field agents. With wireless communications, these sensors can send their position change information to a nearby mobile station. This paper is focused on the design, characterization, and performance validation of active sensors. The active sensors use 3-axis accelerometers/ magnetometers with a magneto-inductive communication system. In addition, each sensor includes an ID, a timer, and a battery level indicator. A Smart Rock system enables the monitoring of the most critical scour condition and time by logging and analyzing sliding, rolling, tilting, and heading of the spatially distributed sensors.

  9. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry.

    Science.gov (United States)

    Jansson, Erik T; Dulay, Maria T; Zare, Richard N

    2016-06-21

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  10. Leveraging the Power of Smartphones: Real Time Monitoring of Water Points

    Directory of Open Access Journals (Sweden)

    Ally S. Nyamawe

    2014-07-01

    Full Text Available In recent years, the world has become more sophisticated. Different aspects of today’s life has been digitized, this include; business, education, health, communication and numerous community services. With the existing extended coverage of cellular networks, most services are constantly deployed to be accessed via mobile phones, as they are also the most pervasive pocket carried devices. Though, both regular and smartphone can be used to convey the basics of mobile based services such as mobile banking, calling and text messaging, smartphone goes extra mile. While regular phones are still the better choice for some, smartphones are tremendously taking over the cellphone market. Smartphones are powered by the vast amount of mobile apps available today which offer unprecedented features and functionalities and as well more advanced internet connectivity. To ensure reliable, sufficient and safe water supply to public, the installed water points need to be well monitored. Quality and quantity parameters of water produced from the water points are constantly tracked to determine if they are within the acceptable range. In case of acute condition, the identified parameters need to be instantly communicated to the District Water Engineer (DWE for prompt intervention. In this paper we explore the popularity and advantages of smartphones and present a proposed prototype that exploit the power of smartphones in real time monitoring of water points.

  11. Real-Time Monitoring of Catheter-Related Biofilm Infection in Mice.

    Science.gov (United States)

    Liu, Xu; Yin, Hong; Xu, Xianxing; Cheng, Yuanguo; Cai, Yun; Wang, Rui

    2015-10-01

    This study was done to establish a mouse model for catheter-related biofilm infection suitable to bioluminescence imaging (BLI). Biofilm formation of Pseudomonas aeruginosa (P. aeruginosa) Xen5 grown on catheter disks in vitro and in an implanted mouse model was real-time monitored during a 7-day study period using BLI. The numbers of integrated brightness (IB) and viable bacterial count (VBC) in the biofilm disks in vitro were highest at 24 h after inoculation; the IB of biofilm in vivo was increased until 24 h after implantation. A statistical correlation was observed between IB and VBC in vitro by linear regression analysis. The actual VBC value in vivo can be estimated accurately by IB without sacrifice. In addition, we monitored the change in white blood cells (WBCs) during infection. The number of WBCs on day 7 was significantly higher in the infection group than in the control group. This study indicates that BLI is a simple, fast, and sensitive method to measure catheter biofilm infection in mice.

  12. Real-time monitoring of enzymatic DNA hydrolysis by electrospray ionization mass spectrometry.

    Science.gov (United States)

    van den Heuvel, Robert H H; Gato, Sara; Versluis, Cees; Gerbaux, Pascal; Kleanthous, Colin; Heck, Albert J R

    2005-01-01

    A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein-DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase-DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3'-hydroxy and 5'-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases. PMID:15956101

  13. Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping.

    Science.gov (United States)

    Wang, Jun-Gang; Fossey, John S; Li, Meng; Xie, Tao; Long, Yi-Tao

    2016-03-01

    Direct electrodeposition of mercury onto gold nanorods on an ITO substrate, without reducing agents, is reported. The growth of single gold amalgam nanoalloy particles and subsequent stripping was monitored in real-time monitoring by plasmonic effects and single-nanoparticle dark-field spectroelectrochemistry techniques. Time-dependent scattering spectral information conferred insight into the growth and stripping mechanism of a single nanoalloy particle. Four critical stages were observed: First, rapid deposition of Hg atoms onto Au nanorods; second, slow diffusion of Hg atoms into Au nanorods; third, prompt stripping of Hg atoms from Au nanorods; fourth, moderate diffusion from the inner core of Au nanorods. Under high Hg(2+) concentrations, homogeneous spherical gold amalgam nanoalloys were obtained. These results demonstrate that the morphology and composition of individual gold amalgam nanoalloys can be precisely regulated electrochemically. Moreover, gold amalgam nanoalloys with intriguing optical properties, such as modulated plasmonic lifetimes and quality factor Q, could be obtained. This may offer opportunities to extend applications in photovoltaic energy conversion and chemical sensing. PMID:26942394

  14. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    Energy Technology Data Exchange (ETDEWEB)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  15. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    Directory of Open Access Journals (Sweden)

    Biruk Gebre

    2008-06-01

    Full Text Available The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimating the data from the sensors at the remote location before transmission. The decimation is adjusted to the available bandwidth of the communications network which is characterized in real-time. As a result, the system allows users at the remote command center to view high bandwidth data (at a lower resolution with user-aware and minimized latency. This technique is applied to an eight hydrophone data acquisition system that requires a 25.6 Mbps connection for the transmission of the full data set using a wireless connection with 1 – 3.5 Mbps variable bandwidth. This technique can be used for applications that require monitoring of high bandwidth data from remote sensors in research and education fields such as remote scientific instruments and visually driven control applications.

  16. Real-time seismic monitoring of the integrated cape girardeau bridge array and recorded earthquake response

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    This paper introduces the state of the art, real-time and broad-band seismic monitoring network implemented for the 1206 m [3956 ft] long, cable-stayed Bill Emerson Memorial Bridge in Cape Girardeau (MO), a new Mississippi River crossing, approximately 80 km from the epicentral region of the 1811-1812 New Madrid earthquakes. The bridge was designed for a strong earthquake (magnitude 7.5 or greater) during the design life of the bridge. The monitoring network comprises a total of 84 channels of accelerometers deployed on the superstructure, pier foundations and at surface and downhole free-field arrays of the bridge. The paper also presents the high quality response data obtained from the network. Such data is aimed to be used by the owner, researchers and engineers to assess the performance of the bridge, to check design parameters, including the comparison of dynamic characteristics with actual response, and to better design future similar bridges. Preliminary analyses of ambient and low amplitude small earthquake data reveal specific response characteristics of the bridge and the free-field. There is evidence of coherent tower, cable, deck interaction that sometimes results in amplified ambient motions. Motions at the lowest tri-axial downhole accelerometers on both MO and IL sides are practically free from any feedback from the bridge. Motions at the mid-level and surface downhole accelerometers are influenced significantly by feedback due to amplified ambient motions of the bridge. Copyright ASCE 2006.

  17. All-IP wireless sensor networks for real-time patient monitoring.

    Science.gov (United States)

    Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua

    2014-12-01

    This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate.

  18. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Science.gov (United States)

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  19. Real-time monitoring of brake shoe keys in freight cars

    Institute of Scientific and Technical Information of China (English)

    Rong ZOU; Zhen-ying XU; Jin-yang LI; Fu-qiang ZHOU

    2015-01-01

    Condition monitoring ensures the safety of freight railroad operations. With the development of machine vision technology, visual inspection has become a principal means of condition monitoring. The brake shoe key (BSK) is an important component in the brake system, and its absence will lead to serious accidents. This paper presents a novel method for automated visual inspection of the BSK condition in freight cars. BSK images are first acquired by hardware devices. The subsequent in-spection process is divided into three stages:first, the region-of-interest (ROI) is segmented from the source image by an im-proved spatial pyramid matching scheme based on multi-scale census transform (MSCT). To localize the BSK in the ROI, cen-sus transform (CT) on gradient images is developed in the second stage. Then gradient encoding histogram (GEH) features and linear support vector machines (SVMs) are used to generate a BSK localization classifier. In the last stage, a condition classifier is trained by SVM, but the features are extracted from gray images. Finally, the ROI, BSK localization, and condition classifiers are cascaded to realize a completely automated inspection system. Experimental results show that the system achieves a correct inspection rate of 99.2%and a speed of 5 frames/s, which represents a good real-time performance and high recognition accuracy.

  20. Assessment of two portable real-time particle monitors used in nanomaterial workplace exposure evaluations.

    Directory of Open Access Journals (Sweden)

    Yuewei Liu

    Full Text Available Nanoparticle emission assessment technique was developed to semi-quantitatively evaluate nanomaterial exposures and employs a combination of filter based samples and portable real-time particle monitors, including a condensation particle counter (CPC and an optical particle counter (OPC, to detect nanomaterial releases. This laboratory study evaluated the results from CPC and OPC simultaneously measuring a polydisperse aerosol to assess their variability and accuracy.Two CPCs and two OPCs were used to evaluate a polydisperse sodium chloride aerosol within an enclosed chamber. The measurement results for number concentration versus time were compared between paired particle monitors of the same type, and to results from the Scanning Mobility Particle Spectrometer (SMPS which was widely used to measure concentration of size-specific particles. According to analyses by using the Bland-Altman method, the CPCs displayed a constant mean percent difference of -3.8% (95% agreement limits: -9.1 to 1.6%; range of 95% agreement limit: 10.7% with the chamber particle concentration below its dynamic upper limit (100,000 particles per cubic centimeter. The mean percent difference increased from -3.4% to -12.0% (range of 95% agreement limits: 7.1% with increasing particle concentrations that were above the dynamic upper limit. The OPC results showed the percent difference within 15% for measurements in particles with size ranges of 300 to 500 and 500 to 1000 regardless of the particle concentration. Compared with SMPS measurements, the CPC gave a mean percent difference of 22.9% (95% agreement limits: 10.5% to 35.2%; whereas the measurements from OPC were not comparable.This study demonstrated that CPC and OPC are useful for measuring nanoparticle exposures but the results from an individual monitor should be interpreted based upon the instrument's technical parameters. Future research should challenge these monitors with particles of different sizes, shapes

  1. Real-time Performance Verification of Core Protection and Monitoring System with Integrated Model for SMART Simulator

    International Nuclear Information System (INIS)

    In keeping with these purposes, a real-time model of the digital core protection and monitoring systems for simulator implementation was developed on the basis of SCOPS and SCOMS algorithms. In addition, important features of the software models were explained for the application to SMART simulator, and the real-time performance of the models linked with DLL was examined for various simulation scenarios. In this paper, performance verification of core protection and monitoring software is performed with integrated simulator model. A real-time performance verification of core protection and monitoring software for SMART simulator was performed with integrated simulator model. Various DLL connection tests were done for software algorithm change. In addition, typical accident scenarios of SMART were simulated with 3KEYMASTER and simulated results were compared with those of DLL linked core protection and monitoring software. Each calculational result showed good agreements

  2. Real-time satellite monitoring of Nornahraun lava flow NE Iceland

    Science.gov (United States)

    Jónsdóttir, Ingibjörg; Þórðarson, Þorvaldur; Höskuldsson, Ármann; Davis, Ashley; Schneider, David; Wright, Robert; Kestay, Laszlo; Hamilton, Christopher; Harris, Andrew; Coppola, Diego; Tumi Guðmundsson, Magnús; Durig, Tobias; Pedersen, Gro; Drouin, Vincent; Höskuldsson, Friðrik; Símonarson, Hreggviður; Örn Arnarson, Gunnar; Örn Einarsson, Magnús; Riishuus, Morten

    2015-04-01

    An effusive eruption started in Holuhraun, NE Iceland, on 31 August 2014, producing the Nornahraun lava flow field which had, by the beginning of 2015, covered over 83 km2. Throughout this event, various satellite images have been analyzed to monitor the development, active areas and map the lava extent in close collaboration with the field group, which involved regular exchange of direct observations and satellite based data for ground truthing and suggesting possible sites for lava sampling. From the beginning, satellite images in low geometric but high temporal resolution (NOAA AVHRR, MODIS) were used to monitor main regions of activity and position new vents to within 1km accuracy. As they became available, multispectral images in higher resolution (LANDSAT 8, LANDSAT 7, ASTER, EO-1 ALI) were used to map the lava channels, study lava structures and classify regions of varying activity. Hyper spectral sensors (EO-1 HYPERION), though with limited area coverage, have given a good indication of vent and lava temperature and effusion rates. All available radar imagery (SENTINEL-1, RADARSAT, COSMO SKYMED, TERRASAR X) have been used for studying lava extent, landscape and roughness. The Icelandic Coast Guard has, on a number of occasions, provided high resolution radar and thermal images from reconnaissance flights. These data sources compliment each other well and have improved analysis of events. Whilst classical TIR channels were utilized to map the temperature history of the lava, SWIR and NIR channels caught regions of highest temperature, allowing an estimate of the most active lava channels and even indicating potential changes in channel structure. Combining thermal images and radar images took this prediction a step further, improving interpretation of both image types and studying the difference between open and closed lava channels. Efforts are underway of comparing different methods of estimating magma discharge and improving the process for use in real

  3. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  4. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) under controlled seawater injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D. [InterCorr International, Inc., 14503 Bammel N. Houston Road, Suite 300, Houston, TX 77019 (United States); Campbell, Scott [Commercial Microbiology Inc., 10400 Westoffice Drive Suite 107, Houston, TX 77042 (United States)

    2004-07-01

    An experimental study of microbiologically influenced corrosion (MIC) was conducted involving online, real-time monitoring of a bio-film loop under controlled conditions simulating oil field water handling and injection. Bio-film growth, MIC and biocide efficacy were monitored using an automated, multi-technique monitoring system including linear polarization resistance, electrochemical noise and harmonic distortion analysis. This data was correlated with conventional off-line methods to differentiate conditions of varying MIC activity in real-time to facilitate quick assessment and operator intervention. (authors)

  5. Real-Time in Situ Electronic Monitoring of Dynamic Contact Behavior of MEMS High-G Switches

    OpenAIRE

    Raghunathan, Nithin; Sanborn, Brett; Venkattraman, A.; Alexeenko, Alina A; Chen, Weinong; Peroulis, Dimitrios

    2012-01-01

    This paper presents for the first time real-time contact monitoring of packaged high-g switches under acceleration loads up to 50,000 g. Such loads are typical in impact and pyroshock phenomena such as multistage rocket launches and earth penetrating weapons. Contact monitoring is performed using a fully electronic methodology utilizing an ultra low-power (

  6. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    Science.gov (United States)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  7. Real-time monitoring of peptide grafting onto chitosan films using capillary electrophoresis.

    Science.gov (United States)

    Taylor, Danielle L; Thevarajah, Joel J; Narayan, Diksha K; Murphy, Patricia; Mangala, Melissa M; Lim, Seakcheng; Wuhrer, Richard; Lefay, Catherine; O'Connor, Michael D; Gaborieau, Marianne; Castignolles, Patrice

    2015-03-01

    Chitosan, being antimicrobial and biocompatible, is attractive as a cell growth substrate. To improve cell attachment, arginine-glycine-aspartic acid-serine (RGDS) peptides were covalently grafted to chitosan films, through the widely used coupling agents 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC-HCl) and N-hydroxysuccinimide (NHS), via the carboxylic acid function of the RGDS molecule. The grafting reaction was monitored, for the first time, in real time using free-solution capillary electrophoresis (CE). This enabled fast separation and determination of the peptide and all other reactants in one separation with no sample preparation. Covalent RGDS peptide grafting onto the chitosan film surface was demonstrated using solid-state NMR of swollen films. CE indicated that oligomers of RGDS, not simply RGDS, were grafted on the film, with a likely hyperbranched structure. To assess the functional properties of the grafted films, cell growth was compared on control and peptide-grafted chitosan films. Light microscopy and polymerase chain reaction (PCR) analysis demonstrated greatly improved cell attachment to RGDS-grafted chitosan films. PMID:25680633

  8. Real-time model based process monitoring of enzymatic biodiesel production.

    Science.gov (United States)

    Price, Jason; Nordblad, Mathias; Woodley, John M; Huusom, Jakob K

    2015-01-01

    In this contribution we extend our modelling work on the enzymatic production of biodiesel where we demonstrate the application of a Continuous-Discrete Extended Kalman Filter (a state estimator). The state estimator is used to correct for mismatch between the process data and the process model for Fed-batch production of biodiesel. For the three process runs investigated, using a single tuning parameter, qx  = 2 × 10(-2) which represents the uncertainty in the process model, it was possible over the entire course of the reaction to reduce the overall mean and standard deviation of the error between the model and the process data for all of the five measured components (triglycerides, diglycerides, monoglycerides, fatty acid methyl esters, and free fatty acid). The most significant reduction for the three process runs, were for the monoglyceride and free fatty acid concentration. For those components, there was over a ten-fold decrease in the overall mean error for the state estimator prediction compared with the predictions from the pure model simulations. It is also shown that the state estimator can be used as a tool for detection of outliers in the measurement data. For the enzymatic biodiesel process, given the infrequent and sometimes uncertain measurements obtained we see the use of the Continuous-Discrete Extended Kalman Filter as a viable tool for real time process monitoring.

