WorldWideScience

Sample records for biomedical materials

  1. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  2. Microfabrication materials for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek James

    Major hurdles to the implementation of microfabricated devices for therapeutic applications include materials processing and biocompatibility issues. This dissertation reports research on improving the materials selection and fabrication for biomedical microdevices, using a microfabricated immunoisolation biocapsule as an example. Two material classes in the microfabrication protocol were examined based on the requirements determined for biomedical microdevices: the adhesive layer for bonding devices to encapsulate delicate biological substances and the thin film structural materials for surface structures, such as the biocapsule membrane. The major requirements for the adhesive layer material included non-cytotoxicity during bonding, adhesive strength, and durability under physiological conditions. Low glassy-phase transition temperature (Tg) methacrylates were found to be suitable candidates for adhesives of biomedical microdevices. A comparison study of poly propy1methacrylate (PPMA), poly (butyl, ethyl) methacrylate (PBEMA), and the higher Tg PMMA showed that all of the methacrylates had similar biocompatibility, adhesive strength, and durability. The adhesive strengths were found to be suitable for the adhesion of biomedical microdevices, as shown by measurement using a pressurized plate test and the current use of PMMA as bone cement. None of the methacrylates showed evidence of cytotoxicity, as measured by both optical and cytometric cell culture cytotoxicity tests. A protocol for the selective placement of smooth, thin films of PPMA using a Gel-PakTM transfer substrate was developed and demonstrated. The major requirements determined for the thin film structural materials were based on processing, mechanical, and biological parameters. Several candidates were identified as for structural materials based on these requirements: polycrystalline silicon. silicon nitride, fluoropolymers, PMMA, and silicone. A new fabrication protocol was developed to allow the

  3. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  4. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  5. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  6. Graphene based materials for biomedical applications

    Directory of Open Access Journals (Sweden)

    Yuqi Yang

    2013-10-01

    Full Text Available Graphene, a single layer 2-dimensional structure nanomaterial with unique physicochemical properties (e.g. high surface area, excellent electrical conductivity, strong mechanical strength, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization, has received increasing attention in physical, chemical and biomedical fields. This article selectively reviews current advances of graphene based materials for biomedical applications. In particular, graphene based biosensors for small biomolecules (glucose, dopamine etc., proteins and DNA detection have been summarized; graphene based bioimaging, drug delivery, and photothermal therapy applications have been described in detail. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  7. Bioengineered collagens: emerging directions for biomedical materials.

    Science.gov (United States)

    Ramshaw, John A M; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.

  8. Surface tailoring of inorganic materials for biomedical applications

    CERN Document Server

    Rimondini, Lia; Vernè, Enrica

    2012-01-01

    This e-book provides comprehensive information on technologies for development and characterization of successful functionalized materials for biomedical applications relevant to surface modification.

  9. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  10. Switchable and responsive surfaces and materials for biomedical applications

    CERN Document Server

    Zhang, Johnathan

    2015-01-01

    Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering,  drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit

  11. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  12. [Plasma technology for biomedical material applications].

    Science.gov (United States)

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  13. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  14. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.

    Science.gov (United States)

    Chan, Benjamin Qi Yu; Low, Zhi Wei Kenny; Heng, Sylvester Jun Wen; Chan, Siew Yin; Owh, Cally; Loh, Xian Jun

    2016-04-27

    Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.

  15. Progress in material design for biomedical applications.

    Science.gov (United States)

    Tibbitt, Mark W; Rodell, Christopher B; Burdick, Jason A; Anseth, Kristi S

    2015-11-24

    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.

  16. Biomedical applications of the graphene-based materials.

    Science.gov (United States)

    Zhang, Baomei; Wang, Yang; Zhai, Guangxi

    2016-04-01

    Graphene, a rapidly rising star, has gained extensive research interests lately due to its excellent properties--such as the exceptional optical, electrical, thermal and mechanical features--which are superior to other materials, so it is called "two-dimensional magical materials". This article presents diverse types and various properties of graphene-based materials, and the current methods for the surface modifications of the graphene-based materials are briefly described. In addition, the in vivo and in vitro cytotoxicity of graphene-based materials are comprehensively discussed. What's more, a summary of its biomedical applications such as drug/gene delivery, photothermal therapy, photodynamic therapy and multimodality therapy is also offered. Finally, an outlook of the graphene-based materials and the challenges in this field are briefly discussed.

  17. Tooth regeneration: challenges and opportunities for biomedical material research.

    Science.gov (United States)

    Du, Chang; Moradian-Oldak, Janet

    2006-03-01

    Tooth regeneration presents many challenges to researchers in the fields of biology, medicine and material science. This review considers the opportunities for biomedical material research to contribute to this multidisciplinary endeavor. We present short summaries and an overview on the collective knowledge of tooth developmental biology, advances in stem-cell research, and progress in the understanding of the tooth biomineralization principles as they provide the foundation for developing strategies for reparative and regenerative medicine. We emphasize that various biomaterials developed via biomimetic strategies have great potential for tooth tissue engineering and regeneration applications. The current practices in tooth tissue engineering approaches and applications of biomimetic carriers or scaffolds are also discussed.

  18. Processing silk hydrogel and its applications in biomedical materials.

    Science.gov (United States)

    Wang, Hai-Yan; Zhang, Yu-Qing

    2015-01-01

    This review mainly introduces the types of silk hydrogels, their processing methods, and applications. There are various methods for hydrogel preparation, and many new processes are being developed for various applications. Silk hydrogels can be used in cartilage tissue engineering, drug release materials, 3D scaffolds for cells, and artificial skin, among other applications because of their porous structure and high porosity and the large surface area for growth, migration, adhesion and proliferation of cells that the hydrogels provide. All of these advantages have made silk hydrogels increasingly attractive. In addition, silk hydrogels have wide prospects for application in the field of biomedical materials.