  9. Real time, in-reactor monitoring of double cantilever beam crack growth sensors

    International Nuclear Information System (INIS)

    Precracked, double cantilever beam sensors of stainless steels in various heat treated conditions were inserted into the core and recirculation water system of a BWR to obtain information on crack growth propensity within these local environments. Monitoring, in real time, of sensor precracks was achieved by means of on-line electrical potential measurements, and crack length changes of the order of 0.001 in. (0.0254 mm) could be readily measured. All DCB sensors were wedge-loaded to K=25 Ksi-√in. (27.5 MPa-√m) at the crack tip. The furnace sensitized, in-core sensor exhibited substantial crack growth, whereas the identical sensor in the recirculation system showed modest crack propagation. After several months of exposure, the two in-core, solution annealed sensors of Type 304 stainless steel also showed substantial crack length extension. Crack growth did not occur in annealed sensors emplaced within the recirculation water system. The data showed good agreement with a model for stress corrosion cracking: in-reactor measurements of electrochemical potential and conductivity of the BWR coolant allowed for prediction of crack growth rates, and these predictions agreed with the measured crack growth rates

  10. Monitoring the Dissolution Mechanisms of Amorphous Bicalutamide Solid Dispersions via Real-Time Raman Mapping.

    Science.gov (United States)

    Tres, Francesco; Patient, Jamie D; Williams, Philip M; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-05-01

    Real-time in situ Raman mapping has been employed to monitor, during dissolution, the crystallization transitions of amorphous bicalutamide formulated as a molecular dispersion in a copovidone VA64 matrix. The dissolution performance was also investigated using the rotating disc dissolution rate methodology, which allows simultaneous determination of the dissolution rate of both active ingredient and polymer. The dissolution behavior of two bicalutamide:copovidone VA64 dispersion formulations, containing 5% (w/w) and 50% (w/w) bicalutamide, respectively, was investigated, with the aim of exploring the effect of increasing the bicalutamide loading on the dissolution performance. Spatially time-resolved Raman maps generated using multivariate curve resolution indicated the simultaneous transformation of amorphous bicalutamide present in the 50% drug-loaded extrudate into metastable polymorphic form II and low-energy polymorphic form I. Fitting a kinetic model and spatially correlating the data extracted from the Raman maps also allowed us to understand the re-crystallization mechanisms by which the low-energy form I appears. Form I was shown to crystallize mainly directly from the amorphous solid dispersion, with crystallization from the metastable form II being a minor contribution. PMID:25872658

  11. Near real-time monitoring systems for adaptive management and improved forest governance

    Science.gov (United States)

    Musinsky, J.; Tabor, K.; Cano, A.

    2012-12-01

    The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;

  12. An inkjet-printed buoyant 3-D lagrangian sensor for real-time flood monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    A 3-D (cube-shaped) Lagrangian sensor, inkjet printed on a paper substrate, is presented for the first time. The sensor comprises a transmitter chip with a microcontroller completely embedded in the cube, along with a $1.5 \\\\lambda 0 dipole that is uniquely implemented on all the faces of the cube to achieve a near isotropic radiation pattern. The sensor has been designed to operate both in the air as well as water (half immersed) for real-time flood monitoring. The sensor weighs 1.8 gm and measures 13 mm$\\\\,\\\\times\\\\,$ 13 mm$\\\\,\\\\times\\\\,$ 13 mm, and each side of the cube corresponds to only $0.1 \\\\lambda 0 (at 2.4 GHz). The printed circuit board is also inkjet-printed on paper substrate to make the sensor light weight and buoyant. Issues related to the bending of inkjet-printed tracks and integration of the transmitter chip in the cube are discussed. The Lagrangian sensor is designed to operate in a wireless sensor network and field tests have confirmed that it can communicate up to a distance of 100 m while in the air and up to 50 m while half immersed in water. © 1963-2012 IEEE.

  13. Real-Time Safety Monitoring and Prediction for the National Airspace System

    Science.gov (United States)

    Roychoudhury, Indranil

    2016-01-01

    As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.

  14. Distributed Multi-Sensor Real-Time Building Environmental Parameters Monitoring System with Remote Data Access

    Directory of Open Access Journals (Sweden)

    Beinarts Ivars

    2014-12-01

    Full Text Available In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.

  15. Packaged FBG sensors for real-time stress monitoring on deep-water riser

    Science.gov (United States)

    Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang

    2014-11-01

    The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.

  16. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  17. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  18. Real-time monitoring of abnormal conditions based on Fuzzy Kohonen clustering network in gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    GAO Jinqiang; WU Chuansong; HU Jiakun

    2007-01-01

    A real-time monitoring system based on through-the-arc sensing is developed for detecting abnormal conditions in gas metal arc welding. The transient signals of welding voltage and current during the welding process are sampled and processed by statistical analysis methods. It is found that three statistical parameters (the standard deviation,variance, and kurtosis of welding current) show obvious variations during the step disturbance, which is intentionally introduced into the T-joint test pieces by cutting a gap in the vertical plane. A Fuzzy Kohonen clustering network (FKCN) is put forward to monitor the abnormal conditions in real-time. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rate is above 90%.

  19. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    Science.gov (United States)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  20. Seismic Monitoring To Assess Performance Of Structures In Near-Real Time: Recent Progress

    International Nuclear Information System (INIS)

    Earlier papers have described how observed data from classical accelerometers deployed in structures or from differential GPS with high sampling ratios deployed at roofs of tall buildings can be configured to establish seismic health monitoring of structures. In these configurations, drift ratios1 are the main parametric indicator of damage condition of a structure or component of a structure.Real-time measurement of displacements are acquired either by double integration of accelerometer time-series data, or by directly using GPS. Recorded sensor data is then related to the performance level of a building. Performance-based design method stipulates that for a building the amplitude of relative displacement of the roof of a building (with respect to its base) indicates its performance.Usually, drift ratio is computed using relative displacement between two consecutive floors. When accelerometers are used, a specific software is used to compute displacements and drift ratios in realtime by double integration of accelerometer data from several floors. However, GPS-measured relative displacements are limited to being acquired only at the roof with respect to its reference base. Thus, computed drift ratio is the average drift ratio for the whole building. Until recently, the validity of measurements using GPS was limited to long-period structures (T>1 s) because GPS systems readily available were limited to 10-20 samples per seconds (sps) capability. However, presently, up to 50 sps differential GPS systems are available on the market and have been successfully used to monitor drift ratios [1,2]--thus enabling future usefulness of GPS to all types of structures. Several levels of threshold drift ratios can be postulated in order to make decisions for inspections and/or occupancy.Experience with data acquired from both accelerometers and GPS deployments indicates that they are reliable and provide pragmatic alternatives to alert the owners and other authorized parties

  1. Diffusion Modelling as a Useful Petrological Tool for Near-Real-Time Volcanic Eruption Monitoring

    Science.gov (United States)

    Couperthwaite, F.; Morgan, D. J.; Thordarson, T.; Shea, T.; Harvey, J.; Trusdell, F.; Pankhurst, M. J.

    2015-12-01

    Diffusion modelling is a well-established petrological technique for investigating the timescales of sub-surface processes occurring within magma storage bodies and transport systems prior to eruption. The technique typically produces - at best - results some weeks after a volcanic eruption has commenced. This contribution describes progress made on a user-friendly, easy-to-use petrological 'tool' that can be deployed in near-real time at the onset of and during an eruption. This is important for fast timescale retrieval (within days rather than weeks) without compromising the reliability of the timescale retrieved. This has implications for eruption monitoring and hazard mitigation, providing a petrological time-series complementing existing geophysical monitoring techniques. Current methods are constrained by data processing rates and the geometrical corrections required to control for random sectioning, crystal shape uncertainties and mineral anisotropy. Using a set of Piton de la Fournaise (Réunion Island) lava flow samples and a suite of Mauna Loa (HI, US) air fall and lava flow samples, magmatic timescales for Mg-Fe diffusion in olivine have been retrieved. Piton has a monodisperse crystal population, making a near-perfect baseline from which to pick apart the current diffusion modelling method. In so doing, a greater understanding of the sources of scatter and uncertainty in the process of timescale retrieval was obtained. The variety of potential sectioning orientations and their interaction with diffusion processes led to the proposal by Shea et al, 2015, in press, of selection rules to select boundaries, based on numerical models. Combined with evaluations of crystal shape, crystal axial ratios, interfacial angles, U-stage measurements and a statistical approach, such selection rules should allow the orientation of the grain within a sample to be inferred, negating the need for independent EBSD measurements and enabling a faster processing technique.

  2. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  3. Real-Time In Situ Monitoring of Coupled Dynamics in Ponds

    Science.gov (United States)

    Branco, B.; Torgersen, T.; Bean, J.

    2002-05-01

    Shallow (education. The MyPond system is currently being used to monitor the coupled dynamics of Mirror Lake (mean depth ~ 1.2 m) at the Storrs campus of the University of Connecticut. The diel stratification/destratification cycle is monitored using a thermistor array extending from the top of the water column to 10 cm into the sediments. An in-house designed pump profiler system allows high frequency (one sample every 5 minutes) automatic sampling of 6 to 8 sequential depths (one profile every ~ 30 minutes). A programmable microprocessor controls the timing and sequence of the sampling. Pond water is measured in a flow cell with a single YSI multi-parameter sonde for temperature, dissolved oxygen, pH, ORP, ammonium, turbidity, fluorescence and specific conductivity for each depth interval The datalogger is remotely queried via UCONN's data network. Graphical displays of the data are created automatically and served as images to the MyPond website. Pond water level and weather data are also provided in real-time. Thermal gradients as high as 0.14 deg C/cm are seen during daylight in summer months with daily `turnover' just before dawn. Strong diurnal patterns and top to bottom differences in e.g. photosynthetic oxygen production and carbon dioxide consumption as well as an ammonium flux from the sediment are clearly visible. It is commonly observed that precipitation events are accompanied by an unstratified water column. These preliminary results suggest that pond dynamics must be understood on the hourly to daily timescale in order to quantify the role of ponds as pollutant removal devices.

  4. Near real-time monitoring of surface deformation at Long Valley Caldera, California (Invited)

    Science.gov (United States)

    Ji, K.; Llenos, A. L.; Herring, T.

    2013-12-01

    Continuous monitoring of volcanic activity enables us to detect changes from usual activity, issue alerts of impending eruptions and thereby reduce volcanic risk. We have developed a near real-time monitoring tool for surface deformation: the Targeted Projection Operator (TPO). TPO is simple, fast, and easily applied whenever new data are available. With Global Positioning System (GPS) data, we have used TPO for continuous monitoring of surface deformation in the Long Valley Caldera (LVC) region in eastern California. TPO projects GPS position time series onto a target spatial pattern and obtains the amplitude of the projection at each epoch. For this, we assume that a deformation event (i.e., an inflationary or deflationary event) has the same spatial pattern as past events but with possibly different amplitude. This assumption is reasonable for the recent quiet phase in LVC because the 2007-2009 inflation is similar to the 2009-2010 deflation with respect to the deformation pattern. We selected horizontal pattern of the 2009-2010 event along which the GPS data are projected to recover the time-varying amplitudes. Large changes in amplitude imply changes in strength of the event. An anomalous change can be detected by comparing with amplitudes during relatively quiet time periods. Growing misfits between the TPO spatial pattern and the spatial variations of the GPS pattern, indicate changes in the deformation mechanism which can then be explored to assess whether potentially new mechanisms are developing. So far this has not been the case for LVC; the current spatial patterns of deformation match the shape deduced for the 2007-2009 inflation event. TPO shows that LVC has experienced inflation since late 2011 although the rate briefly slowed down in May and October 2012 and has started to slow again since June 2013. The rate of this event is about four times faster than the 2007-2009 inflation event and is consistent with a Mogi source located beneath the resurgent

  5. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    Science.gov (United States)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    The Hudson River watershed spans 34,700 km2 predominantly in New York State, including agricultural, wilderness, and urban areas. The Hudson River supports many activities including shipping, supplies water for municipal, commercial, and agricultural uses, and is an important recreational resource. As the population increases within this watershed, so does the anthropogenic impact on this natural system. To address the impacts of anthropogenic and natural activities on this ecosystem, the River and Estuary Observatory Network (REON) is being developed through a joint venture between the Beacon Institute, Clarkson University, General Electric Inc. and IBM Inc. to monitor New York's Hudson and Mohawk Rivers in real-time. REON uses four sensor platform types with multiple nodes within the network to capture environmentally relevant episodic events. Sensor platform types include: 1) fixed robotic vertical profiler (FRVP); 2) mobile robotic undulating platform (MRUP); 3) fixed acoustic Doppler current profiler (FADCP) and 4) Autonomous Underwater Vehicle (AUV). The FRVP periodically generates a vertical profile with respect to water temperature, salinity, dissolved oxygen, particle concentration and size distribution, and fluorescence. The MRUP utilizes an undulating tow-body tethered behind a research vessel to measure the same set of water parameters as the FRVP, but does so 'synchronically' over a highly-resolved spatial regime. The fixed ADCP provides continuous water current profiles. The AUV maps four-dimensional (time, latitude, longitude, depth) variation of water quality, water currents and bathymetry along a pre-determined transect route. REON data can be used to identify episodic events, both anthropogenic and natural, that impact the Hudson River. For example, a strong heat signature associated with cooling water discharge from the Indian Point nuclear power plant was detected with the MRUP. The FRVP monitoring platform at Beacon, NY, located in the

  6. A Statewide Private Microwave Wide Area Network for Real-time Natural Hazard Monitoring

    Science.gov (United States)

    Williams, M. C.; Kent, G.; Smith, K. D.; Plank, G.; Slater, D.; Torrisi, J.; Presser, R.; Straley, K.

    2013-12-01

    datalogger in our seismic network not only for data collection, but also for maintenance and quality control. This has resulted in several partnerships with other agencies. In addition to our seismic station network for earthquake monitoring, we currently manage ~400 more channels of data (many running at 500 Hz) for the National Center for Nuclear Security (NCNS) Source Physics Experiments, a series of chemical explosions at the Nevada National Security Site. Some of our mountaintop stations have been experimentally equipped with near-infrared high-definition fire cameras for wildfire monitoring, and have recently recorded the Bison and Pedlar fires in northwest Nevada. Data for the Nevada EPSCor climate program also utilizes the NSL WAN. Real-time access to data for these experiments greatly reduces the effort required for data archival, quality control, and monitoring equipment failures. Future plans include increasing density of stations in urban areas such as Reno and Las Vegas, and expanding coverage to Tahoe and eastern Nevada.

  7. Real-time monitoring and control for efficient management of drinking water networks: Barcelona case study

    OpenAIRE

    Cembrano Gennari, Gabriela; Puig Cayuela, Vicenç; Ocampo-Martínez, Carlos; Quevedo Casín, Joseba Jokin; Mirats Tur, Josep Maria; Meseguer Amela, Jordi; Ariño Tarrago, Ramon; López Martínez, Silvia

    2014-01-01

    Drinking water utilities in urban areas are facing new challenges in their real-time operation: limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. The efficient use of resources is becoming a priority for water managers and the recent advances in ICT technologies can provide solutions to this end. Real-time management in wate...

  8. A Wearable Real-Time and Non-Invasive Thoracic Cavity Monitoring System

    Science.gov (United States)

    Salman, Safa

    A surgery-free on-body monitoring system is proposed to evaluate the dielectric constant of internal body tissues (especially lung and heart) and effectively determine irregularities in real-time. The proposed surgery-free on-body monitoring system includes a sensor, a post-processing technique, and an automated data collection circuit. Data are automatically collected from the sensor electrodes and then post processed to extract the electrical properties of the underlying biological tissue(s). To demonstrate the imaging concept, planar and wrap-around sensors are devised. These sensors are designed to detect changes in the dielectric constant of inner tissues (lung and heart). The planar sensor focuses on a single organ while the wrap-around sensors allows for imaging of the thoracic cavity's cross section. Moreover, post-processing techniques are proposed to complement sensors for a more complete on-body monitoring system. The idea behind the post-processing technique is to suppress interference from the outer layers (skin, fat, muscle, and bone). The sensors and post-processing techniques yield high signal (from the inner layers) to noise (from the outer layers) ratio. Additionally, data collection circuits are proposed for a more robust and stand-alone system. The circuit design aims to sequentially activate each port of the sensor and portions of the propagating signal are to be received at all passive ports in the form of a voltage at the probes. The voltages are converted to scattering parameters which are then used in the post-processing technique to obtain epsilonr. The concept of wearability is also considered through the use of electrically conductive fibers (E-fibers). These fibers show matching performance to that of copper, especially at low frequencies making them a viable substitute. For the cases considered, the proposed sensors show promising results in recovering the permittivity of deep tissues with a maximum error of 13.5%. These sensors

  9. Further Evaluation of a Satellite-based Real-time Global Flood Monitoring System

    Science.gov (United States)

    Wu, H.; Adler, R. F.; Tian, Y.; Hong, Y.; Policelli, F.

    2011-12-01

    A real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall was further developed with a relatively more physically based hydrological model. The performance in flood detection of this new version of the GFMS was evaluated against available flood event archives (Wu et al, 2011). This new GFMS is quantitatively evaluated in terms of flood event detection during the TRMM era (1998-2010) using a global retrospective simulation (3-hourly and 1/8 degree spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored to define flood events from the model results, including three percentile-based statistic methods and a Log Pearson-III flood frequency curve method. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The impact of dams was detected in the validation statistics. The presence of dams tends to result in more false alarms and false alarm duration. The GFMS statistics for flood durations > 3 days and for areas without dams vary across the four identification methods, but center around a POD of ~ 0.70 and a FAR of ~ 0.65. When both flood events-based categorical verification metrics and flood duration metrics are considered, a method using the 95th percentile runoff depth plus two parameters related to variability and basin size (method 3) may be more suitable for application to our routine, real-time flood calculations. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The new GFMS (operationally available at http://trmm.gsfc.nasa.gov/) improved not only the flood detection performance, but also in the presentation of flood evolution (start, development and recession) in the drainage network. The new GFMS is further evaluated with more quantitative flood properties including flood peak timing, peak stage, peak volumes

  10. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.

    Science.gov (United States)

    Hinzman, Jason M; Gibson, Justin L; Tackla, Ryan D; Costello, Mark S; Burmeister, Jason J; Quintero, Jorge E; Gerhardt, Greg A; Hartings, Jed A

    2015-12-15

    Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states. PMID:26183072

  11. Proposition of novel classification approach and features for improved real-time arrhythmia monitoring.

    Science.gov (United States)

    Kim, Yoon Jae; Heo, Jeong; Park, Kwang Suk; Kim, Sungwan

    2016-08-01

    Arrhythmia refers to a group of conditions in which the heartbeat is irregular, fast, or slow due to abnormal electrical activity in the heart. Some types of arrhythmia such as ventricular fibrillation may result in cardiac arrest or death. Thus, arrhythmia detection becomes an important issue, and various studies have been conducted. Additionally, an arrhythmia detection algorithm for portable devices such as mobile phones has recently been developed because of increasing interest in e-health care. This paper proposes a novel classification approach and features, which are validated for improved real-time arrhythmia monitoring. The classification approach that was employed for arrhythmia detection is based on the concept of ensemble learning and the Taguchi method and has the advantage of being accurate and computationally efficient. The electrocardiography (ECG) data for arrhythmia detection was obtained from the MIT-BIH Arrhythmia Database (n=48). A novel feature, namely the heart rate variability calculated from 5s segments of ECG, which was not considered previously, was used. The novel classification approach and feature demonstrated arrhythmia detection accuracy of 89.13%. When the same data was classified using the conventional support vector machine (SVM), the obtained accuracy was 91.69%, 88.14%, and 88.74% for Gaussian, linear, and polynomial kernels, respectively. In terms of computation time, the proposed classifier was 5821.7 times faster than conventional SVM. In conclusion, the proposed classifier and feature showed performance comparable to those of previous studies, while the computational complexity and update interval were highly reduced. PMID:27318329

  12. A Data Management Framework for Real-Time Water Quality Monitoring

    Science.gov (United States)

    Mulyono, E.; Yang, D.; Craig, M.

    2007-12-01

    CSU East Bay operates two in-situ, near-real-time water quality monitoring stations in San Francisco Bay as a member of the Center for Integrative Coastal Ocean Observation, Research, and Education (CICORE) and the Central and Northern California Ocean Observing System (CeNCOOS). We have been operating stations at Dumbarton Pier and San Leandro Marina for the past two years. At each station, a sonde measures seven water quality parameters every six minutes. During the first year of operation, we retrieved data from the sondes every few weeks by visiting the sites and uploading data to a handheld logger. Last year we implemented a telemetry system utilizing a cellular CDMA modem to transfer data from the field to our data center on an hourly basis. Data from each station are initially stored in monthly files in native format. We import data from these files into a SQL database every hour. SQL is handled by Django, an open source web framework. Django provides a user- friendly web user interface (UI) to administer the data. We utilized parts of the Django UI for our database web- front, which allows users to access our database via the World Wide Web and perform basic queries. We also serve our data to other aggregating sites, including the central CICORE website and NOAA's National Data Buoy Center (NDBC). Since Django is written in Python, it allows us to integrate other Python modules into our software, such as the Matplot library for scientific graphics. We store our code in a Subversion repository, which keeps track of software revisions. Code is tested using Python's unittest and doctest modules within Django's testing facility, which warns us when our code modifications cause other parts of the software to break. During the past two years of data acquisition, we have incrementally updated our data model to accommodate changes in physical hardware, including equipment moves, instrument replacements, and sensor upgrades that affected data format.

  13. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm.

    Science.gov (United States)

    Harris, Dustin; Ummadi, Jyothir Ganesh; Thurber, Andrew R; Allau, Yvan; Verba, Circe; Colwell, Frederick; Torres, Marta E; Koley, Dipankar

    2016-05-10

    Sporosarcina pasteurii is known to produce calcite or biocement in the presence of urea and Ca(2+). Herein, we report the use of novel ultramicrosensors such as pH, Ca(2+), and redox sensors, along with a scanning electrochemical microscope (SECM), to monitor a real-time, bacteria-mediated urea hydrolysis process and subsequent changes in morphology due to CaCO3 precipitation. We report that the surface pH of a live biofilm changed rapidly from 7.4 to 9.2 within 2 min, whereas similar fast depletion (10 min) of Ca(2+) was observed from 85 mM to 10 mM in the presence of a high urea (10 g L(-1)) brine solution at 23 °C. Both the pH and the Ca(2+) concentration profiles were extended up to 600 μm from the biofilm surface, whereas the bulk chemical composition of the brine solution remained constant over the entire 4 h of SECM experiments. In addition, we observed a change in biofilm surface morphology and an increase in overall biofilm height of 50 μm after 4 h of precipitation. Electron microscopy confirmed the changes in surface morphology and formation of CaCO3 crystals. Development of the Ca(2+) profile took 10 min, whereas that of the pH profile took 2 min. This finding indicates that the initial urea hydrolysis process is fast and limited by urease or number of bacteria, whereas later CaCO3 formation and growth of crystals is a slow chemical process. The ultramicrosensors and approaches employed here are capable of accurately characterizing bioremediation on temporal and spatial scales pertinent to the microbial communities and the processes they mediate. PMID:26939806

  14. Real time monitoring in-vivo micro-environment through the wound heal mechanism

    Science.gov (United States)

    Yan, Jack

    2013-02-01

    One of the In-vivo system's challenge is real time display the sensing information. Usually Ultrasound, CT, MRI, PET are used to get the internal information, this thesis proposed another approach to address the display challenge. Special nano-particles are in-taken or injected to living subject (usually into blood circulation) to sense and collect psychological information when the active particles pass through the tissues of interest. Using the wound healing mechanism, these activated particles (Information collected) can be drifted out to the wound area and adhibited close to the skin, then skin can show different color if the activated particles are concentrated enough in the specific area to create a skin screen. The skin screen can display the blood status, internal organ's temperature, pressure depending the nano-particles' function and their pathway. This approach can also be used to display in-body video if the particles are sensitive and selective enough. In the future, the skin screen can be bio-computer's monitor. The wound healing in an animal model normally divides in four phase: Hemostasis, Inflammation, Proliferation and Maturation. Hemostasis phase is to form a stable clot sealing the damaged vessel. Inflammation phase causes the blood vessels to become leaky releasing plasma and PMN's (polymorphonucleocytes) into the surrounding tissue and provide the first line of defense against infection. Proliferation phase involves replacement of dermal tissues and sometimes subdermal tissues in deeper wounds as well as contraction of the wound. Maturation phase remodels the dermal tissues mainly by fibroblast to produce greater tensile strength. The skin screen wound will be carefully controlled to be triggered at dermis layer.

  15. Excimer laser fragmentation fluorescence spectroscopy for real-time monitoring of combustion generated pollutants

    Science.gov (United States)

    Damm, Christopher John

    Toxic pollutant emissions from combustion pose a hazard to public and environmental health. Better diagnostic techniques would benefit emissions monitoring programs and aid research aimed at understanding toxic pollutant formation and behavior. Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) provides sensitive, real-time, in situ measurements of several important combustion related pollutants. This thesis demonstrates the capabilities of ELFFS for detecting amines in combustion exhausts and carbonaceous particulate matter from engines. ELFFS photofragments target species using a 193 nm excimer laser to form fluorescent signature species. The NH (A--X) band at 336 nm is used to monitor ammonia, ammonium nitrate and ammonium sulfate. There are no major interferences in this spectral region. The sensitivity is approximately 100 ppb (1 second measurement) for ammonia in post flame gases and 100 ppb (mole fraction) for ammonium nitrate/sulfate in ambient air. Quenching of NH by the major combustion products does not limit the applicability of the detection method. Fluorescence from excited carbon atoms at 248 nm (1P 0 → 1S0) following photofragmentation measures particulate matter in a two-stroke gasoline engine and a four-stroke diesel engine. Fluorescence from CH (A2Delta → X 2pi, 431 nm) C2 (d3pig → a3piu, 468 nm) fragments is also observed. The atomic carbon fluorescence signal is proportional to the mass concentration of particles in the laser interrogation region. The 100-shot (1 second) detection limit for particles in the two-stroke gasoline engine exhaust is 0.5 ppb (volume fraction). The 100-shot detection limit for four-stroke diesel particulate matter is 0.2 ppb. Interferences from carbon monoxide and carbon dioxide are negligible. The ratios of atomic carbon, C2, and CH peaks provide information on the molecular forms of compounds condensed on or contained within the particles measured. The C/C2 signal ratio can be used to distinguish

  16. Real-time monitoring of copper ions-induced cytotoxicity by EIS cell chips.

    Science.gov (United States)

    Primiceri, Elisabetta; Chiriacò, Maria Serena; D'Amone, Eliana; Urso, Emanuela; Ionescu, Rodica Elena; Rizzello, Antonia; Maffia, Michele; Cingolani, Roberto; Rinaldi, Ross; Maruccio, Giuseppe

    2010-08-15

    An important goal of biomedical research is the development of tools for high-throughput evaluation of drug effects and cytotoxicity tests. Here we demonstrate EIS cell chips able to monitor cell growth, morphology, adhesion and their changes as a consequence of treatment with drugs or toxic compounds. As a case study, we investigate the uptake of copper ions and its effect on two cell lines: B104 and HeLa cells. For further understanding, we also carried out in parallel with EIS studies, a complete characterization of cell morphology and changes induced by copper ions through complementary methodologies (including state-of-the-art AFM, viability test and Western blot). Our results reveal a strong correlation between EIS data and both MTT test and AFM characterization so our chip can be used as powerful tools in all biology lab in combination with other standard methods giving additional information that can be useful in a complete and deep investigation of a biological process. This chip can be used even alone replacing in vitro drug tests based on conventional biochemical methods, being very cheap and reusable and allowing to perform cytotoxicity tests without using any expensive reagent or equipment.

  17. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  18. Real-Time Distribution Feeder Performance Monitoring, Advisory Control, and Health Management System

    Energy Technology Data Exchange (ETDEWEB)

    Stoupis, James; Mousavi, Mirrasoul

    2014-09-30

    New data collection system equipment was installed in Xcel Energy substations and data was collected from 6 substations and 20 feeders. During Phase I, ABB collected and analyzed 793 real-time events to date from 6 Xcel Energy substations and continues today. The development and integration of several applications was completed during the course of this project, including a model-based faulted segment identification algorithm, with very positive results validated with field-gathered data discussed and included in this report. For mostly underground feeders, the success rate is 90% and the overreach rate is 90%. For mostly overhead feeders, the success rate is 74% and the overreach rate is 50%. The developed method is producing very accurate results for mostly underground feeders. For mostly overhead feeders, due to the bad OMS data quality and varying fault resistance when arcing, the developed method is producing good results but with much room for improvement. One area where the algorithm can be improved is the accuracy for sub-cycle fault events. In these cases, the accuracy of the conventional signal processing methods suffers due to most of these methods being based on a one-cycle processing window. By improving the signal processing accuracy, the accuracy of the faulted segment identification algorithm will also improve significantly. ABB intends to devote research in this area in the near future to help solve this problem. Other new applications developed during the course of the project include volt/VAR monitoring, unbalanced capacitor switching detection, unbalanced feeder loading detection, and feeder overloading detection. An important aspect of the demonstration phase of the project is to show the ability to provide adequate “heads-up” time ahead of customer calls or AMI reports so that the operators are provided with the much needed time to collect information needed to address an outage. The advance notification feature of the demonstration system

  19. Verification Results of Jet Resonance-enhanced Multiphoton Ionization as a Real-time PCDD/F Emission Monitor

    Science.gov (United States)

    The Jet REMPI (Resonance Enhanced Multiphoton Ionization) monitor was tested on a hazardous waste firing boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real time instrument capable of highly selec...

  20. The effects of real-time continuous glucose monitoring on oxidative stress and mortality in critically ill patients

    Institute of Scientific and Technical Information of China (English)

    钱武强

    2013-01-01

    Objective To evaluate the effects of real-time continuous glucose monitoring(RT-CGM) system on oxidative stress and mortality in critically ill patients and to explore the correlation between glucose index,oxidative stress and mortality. Methods 123 selected cases of

  1. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    Science.gov (United States)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  2. A scientific database for real-time Neutron Monitor measurements - taking Neutron Monitors into the 21st century

    Science.gov (United States)

    Steigies, Christian

    2012-07-01

    The Neutron Monitor Database project, www.nmdb.eu, has been funded in 2008 and 2009 by the European Commission's 7th framework program (FP7). Neutron monitors (NMs) have been in use worldwide since the International Geophysical Year (IGY) in 1957 and cosmic ray data from the IGY and the improved NM64 NMs has been distributed since this time, but a common data format existed only for data with one hour resolution. This data was first distributed in printed books, later via the World Data Center ftp server. In the 1990's the first NM stations started to record data at higher resolutions (typically 1 minute) and publish in on their webpages. However, every NM station chose their own format, making it cumbersome to work with this distributed data. In NMDB all European and some neighboring NM stations came together to agree on a common format for high-resolution data and made this available via a centralized database. The goal of NMDB is to make all data from all NM stations available in real-time. The original NMDB network has recently been joined by the Bartol Research Institute (Newark DE, USA), the National Autonomous University of Mexico and the North-West University (Potchefstroom, South Africa). The data is accessible to everyone via an easy to use webinterface, but expert users can also directly access the database to build applications like real-time space weather alerts. Even though SQL databases are used today by most webservices (blogs, wikis, social media, e-commerce), the power of an SQL database has not yet been fully realized by the scientific community. In training courses, we are teaching how to make use of NMDB, how to join NMDB, and how to ensure the data quality. The present status of the extended NMDB will be presented. The consortium welcomes further data providers to help increase the scientific contributions of the worldwide neutron monitor network to heliospheric physics and space weather.

  3. Wireless plataforms for the monitoring of biomedical variables

    International Nuclear Information System (INIS)

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system

  4. Comparison of FEA with condition monitoring for real-time damage detection of bearing using infrared thermography techniques

    International Nuclear Information System (INIS)

    Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings

  5. Comparison of FEA with condition monitoring for real-time damage detection of bearing using infrared thermography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yoon Jae; Ranjit, Shrestha; Kim, Won Tae [Dept. of Mechanical and Automotive Engineering, Kongju National University, Cheonan(Korea, Republic of)

    2015-06-15

    Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings.

  6. Development of real-time monitoring system using wired and wireless networks in a full-scale ship

    Science.gov (United States)

    Paik, Bu-Geun; Cho, Seong-Rak; Park, Beom-Jin; Lee, Dongkon; Bae, Byung-Dueg

    2010-09-01

    In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN) and power line communication (PLC) employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

  7. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks

    Directory of Open Access Journals (Sweden)

    Yasuda Akio

    2006-02-01

    Full Text Available Abstract Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ, triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight

  8. Real-time monitoring and manipulation of single bio-molecules in free solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hung-Wing [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  9. EXTRA: A real time knowledge-based monitoring system for a nuclear power plant

    International Nuclear Information System (INIS)

    EXTRA is an expert system for industrial process control. The main objectives are diagnosis and operation aids. From a methodological point of view, EXTRA is based on a deep knowledge of the plant operation and topology and on qualitative physics principles. This system represents a considerable step forward in the field of expert-systems because of the size of the knowledge-base and the real-time requirements. A specific application of EXTRA is developed for the BUGEY unit 2 (a 900 MWe pressurized water nuclear unit) concerning the electrical power supplies. This system called ''electrical power supplies supervision'' gives diagnosis in real time of the electric incidental situation origin. A connection to a data base make the expert system able to supply operators with information concerning the consequences of the electrical power system failures on the safety systems, the equipment measurement sensors and certain automatic devices (availability, unavailability, validity, etc.). A simulation part of the system, out of real time, can help the operators or the maintenance team to prepare the withdrawal from service of electric equipment by giving information on the consequences of it, in particular, information concerning the technical specifications. The system will be independently used and managed by the operating crews and maintenance team, but a priority is given to the diagnosis real time supervision. This expert-system will be installed for the beginning of 1989. (author). 5 refs, 2 pictures

  10. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  11. Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy

    NARCIS (Netherlands)

    Calvino-Casilda, V.; Mul, G.; Fernandez, J.F.; Rubio-Marcos, F.; Banares, M.A.

    2011-01-01

    In situ Attenuated Total Reflectance FTIR spectroscopy was used to study the carbonylation of glycerol with urea. Cobalt oxide nanoparticles, Co3O4, hierarchically dispersed on zinc oxide microparticles, ZnO, were used as catalysts. The present work demonstrates that in situ real-time attenuated tot

  12. Real-time monitoring of cellular dynamics using a microfluidic cell culture system with integrated electrode array and potentiostat

    DEFF Research Database (Denmark)

    Zor, Kinga; Vergani, M.; Heiskanen, Arto;

    2011-01-01

    A versatile microfluidic, multichamber cell culture and analysis system with an integrated electrode array and potentiostat suitable for electrochemical detection and microscopic imaging is presented in this paper. The system, which allows on-line electrode cleaning and modification, was developed...... for real-time monitoring of cellular dynamics, exemplified in this work by monitoring of redox metabolism inside living yeast cells and dopamine release from PC12 cells....

  13. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  14. The multi-isotope process (MIP) monitor. A near-real-time, non-destructive monitor for reprocessing

    International Nuclear Information System (INIS)

    Researchers at the Pacific Northwest National Laboratory, in conjunction with several U.S. universities, are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the distribution patterns of radioactive isotopes present within process streams. The MIP Monitor uses gamma-ray spectroscopy and pattern recognition software to identify off-normal conditions in process streams. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout the facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that changes in process chemistry or unintended process manipulation would be detected. The technique also holds the potential to quantify process conditions and spent fuel characteristics. Proof-of-principle models and empirical experiments simulating changes in process stream conditions have been completed and the results are promising. Additional development by both empirical and simulated experiments is in process. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technology. (author)

  15. Compact Wireless BioMetric Monitoring and Real Time Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — BioWATCH is a modular ambulatory compact wireless biomedical data acquisition system. More specifically, it is a data acquisition unit for acquiring signals from...