  19. Functionalization of biomedical materials using plasma and related technologies

    Science.gov (United States)

    Zhao, Ying; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-08-01

    Plasma techniques are important to biomedical engineering and surface modification. By modifying selective surface characteristics, conventional materials can be designed with superior biological properties while the favorable bulk materials properties can be retained. In this mini-review, recent progress pertaining to surface modification of Mg-based and polymer-based biomaterials by plasma-based techniques such as gas or metal ion implantation, dual metal and gas ion implantation, as well as plasma immersion ion implantation and deposition is described. Plasma-based surface modification is promising in elevating the cell biocompatibility, blood compatibility, and antibacterial properties of Mg-based and polymer-based biomaterials and expected to be extensively applied to biomaterials.

  20. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  1. Self-folding devices and materials for biomedical applications.

    Science.gov (United States)

    Randall, Christina L; Gultepe, Evin; Gracias, David H

    2012-03-01

    Because the native cellular environment is 3D, there is a need to extend planar, micro- and nanostructured biomedical devices to the third dimension. Self-folding methods can extend the precision of planar lithographic patterning into the third dimension and create reconfigurable structures that fold or unfold in response to specific environmental cues. Here, we review the use of hinge-based self-folding methods in the creation of functional 3D biomedical devices including precisely patterned nano- to centimeter scale polyhedral containers, scaffolds for cell culture and reconfigurable surgical tools such as grippers that respond autonomously to specific chemicals.

  2. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  3. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  4. Clinical translation of biomedical materials and the key factors towards product registration

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    2014-04-01

    Full Text Available Biomedical materials have been developed for facilitating tissue regeneration and healing enhancement. Although research on biomedical materials has made great progress in material innovation and preclinical testing, the bottleneck is their translation from research and development to clinical applications; that is, the current rate of product registration and industrialization is low, which directly affects their clinical applications. In this paper, we introduce the basic features of biomedical materials towards the making of medical products and the experiences of our group in research and clinical translation of biomaterials for bone-tissue regeneration in the last few years. Based on our experience, we propose that the translational medicine platform (TMP is an effective route to facilitate the progress of biomedical materials from bench to bedside. Moreover, from the viewpoints of scientific technology and management, the functions of TMP were also addressed. Relationships among TMP, research institution, enterprise, and government were also explored from the viewpoints of technological innovation, chemical engineering integration, fund raising, and management. This paper provides a theoretical and practical reference for clinical translation of biomedical materials.

  5. Japanese research and development on metallic biomedical, dental, and healthcare materials

    Science.gov (United States)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  6. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  7. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  8. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    OpenAIRE

    2015-01-01

    The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behavi...

  9. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Laura Cristina Rusu

    2015-01-01

    Full Text Available The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behaviour by using FTIR spectroscopy and microscopy, scanning electron microscopy, and UV-VIS spectroscopy. Based on the release study, it can be assumed that tetracycline is released in a prolonged way, assuring at least 6 days of antiseptic properties.

  10. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications.

    Science.gov (United States)

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-12-15

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  11. Calcium phosphates in biomedical applications: materials for the future?

    Directory of Open Access Journals (Sweden)

    Wouter Habraken

    2016-03-01

    Full Text Available Our populations are aging. Some experts predict that 30% of hospital beds will soon be occupied by osteoporosis patients. Statistics show that 20% of patients suffering from an osteoporotic hip fracture do not survive the first year after surgery, all this showing that there is a tremendous need for better therapies for diseased and damaged bone. Human bone consists for about 70% of calcium phosphate (CaP mineral, therefore CaPs are the materials of choice to repair damaged bone. To do this successfully, the process of CaP biomineralization and the interaction of CaPs and biological environment in the body need to be fully understood. First commercial CaP bone graft substitutes were launched 40 years ago, and they are currently often regarded as ‘old biomaterials’ or even as an ‘obsolete’ research topic. Some even talk about ‘stones’. The aim of this manuscript is to highlight the tremendous improvements achieved in CaP materials research in the past 15 years, in particular in the field of biomineralization, as carrier for gene or ion delivery, as biologically active agent, and as bone graft substitute. Besides an outstanding biological performance, CaPs are easily and inexpensively produced, are safe, and can be relatively easily certified for clinical use. As such, CaP materials have won their spurs, but they also offer a great promise for the future.

  12. Femtosecond laser micromachining of dielectric materials for biomedical applications

    Science.gov (United States)

    Farson, Dave F.; Choi, Hae Woon; Zimmerman, Burr; Steach, Jeremy K.; Chalmers, Jeffery J.; Olesik, Susan V.; Lee, L. James

    2008-03-01

    Techniques for microfluidic channel fabrication in soda-lime glass and fused quartz using femtosecond laser ablation and ablation in conjunction with polymer coating for surface roughness improvement were tested. Systematic experiments were done to characterize how process variables (laser fluence, scanning speed and focus spot overlap, and material properties) affect the machining feature size and quality. Laser fluence and focus spot overlap showed the strongest influence on channel depth and roughness. At high fluence, the surface roughness was measured to be between 395 nm and 731 nm RMS. At low fluence, roughness decreased to 100 nm-350 nm RMS and showed a greater dependence on overlap. The surface roughness of laser ablation was also dependent on the material properties. For the same laser ablation parameters, soda-lime glass surfaces were smoother than fused quartz. For some applications, especially those using quartz, smoother channels are desired. A hydroxyethyl methacrylate (HEMA) polymer coating was applied and the roughness of the coated channels was improved to 10-50 nm RMS.