  16. Global system for hydrological monitoring and forecasting in real time at high resolution

    Science.gov (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  17. Global system for hydrological monitoring and forecasting in real time at high resolution

    Science.gov (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  18. Development of real-time radiation monitoring system using embedded FPGA NI myRIO and INSPECTOR+

    International Nuclear Information System (INIS)

    This work is to develop an embedded Data Acquisition (DAQ) system using NI myRIO hardware device for a real-time radiation monitoring system. Here, NI myRIO device, manufactured by National Instruments Corp., with a built-in Xilinx FPGA chip can be programmed by LabVIEW-FPGA language. Radiations are detected by Inspector+ with TTL-logic outputs. An embedded LabVIEW-FPGA code is written for NI myRIO, with functions of positive edge triggering, accumulation of counting via real time, data transferring via Wi-Fi, time reset, etc. The data is recorded into a personal computer with a LabVIEW interface in real time through Wireless connection. Here, the LabVIEW interface programmed in LabVIEWTM platform is to purpose for controlling NI-myRIO, recording and plot data in real-time. This embedded DAQ system is tested with a standard pulse generator. The developed system is portable and useful for radiation monitoring in environment. (author)

  19. Real-Time Series Resistance Monitoring in PV Systems Without the Need for IV Curves

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  20. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    Energy Technology Data Exchange (ETDEWEB)

    George Scott III

    2003-08-01

    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly

  1. Fluorogenic ATP Analogues for Online Monitoring of ATP Consumption : Observing Ubiquitin Activation in Real Time

    OpenAIRE

    Hacker, Stephan; Pagliarini, Dana; Tischer, Thomas; Hardt, Normann; Schneider, Daniel; Mex, Martin; Mayer, Thomas; Scheffner, Martin; Marx, Andreas

    2013-01-01

    Many enzymes use ATP in signal-transducing processes or as an energy source. New fluorogenic ATP analogues signal ATP consumption by ubiquitin-like protein-activating enzymes in real time. Thus the inhibition and stimulation of these ATP-processing enzymes can be studied without auxiliary enzymes and reagents. beta-Lapachone was identified as an inhibitor of the ubiquitin-activating enzyme UBA1 (see scheme; A=acceptor, D=donor).

  2. Development of a Real-Time Smoke Belching Monitoring System for Public Utility Vehicles (PUV via GSM

    Directory of Open Access Journals (Sweden)

    Nelson C. Rodelas

    2016-05-01

    Full Text Available The Development of a Real-Time-Based Smoke Belching Monitoring System for Public Utility Vehicle is designed in order to monitor smoke belchers or violators among public utility vehicles (PUV that uses diesel such as jeepneys or buses. The concept of the project is to measure the opacity of the smoke being emitted by the PUV with the use of a predesigned sensor unit incorporated by Light Dependent Resistor Sensor and Light Source facing each other, 4 inches apart. By allowing the smoke to pass through the LDR and Light Source, the desired resistance is acquired and processed by the microcontroller to obtain the Light Absorption Coefficient. This value is the basis for being a smoke belcher (If it exceeds 2.5 k. The system then sends the data (Plate Number and K -value for every one (1 hour to the Database System and to the operator with the aid of GSM Microcontroller that leads to a real time monitoring. The system is possible to implement and has a potential to be used for emission testing centers since it has the features of the commercial opacity meter which is common in emission centers to measure the smoke emitted by the diesel-fueled vehicles. This project serves as an innovation in emission testing because it monitors the smoke belchers in real-time and operators or owners of the vehicle are not required anymore to go to the emission testing center every year to renew their car registration.

  3. Research overview of real-time monitoring system for micro leak of three-dimensional pipe network

    Directory of Open Access Journals (Sweden)

    Shaofeng WANG

    2016-04-01

    Full Text Available Aiming at the key technical problems encountered by domestic and foreign scholars in building the real-time monitoring system for the micro leak of three-dimensional pipe networks, the paper classifies the problems into three aspects: 1 in the extraction of fault signal frequency, how to avoid the effect of the mixed echo stack and improve the delay estimation accuracy of the correlation; 2 in network bifurcation structure, how to discern the signal propagation path, and how to locate the leak source; 3 under the uncertainly delay in transmitting and receiving information data, how to ensure the time synchronization accuracy of the real-time monitoring system for the three-dimensional pipe network leakage. Through the comparison of the monitoring technologies for the pipe network leakage at home and abroad, it shows that the acoustic emission sensor network based three-dimensional pipeline leak real-time monitoring has great advantages in detecting the weak leakage of flammable and explosive gas/liquid transportation pipelines.

  4. Applicability of Agent-Based Technology for Acquisition, Monitoring and Process Control Systems at Real Time for Distributed Architectures

    International Nuclear Information System (INIS)

    Modern industrial plants are characterized by their large size and higher complexity of the processes involved in their operations.The real time monitoring systems of theses plants must be used a distributed architecture.Due to the pressure of competitive markets, an efficient adaptability to changes must be present in the plants.Modifications in the plants due to changes in the lay-out, the introduction of newer supervision, control and monitoring technologies must not affect the integrity of the systems.The aim of this work is give an introduction to the agent-based technology and analyze it advantage for the development of a modern monitoring system

  5. Fully automatic spray-LBL machine with monitoring the real time growth of multilayer films using Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Shiratori S.

    2013-08-01

    Full Text Available A fully automatic spray-LBL machine with monitoring the real time growth of multilayer films using Quartz Crystal Microbalance (QCM techniques was newly developed. We established fully automatic spray layer-by-layer method by precisely controlling air pressure, solution flow, and spray pattern. The movement pattern towards the substrate during solution spraying allowed fabrication of a nano-scale, flat, thin film over a wide area. Optimization of spray conditions permitted fabrication of the flat film with high and low refractive indexes, and they were piled up alternatively to constitute a one-dimensional photonic crystal with near-infrared reflection characteristics. The heat shield effect of the near-infrared reflective film was also confirmed under natural sunlight. It was demonstrated that the fabrication using the automatic spray-LBL machine and real-time QCM monitoring allows the fabrication of optical quality thin films with precise thickness.

  6. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    Science.gov (United States)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  7. A Study on Wavelet Data Compression of a Real-Time Monitoring System for Large Hydraulic Machines

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; ZHENG Liyuan

    2001-01-01

    The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation. This paper is concerned with a new method of compression using the second generation wavelets based on the lifting scheme, which is a simple but powerful wavelet construction method. It has been proved by its successful application to a real-time monitoring system of large hydraulic machines that it is a promising compression method.

  8. Testing and Validation of a Fast Real-Time Oscillation Detection PMU-Based Application for Wind-Farm Monitoring

    OpenAIRE

    Vanfretti, Luigi; Baudette, Maxime; Al-Khatib, Iyad; Almas, Muhammad Shoaib; Gjerde, Jan Ove

    2013-01-01

    This article provides an overview of a monitoring application, its testing and validation process. The application was developed for the detection of sub-synchronous oscillations in power systems, utilizing real-time measurements from phasor measurement units (PMUs). It uses two algorithms simultaneously to both detect the frequency at which the oscillatory event occurs and the level of energy in the oscillations. The application has been developed and tested in the framework of SmarTS Lab, a...

  9. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    CERN Document Server

    Kraan, A C; Belcari, N; Camarlinghi, N; Ciocca, M; Ferrari, A; Ferretti, S; Mairani, A; Molinelli, S; Pullia, M; Sala, P; Sportelli, G; Del Guerra, A; Rosso, V

    2015-01-01

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β+-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  10. A real time, wearable ECG and continous blood pressure monitoring system for first responders.

    Science.gov (United States)

    Ribeiro, David M D; Colunas, Marcio F M; Marques, Fabio A Ferreira; Fernandes, Jose M; Cunha, Joao P Silva

    2011-01-01

    The study of stress and fatigue among First Responders is a major step in mitigating this public health problem. Blood pressure, heart rate variability and fatigue related arrhythmia are three of the main "windows" to study stress and fatigue. In this paper we present a wearable medical device, capable of acquiring an electrocardiogram and estimating blood pressure in real time, through a pulse wave transit time approach. The system is based on an existent certified wearable medical device called "Vital Jacket" and is aimed to become a tool to allow cardiologists in studying stress and fatigue among first response professionals. PMID:22255923

  11. A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate.

    Science.gov (United States)

    Jung Han Choi; Dong Kyun Kim

    2009-06-01

    A remote compact sensor system for the detection of human vital signs (heartbeat and respiration rate) is presented. The frequency band of 24 GHz is employed for remote sensing. For the compact size, the developed sensor uses a circularly polarized electromagnetic wave with a single antenna. The sensor system is composed of radio-frequency circuits, a signal conditioning block, a data-acquisition unit, and a signal-processing part. The peak detection of the power spectral density with a tracking algorithm is utilized for the real-time detection of human vital signs. The measurement result is compared with the commercial fingertip sensor. The comparison result shows excellent agreement. PMID:23853219

  12. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    Energy Technology Data Exchange (ETDEWEB)

    Kraan, A.C. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Ferrari, A. [CERN, Geneva (Switzerland); Ferretti, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Mairani, A.; Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sala, P. [INFN Sezione di Milano, Milano (Italy); Sportelli, G.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2015-06-21

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β{sup +}-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  13. Electro-Discharge Fine Truing of Metal-Bonded Fine-Grain Diamond Wheel Based on Real-Time Monitoring

    Institute of Scientific and Technical Information of China (English)

    JIN Weidong; REN Chengzu; HUA Jinhai; WANG Taiyong

    2005-01-01

    A data acquisition system based on LabVIEW is designed and implemented, and electro-discharge(ED) fine truing of metal-bonded fine-grain diamond wheel based on real-time monitoring is researched. Real-time monitoring not only makes efficient impulse specification of ED truing easily obtained, but also is good for timely identifying no-load, avoiding short circuit and arc discharge phenomena and then for obtaining normal machining state. ED fine truing of the fine-grain wheel includes two steps: rough truing for high efficiency and fine truing for high precision. Final ED truing precision and efficiency not only depend on electric process specification, but also is concerned with electrode shape, insulated performance of operating fluid and vertical feed quantity value and frequency. Experiments indicate that ED fine truing based on real-time monitoring can improve the truing precision and efficiency. Average machining efficiency of W10 wheel is about 0.95 μm/min; the final run-out by ED truing is less than 2 μm.

  14. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    Science.gov (United States)

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees. PMID:26775992

  15. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    Science.gov (United States)

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees.

  16. Drosophila embryos as model systems for monitoring bacterial infection in real time.

    Directory of Open Access Journals (Sweden)

    Isabella Vlisidou

    2009-07-01

    Full Text Available Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica and non-pathogenic (Escherichia coli bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1 or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.

  17. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. PMID:25395159

  18. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    Energy Technology Data Exchange (ETDEWEB)

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  19. Near Real-Time Processing and Archiving of GPS Surveys for Crustal Motion Monitoring

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.

    2008-12-01

    We present an inverse instantaneous RTK method for rapidly processing and archiving GPS data for crustal motion surveys that gives positional accuracy similar to traditional post-processing methods. We first stream 1 Hz data from GPS receivers over Bluetooth to Verizon XV6700 smartphones equipped with Geodetics, Inc. RTD Rover software. The smartphone transmits raw receiver data to a real-time server at the Scripps Orbit and Permanent Array Center (SOPAC) running RTD Pro. At the server, instantaneous positions are computed every second relative to the three closest base stations in the California Real Time Network (CRTN), using ultra-rapid orbits produced by SOPAC, the NOAATrop real-time tropospheric delay model, and ITRF2005 coordinates computed by SOPAC for the CRTN stations. The raw data are converted on-the-fly to RINEX format at the server. Data in both formats are stored on the server along with a file of instantaneous positions, computed independently at each observation epoch. The single-epoch instantaneous positions are continuously transmitted back to the field surveyor's smartphone, where RTD Rover computes a median position and interquartile range for each new epoch of observation. The best-fit solution is the last median position and is available as soon as the survey is completed. We describe how we used this method to process 1 Hz data from the February, 2008 Imperial Valley GPS survey of 38 geodetic monuments established by Imperial College, London in the 1970's, and previously measured by SOPAC using rapid-static GPS methods in 1993, 1999 and 2000, as well as 14 National Geodetic Survey (NGS) monuments. For redundancy, each monument was surveyed for about 15 minutes at least twice and at staggered intervals using two survey teams operating autonomously. Archiving of data and the overall project at SOPAC is performed using the PGM software, developed by the California Spatial Reference Center (CSRC) for the National Geodetic Survey (NGS). The

  20. The study on a real-time remote monitoring system for Parkinson's disease patients with deep brain stimulators.

    Science.gov (United States)

    Chen, Yue; Hao, Hongwei; Chen, Hao; Tian, Ye; Li, Luming

    2014-01-01

    The Deep Brain Stimulation (DBS) has become a well-accepted treatment for Parkinson's disease patients around the world. However, postoperative care of the stimulators usually puts a heavy burden on the patients' families, especially in China. To solve the problem, this study developed a real-time remote monitoring system for deep brain stimulators. Based on Internet technologies, the system offers remote adjustment service so that in vivo stimulators could be programmed at patients' home by clinic caregivers. We tested the system on an experimental condition and the results have proved that this early exploration of remote monitoring deep brain stimulators was successful. PMID:25570219

  1. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    Science.gov (United States)

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  2. Design, Implementation and Evaluation of a Torque Transducer with Ability of Real-time Torque Monitoring

    Directory of Open Access Journals (Sweden)

    A Zeinali

    2016-04-01

    Full Text Available Torque, speed, and power as mechanical variables are associated with the functional performance of any rotating machinery. The real-time performance and the efficiency of a machine can be determined with on-line measurement of these parameters. In this investigation a rotary torque meter (transducer was constructed from strain gauge sensors for measuring the torque of rotating shafts. The system converts the torque of rotating shaft into voltage signals, based on the principle of strain gauge resistance. The signals are then amplified and converted into digital signals. These digital signals are sent to a RF receiver circuit for displaying and storage. Results of static calibration and a series of dynamic tests confirmed a satisfactory operation of the designed apparatus in various conditions. Also, the torque measuring range, resolution and the accuracy were from 3 to 700 N m, 3 N m and 1%, respectively.

  3. Chemically unassisted phototherapy: dose effects via real-time optical monitoring of cancer cells

    Science.gov (United States)

    Landry, Sylvie; Keeler, Werden

    2010-03-01

    Ultraviolet (UV) light and short wavelength visible (VIS) light have been used to kill pathogens for many years. Although the adverse effects of UV radiation on living cells have been extensively studied using biochemical and biomolecular techniques, most of the light therapies used for medical treatment are chemically assisted (i.e., photodynamic therapy). However, the use of light alone could prove both cost and therapeutically effective as an alternative treatment modality for localized diseases. In this study, real-time oblique incidence reflection (OIR) microscopy and image analysis were used to visualize and quantify the effects of chemically unassisted light therapy on untagged live cancer cells in vitro. The incident radiation fluence (in mJ/cm^2) required to induce cell death was determined for selected quasi-monochromatic UV to VIS wavelengths ranging from 275nm to 460nm. A predictive mathematical equation quantifying the lethal fluence as a function of wavelength will be discussed.

  4. Distributive, Non-destructive Real-time System and Method for Snowpack Monitoring

    Science.gov (United States)

    Frolik, Jeff (Inventor); Skalka, Christian (Inventor)

    2013-01-01

    A ground-based system that provides quasi real-time measurement and collection of snow-water equivalent (SWE) data in remote settings is provided. The disclosed invention is significantly less expensive and easier to deploy than current methods and less susceptible to terrain and snow bridging effects. Embodiments of the invention include remote data recovery solutions. Compared to current infrastructure using existing SWE technology, the disclosed invention allows more SWE sites to be installed for similar cost and effort, in a greater variety of terrain; thus, enabling data collection at improved spatial resolutions. The invention integrates a novel computational architecture with new sensor technologies. The invention's computational architecture is based on wireless sensor networks, comprised of programmable, low-cost, low-powered nodes capable of sophisticated sensor control and remote data communication. The invention also includes measuring attenuation of electromagnetic radiation, an approach that is immune to snow bridging and significantly reduces sensor footprints.

  5. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    Science.gov (United States)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  6. Surface Plasmon Resonance Fiber Sensor for Real-Time and Label-Free Monitoring of Cellular Behavior

    Science.gov (United States)

    Shevchenko, Yanina; Camci-Unal, Gulden; Cuttica, Davide F.; Dokmeci, Mehmet R.; Albert, Jacques; Khademhosseini, Ali

    2014-01-01

    This paper reports on the application of an optical fiber biosensor for real-time analysis of cellular behavior. Our findings illustrate that a fiber sensor manufactured from a traditional telecommunication fiber can be integrated into conventional cell culture equipment and used for real-time and label-free monitoring of cellular responses to chemical stimuli. The sensing mechanism used for the measurement of cellular responses is based on the excitation of Surface Plasmon Resonance (SPR) on the surface of the optical fiber. In this proof of concept study, the sensor was utilized to investigate the influence of a number of different stimuli on cells - we tested the effects of trypsin, serum and sodium azide. These stimuli induced detachment of cells from the sensor surface, uptake of serum and inhibition of cellular metabolism, accordingly. The effects of different stimuli were confirmed with alamar blue assay, phase contrast and fluorescence microscopy. The results indicated that the fiber biosensor can be successfully utilized for real-time and label-free monitoring of cellular response in the first 30 minutes following the introduction of a stimulus. Furthermore, we demonstrated that the optical fiber biosensors can be easily regenerated for repeated use, proving this platform as a versatile and cost-effective sensing tool. PMID:24549115

  7. Real-Time Remote Diagnostic Monitoring test-bed in JET

    International Nuclear Information System (INIS)

    The main objective of DiagKG8B is to monitor online and on remote a diagnostic in JET and this solution is ready to be used on other fusion devices. Important remote monitoring concepts are formalized in a data monitoring protocol: frame, delays, monitoring data solution, frame rate. The modular architecture is in 3 parts: diagnostic, data distribution and monitoring applications. DiagKG8B is scalable and long pulse oriented. The system is secure and compatible in a multi-organisation environment. This solution could easily evolve to remote monitoring infrastructure for integrating new diagnostics. This document is made of the presentation transparencies. (A.C.)

  8. Global, Daily, Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Slayback, D. A.; Policelli, F. S.; Brakenridge, G. R.; Tokay, M. M.; Smith, M. M.; Kettner, A. J.

    2013-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is expected to increase in frequency and damage with climate change and population growth. Some of 2013's major floods have impacted the New York City region, the Midwest, Alberta, Australia, various parts of China, Thailand, Pakistan, and central Europe. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours of events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial daily assessment of flooding extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on many of these issues, and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these

  9. A Multimodel Global Drought Information System (GDIS) for Near Real-Time Monitoring of Surface Water Conditions (Invited)

    Science.gov (United States)

    Nijssen, B.

    2013-12-01

    While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U

  10. Integrating Real-time and Manual Monitored Soil Moisture Data to Predict Hillslope Soil Moisture Variations with High Temporal Resolutions

    Science.gov (United States)

    Zhu, Qing; Lv, Ligang; Zhou, Zhiwen; Liao, Kaihua

    2016-04-01

    Spatial-temporal variability of soil moisture 15 has been remaining an challenge to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time soil moisture monitoring methods. This restricted the comprehensive and intensive examination of soil moisture dynamics. In this study, we aimed to integrate the manual and real-time monitored soil moisture to depict the hillslope dynamics of soil moisture with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear models (support vector machines-SVM) were used to predict soil moisture at 38 manual sites (collected 1-2 times per month) with soil moisture automatically collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each manual site, optimal soil moisture prediction model of this site was then determined. Results show that soil moisture at these 38 manual sites can be reliably predicted (root mean square errorswetness index, profile curvature, and relative difference of soil moisture and its standard deviation influenced the selection of prediction model since they related to the dynamics of soil water distribution and movement. By using this approach, hillslope soil moisture spatial distributions at un-sampled times and dates were predicted after a typical rainfall event. Missing information of hillslope soil moisture dynamics was then acquired successfully. This can be benefit for determining the hot spots and moments of soil water movement, as well as designing the proper soil moisture monitoring plan at the field scale.

  11. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry.

  12. Integrating hydrograph modeling with real-time flow monitoring to generate hydrograph-specific sampling schemes

    Science.gov (United States)

    Gall, Heather E.; Jafvert, Chad T.; Jenkinson, Byron

    2010-11-01

    Automated sample collection for water quality research and evaluation generally is performed by simple time-paced or flow-weighted sampling protocols. However, samples collected on strict time-paced or flow-weighted schemes may not adequately capture all elements of storm event hydrographs (i.e., rise, peak, and recession). This can result in inadequate information for calculating chemical mass flux over storm events. In this research, an algorithm was developed to guide automated sampling of hydrographs based on storm-specific information. A key element of the new "hydrograph-specific sampling scheme" is the use of a hydrograph recession model for predicting the hydrograph recession curve, during which flow-paced intervals are calculated for scheduling the remaining samples. The algorithm was tested at a tile drained Midwest agricultural site where real-time flow data were processed by a programmable datalogger that in turn activated an automated sampler at the appropriate sampling times to collect a total of twenty samples during each storm event independent of the number of sequential hydrographs generated. The utility of the algorithm was successfully tested with hydrograph data collected at both a tile drain and agricultural ditch, suggesting the potential for general applicability of the method. This sampling methodology is flexible in that the logic can be adapted for use with any hydrograph recession model; however, in this case a power law equation proved to be the most practical model.

  13. Remote monitoring of building oscillation modes by means of real-time Mid Infrared Digital Holography.

    Science.gov (United States)

    Poggi, Pasquale; Locatelli, Massimiliano; Pugliese, Eugenio; Delle Donne, Dario; Lacanna, Giorgio; Meucci, Riccardo; Ripepe, Maurizio

    2016-01-01

    Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures. PMID:27032810

  14. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Marco Brunoldi

    Full Text Available Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus has been implemented and installed in the Portofino Marine Protected Area (MPA, Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on. The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon, deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  15. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    Science.gov (United States)

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  16. Analytical Solution and Numerical Simulation of Real-Time Dispersion Monitoring Using Tone Subcarrier

    Institute of Scientific and Technical Information of China (English)

    HUANG He; CHEN Fushen; JIANG Yi

    2003-01-01

    A method for online dispersion monitoring by adding a single in-band subcarrier tone is introduced. According to the theoretical analysis, the dispersion monitor and measurement range are determined by the specific frequency of the subcarrier tone. By using simulation tools, figures about relationship between power of subcarrier tone and transmission distance in ideal condition are shown.

  17. Experimental validation of concept for real-time wavelength monitoring and tracking in densely populated WDM networks

    Science.gov (United States)

    Vukovic, Alex; Savoie, Michel; Hua, Heng; Campbell, Scott; Nguyen, Thao

    2005-10-01

    As the telecom industry responds with technological innovations to requests for higher data rates, increased number of wavelengths at higher densities, longer transmission distances and more intelligence for next generation optical networks, new monitoring schemes based on monitoring and tracking of each wavelength need to be developed and deployed. An optical layer monitoring scheme, based on tracking key optical parameters per each wavelength, is considered to be one of enablers for the transformation of today's opaque networks to dynamic, agile future networks. Ever-tighter network monitoring and control will be required to fulfill customer Service Level Agreements (SLAs). A wavelength monitoring and tracking concept was developed as a three-step approach. It started with the identification of all critical parameters required to obtain sufficient information about each wavelength; followed by the deployment of a cost-efficient device to provide simultaneous, accurate measurements in real-time of all critical parameters; and finally, the formulation of a specification for wavelength monitoring and tracking devices for real-time, simultaneous measurements and processing the data. A prototype solution based on a commercially available integrated modular spectrometer within a testbed environment associated with the all-optical network (AON) demonstrator program was used to verify and validate the wavelength monitoring and tracking concept. The developed concept verified that it can manage tracking of 32 wavelengths within a wavelength division multiplexing network. The developed concept presented in this paper can be used inside the transparent domains of networks to detect, identify and locate signal degradations in real-time, even sometimes to recognize the cause of the failure. Aside from the reduction of operational expenses due to the elimination of the need for operators at every site and skilled field technicians to isolate and repair faults, the developed

  18. RFID data processing in a real-time monitoring system for marathon

    Directory of Open Access Journals (Sweden)

    Suchart Joolrat

    2016-06-01

    Full Text Available In all marathon events, an organizer needs to determine the winners. However, this is a complicated process in a marathon event that has many participants and starting points with limited space. In such condition, runners cannot start running concurrently and thus the runners who cross the finish line first are not always the winners. To judge the top runners with accuracy and fairness, the organizer needs to acquire a net time in ranking participants. The net time, which is the difference between the time recorded at the finish line minus the time recorded at the start, can be calculated for each runner. Currently, the advances in RFID technology are widely used to record times and determine awarded runners in several marathon events. However, most RFID-based solutions in marathon events are commercially available and licensed on a yearly basis. The cost of a commercial product can be as high as 2,000,000 Baht. This article presents an implementation of RFID technology for a marathon organizer to determine the winners by recording times of the check in point, the start point, the checkpoint, and the finish point. Furthermore, the developed system also reports the results of the marathon series in real-time via a web application that can be viewed on any online electronic device. The proposed solution estimated cost is about 200,000 Baht and can reduce the processing time from one hour to just five minutes which is about one-tenth of that of a commercial product.

  19. A near real time MSG-SEVIRI based algorithm for gas flaring monitoring

    Science.gov (United States)

    Faruolo, Mariapia; Coviello, Irina; Filizzola, Carolina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2015-04-01

    In the last decades oil and gas industry has become responsible for important environmental issues. The gas flaring, one of the processes used to dispose of the natural gas associated with extracted crude oil, has been recognized as being potentially harmful to human health and the atmosphere. Efforts to empirically assess the environmental impacts of such phenomenon are frequently hampered by limited access to official information on flare locations and volumes, the heterogeneity in spatial and temporal sampling strategies and methods used to collect data. Consequently, there is a need to develop new methods of acquiring such information and remote sensing techniques seem the most viable option. In this paper, with reference to this problem, the potential of a satellite based technique for a near real time detection and characterization of hot spot sources was assessed. In detail, Medium Infrared (MIR) radiances acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) scanner carried aboard the Meteosat Second Generation (MSG) satellite were processed following the Robust Satellite Techniques (RST) prescriptions. Such an algorithm, based on the processing of multi-year satellite images, co-located in the space-time domain, allows to timely identify statistically significant variations of the MIR signal, related to changes and/or malfunctions in the industrial process and responsible for the gas flaring blazes. Results achieved, referring to the flaring activity of the Centro Olio Val d'Agri (COVA), an oil/gas plant located in the South of Italy, will be described in detail and discussed in this paper.

  20. Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET.

    Science.gov (United States)

    Hengesbach, Martin; Voigts-Hoffmann, Felix; Hofmann, Benjamin; Helm, Mark

    2010-03-01

    Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f(5)U). f(5)U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f(5)U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f(5)U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f(5)U. The f(5)U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f(5)U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f(5)U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f(5)U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f(5)U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.

  1. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    Science.gov (United States)

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  2. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

    Directory of Open Access Journals (Sweden)

    Wutao Li

    2016-03-01

    Full Text Available Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms level and the monitoring time is on microsecond (μs level, which make the proposed approach usable in practical interference monitoring applications.

  3. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    Science.gov (United States)

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-01-01

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020

  4. Real time monitoring of the Bragg-peak position in ion therapy by means of single photon detection

    OpenAIRE

    Testa, M.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Le Foulher, F.; Ray, C.; Testa, E; Freud, N.; Létang, J.M.; Richard, M.-H.; Karkar, S.; Plescak, R.; Schardt, D.

    2010-01-01

    For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt -rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12C6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the carbon ion range and the prompt...

  5. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  6. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The object of this research is to develop an in-service life-monitor system for the prediction of the remaining component and system life of aircraft engines. The...

  7. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The...

  8. Project of a Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring (NRTSSS)

    OpenAIRE

    D'Anna, Giuseppe; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Calore, Daniele; Envirtech S.p.A.; Mangano, Giorgio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; D'Alessandro, Antonino; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Favali, Paolo; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia

    2011-01-01

    The INGV seismic network ensures reliable and continuous monitoring of the Italian territory. However, the peculiarity of the Italian peninsula, characterised by an intense offshore geodynamic and seismic activity, requires the extension of the seismic monitoring to the sea. The aim of this project is: - to identify bottleneck is related to the construction, installation and use of underwater seismic station; - to define the most appropriate and low-cost architecture to guarantee the...

  9. Architecture for the real-time monitoring of noise pollution and marine mammal activity

    OpenAIRE

    Schaar, Mike van der; Zaugg, Serge Alain; Houegnigan, Ludwig; Castell Balaguer, Joan Vicent; André, Michel

    2010-01-01

    As acoustic pollution in the oceans is increasing, it is becoming more important to monitor it, with special attention on its effects on the behaviour of cetaceans. In the near future governments may require constant monitoring during sea construction projects or operations. One major construction activity in the coming years will be the construction of wind farms. Not only will these farms produce a constant low level noise in their direct environment while operating, but the ...

  10. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network.

    Science.gov (United States)

    Şimşir, Mehmet; Bayır, Raif; Uyaroğlu, Yılmaz

    2016-01-01

    Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured. PMID:26819590

  11. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Mehmet Şimşir

    2016-01-01

    Full Text Available Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.

  12. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization.

  13. Development of a Real-Time Environmental Monitoring System, Life Cycle Assessment Systems, and Pollution Prevention Programs

    Science.gov (United States)

    Kocher, Walter M.

    2003-01-01

    Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.

  14. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    Science.gov (United States)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  15. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  16. Wireless Sensor Network based Fire Monitoring and Extinguishing System in Real Time Environment

    Directory of Open Access Journals (Sweden)

    P. N. Narendra Reddy

    2011-09-01

    Full Text Available Firefighting is one of the most dangerous professions in which people are employed. The dangers associated are the result of a number of factors such as lack of information regarding the location, size and spread of the fire. The use of wireless sensor networks may be one way of reducing the risks faced by the firefighters and assist in the process of rapid extinguishment of the fire. The standards, such as IEEE 802.15.4 and ZigBee, stimulated the development of numerous commercial products. Moving from early research in military applications, sensor networks now are widely deployed in diverse applications including home automation, building automation, and others. This paper mainly presents the design and the implementation of wireless sensor network based fire monitoring and extinguishing system. Fire monitoring system continuously monitors the surroundings and keeps a track of the temperature recorded and the intruders detected, performed by monitoring node. Fire extinguishing system switches the extinguisher as soon as it detects the fire or when the temperature crosses a certain threshold level, performed by extinguishing node. Results indicate that the overall performance of the proposed approach is very good. The usage of zigbee monitored fire extinguishers in a hospital building has been demonstrated.

  17. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system

    Science.gov (United States)

    Mayevsky, Avraham; Walden, Raphael; Pewzner, Eliyahu; Deutsch, Assaf; Heldenberg, Eitan; Lavee, Jacob; Tager, Salis; Kachel, Erez; Raanani, Ehud; Preisman, Sergey; Glauber, Violete; Segal, Eran

    2011-06-01

    Background: The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. Methods and Results: The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.

  18. Real time monitoring of drug action on T. cruzi parasites using a biospeckle laser method

    Science.gov (United States)

    Ansari, M. Z.; Grassi, H. C.; Cabrera, H.; Andrades, E. D. J.

    2016-06-01

    In this paper, we report on a biospeckle laser method used to monitor a specific drug action on T. cruzi parasites. Experimental results from fast biospeckle monitoring of the parasites’ activity under the influence of the drug demonstrate the effectiveness of the proposed method. We measure the speckle parameters such as spatiotemporal correlation and speckle grain size to assess the immediate action of the drug on the parasites during a very short incubation period. From a practical point of view, this aproach allows us to validate biospeckle as a fast, non-invasive and alternative method to test candidate drugs on T. cruzi parasites.

  19. Real time power consumption monitoring for energy efficiency analysis in micro EDM milling

    DEFF Research Database (Denmark)

    Tristo, Gianluca; Bissacco, Giuliano; Lebar, Andrej;

    2015-01-01

    Sustainability has become a major concern in many countries and is leading to strict regulations regarding the impact of products and services during their manufacturing, use, and disposal. Power consumption monitoring in manufacturing companies can lead to a reduction of machine tools energy was...

  20. WEB-BASED REAL-TIME MONITORING OF LYSIMETER USING WIRELESS SENSOR NETWORK

    Science.gov (United States)

    Identification of nitrate-nitrogen (NO3-N) in drainage water allows accessing the effectiveness of water quality management. A wick-type lysimeters was used to monitor water flux and NO3-N leached below the root zone under irrigated cropping system. A wireless lysimeter design was proposed and eval...

  1. MONDO Project: real time ocean monitoring through Lagrangian drifters during offshore drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Tatiana [Eni Oil do Brasil, Rio de Janeiro, RJ (Brazil); Fragoso, Mauricio da Rocha; Santos, Francisco Alves dos; Cruz, Leonardo M. Marques A.; Pellegrini, Julio A.C.; Cerrone, Bruna Nogueira [Prooceano, Rio de Janeiro, RJ (Brazil); Assireu, Arcilan Trevenzoli [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2008-07-01

    Monitoring the ocean conditions during offshore operations is essential for both operational and environmental aspects. Environmentally, not only to know better the environment where the activity is taking place, but also to be able to provide fast and accurate response in case of accidents. MONDO Project (Monitoring by Ocean Drifters) is a pioneer initiative from ENI Oil do Brasil and PROOCEANO that aimed to monitor currents as a part of a metoceanographic data monitoring project of drilling operations in Brazilian Waters, in Santos Basin throughout September to November 2007, 40 satellite tracked ocean drifters were deployed will be transmitting data up to November 2008. The results of this project can be used to study a wide range of subjects about ocean dynamics. Following the principles of social and environmental responsibility, MONDO Project aims to benefit the local ecosystem in increasing the scientific knowledge of the area to calibrate hydrodynamic models that will lead to more accurate modeling results and, as a consequence, to a better management of contingency plans. Based on these principles, the project will also provide unrestricted access to oceanographic data even after the end of operations. (author)

  2. Novel instrumentation for real-time monitoring using miniaturized flow systems with integrated biosensors

    NARCIS (Netherlands)

    Freaney, R.; McShane, A.; Keaveny, T.V.; McKenna, M.; Rabenstein, K.; Scheller, F.W.; Pfeiffer, D.; Urban, G.; Moser, I.; Jobst, G.; Manz, A.; Verpoorte, E.; Widmer, M.W.; Diamond, D.; Dempsey, E.; Saez De Viteri, F.J.; Smyth, M.

    1997-01-01

    A prototype miniaturized Total Chemical Analysis System (μTAS) has been developed and applied to on-line monitoring of glucose and lactate in the core blood of anaesthetized dogs. The system consists of a highly efficient microdialysis sampling interface sited in a small-scale extracorporeal shunt c

  3. Real-Time Online Monitoring of the Ion Range by Means of Prompt Secondary Radiations

    International Nuclear Information System (INIS)

    Prompt secondary radiations such as gamma rays and protons can be used for ion-range monitoring during ion therapy either on an energy-slice basis or on a pencil-beam basis. We present a review of the ongoing activities in terms of detector developments, imaging, experimental and theoretical physics issues concerning the correlation between the physical dose and hadronic processes. (authors)

  4. Prediction of landslide activation at locations in Beskidy Mountains using standard and real-time monitoring methods

    Science.gov (United States)

    Bednarczyk, Z.