  13. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Giedrius Janusas

    2015-12-01

    Full Text Available A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  14. Nanocomposite Apatite-biopolymer Materials and Coatings for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    L.F. Sukhodub

    2014-04-01

    Full Text Available The microoverview paper describes synthesis and characterization of novel third generation composite biomaterials and coatings which correspond to the second structural level of human bone tissue (HBT organization obtained at Sumy state university “Bionanocomposite” laboratory. To obtain such composites an animal collagen is usually used, which is not potentially safe for medical applications. That is why investigations were started using some other biopolymers to obtain composites close to the second level in the structural hierarchy of HBT. Proposed natural polymers (Na alginate, chitosan are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria, high biocompatibility towards the connective tissue, low toxicity, an ability to improve regenerative processes during wounds healing, degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. The formation of nanosized (25-75 nm calcium deficient hydroxyapatite (cdHA particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. The influence of the imposition of static magnetic field on brushite (CaHPO4·2H2O crystallization was also investigated. It was shown that changing the magnetic field configuration could greatly affect crystallinity and texture of the derived particles. To increase the biocompatibility of existing medical implants (Ti–6Al 4V, Ti Ni, Mg the technology for obtaining bioactive coatings with corresponding mechanical, structural and morphology characteristics is developed in our laboratory. In this direction coatings based on cdHA in combination with biopolymer matrices (Na alginate, chitosan, are obtained in “soft” conditions using a thermal substrate technology. This technology was proposed by Japan scientists [1] and was sufficiently improved by us [2] in order to obtain coatings in

  15. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  16. Advanced manufacturing of ceramics for biomedical applications: Subjection methods for biocompatible materials

    OpenAIRE

    Minguella Canela, Joaquim; Cuiñas, D; Uceda, Roger; Rodríguez, J. V.; Vivancos Calvet, Joan

    2013-01-01

    The continuously growing utilization of ceramic compounds in the field of medicine, industry and aerospace, among others, imply a high degree of specialization in terms of the material properties and functionalization due to the diversity of the requirements of the ceramic parts. The necessity of lightweight final parts with suitable surface properties oriented to biomedic applications demands innovative ceramic compounds whose machining is, in many cases, considerably difficult due to the fr...

  17. A NEW METHOD TO PREPARE CHITOSAN MEMBRANE AS A BIOMEDICAL MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Qiao-ling Hu; Zheng-ping Fang; YingZhao; Cheng-wei Xu

    2001-01-01

    This paper reports a new method to prepare chitosan membrane which could be used as a biomedical material.Addition of a fixation agent composed of alcohol, glycerol and potassium hydroxide can accelerate the sol-gel transformation process and hence shorten the preparation period. The present method takes about 6 h to get a flexible membrane with fine appearance. The physical and biological properties of the membrane were also investigated and compared with the membrane prepared by conventional method.``

  18. Stretchable conducting materials with multi-scale hierarchical structures for biomedical applications

    Science.gov (United States)

    Kim, Hyun; Shim, Bong Sup

    2014-08-01

    Electrogenetic tissues in human body such as central and peripheral nerve systems, muscular and cardiomuscular systems are soft and stretchable materials. However, most of the artificial materials, interfacing with those conductive tissues, such as neural electrodes and cardiac pacemakers, have stiff mechanical properties. The rather contradictory properties between natural and artificial materials usually cause critical incompatibility problems in implanting bodymachine interfaces for wide ranges of biomedical devices. Thus, we developed a stretchable and electrically conductive material with complex hierarchical structures; multi-scale microstructures and nanostructural electrical pathways. For biomedical purposes, an implantable polycaprolactone (PCL) membrane was coated by molecularly controlled layer-bylayer (LBL) assembly of single-walled carbon nanotubes (SWNTs) or poly(3,4-ethylenedioxythiophene) (PEDOT). The soft PCL membrane with asymmetric micro- and nano-pores provides elastic properties, while conductive SWNT or PEDOT coating preserves stable electrical conductivity even in a fully stretched state. This electrical conductivity enhanced ionic cell transmission and cell-to-cell interactions as well as electrical cellular stimulation on the membrane. Our novel stretchable conducting materials will overcome long-lasting challenges for bioelectronic applications by significantly reducing mechanical property gaps between tissues and artificial materials and by providing 3D interconnected electro-active pathways which can be available even at a fully stretched state.

  19. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    Science.gov (United States)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  20. Synthesis, characterization and bioevaluation of drug-collagen hybrid materials for biomedical applications.

    Science.gov (United States)

    Voicu, Georgeta; Geanaliu-Nicolae, Ruxandra-Elena; Pîrvan, Adrian-Alexandru; Andronescu, Ecaterina; Iordache, Florin

    2016-08-30

    This work presents a study based on the preparation and characterization of drug-collagen hybrid materials. Materials used for obtaining drug-collagen hybrids were collagen type I (Coll) as matrix and fludarabine (F) and epirubicin (E) as hydrophilic active substances. After incorporation of drugs into Coll in different ratios, the obtained hybrid materials (Coll/F and Coll/E) could be used according to our results as potential drug delivery systems in medicine for the topical (local) treatment of cancerous tissues (e.g. the treatment of breast, stomach, lung, colorectal or advanced ovarian cancer). The materials were characterized considering their composition (by XRD, FT-IR and DTA-TG) and their morphology (by SEM). The delivery of drug was assessed by UV-vis. The in vitro citotoxicity demonstrates an antitumoral activity of the obtained hybrid materials and their potential use for biomedical applications as drug delivery systems in tumoral treatments.

  1. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials.

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Pardeshi, Sunil; Sharma, Jai Gopal; Lee, Seung Hyun; Choi, Eun Ha

    2015-11-11

    The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

  2. Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials

    Directory of Open Access Journals (Sweden)

    Nagendra Kumar Kaushik

    2015-11-01

    Full Text Available The substance secreted by mussels, also known as nature’s glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs, a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

  3. Engineering a material for biomedical applications with electric field assisted processing

    Science.gov (United States)

    Ahmad, Z.; Nangrejo, M.; Edirisinghe, M.; Stride, E.; Colombo, P.; Zhang, H. B.