    2012-04-01

    The paper presents landslide monitoring methods used for prediction of landslide activity at locations in the Carpathian Mountains (SE Poland). Different types of monitoring methods included standard and real-time early warning measurement with use of hourly data transfer to the Internet were used. Project financed from the EU funds was carried out for the purpose of public road reconstruction. Landslides with low displacement rates (varying from few mm to over 5cm/year) had size of 0.4-2.2mln m3. Flysch layers involved in mass movements represented mixture of clayey soils and sandstones of high moisture content and plasticity. Core sampling and GPR scanning were used for recognition of landslide size and depths. Laboratory research included index, IL oedometer, triaxial and direct shear laboratory tests. GPS-RTK mapping was employed for actualization of landslide morphology. Instrumentation consisted of standard inclinometers, piezometers and pore pressure transducers. Measurements were carried 2006-2011, every month. In May 2010 the first in Poland real-time monitoring system was installed at landslide complex over the Szymark-Bystra public road. It included in-place uniaxial sensors and 3D continuous inclinometers installed to the depths of 12-16m with tilt sensors every 0.5m. Vibrating wire pore pressure and groundwater level transducers together with automatic meteorological station analyzed groundwater and weather conditions. Obtained monitoring and field investigations data provided parameters for LEM and FEM slope stability analysis. They enabled prediction and control of landslide behaviour before, during and after stabilization or partly stabilization works. In May 2010 after the maximum precipitation (100mm/3hours) the rates of observed displacements accelerated to over 11cm in a few days and damaged few standard inclinometer installations. However permanent control of the road area was possible by continuous inclinometer installations. Comprehensive

  5. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    Science.gov (United States)

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA. PMID:27587174

  6. A Novel Methodology to Evaluate Health Impacts Caused by VOC Exposures Using Real-Time VOC and Holter Monitors

    Directory of Open Access Journals (Sweden)

    Hiroaki Kumano

    2010-11-01

    Full Text Available While various volatile organic compounds (VOCs are known to show neurotoxic effects, the detailed mechanisms of the action of VOCs on the autonomic nervous system are not fully understood, partially because objective and quantitative measures to indicate neural abnormalities are still under development. Nevertheless, heart rate variability (HRV has been recently proposed as an indicative measure of the autonomic effects. In this study, we used HRV as an indicative measure of the autonomic effrects to relate their values to the personal concentrations of VOCs measured by a real-time VOC monitor. The measurements were conducted for 24 hours on seven healthy subjects under usual daily life conditions. The results showed HF powers were significantly decreased for six subjects when the changes of total volatile organic compound (TVOC concentrations were large, indicating a suppression of parasympathetic nervous activity induced by the exposure to VOCs. The present study indicated these real-time monitoring was useful to characterize the trends of VOC exposures and their effects on autonomic nervous system.

  7. Clinical Implementation of Dynamic Tumour Tracking Radiotherapy with Real-time Monitoring Using a Gimbal Mounted Linac

    International Nuclear Information System (INIS)

    Respiratory motion is one of the factors causing uncertainties during beam delivery, particularly for thoracic and addominal tumors. Several techniques, including forced shallow-breathing, breath-hold, respiratory gating, and dynamic tumour tracking (DTT), have been proposed to reduce the uncertainties without a burden on the respiration of patients or prolongation of treatment time. We have developed an innovative four-mensional (4D) image-guided radiotherapy system, the Vero4DRT (MHI-TM2000; Mitsubishi Heay Industries, Ltd., Japan, and Brainlab, Feldkirchen, Germany). The Vero4DRT has two special features that allow DTT with real-time monitoring. One is two sets of kilovoltage (KV) X-ray imagers, that can monitor the three-dimensional position of the tumor in real-time via implanted fiducial markers, and the other is a gimbal mounted linac, enabling DTT. DTT stereotactic body radiotherapy was realizered for a patient with lung tumor in September 11 2011 and for a pateint with liver tumor in 2012. Therreafter,DTT IMRT was realized for a patien with pancreatic cancer in June 2013. The presentation

  8. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    Science.gov (United States)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  9. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-03-08

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions.

  10. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Science.gov (United States)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  11. Real-Time Monitoring of Non-linear Suicidal Dynamics: Methodology and a Demonstrative Case Report.

    Science.gov (United States)

    Fartacek, Clemens; Schiepek, Günter; Kunrath, Sabine; Fartacek, Reinhold; Plöderl, Martin

    2016-01-01

    In recent years, a number of different authors have stressed the usefulness of non-linear dynamic systems approach in suicide research and suicide prevention. This approach applies specific methods of time series analysis and, consequently, it requires a continuous and fine-meshed assessment of the processes under consideration. The technical means for this kind of process assessment and process analysis are now available. This paper outlines how suicidal dynamics can be monitored in high-risk patients by an Internet-based application for continuous self-assessment with integrated tools of non-linear time series analysis: the Synergetic Navigation System. This procedure is illustrated by data from a patient who attempted suicide at the end of a 90-day monitoring period. Additionally, future research topics and clinical applications of a non-linear dynamic systems approach in suicidology are discussed.

  12. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  13. Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency

    OpenAIRE

    Younsun Kim; Ingeol Lee; Sungho Kang

    2015-01-01

    Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal st...

  14. Real-Time Virtual Instruments for Remote Sensor Monitoring Using Low Bandwidth Wireless Networks

    OpenAIRE

    Biruk Gebre; Liwen Guo; Nishit Patel; Kishore Pochiraju

    2008-01-01

    The development of a peer-to-peer virtual instrumentation system for remote acquisition, analysis and transmission of data on low bandwidth networks is described. The objective of this system is to collect high frequency/high bandwidth data from multiple sensors placed at remote locations and adaptively adjust the resolution of this data so that it can be transmitted on bandwidth limited networks to a central monitoring and command center. This is achieved by adaptively re-sampling (decimatin...

  15. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    Science.gov (United States)

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  16. A Wireless Sensor for Real-Time Monitoring of Tensile Force on Sutured Wound Sites.

    Science.gov (United States)

    DeRouin, Andrew; Pacella, Nina; Zhao, Chunfeng; An, Kai-Nan; Ong, Keat Ghee

    2016-08-01

    A new wireless sensor was designed, fabricated, and applied for in situ monitoring of tensile force at a wound site. The sensor was comprised of a thin strip of magnetoelastic material with its two ends connected to suture threads for securing the sensor across a wound repair site. Since the sensor was remotely interrogated by applying an ac magnetic field and capturing the resulting magnetic field, it did not require direct wire connections to an external device or internal battery for long-term use. Due to its magnetoelastic property, the application of a tensile force changed the magnetic permeability of the sensor, altering the amplitude of the measured magnetic field. This study presents two sensor designs: one for high and one for low-force ranges. A sensor was fabricated by directly adhering the magnetoelastic strip to the suture. This sensor showed good sensitivity at low force, but its response saturated at about 1.5 N. To monitor high tensile force, the magnetoelastic strip was attached to a metal strip for load sharing. The suture thread was attached to the both ends of the metal strip so only a fraction of the applied force was directed to the sensor, allowing it to exhibit good sensitivity even at 44.5 N. The sensor was applied to two ex vivo models: a sutured section of porcine skin and a whitetail deer Achilles tendon. The results demonstrate the potential for in vivo force monitoring at a wound repair site.

  17. A Wireless Sensor for Real-Time Monitoring of Tensile Force on Sutured Wound Sites.

    Science.gov (United States)

    DeRouin, Andrew; Pacella, Nina; Zhao, Chunfeng; An, Kai-Nan; Ong, Keat Ghee

    2016-08-01

    A new wireless sensor was designed, fabricated, and applied for in situ monitoring of tensile force at a wound site. The sensor was comprised of a thin strip of magnetoelastic material with its two ends connected to suture threads for securing the sensor across a wound repair site. Since the sensor was remotely interrogated by applying an ac magnetic field and capturing the resulting magnetic field, it did not require direct wire connections to an external device or internal battery for long-term use. Due to its magnetoelastic property, the application of a tensile force changed the magnetic permeability of the sensor, altering the amplitude of the measured magnetic field. This study presents two sensor designs: one for high and one for low-force ranges. A sensor was fabricated by directly adhering the magnetoelastic strip to the suture. This sensor showed good sensitivity at low force, but its response saturated at about 1.5 N. To monitor high tensile force, the magnetoelastic strip was attached to a metal strip for load sharing. The suture thread was attached to the both ends of the metal strip so only a fraction of the applied force was directed to the sensor, allowing it to exhibit good sensitivity even at 44.5 N. The sensor was applied to two ex vivo models: a sutured section of porcine skin and a whitetail deer Achilles tendon. The results demonstrate the potential for in vivo force monitoring at a wound repair site. PMID:26340766

  18. Upgrading of Real-Time Radiation Data Logging and Web Based Radiation Monitoring System

    International Nuclear Information System (INIS)

    The measurements of radiation level at an identified location remotely, is not only important for collecting data or monitoring radiation level per se but also crucial for workers who deal with radiation sources. A device for checking an on-site radiation level has been developed quite long time ago under the name of Geiger Muller and widely known as Geiger Counter. The reading of the output can be seen at the device on-site and on realtime basis. Nowadays when the computer and networking technology has evolved very fast, those reading not only can be read realtime but from a remote location that makes workers can enter the area more safely. Collected data reading also can be used for analysis and trending purposes in the future. The data is transferred from the monitoring device to a server through network. This paper discuss about several critical issues on the design, implementation and deployment that relates to the devices, interface programs, hardware and software that allow all parameters such as reading and the time stamp of the data-logging can be collected and stored in central storage for further processes. The compatibility issue with regards to technology change from the previous system will also be discussed. The system has many advantages as compared to previous system or conventional method of doing the area monitoring in term of sustainability and availability. (author)

  19. CORS911:Real-Time Subsidence Monitoring of the Napoleonville Salt Dome Sinkhole Using GPS

    Science.gov (United States)

    Kent, J. D.

    2013-12-01

    The sinkhole associated with the Napoleonville salt dome in Assumption Parish, Louisiana, threatens the stability of Highway 70 - a state maintained route. To mitigate the potential damaging effects to the highway and address issues of public safety, a program of research and decision support has been implemented to provide long-term measurements of the surface stability using continuous operating GPS reference stations (CORS). Four CORS sites were installed in the vicinity of the sinkhole to measure the horizontal and vertical motions of each site relative to each other and a fixed location outside the study area. Differential motions measured by a integrity monitoring software are summarized for response agencies tasked with ensuring public safety and stability of the Highway, a designated hurricane evacuation route. Implementation experience and intermediate findings will be shared and discussed. Strategies for monitoring random and systematic biases detected in the system are presented. Figure depicting the location of CORS sites used to monitor surface stability along Highway 70 near the Bayou Corne Sinkhole.

  20. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    Science.gov (United States)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to

  1. General demonstration of principal states of polarization and real-time monitoring of polarization mode dispersion in optical fibres

    Institute of Scientific and Technical Information of China (English)

    Dong Hui; Wu Chong-Qing; Fu Song-Nian

    2004-01-01

    We investigated the general properties of polarization effects in optical fibres and demonstrated the existence of socalled principal states of polarization (PSP), which mean the fixed points in mathematics, in different polarization effects,such as birefringence and polarization mode dispersion, by using fixed point theory. Furthermore, a time evolution vector is defined to describe the time evolution of polarization state in optical fibres, which is used to investigate the time evolution of polarization mode dispersion vector (PDV), including differential group delay and PSP. The experimentalresults of real-time monitoring of PDV by using this method are reported. To our knowledge, this is the first report on monitoring PSP evolution in optical fibres.

  2. Real-time microseismic monitoring and its characteristic analysis in working face with high-intensity mining

    Science.gov (United States)

    Li, Yang; Yang, Tian-Hong; Liu, Hong-Lei; Wang, Hong; Hou, Xian-Gang; Zhang, Peng-Hai; Wang, Pei-Tao

    2016-09-01

    Xiaojihan coal mine is a typical high-intensity mining in Western China. The real-time monitoring of deformation and failure for the working face was carried out by using IMS microseismic monitoring system. The change process of microseismic parameters such as microseismic event rate, energy release, apparent volume, energy index, Schmidt number, b value and coefficient of seismic response and the relationships with the surrounding rock failure were studied. This research indicates that some parameters have obvious precursory characteristics before the large scale failure. The predictive periods were divided by these parameters, and Schmidt number has the highest predictive sensitivity, b value the second, energy index the third. Coefficient of seismic response and energy release have no direct contact with the excavation volume of ore body, but depend on the mine pressure behavior of working face.

  3. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    OpenAIRE

    An, Seong Soo

    2016-01-01

    NamHuk Baek,1,* Ok Won Seo,1,* Jaehwa Lee,1 John Hulme,2 Seong Soo A An2 1Department of Research and Development, NanoEntek Inc., Seoul, 2Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea *These authors contributed equally to this work Abstract: Three-dimensional (3D) cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems co...

  4. Design and Implementation of Real Time Embedded Tele-Health Monitoring System

    Directory of Open Access Journals (Sweden)

    Suhas Kale

    2013-02-01

    Full Text Available Now a day’s healthcare industry is to provide better healthcare topeople anytime and anywhere in the world in a more economicand patient friendly manner. In the present paper thephysiological parameters such as ECG, Pulse rate andTemperature are obtained, processed using ARM7 LPC 2138processor and displayed in a MATLAB graphical user interface.If any vital parameter goes out of normal range then alert SMSwill be sent to Doctor Mobile. This system is utilizingTeamviewer software and low cost component to transmit ECGdata to physicians for monitoring, diagnosis and patients care at asignificantly low cost, regardless of patient’s location.

  5. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2014-10-01

    Full Text Available An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibility, ease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.

  6. Real-time integrity monitoring of composite laminates with magnetostrictive sensory layer

    Science.gov (United States)

    Kumar, Anand; Bhattacharya, Bishakh

    2008-12-01

    Fundamental research and development in smart materials and structures have shown great potential for enhancing the functionality, serviceability and increased life span of civil and mechanical infrastructure systems. Researchers from diverse disciplines have been drawn into vigorous efforts to develop smart and intelligent structures that can monitor their own conditions, detect impending failure, control damage and adapt to changing environments. Smart structures are generally created through synthesis by combining sensing, processing and actuating elements integrated with conventional structural materials. The conventional non-destructive evaluation techniques are not very effective in monitoring the structural integrity of composite structures due to their micro-mechanical complexities. With the commercial availability of the magnetostrictive (MS) material Terfenol-D in particulate form, it is now feasible to develop particulate sensors to detect damage with minimum effect on structural integrity. In present investigation, the electromagnetic response in the MS layer at the onset of delamination in one of the weakest ply of the composite laminate has been analyzed. For the numerical analysis symmetric and asymmetric carbon epoxy laminates with one of its layers embedded with Terfenol-D particles have been taken. Terfenol-D layer experiences a change in stress due to onset of delamination causing a change in its magnetic state, which can be sensed as induced open circuit voltage in the sensing coil enclosing the laminate beam. The effect of material properties, lamination schemes and placement of MS layer on the sensing capabilities has been analyzed.

  7. An infrared motion detector system for lossless real-time monitoring of animal preference tests.

    Science.gov (United States)

    Pogány, A; Heszberger, J; Szurovecz, Zita; Vincze, E; Székely, T

    2014-12-01

    Automated behavioural observations are routinely used in many fields of biology, including ethology, behavioural ecology and physiology. When preferences for certain resources are investigated, the focus is often on simple response variables, such as duration and frequency of visits to choice chambers. Here we present an automated motion detector system that use passive infrared sensors to eliminate many drawbacks of currently existing methods. Signals from the sensors are processed by a custom-built interface, and after unnecessary data is filtered by a computer software, the total time and frequency of the subject's visits to each of the choice chambers are calculated. We validate the detector system by monitoring (using the system) and in the same time video recording mating preferences of zebra finches in a four-way choice apparatus. Manual scoring of the video recordings showed very high consistency with data from the detector system both for time and for frequency of visits. Furthermore, the validation revealed that if we used micro-switches or light barriers, the most commonly applied automatic detection techniques, this would have resulted in approximately 22% less information compared to our lossless system. The system provides a low-cost alternative for monitoring animal movements, and we discuss its further applicability. PMID:25475978

  8. Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat.

    Science.gov (United States)

    Silva Junior, Andouglas Goncalves da; Lima Sa, Sarah Thomaz de; Santos, Davi Henrique Dos; Negreiros, Álvaro Pinto Ferrnandes de; Souza Silva, João Moreno Vilas Boas de; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos

    2016-01-01

    Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points. PMID:27509506

  9. Near "real" time magnetic resonance images as a monitoring system for interstitial laser therapy: experimental protocols

    Science.gov (United States)

    Castro, Dan J.; Farahani, Keyvan; Soudant, Jacques; Zwarun, Andrew A.; Lufkin, Robert B.

    1992-06-01

    The failure rate of cancer treatment remains unacceptably high, still being a leading cause of mortality in adults and children despite major advances over the past 50 years in the fields of surgery, radiation therapy and, more recently, chemo and immunotherapy. Surgical access to some deep tumors of the head and neck and other areas often require extensive dissections with residual functional and cosmetic deformities. Repeated treatment is not possible after maximum dose radiotherapy and chemotherapy is still limited by its systemic toxicity. An attractive solution to these problems would be the development of a new adjunctive method combining the best features of interstitial laser therapy for selective tumor destruction via minimally invasive techniques for access and 3-D magnetic resonance imaging (MRI) as a monitoring system for laser-tissue interactions. Interstitial laser therapy (ILT) via fiberoptics allow laser energy to be delivered directly into deeper tissues. However, this concept will become clinically useful only when noninvasive, accurate, and reproducible monitoring methods are developed to measure energy delivery to tissues. MRI has numerous advantages in evaluating the irreversible effects of laser treatment in tissues, since laser energy includes changes not only in the thermal motions of hydrogen protons within the tissue, but also in the distribution and mobility of water and lipids. These techniques should greatly improve the use of ILT in combination with MRI to allow treatment of deeper, more difficult to reach tumors of head and neck and other anatomical areas with a single needle stick.

  10. A new device for formaldehyde and total aldehydes real-time monitoring.

    Science.gov (United States)

    Sassine, Maria; Picquet-Varrault, Bénédicte; Perraudin, Emilie; Chiappini, Laura; Doussin, Jean François; George, Christian

    2014-01-01

    A new sensitive technique for the quantification of formaldehyde (HCHO) and total aldehydes has been developed in order to monitor these compounds, which are known to be involved in air quality issues and to have health impacts. Our approach is based on a colorimetric method where aldehydes are initially stripped from the air into a scrubbing solution by means of a turning coil sampler tube and then derivatised with 3-methylbenzothiazolinone-2-hydrazone in acid media (pH = -0.5). Hence, colourless aldehydes are transformed into blue dyes that are detected by UV-visible spectroscopy at 630 nm. Liquid core waveguide LCW Teflon® AF-2400 tube was used as innovative optical cells providing a HCHO detection limit of 4 pptv for 100 cm optical path with a time resolution of 15 min. This instrument showed good correlation with commonly used techniques for aldehydes analysis such as DNPH derivatisation chromatographic techniques with off-line and on-line samplers, and DOAS techniques (with deviation below 6%) for both indoor and outdoor conditions. This instrument is associated with simplicity and low cost, which is a prerequisite for indoor monitoring. PMID:23892614

  11. Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency

    Directory of Open Access Journals (Sweden)

    Younsun Kim

    2015-06-01

    Full Text Available Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal stroke, and eco control is suggested to limit the output power of the battery. For eco monitoring, the eco indicator and eco report are suggested to teach eco-friendly driving habits. The vehicle test, which is done in four ways, consists of federal test procedure (FTP-75, new european driving cycle (NEDC, city and highway cycles, and visual feedback with audible warnings is provided to attract the driver’s voluntary participation. The vehicle test result shows that the energy usage efficiency can be increased up to 19.41%.

  12. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  13. Real-Time Implementation of Intelligent Actuator Control with a Transducer Health Monitoring Capability

    Science.gov (United States)

    Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando

    2008-01-01

    This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.

  14. Non-destructive Real Time Monitoring of the Laser Welding Process

    Science.gov (United States)

    Sebestova, Hana; Chmelickova, Hana; Nozka, Libor; Moudry, Jiri

    2012-05-01

    Laser welding is a high power density technology of materials joining that has many advantages in comparison with conventional fusion welding methods, for example, high accuracy, flexibility, repeatability and especially very narrow heat-affected zone which results in minimal workpiece distortions. Since it is still quite expensive technology, minimal spoilage is required. Effective system of quality control and processing parameters optimization must be established to reduce total costs, which is particularly required in industrial production. In this article some results of pulsed Nd:YAG laser welding process monitoring based on the measurement of plasma electron temperature are presented. The ability of designed sensor to detect weld penetration depth has been demonstrated. Plasma spectral lines intensities measurement can discover gap instabilities as well as local sheet thickness reduction.

  15. An intelligent system for continuous blood pressure monitoring on remote multi-patients in real time

    CERN Document Server

    Marani, Roberto

    2012-01-01

    In this paper we present an electronic system to perform a non-invasive measurement of the blood pressure based on the oscillometric method, which does not suffer from the limitations of the well-known auscultatory one. Moreover the proposed system is able to evaluate both the systolic and diastolic blood pressure values and makes use of a microcontroller and a Sallen-Key active filter. With reference to other similar devices, a great improvement of our measurement system is achieved since it performs the transmission of the systolic and diastolic pressure values to a remote computer. This aspect is very important when the simultaneous monitoring of multi-patients is required. The proposed system, prototyped and tested at the Electron Devices Laboratory (Electrical and Information Engineering Department) of Polytechnic University of Bari, Italy, is characterized by originality, by plainness of use and by a very high level of automation (so called intelligent system).

  16. The LHC beam loss monitoring system's real-time data analysis card

    CERN Document Server

    Dehning, B; Ferioli, G; Guaglio, G; Leitner, R; Zamantzas, C

    2005-01-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining t...

  17. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  18. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán

    2014-12-01

    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  19. Real-time electronic monitoring of a pitted and leaking gas gathering pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.; Hewitt, P.G.

    1986-08-01

    Hydrogen patch, flush electrical resistance, and flush linear polarization proves wre used with flush coupons to monitor corrosion rates in a pitted and leaking sour gas gathering line. Four inhibitors were evaluated in stopping the leaks. Inhibitor residuals and the amount and ratio of water and condensate in the lines were measured at five locations along the line. The best inhibitor reduced reduced the pit-leak frequency by over a factor of 10. Inhibitor usage rate was optimized using the hydrogen patch current as a measure of the instantaneous corrosion rate. Improper pigging was identified as a cause of corrosion transients. This problem is discussed in relation to the pigging of pipelines in stratified flow where moving fluids are the carriers for continuously injected corrosion inhibitors.

  20. RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing

    Science.gov (United States)

    Alexander, Frank A., Jr.

    This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.

  1. Globally referenced real time monitoring of mass movements using monoscopic time-lapse photography.

    Science.gov (United States)

    Kenner, Robert; Phillips, Marcia; Buchroithner, Manfred

    2016-04-01

    The creep movement of a rock glacier was monitored in daily resolution using images of an automatic in-situ time-lapse camera (AC). Displacements were calculated between the images in 2D image coordinates using the imaging velocimetry algorithm of Roesgen and Totaro, 1995. To georeference and scale these displacements, a creep velocity field captured once by a terrestrial laser scan (TLS) repeat measurement was used. The laser scan point cloud and the creep velocity vector field were projected in image coordinates of the AC to obtain a georeferencing mask, a scale mask and an azimuth mask for the 2D displacements calculated between two images. The scale mask was obtained by comparing the TLS derived displacement vectors with those of the AC, referring to a common measurement period. The automatic procedure includes the following work steps: 1. Offsets between two images are identified and corrected based on image parts representing unchanged terrain. 2. 2D displacements are calculated between all chronological image sequences. 3. Faulty displacement vectors are eliminated based on a predefined threshold for spatial direction differences. 4. The remaining displacements are georeferenced, scaled and attributed with individual displacement directions (azimuths) in global coordinates. 5. In addition to the displacement values, displacement velocities and accelerations are calculated using the date of the images. 6. For chronologically successive displacement vector fields, the spatial mean of the relative velocity is defined and expressed as a percentage of the first displacement velocity in the series. The time series of the relative velocities is expressed in chart form. 7. The spatial resolution of all georeferenced output data sets is homogenized, as they were influenced by the central projection of the photos. The described procedure proved to be a reliable, low cost method to monitor mass wasting processes. Even under difficult conditions, like thin snow coverage

  2. An OpenMP Parallelisation of Real-time Processing of CERN LHC Beam Position Monitor Data

    CERN Document Server

    Renshall, H

    2012-01-01

    SUSSIX is a FORTRAN program for the post processing of turn-by-turn Beam Position Monitor (BPM) data, which computes the frequency, amplitude, and phase of tunes and resonant lines to a high degree of precision. For analysis of LHC BPM data a specific version run through a C steering code has been implemented in the CERN Control Centre to run on a server under the Linux operating system but became a real time computational bottleneck preventing truly online study of the BPM data. Timing studies showed that the independent processing of each BPMs data was a candidate for parallelization and the Open Multiprocessing (OpenMP) package with its simple insertion of compiler directives was tried. It proved to be easy to learn and use, problem free and efficient in this case reaching a factor of ten reductions in real-time over twelve cores on a dedicated server. This paper reviews the problem, shows the critical code fragments with their OpenMP directives and the results obtained.

  3. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    International Nuclear Information System (INIS)

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  4. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction.

    Science.gov (United States)

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-04-19

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  5. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species.

    Science.gov (United States)

    Penna, Antonella; Antonella, Penna; Galluzzi, Luca; Luca, Galluzzi

    2013-10-01

    In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks.

  6. Real-time monitoring of arsenic filtration by granular ferric hydroxide.

    Science.gov (United States)

    Fleming, David E B; Eddy, Isadel S; Gherase, Mihai R; Gibbons, Meaghan K; Gagnon, Graham A

    2010-01-01

    Contamination of drinking water by arsenic is a serious public health issue in many parts of the world. One recent approach to this problem has been to filter out arsenic by use of granular ferric hydroxide (GFH), an adsorbent developed specifically for the selective removal of arsenic from water. Previous studies have documented the efficiency and high treatment capacity of this approach. We present a novel X-ray fluorescence method to monitor the accumulation of arsenic within a specially designed GFH column, as both a function of time (or water volume) and location along the column. Using a miniature X-ray tube and silicon PiN diode detector, X-ray fluorescence is used to detect characteristic X-rays of arsenic excited from within the GFH. Trials were performed using a water flow rate of approximately 1.5 L per hour, with an added arsenic concentration of approximately 1000 microg per litre. In this paper, trial results are presented and potential applications described. PMID:19850486

  7. A real-time tracking system for monitoring shipments of hazardous materials

    Science.gov (United States)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  8. The LHC beam loss monitoring system's real-time data analysis card

    Energy Technology Data Exchange (ETDEWEB)

    Zamantzas, C.; Dehning, B.; Effinger, E.; Ferioli, G.; Guaglio, G.; Leitner, R. [Conseil Europeen pour la Recherche Nucleaire, Geneve (Switzerland)

    2005-07-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2 km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining the data from the integrator and the ADC, and in keeping the running sums updated in a way that gives the best compromise between memory needs, computation, and approximation error. (authors)

  9. Web application for detailed real-time database transaction monitoring for CMS condition data

    Science.gov (United States)

    de Gruttola, Michele; Di Guida, Salvatore; Innocente, Vincenzo; Pierro, Antonio

    2012-12-01

    In the upcoming LHC era, database have become an essential part for the experiments collecting data from LHC, in order to safely store, and consistently retrieve, a wide amount of data, which are produced by different sources. In the CMS experiment at CERN, all this information is stored in ORACLE databases, allocated in several servers, both inside and outside the CERN network. In this scenario, the task of monitoring different databases is a crucial database administration issue, since different information may be required depending on different users' tasks such as data transfer, inspection, planning and security issues. We present here a web application based on Python web framework and Python modules for data mining purposes. To customize the GUI we record traces of user interactions that are used to build use case models. In addition the application detects errors in database transactions (for example identify any mistake made by user, application failure, unexpected network shutdown or Structured Query Language (SQL) statement error) and provides warning messages from the different users' perspectives. Finally, in order to fullfill the requirements of the CMS experiment community, and to meet the new development in many Web client tools, our application was further developed, and new features were deployed.

  10. Monitoring real time polymorphic transformation of sulfanilamide by diffuse reflectance visible spectroscopy

    Directory of Open Access Journals (Sweden)

    Tracy O. Ehiwe

    2016-06-01

    Full Text Available This study investigated the development of a novel approach to surface characterization of drug polymorphism and the extension of the capabilities of this method to perform ‘real time’ in situ measurements. This was achieved using diffuse reflectance visible (DRV spectroscopy and dye deposition, using the pH sensitive dye, thymol blue (TB. Two polymorphs, SFN-β and SFN-γ, of the drug substance sulfanilamide (SFN were examined. The interaction of adsorbed dye with polymorphs showed different behavior, and thus reported different DRV spectra. Consideration of the acid/base properties of the morphological forms of the drug molecule provided a rationalization of the mechanism of differential coloration by indicator dyes. The kinetics of the polymorphic transformation of SFN polymorphs was monitored using treatment with TB dye and DRV spectroscopy. The thermally-induced transformation fitted a first-order solid-state kinetic model (R2=0.992, giving a rate constant of 2.43×10−2 s−1.

  11. InSAR processing for volcano monitoring and other near-real time applications

    Science.gov (United States)

    Spaans, Karsten; Hooper, Andrew

    2016-04-01

    Radar interferometry (InSAR, interferometric synthetic aperture radar) is routinely used to measure surface deformation prior to, during, and after volcanic events, although not in a monitoring capacity. The improved data availability of some current satellite missions presents us with the opportunity to do just that. We present here a fast and flexible algorithm to estimate coherence and select points on an interferogram-by-interferogram basis, which overcomes limitations of the conventional boxcar ensemble method in areas of marginal coherence. Time series methods, which offer an alternative way to select coherent points, are typically slow, and do not allow for insertion of new data without reprocessing the entire data set. Our new algorithm calculates the coherence for each point based on an ensemble of points with similar amplitude behavior throughout the data set. The points that behave similarly are selected prior to new images being acquired, on the assumption that the behavior of these nearby points does not change rapidly through time. The resulting coherence estimate is superior in resolution and noise level to the boxcar method. In contrast to most other time series methods, we select a different set of coherent points for each interferogram, avoiding the selection compromise inherent to other time series methods. The relative simplicity of this strategy compared to other time series techniques means we can process new images in about 1 h for a typical setup.

  12. Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions.

    Science.gov (United States)

    Blaen, Phillip J; Khamis, Kieran; Lloyd, Charlotte E M; Bradley, Chris; Hannah, David; Krause, Stefan

    2016-11-01

    Excessive riverine nutrient concentrations threaten aquatic ecosystem structure and functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. In this paper, we review the principles underlying the key techniques used for in-situ nutrient monitoring and highlight both the advantages, opportunities and challenges associated with high-resolution sampling programs. We then suggest how adaptive monitoring strategies, comprising several different temporal sample frequencies, controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid changes in environmental conditions. Finally, we suggest future research directions based on emerging technologies in this field. PMID:27376920

  13. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.

    Science.gov (United States)

    Xia, Rongmin; Thittai, Arun K

    2014-03-01

    Axial strain elastograms (ASEs) have been found to help visualize sonographically invisible thermal lesions. However, in most studies involving high-intensity focused ultrasound (HIFU)-induced thermal lesions, elastography imaging was performed separately later, after the lesion was formed. In this article, the feasibility of monitoring, in real time, tissue elasticity variation during HIFU treatment and immediately thereafter is explored using quasi-static elastography. Further, in addition to ASEs, we also explore the use of simultaneously acquired axial-shear strain elastograms (ASSEs) for HIFU lesion visualization. Experiments were performed on commercial porcine liver samples in vitro. The HIFU experiments were conducted at two applied acoustic power settings, 35 and 20 W. The experimental setup allowed us to interrupt the HIFU pulse momentarily several different times during treatment to perform elastographic compression and data acquisition. At the end of the experiments, the samples were cut along the imaging plane and photographed to compare size and location of the formed lesion with those visualized on ASEs and ASSEs. Single-lesion and multiple-lesion experiments were performed to assess the contribution of ASEs and ASSEs to lesion visualization and treatment monitoring tasks. At both power settings, ASEs and ASSEs provided accurate location information during HIFU treatment. At the low-power setting case, ASEs and ASSEs provide accurate lesion size in real-time monitoring. Lesion appearance in ASEs and ASSEs was affected by the cavitation bubbles produced at the high-power setting. The results further indicate that the cavitation bubbles influence lesion appearance more in ASEs than in ASSEs. Both ASEs and ASSEs provided accurate size information after a waiting period that allowed the cavitation bubbles to disappear. The results indicate that ASSEs not only improve lesion visualization and size measurement of a single lesion, but, under certain

  14. Real-time gastric motility monitoring using transcutaneous intraluminal impedance measurements (TIIM).

    Science.gov (United States)

    Poscente, M D; Wang, G; Filip, D; Ninova, P; Yadid-Pecht, O; Andrews, C N; Mintchev, M P

    2014-02-01

    The stomach plays a critical role in digestion, processing ingested food mechanically and breaking it up into particles, which can be effectively and efficiently processed by the intestines. When the motility of the stomach is compromised, digestion is adversely affected. This can lead to a variety of disorders. Current diagnostic techniques for gastric motility disorders are seriously lacking, and are based more on eliminating other possibilities rather than on specific tests. Presently, gastric motility can be assessed by monitoring gastric emptying, food transit, intragastric pressures, etc. The associated tests are usually stationary and of relatively short duration. The present study proposes a new method of measuring gastric motility, utilizing the attenuation of an oscillator-induced electrical signal across the gastric tissue, which is modulated by gastric contractions. The induced high-frequency oscillator signal is generated within the stomach, and is picked up transluminally by cutaneous electrodes positioned on the abdominal area connected to a custom-designed data acquisition instrument. The proposed method was implemented in two different designs: first a transoral catheter was modified to emit the signal inside the stomach; and second, a gastric retentive pill was designed to emit the signal. Both implementations were applied in vivo on two mongrel dogs (25.50 kg and 25.75 kg). Gastric contractions were registered and quantitatively compared to recordings from force transducers sutured onto the serosa of the stomach. Gastric motility indices were calculated for each minute, with transluminal impedance measurements and the measurements from the force transducers showing statistically significant (p impedance measurement has the potential with further research and development to become a useful diagnostic technique. PMID:24398539

  15. Real-time gastric motility monitoring using transcutaneous intraluminal impedance measurements (TIIM)

    International Nuclear Information System (INIS)

    The stomach plays a critical role in digestion, processing ingested food mechanically and breaking it up into particles, which can be effectively and efficiently processed by the intestines. When the motility of the stomach is compromised, digestion is adversely affected. This can lead to a variety of disorders. Current diagnostic techniques for gastric motility disorders are seriously lacking, and are based more on eliminating other possibilities rather than on specific tests. Presently, gastric motility can be assessed by monitoring gastric emptying, food transit, intragastric pressures, etc. The associated tests are usually stationary and of relatively short duration. The present study proposes a new method of measuring gastric motility, utilizing the attenuation of an oscillator-induced electrical signal across the gastric tissue, which is modulated by gastric contractions. The induced high-frequency oscillator signal is generated within the stomach, and is picked up transluminally by cutaneous electrodes positioned on the abdominal area connected to a custom-designed data acquisition instrument. The proposed method was implemented in two different designs: first a transoral catheter was modified to emit the signal inside the stomach; and second, a gastric retentive pill was designed to emit the signal. Both implementations were applied in vivo on two mongrel dogs (25.50 kg and 25.75 kg). Gastric contractions were registered and quantitatively compared to recordings from force transducers sutured onto the serosa of the stomach. Gastric motility indices were calculated for each minute, with transluminal impedance measurements and the measurements from the force transducers showing statistically significant (p < 0.05) Pearson correlation coefficients (0.65 ± 0.08 for the catheter-based design and 0.77 ± 0.03 for the gastric retentive pill design). These results show that transcutaneous intraluminal impedance measurement has the potential with further research

  16. Real-time multi-monitoring interrogation based on Fourier domain mode-locked fiber laser for measurement of radiation dose and multipoint strain

    Science.gov (United States)

    Shim, Young Bo; Kim, Sunduck; Kim, Hyun-Joo; Ji, Younghoon; Han, Young-Geun

    2015-09-01

    We propose a real-time multi-monitoring interrogation technique based on Fourier domain mode-locked fiber laser for simultaneous measurement of radiation dose and multi-point strain. Radiation dose and multipoint strain can be monitored in real-time by measuring the variation of output power and detection time interval of the sensing signals. Since the operating wavelength of the FDML is continuously controlled as a function of time, it is possible to simultaneously measure the variation of radiation dose and multipoint strain in real time.