    2009-10-01

    In this work, using multiple co-flows we demonstrate in-situ encapsulation of nano-particles, liquids and/or gases in different structural morphologies, which can also be deposited in a designated pattern by a direct write method and surface modification can be controlled to release encapsulated material. The range of possibilities offered by exposing a material solution to an applied electric field can result in a plethora of structures which can accommodate a whole host of biomedical applications from microfluidic devices (microchannels, loaded with various materials), printed 3D structures and patterns, lab-on-a-chip devices to encapsulated materials (capsules, tubes, fibres, dense multi-layered fibrous networks) for drug delivery and tissue engineering. The structures obtained in this way can vary in size from micrometer to the nanometer range and the processing is viable for all states of matter. The work shown demonstrates some novel structures and methodologies for processing a biomaterial.

  4. A Study of Hybrid Composite Hydroxyapatite (HA-Geopolymers as a Material for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Saleha

    2017-01-01

    Full Text Available The main purpose of this research is to study the physical properties and microstructure characters of hybrid composites HA-geopolymers as a material for biomedical application. Hybrid composite HA–geopolymers were produced through alkaline activation method of metakaolin as a matrix and HA as the filler. HA was synthesized from eggshell particles by using a precipitation method. The addition of HA in metakaolin paste was varied from 0.5%, 1.0%, 1.5%, and 2.0% relative the weight of metakaolin. FTIR was used to examine the absorption bands the composites. X-ray diffraction (XRD was used to study the crystal structure of the starting and the resulting materials. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS was used to investigate the surface morphology of the composites. The thermal properties of the samples was examined by means of Differential Scanning Calorimetry (DSC. Capacitance measurement was conducted to investigate the bioactive properties of HA. The study results suggest that hybrid composite HA-geopolymers has a potential to be applied as a biomedical such as biosensor material.

  5. OBTAINING HYSTERESIS LOOPS AT LOW FREQUENCY FOR CHARACTERIZATION OF MATERIALS TO BE USED IN BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2015-05-01

    Full Text Available The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired

  6. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    Science.gov (United States)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  7. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.

    Science.gov (United States)

    Gomes, L C; Silva, L N; Simões, M; Melo, L F; Mergulhão, F J

    2015-04-01

    The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy.

  8. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Rojas Cortés

    2010-04-01

    Full Text Available Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substance must be incorporated into a polymer matrix. A new generation of alterna-tives for human health has thus been generated by designing pharmaceutical therapeutic systems in line with the concept of “integrated custom-made product design”. This document reviews the trends concerning using biopoly-mers for designing products having pharmaceutical and biomedical applications. The paper also introduces the elements which should be mastered by engineers for obtaining material which can be used in the health field and tries to provide a reference point regarding the state of the art in this specific field of knowledge.

  9. The Effect of Surface Properties of Biomedical Materials on Their Blood Compatibility

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effect of surface properties of six types of biomedical materials on their blood compatibility was investigated in this study. The surface roughness of biomaterials was determined by confocal laser scanning microscopy (CLSM). The contact angle was observed by contact angle measurement (CAM). Then the surface free energy ( SFE ) and interfacial free energy ( IFE ) were calculated by the contact angle value based on the Owens-Wendt (OW) theoretical model and Young's equation. Meanwhile, hemolytic assay was employed to evaluate the haemolysis. The experimental results showed that the greater roughness was, the greater contact angle would be; the less proportion of polar component in surface free energy (SFE) was, the lower haemolysis would be.

  10. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application.

    Science.gov (United States)

    Wang, Feng; Xu, Hanfu; Wang, Yuancheng; Wang, Riyuan; Yuan, Lin; Ding, Huan; Song, Chunnuan; Ma, Sanyuan; Peng, Zhixin; Peng, Zhangchuan; Zhao, Ping; Xia, Qingyou

    2014-12-01

    Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.

  11. Anodization of Ti-based materials for biomedical applications: A review

    Directory of Open Access Journals (Sweden)

    Dragana R. Barjaktarević

    2016-09-01

    Full Text Available Commercially pure titanium (cpTi and titanium alloys are the most commonly used metallic biomaterials. Biomedical requirements for the successful usage of metallic implant materials include their high mechanical strength, low elastic modulus, excellent biocompatibility and high corrosion resistance. It is evident that the response of a biomaterial implanted into the human body depends entirely on its biocompatibility and surface properties. Therefore, in order to improve the performance of biomaterials in biological systems modification of their surface is necessary. One of most commonly used method of implant materials surface modification is electrochemical anodization and this method is reviewed in the present work.Aim of the presented review article is to explain the electrochemical anodization process and the way in which the nanotubes are formed by anodization on the metallic material surface. Influence of anodizing parameters on the nanotubes characteristics, such as nanotube diameter, length and nanotubular layer thickness, are described, as well as the anodized nanotubes influence on the material surface properties, corrosion resistance and biocompatibility.

  12. A Novel Approach to Design Chitosan-Polyester Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Tatiana A. Akopova

    2012-01-01

    Full Text Available A novel approach to design chitosan-polyester materials is reported. The method is based on mechanical activation and effective intermixing of the substrates under high pressure and shear deformation in the course of solid-state reactive blending. The marked departure of this approach from previous practice resides on exploitation of a variety of chemical transformations of the solid polymers that become feasible under conditions of plastic flow. Low temperatures (above Tg but below the melting points of the crystalline polymers are maintained throughout the process, minimizing mechanical and oxidative degradation of the polymers. Morphology as well as structural, mechanical, and relaxation properties of those prepared blends of chitosan with semicrystalline poly(L,L-lactide and amorphous poly(D,L-lactide-co-glycolide has been studied. Grafting of polyester moieties onto chitosan chains was found to occur under employed pressures and shear stresses. The prepared polymer blends have demonstrated an amphiphilic behavior with a propensity to disperse in organic solvents that widens possibilities to transform them into promising materials for various biomedical applications.

  13. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  14. LC Packing Materials for Pharmaceutical and Biomedical Analysis%用于药学和生物医学分析的液相色谱填料

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The author has prepared novel liquid chromatography (LC) packing materials for pharmaceutical and biomedical analysis. Those include LC packing materials for direct serum injection assays of drugs and their metabolites, LC packing materials for resolution of enantiomeric drugs, and uniformly sized molecularly imprinted polymers for drugs and their metabolites. This review article deals with the preparation of these materials and the pharmaceutical and biomedical applications of them in recognition of The Society of Chromatographic Sciences Award.