  17. Integrating Real-time Bridge Scouring Monitoring System with Mobile Location-Based Services

    Directory of Open Access Journals (Sweden)

    Yung-Bin Lin

    2011-12-01

    Full Text Available Typhoons and torrential rains not only erode river beds and coasts and damage river-crossing structures, but also affect the geomorphology and topography of rivers and coasts. Additionally, typhoons and torrential rains cause debris flows and flooding in metropolitan areas and threaten the safety of people’s lives and properties. Disaster prevention and reduction of damage caused by typhoons and torrential rains have always been a crucial task of government agencies. Bridges in Taiwan are generally old and have insufficient shock resistance; some bridge foundations are also severely eroded and exposed. Because of global climate changes in recent years, rainfall has become comparatively heavy and rapid. Furthermore, the soil in mountain areas has softened because of factors such as earthquakes or human developments. Debris rushes down with rain every time a torrential rain strikes, significantly impacting the safety of bridges downstream. Although government bridge management units have made budget plans to progressively renovate dangerous old bridges, these bridges are still being use for traffic and transportation. These dangerous old bridges pose a serious threat to the safety of people when an earthquake, typhoon, or flood occurs. During typhoons and floods, increased water levels and changes of the scouring depths have dramatic effects on the safety of bridges. The bridge maintenance unit currently uses the water level and water flow conditions as references when determining whether to close a bridge; however, this is not a good permanent solution. A bridge scour monitoring and warning system that is stable, reliable, and operates normally under flood attacks is required for on-site installation and verification. In recent years, the applied technologies of smart phones have expanded beyond entertainment and communication. Mobile communications are used to transmit relevant information to bridge maintenance and management units and road

  18. A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs

    Science.gov (United States)

    Rothfuss, Michael A.; Franconi, Nicholas G.; Unadkat, Jignesh V.; Gimbel, Michael L.; STAR, Alexander; Mickle, Marlin H.

    2016-01-01

    Current totally implantable wireless blood flow monitors are large and cannot operate alongside nearby monitors. To alleviate the problems with the current monitors, we developed a system to monitor blood flow wirelessly, with a simple and easily interpretable real-time output. To the best of our knowledge, the implanted electronics are the smallest in reported literature, which reduces bio-burden. Calibration was performed across realistic physiological flow ranges using a syringe pump. The device’s sensors connected directly to the bilateral femoral veins of swine. For each 1 min, blood flow was monitored, then, an occlusion was introduced, and then, the occlusion was removed to resume flow. Each vein of four pigs was monitored four times, totaling 32 data collections. The implant measured 1.70 cm3 without battery/encapsulation. Across its calibrated range, including equipment tolerances, the relative error is less than ±5% above 8 mL/min and between −0.8% and +1.2% at its largest calibrated flow rate, which to the best of our knowledge is the lowest reported in the literature across the measured calibration range. The average standard deviation of the flow waveform amplitude was three times greater than that of no-flow. Establishing the relative amplitude for the flow and no-flow waveforms was found necessary, particularly for noise modulated Doppler signals. Its size and accuracy, compared with other microcontroller-equipped totally implantable monitors, make it a good candidate for future tether-free free flap monitoring studies. PMID:27730016

  19. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    Science.gov (United States)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this

  20. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  1. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    Science.gov (United States)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  2. Real-time temperature monitoring of Si substrate during plasma processing and its heat-flux analysis

    Science.gov (United States)

    Tsutsumi, Takayoshi; Ishikawa, Kenji; Takeda, Keigo; Kondo, Hiroki; Ohta, Takayuki; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2016-01-01

    Actual Si wafer temperatures during plasma etching processes were temporally measured using a real-time wafer-temperature monitoring system with autocorrelation-type frequency-domain low-coherence interferometry. Indeed, the Si wafer temperature, which was 20 °C before the process, rapidly increased in 10 s. Then, the temperature rise gradually slowed, but continued to increase and reached 45 °C after 600 s. This can be due to the fact that there exists a heat source for the wafer other than the plasma. Reasonably, the Si wafer was found to be sensitive to the temperature of the disk covering the area around the wafer, i.e., the focus ring. Usually, the temperature of the focus ring is not controlled and causes the radial distribution of Si wafer temperature. Consequently, the Si wafer temperature should be controlled with the temperature increase of other heat sources, especially the focus ring.

  3. The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, F.J.; Cabalin, L.M. [Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga (Spain); Laserna, J.J. [Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga (Spain)], E-mail: laserna@uma.es

    2008-10-15

    In this work, an orthogonal double pulse (DP) laser-induced breakdown spectroscopy configuration as a diagnostic tool for the restoration of archaeometallurgical samples has been developed and evaluated. Although laser-induced breakdown spectroscopy has been extensively tested in this kind of applications, this study presents an alternative method in terms of controlling the laser cleaning process of metallic object as well as real time laser-induced breakdown spectroscopy monitoring of the emission signal of the ablated material (pollutants and the structural materials). Several experimental parameters such as interpulses delay time, second laser to target distance and second pulse energy delay have also been accomplished in ancient Alexandrian coins. An enhancement of the signal emission is observed when both cleaning and analyzing lasers are combined, while no spectra signal is achieved when both lasers are operating independently. The restoration of ancient object by means of both conventional and double pulse laser cleaning arrangements is also discussed.

  4. Real-Time Water Quality Monitoring and Habitat Assessment in theSan Luis National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington,Dennis W.

    2005-08-28

    The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing methods were developed to document long-term trends in wetland moist soil vegetation and soil salinity in response to management options such as delaying the initiation of seasonal wetland drainage. These environmental management tools provide wetland managers with some of the tools necessary to improve salinity conditions in the San Joaquin River and improve compliance with State mandated salinity objectives without inflicting long-term harm on the wild fowl habitat resource.

  5. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys.

    Science.gov (United States)

    Liu, Yue; Huang, Cheng Zhi

    2013-12-23

    A comprehensive understanding of the growth mechanism of nanoalloys is beneficial in designing and synthesizing nanoalloys with precisely tailored properties to extend their applications. Herein, we present the investigation in this aspect by real-time monitoring of the in situ growth of single Ag@Hg nanoalloys, through direct amalgamation of Ag nanoparticles with elemental mercury, by dark-field scattering microscopy. Four typically shaped Ag nanoparticles, such as rods, triangular bipyramids, cubes, and spheres, were used as seeds for studying the growth of Ag@Hg nanoalloys. The scattered light of Ag nanoparticles of different shapes, on exposure to the growth solution, exhibited a noticeable blue-shift followed by a red-shift, suggesting the growth of Ag@Hg nanoalloys. The formation of Ag@Hg nanoalloys was confirmed by scanning electron microscopy, high-resolution transmit electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and elemental mapping and line scanning. Further analysis of the time-dependent spectral data and morphological change of single nanoparticles during the growth led to the visual identification of the growth mechanism of single Ag@Hg nanoalloys. Three important steps were involved: first, rapid adsorption of Hg atoms onto Ag nanoparticles; second, initial diffusion of Hg atoms into Ag nanoparticles, rounding or shortening the particles; third, further diffusion of Hg atoms leading to the formation of spherical Ag@Hg nanoalloys. On the basis of these results, Ag@Hg nanoalloys with given optical properties can be synthesized. Moreover, dark-field scattering microscopy is expected to be a powerful tool used for real-time monitoring of the in situ growth of other metal nanoparticles. PMID:24279755

  6. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.

    Science.gov (United States)

    Li, Su-Juan; Wang, Chen; Wu, Zeng-Qiang; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2010-09-01

    To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 microL min(-1)), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis-Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.

  7. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton, Jr.

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  8. Simultaneous real-time monitoring of oxygen consumption and hydrogen peroxide production in cells using our newly developed chip-type biosensor device

    Directory of Open Access Journals (Sweden)

    Ankush ePrasad

    2016-03-01

    Full Text Available All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS. The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2 detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.

  9. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device

    Science.gov (United States)

    Prasad, Ankush; Kikuchi, Hiroyuki; Inoue, Kumi Y.; Suzuki, Makoto; Sugiura, Yamato; Sugai, Tomoya; Tomonori, Amano; Tada, Mika; Kobayashi, Masaki; Matsue, Tomokazu; Kasai, Shigenobu

    2016-01-01

    All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques. PMID:27065878

  10. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

    Directory of Open Access Journals (Sweden)

    Bergeot Nicolas

    2014-01-01

    Full Text Available Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth’s atmosphere. In this frame, the Royal Observatory of Belgium (ROB takes advantage of the dense EUREF Permanent GNSS Network (EPN to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 ± 0.9 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 ± 2.2 and 0.6 ± 6.8 TECu respectively with maximum differences (>38 TECu occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

  11. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data

    Science.gov (United States)

    Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei

    2014-10-01

    Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth's atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at http://www.gnss.be/Atmospheric_Maps/ionospheric_maps.php. This paper presents the method used in the ROB-IONO software to generate the maps. The ROB-TEC maps show a good agreement with widely used post-processed products such as IGS and ESA with mean differences of 1.3 ± 0.9 and 0.4 ± 1.6 TECu respectively for the period 2012 to mid-2013. In addition, we tested the reliability of the ROB-IONO software to detect abnormal ionospheric activity during the Halloween 2003 ionospheric storm. For this period, the mean differences with IGS and ESA maps are 0.9 ± 2.2 and 0.6 ± 6.8 TECu respectively with maximum differences (>38 TECu) occurring during the major phase of the storm. These differences are due to the lower resolution in time and space of both IGS and ESA maps compared to the ROB-TEC maps. A description of two recent events, one on March 17, 2013 and one on February 27, 2014 also highlights the capability of the method adopted in the ROB-IONO software to detect in near real-time abnormal ionospheric behaviour over Europe. In that frame, ROB maintains a data base publicly available with identified ionospheric events since 2012.

  12. LET distribution measurement with a new real-time radiation monitoring device-III onboard the Space Shuttle STS-84

    International Nuclear Information System (INIS)

    A new type of Real-time Radiation Monitoring Device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs) has been constructed and used onboard the Space Shuttle mission STS-84. The Space Shuttle cruised at an altitude of 300-400 km and an inclination angle of 51.6 deg. for 221.3 h. RRMD-III succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2-600 keV/μm for 178 h. The obtained LET distribution of particles was investigated in detail by classifying it into galactic cosmic ray (GCR) particles and trapped protons in the South Atlantic Anomaly (SAA) region. The result shows that GCR particles contribute 60% to the total dose equivalent. The total absorbed dose rate during the mission was 0.516 mGy/day, the effective quality factor was 1.81 by ICRP-Pub.26, and the dose equivalent rate was 0.935 mSv/day. The average absorbed dose rates are 0.120 μGy/min for GCR particles and 4.80 μGy/min for trapped protons. The effective quality factors are 3.16 for GCR particles and 1.19 for trapped protons. RRMD-III data were also compared with the data of the tissue equivalent proportional counter (TEPC), proving that RRMD-III is a reliable device for deriving the true-LET distribution in real time for evaluating space radiation

  13. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    Science.gov (United States)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  14. Real-time GPS Monitoring of the 2014-2015 Bárðarbunga Rifting Event in Iceland

    Science.gov (United States)

    Fridriksdóttir, H. M.; Hreinsdottir, S.; Ofeigsson, B.; Sigmundsson, F.; Guðmundsson, G.; Söring, J.; Arnadottir, T.; Heimisson, E. R.; Gudmundsson, M. T.; Pálsson, F.; Magnússon, E.; Parks, M.; Hooper, A. J.; Dumont, S.; Grapenthin, R.; Bergsson, B. H.; Jónsson, T.; Kjartansson, V. S.; Steinthórsson, S.; Hjartardottir, A. R.; Drouin, V.

    2015-12-01

    On August 16, 2014 an intense seismic swarm originated below the eastern part of Bárðarbunga caldera. The seismicity migrated 50 km NNE until August 28 when the migration stopped 10 km south of Askja Volcano. This eventually lead to an eruption in Holuhraun, north of Dyngjujökull, which lasted nearly six months. The migration of seismicity coincided with displacements of continuous GPS (cGPS) stations, suggesting a lateral dyke formation in the Bárðarbunga volcanic system. The volume of the dyke was estimated in near-real time by modeling of geodetic displacements of GPS stations in the vicinity of Bárðarbunga. At the beginning of the swarm, there was only one cGPS station located conveniently enough to observe the dyke propagation. It was therefore evident that more cGPS stations were needed in order to get reliable estimates of the magma volume being intruded into the upper crust. Between August 20th 2014 and July 10th 2015, 14 new cGPS stations were added in the vicinity of Bárðarbunga. 24 hour GPS solutions weren't suitable enough to monitor the rapidly evolving events during the dyke propagation, so 8 hour solutions were implemented, giving deformation estimates three times each day. For a better visualisation of the developing activity, a map on the Icelandic Meteorological Office's website was made public, showing the rapid development of geodetic displacements and seismicity in near-real time. The 8 hour solutions were used to estimate the volume change of the magma source under Bárðarbunga and the dyke. A few days before the eruption in Holuhraun began on August 31, large earthquakes (>M5.0) started occurring in the caldera of Bárðarbunga and soon after, an ongoing collapse of the caldera was discovered. To monitor this subsidence, which ended up being about 66 meters, a GPS device was placed within the caldera. For the purpose of monitoring significant changes in the rate of caldera subsidence, the volume change of a spherical source beneath

  15. Development of real-time monitoring and control in COIL laser cutting for joint R and D between Korea and U.S

    International Nuclear Information System (INIS)

    The laser monitoring and control technique investigated to experiment for cutting kerf width and result of laser cutting for D and D of nuclear facility. The demands for this laser monitoring and control technique were applied to process control in laser cutting and to fabricate monitoring and control system, focusing lens assembly. This system can had a advantage to monitor and control the laser cutting on real time. KAERI investigated the COIL laser and monitored 2 kW laser power

  16. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation

  17. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors.

    Science.gov (United States)

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-11

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  18. Real-Time Integrity Monitoring of Stored Geo-Spatial Data Using Forward-Looking Remote Sensing Technology

    Science.gov (United States)

    Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt

    2002-01-01

    Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.

  19. Real-time monitoring of the penetration of amphiphilic acrylate copolymer in leather using a fluorescent copolymer as tracer.

    Science.gov (United States)

    Du, Jin-Xia; Shi, Lu; Peng, Bi-Yu

    2015-12-01

    A fluorescent tracer, poly (acrylic-co-stearyl acrylate-co-3-acryloyl fluorescein) [poly (AA-co-SA-co-Ac-Flu)], used for real-time monitoring the penetration of amphiphilic acrylate copolymer, poly (acrylic-co-stearyl acrylate) [poly (AA-co-SA)], in leather was synthesized by radical polymerization of acrylic, stearyl acrylate and fluorescent monomer, 3-acryloyl fluorescein (Ac-Flu). The structure, molecular weight, introduced fluorescent group content and fluorescent characteristics of the fluorescent tracer and target copolymer, amphiphilic acrylate copolymer, were also characterized. The results show that the tracer presents the similar structural characteristics to the target and enough fluorescence intensity with 1.68 wt % of the fluorescent monomer introduced amount. The vertical section of the leather treated with the target copolymer mixing with 7% of the tracer exhibits evident fluorescence, and the change of fluorescence intensity along with the vertical section with treating time increasing can reflect the penetration depth of the target copolymer. The introduction of the fluorescent group in polymer structure through copolymerization with a limited amount of fluorescent monomer, Ac-Flu, is an effective way to make a tracer to monitor the penetration of the target in leather, which provides a new thought for the penetration research of syntans such as vinyl copolymer materials in leather manufacture.

  20. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    W. Q. Sun

    2015-06-01

    Full Text Available In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.