  15. Advanced materials for aerospace and biomedical applications: New glasses for hermetic titanium seals

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Tallant, D.R.; Crowder, S.V. [and others

    1996-11-01

    Titanium and titanium alloys have an outstanding strength-to-weight ratio and corrosion resistance and so are materials of choice for a variety of aerospace and biomedical applications. Such applications are limited by the lack of a viable hermetic glass sealing technology. Conventional silicate sealing glasses are readily reduced by titanium to form interfacial silicides that are incompatible with a robust glass/metal seal. Borate-based glasses undergo a similar thermochemistry and are reduced to a titanium boride. The kinetics of this reactions, however, are apparently slower and so a deleterious interface does not form. Chemically durable lanthanoborate glasses were examined as candidate sealing compositions. The compositions, properties, and structures of several alkaline earth, alumina, and titania lanthanoborate glass forming systems were evaluated and this information was used as the basis for a designed experiment to optimize compositions for Ti-sealing. A number of viable compositions were identified and sealing procedures established. Finally, glass formation, properties, and structure of biocompatible Fe{sub 2}O{sub 3}- and TiO{sub 2}-doped calcium phosphate systems were also evaluated.

  16. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.

    Science.gov (United States)

    de Andrade, Dennia Perez; de Vasconcellos, Luana Marotta Reis; Carvalho, Isabel Chaves Silva; Forte, Lilibeth Ferraz de Brito Penna; de Souza Santos, Evelyn Luzia; Prado, Renata Falchete do; Santos, Dalcy Roberto Dos; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants.

  17. A novel combined polyphenol-aldehyde crosslinking of collagen film. Applications in biomedical materials.

    Science.gov (United States)

    Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua

    2017-03-30

    Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials.

  18. Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials

    Directory of Open Access Journals (Sweden)

    Elisângela Corradini

    2014-12-01

    Full Text Available Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not, but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein’s hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein’s structure allow a myriad of applications of such materials with great potential in the near future.

  19. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials.

    Science.gov (United States)

    Corradini, Elisângela; Curti, Priscila S; Meniqueti, Adriano B; Martins, Alessandro F; Rubira, Adley F; Muniz, Edvani Curti

    2014-12-04

    Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein's hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein's structure allow a myriad of applications of such materials with great potential in the near future.

  20. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility.

  1. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  2. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  3. Materials processing towards development of rapid prototyping technology for manufacturing biomedical implants

    Science.gov (United States)

    Pekin, Senol

    2000-10-01

    Materials processing towards development of fused deposition of materials (FDM) method for manufacturing biomedical implants has been studied experimentally. Main processing steps consisted of thermoplastic binder development in the ethylene vinyl acetate (EVA)-microcrystalline wax system, feedstock extrusion, characterization and optimization of binder degradation, and sintering of calcium deficient hydroxyapatite. Differential scanning calorimetry (DSC) revealed that the melting index (MI) of the copolymer affects the temperature location of the solidification exotherm, whereas the effect on the temperature location of the melting endotherm was negligible. Nonisothermal measurement of viscosity of different blends as a function of VA content of the EVA component revealed that the microcrystalline wax is compatible with 25--14% VA-containing EVA grades. Further DSC analysis revealed that co-crystallization leads to compatible EVA-microcrystalline wax blends. A typical binder formulation that was developed in the present work has a viscosity of about 700 cP at 140°C, a compressive yield strength of 6 MPa and an elastic modulus of about 600 MPa, and contained 15--20% EVA and 80--85% microcrystalline wax. Various filaments with a nominal diameter of 1.8 mm were extruded by using such a binder, and calcium pyro-phosphate powder that had a distribution modulus of about 0.37. Measurement of physical dimensions of the filament revealed that fluid state can be achieved in the filaments. Simultaneous thermal analysis of degradation characteristics of the typical binder formulations revealed that degradation sequence is oxidation of the hydrocarbons, evaporation of the hydrocarbons, degradation of the vinyl acetate, and degradation of the ethylene chain. A rate controlled binder removal system was developed and used in order to optimize the binder removal schedule. Sintering of gel-cast calcium hydroxyapatite was studied by means of thermal analysis, XRD, mechanical

  4. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan-ling [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Jiuzhou College of Pharmacy, Yancheng Institute of Industry Technology, Yancheng 224005 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Li-min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  5. Bacterial spores as possible contaminants of biomedical materials and devices. [Bacillus anthracis, clostridium botulinum, C. perfringens, C. tetani

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Kang, T.

    1973-01-01

    Destruction of spores on biomedical devices in drugs, and biologicals is essential for prevention of infection of patients with pathogenic sporeformers. Of particular concern are Clostridium tetani, C. perfringens, C. botulinum, Bacillus anthracis and other sporeforming pathogens. Spores are ubiquitous in nature and contamination of biomedical devices varies depending on manufacturing process, handling, raw materials and other variables. In the last 20 years the number of cases per year of specific notifiable diseases in the United States was as follows: tetanus, 120 to 500 cases, botulism, 7 to 47 cases, and anthrax, 2 to 10 cases. Gas gangrene is caused by a mixed flora consisting predominantly of sporeformers. C botulinum, which usually acts as saprophytic agent of food poisoning, may also initiate pathogenic processes; there are nine cases on record in the United States of botulism wound infections almost half of which ended in death. The spores of these organisms are distinguished by high radiation resistance and their erradication often requires severe radiation treatments. Representative bacterial spores in various suspending media show D/sub 10/ values (dose necessary to destroy 90 percent of a given population) ranging from approximately 0.1 to 0.4 Mrad. Some viruses show D/sub 10/ values up to greater than 1 Mrad. The D/sub 10/-values of spores vary depending on physical, chemical and biological factors. This variability is important in evaluation and selection of biological indicator organisms. Radiation sterilization of biomedical devices and biomedical materials must provide safety from infectious microorganisms including radiation resistant spores and viruses.

  6. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  7. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Science.gov (United States)

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  8. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Charlotte Vichery

    2016-04-01

    Full Text Available Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented.

  9. Functional Materials Based on Surface Modification of Carbon Nanotubes for Biomedical and Environmental Applications

    KAUST Repository

    Mashat, Afnan

    2015-05-01

    Since the discovery of carbon nanotubes (CNTs), they have gained much interest in many science and engineering fields. The modification of CNTs by introducing different functional groups to their surface is important for CNTs to be tailored to fit the need of specific applications. This dissertation presents several CNT-based systems that can provide biomedical and environmental advantages. In this research, polyethylenimine (PEI) and polyvinyl alcohol (PVA) were used to coat CNTs through hydrogen bonding. The release of doxorubicin (DOX, an anticancer drug) from this system was controlled by temperature. This system represents a promising method for incorporating stimuli triggered polymer-gated CNTs in controlled release applications. To create an acid responsive system CNTs were coated with 1,2-Distearoyl-snglycero- 3-Phosphoethanolamine-N-[Amino(Polyethylene glycol)2000]-(PE-PEG) and Poly(acrylic acid) modified dioleoy lphosphatidyl-ethanolamine (PE-PAA). An acidlabile linker was used to cross-link PAA, forming ALP@CNTs, thus making the system acid sensitive. The release of DOX from ALP@CNTs was found to be higher in an acidic environment. Moreover, near infrared (NIR) light was used to enhance the release of DOX from ALP@CNTs. A CNT-based membrane with controlled diffusion was prepared in the next study. CNTs were used as a component of a cellulose/gel membrane due to their optical property, which allows them to convert NIR light into heat. Poly(Nisopropylacrylamide) (PNIPAm) was used due to its thermo-sensitivity. The properties of both the CNTs and PNIPAm’s were used to control the diffusion of the cargo from the system, under the influence of NIR. CNTs were also used to fabricate an antibacterial agent, for which they were coated with polydopamine (PDA) and decorated with silver particles (Ag). Galactose (Gal) terminated with thiol groups conjugated with the above system was used to strengthen the bacterial targeting ability. The antibacterial activity of

  10. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  11. Synthesis, characterization, and efficacy of antimicrobial chlorhexidine hexametaphosphate nanoparticles for applications in biomedical materials and consumer products

    Directory of Open Access Journals (Sweden)

    Barbour ME

    2013-09-01

    Full Text Available Michele E Barbour,1 Sarah E Maddocks,2 Natalie J Wood,1,3 Andrew M Collins3 1Oral Nanoscience, School of Oral and Dental Sciences, University of Bristol, Bristol, UK; 2Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK; 3Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, UK Abstract: Chlorhexidine (CHX is an antimicrobial agent that is efficacious against gram-negative and -positive bacteria and yeasts. Its mechanism of action is based on cell membrane disruption and, as such, it does not promote the development of bacterial resistance, which is associated with the widespread use of antibiotics. In this manuscript, we report the development of novel antimicrobial nanoparticles (NPs based on a hexametaphosphate salt of CHX. These are synthesized by instantaneous reaction between equimolar aqueous solutions of CHX digluconate and sodium hexametaphosphate, under room temperature and pressure. The reaction results in a stable colloid composed of highly negatively charged NPs (−50 mV, of size 20-160 nm. The NPs adhere rapidly to specimens of glass, titanium, and an elastomeric wound dressing, in a dose-dependent manner. The functionalized materials exhibit a gradual leaching of soluble CHX over a period of at least 50 days. The NP colloid is efficacious against methicillin-resistant Staphylococcus aureus (MRSA and Pseudomonas aeruginosa in both planktonic and biofilm conditions. These NPs may find application in a range of biomedical and consumer materials. Keywords: MRSA, biomaterials, chlorhexidine, drug delivery, slow release

  12. THE DEVELOPMENT STUDIES OF BIOMEDICAL COMPOSITE MATERIALS%生物医用复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    于成; 赵卫生; 贾伟

    2012-01-01

    Biomedical composite has rapid development today. According to the classification of the matrix material , the paper introduced the developments of ceramic-based, metal-based, polymer-based biomedical composite materials, pointed out the carbon fiber composite materials would develop fast in the field of medical materials in the future.%生物医用复合材料在当今已得到了飞速发展.本文按基体材料的分类分别介绍了陶瓷基、金属基、高分子基生物医用复合材料的发展情况,指出碳纤维复合材料作为具有优异性能的材料在未来医疗领域将得到飞速发展.

  13. Textural Properties of Hybrid Biomedical Materials Made from Extracts of Tournefortia hirsutissima L. Imbibed and Deposited on Mesoporous and Microporous Materials

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández

    2016-01-01

    Full Text Available Our research group has developed a group of hybrid biomedical materials potentially useful in the healing of diabetic foot ulcerations. The organic part of this type of hybrid materials consists of nanometric deposits, proceeding from the Mexican medicinal plant Tournefortia hirsutissima L., while the inorganic part is composed of a zeolite mixture that includes LTA, ZSM-5, clinoptilolite, and montmorillonite (PZX as well as a composite material, made of CaCO3 and montmorillonite (NABE. The organic part has been analyzed by GC-MS to detect the most abundant components present therein. In turn, the inorganic supports were characterized by XRD, SEM, and High Resolution Adsorption (HRADS of N2 at 76 K. Through this latter methodology, the external surface area of the hybrid materials was evaluated; besides, the most representative textural properties of each substrate such as total pore volume, pore size distribution, and, in some cases, the volume of micropores were calculated. The formation and stabilization of nanodeposits on the inorganic segments of the hybrid supports led to a partial blockage of the microporosity of the LTA and ZSM5 zeolites; this same effect occurred with the NABE and PZX substrates.

  14. [Polymeric materials for biomedical purposes obtained by radiation methods. V. hybrid artificial pancreas].

    Science.gov (United States)

    Burczak, K; Rosiak, J

    1994-01-01

    The authors present a review of works done on the elaboration of a hybrid-type artificial pancreas. The article discusses construction designs, applied polymeric materials as well as biocompatibility problems of polymeric membranes that encapsulate the Langerhans islets. On example of hydrogel membranes prepared by radiation crosslinking of poly(vinyl alcohol) (PVA) the dependence of the diffusion coefficients of glucose, insulin and immunoglobulin G on the crosslinking degree of hydrogels has been shown.

  15. Laser micro-structuring of surfaces for applications in materials and biomedical science

    Science.gov (United States)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  16. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  17. Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.

    Science.gov (United States)

    Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo

    2011-01-01

    The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.

  18. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    Science.gov (United States)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  19. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  20. Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications.

    Science.gov (United States)

    Rojo, Luis; Barcenilla, Jose M; Vázquez, Blanca; González, Ramón; San Román, Julio

    2008-09-01

    Infections are the most common cause of biomaterial implant failure representing a constant challenge to the more widespread application of medical implants. This study reports on the preparation and characterization of novel hydrophilic copolymeric systems provided with antibacterial properties coming from eugenol residues anchored to the macromolecular chains. Thus, high conversion copolymers were prepared from the hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA) and different eugenol monomeric derivatives, eugenyl methacrylate (EgMA) and ethoxyeugenyl methacrylate (EEgMA), by bulk polymerization reaction. Thermal evaluation revealed glass transition temperature values in the range 95-58 degrees C following the order HEMA-co-EgMA > PHEMA > HEMA-co-EEgMA and a clear increase in thermal stability with the presence of any eugenyl monomer in the system. In vitro wettability studies showed a reduction of water sorption capacity and surface free energy values with increasing the content of eugenol residues in the copolymer. The antimicrobial activity of copolymeric discs was evaluated by determining their capacity to reduce or inhibit colony formation by different bacterial species. All eugenyl containing materials showed bacteria growth inhibition, this one being higher for the EEgMA derivative copolymers.

  1. Application Research of Collagen as Biomedical Materials%胶原作为生物医学材料的应用研究

    Institute of Scientific and Technical Information of China (English)

    杨延慧; 严涵; 康晓梅; 曾宪仕; 陈红; 徐静; 陈晓浪; 张志斌

    2011-01-01

    胶原是生物体内的一种纤维蛋白,由于其较高的抗张强度,目前被广泛用于生物医学领域.该文主要介绍了胶原作为组织工程支架材料和药物释放载体材料的应用.%Collagen is one kind of fibrin which is widely used in biomedical scope due to its high tensile strength. Hie paper mainly introduces the application of collagen as tissue engineering scaffold material and medicine carrier material.

  2. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  3. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  4. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  5. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  6. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  7. From Waste to Healing Biopolymers: Biomedical Applications of Bio-Collagenic Materials Extracted from Industrial Leather Residues in Wound Healing

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2013-04-01

    Full Text Available The biomedical properties of a porous bio-collagenic polymer extracted from leather industrial waste residues have been investigated in wound healing and tissue regeneration in induced wounds in rats. Application of the pure undiluted bio-collagen to induced wounds in rats dramatically improved its healing after 7 days in terms of collagen production and wound filling as well as in the migration and differentiation of keratinocytes. The formulation tested was found to be three times more effective than the commercial reference product Catrix® (Heal Progress (HP: 8 ± 1.55 vs. 2.33 ± 0.52, p < 0.001; Formation of Collagen (FC: 7.5 ± 1.05 vs. 2.17 ± 0.75, p < 0.001; Regeneration of Epidermis (RE: 13.33 ± 5.11 vs. 5 ± 5.48, p < 0.05.

  8. Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment.

    Science.gov (United States)

    Petrov, Ivo; Kalinkevich, Oksana; Pogorielov, Maksym; Kalinkevich, Aleksei; Stanislavov, Aleksandr; Sklyar, Anatoly; Danilchenko, Sergei; Yovcheva, Temenuzhka

    2016-10-20

    Chitosan-hydroxyapatite composite materials were synthesized and the possibility to make their surface charged by corona discharge treatment has been evaluated. Dielectric and electric properties of the materials were studied by dielectric spectroscopy, including application of equivalent circuits method and computer simulations. Dielectric spectroscopy shows behavior of the materials quite different from that of both chitosan and HA alone. The obtained dielectric permittivity data are of particular interest in predicting the materials' behavior in electrostimulation after implantation. The ε values observed at physiological temperature in the frequency ranges applied are similar to ε data available for bone tissues.

  9. Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid Materials for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Wojasiński Michal

    2014-06-01

    Full Text Available Comparative statistical analysis of the infiuence of processing parameters, for electrospinning (ES and solution blow spinning (SBS processes, on nanofibrous poly(L-lactic acid (PLLA material morphology and average fiber diameter was conducted in order to identify the key processing parameter for tailoring the product properties. Further, a comparative preliminary biocompatibility evaluation was performed. Based on Design of Experiment (DOE principles, analysis of standard effects of voltage, air pressure, solution feed rate and concentration, on nanofibers average diameter was performed with the Pareto’s charts and the best fitted surface charts. Nanofibers were analyzed by scanning electron microscopy (SEM. The preliminary biocompatibility comparative tests were performed based on SEM microphotographs of CP5 cells cultured on materials derived from ES and SBS. Polymer solution concentration was identified as the key parameter infiuencing morphology and dimensions of nanofibrous mat produced from both techniques. In both cases, when polymer concentration increases the average fiber diameter increase. The preliminary biocompatibility test suggests that nanofibers produced by ES as well as SBS are suitable as the biomedical engineering scaffold material.

  10. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  11. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  12. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  13. Biomedical applications of collagens.

    Science.gov (United States)

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  14. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Lizundia, E., E-mail: erlantz.liizundia@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Meaurio, E., E-mail: emiliano.meaurio@ehu.es [Department of Mining-Metallurgy and Materials Science and BERC POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) (Spain); Laza, J.M., E-mail: josemanuel.laza@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Vilas, J.L., E-mail: joseluis.vilas@bcmaterials.net [Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain); León Isidro, L.M., E-mail: luismanuel.leon@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain)

    2015-05-01

    The development of thermally-sensitive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible/biodegradable poly(L-lactide) (PLLA) blends offers us an efficient strategy in order to obtain materials with improved functional properties to be used in the emerging field of biomedicine. In this sense, thermal properties of PLLA and PNIPAAm have been investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD) were conducted to shed more light on the obtained results. For a better understanding of PLLA/PNIPAAm system, both low and high molecular weight PLLA and PNIPAAm have been synthesized by ring opening polymerization and aqueous redox polymerization respectively. Obtained results are interpreted from the viewpoint of chain microstructure of each homopolymer and the ratio between two constituent materials. DSC, SEM and WAXD results show a phase separation over the entire composition range irrespectively of the molecular weight of both homopolymers. Additionally, it was found a nucleating agent behavior of low molecular weight PNIPAAm, while high molecular weight PNIPAAm hinders the crystallization of PLLA. FTIR results suggest that the strong autoassociation present in PNIPAAm plays a key role impairing the miscibility of the whole system. Thermogravimetric analysis reveals that thermodegradation process of PLLA could be continuously delayed with the addition of PNIPAAm due to the increased thermal stability of N-isopropylacrylamide in regard to L-lactide sequences. - Highlights: • Poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials are synthesized. • Results are interpreted in terms of the building block nature of each constituent. • Phase separation behavior over the entire composition range is achieved. • Strong autoassociation present in PNIPAAm impairs the miscibility of the whole blend

  15. Interaction of solutions containing phenothiazines exposed to laser radiation with materials surfaces, in view of biomedical applications.

    Science.gov (United States)

    Simon, Agota; Alexandru, Tatiana; Boni, Mihai; Damian, Victor; Stoicu, Alexandru; Dutschk, Victoria; Pascu, Mihail Lucian

    2014-11-20

    Phenothiazine drugs - chlorpromazine (CPZ), promazine (PZ) and promethazine (PMZ) - were exposed to 266 nm (fourth harmonic of the Nd:YAG pulsed laser radiation) in order to be modified at molecular level and to produce an enhancement of their antibacterial activity. The irradiated samples were analysed by several methods: pH and surface tension measurements, UV-vis-NIR absorption spectroscopy, laser induced fluorescence and thin layer chromatography. The purpose of these investigations was to study and describe the modified properties of the medicines to further investigate their specific interactions with materials such as cotton, polyester and Parafilm M as a model smooth surface. The textile materials may be impregnated with phenothiazines drug solutions exposed to laser radiation in order to be used in treatments applied on the surface of the organism. Some of the phenothiazines solutions exposed prolonged time intervals to laser radiation have much better activity against several bacteria. Therefore, in the paper, it is reported the wetting behaviour of CPZ, PZ and PMZ solutions, irradiated for time intervals between 1 and 240 min, on the surfaces of the three textures in order to draw a conclusion about their wettability as a function of time.

  16. The addition of Si to the Ti–35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Fernandes, B.S.; Souza, S.A.; Batista, W.W.; Cunha, F.G.C. [Department of Materials Science and Engineering, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil); Landers, R. [Institute of Physics Gleb Wataghin, State University of Campinas – UNICAMP, 13083-859 Campinas, SP (Brazil); Macedo, M.C.S.S., E-mail: michellecardinales@gmail.com [Department of Materials Science and Engineering, Federal University of Sergipe, 49100-000 São Cristóvão, SE (Brazil)

    2014-04-05

    Highlights: • An investigation of the corrosion resistance of Ti–Nb–Si was proposed. • The study was based on polarization curves, OCP, electrochemical impedance, XPS. • The addition of Si to 0.35% increased the corrosion resistance of the alloys. • Data suggest that the studied alloys are promising for biomedical applications. -- Abstract: Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants once they present biocompatibility and favor reductions in the elastic modulus. However, these new materials’ behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. The corrosion resistance of the Ti–35Nb–(0; 0.15; 0.35; 0.55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by X-ray photoelectron spectroscopy (XPS). Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization – Rp – pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications.

  17. Securing a biomedical communications future: thinking strategically.

    Science.gov (United States)

    Stein, D

    1985-11-01

    Ensuring continued growth and viability of the biomedical communication function has become a critical task of the biomedical communications director. Thinking strategically is a cognitive process which assists a director in visualizing programs and tactics which meet clients needs, creates competitive advantages for the biomedical communications unit and builds on existing unit strengths. Thinking strategically can be divided into five phases: strategic vision, strategy development, strategic plan implementation, strategic plan dissemination, and strategic plan evaluation. Each sequence leads the biomedical communications director through a process designed to increase the effectiveness of the biomedical unit and to meet the challenges posed by an environment characterized by diminished financial, material, and human resources as well as respond to threats and opportunities posed by increased competition in the biomedical communications product and marketplace.

  18. Biomedical microsystems

    CERN Document Server

    Meng, Ellis

    2010-01-01

    IntroductionEvolution of MEMSApplications of MEMSBioMEMS ApplicationsMEMS ResourcesText Goals and OrganizationMiniaturization and ScalingBioMEMS MaterialsTraditional MEMS and Microelectronic MaterialsPolymeric Materials for MEMSBiomaterialsMicrofabrication Methods and Processes for BioMEMSIntroductionMicrolithographyDopingMicromachiningWafer Bonding, Assembly, and PackagingSurface TreatmentConversion Factors for Energy and Intensity UnitsLaboratory ExercisesMicrofluidicsIntroduction and Fluid PropertiesConcepts in MicrofluidicsFluid-Transport Phenomena and PumpingFlow ControlLaboratory Exercis

  19. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  20. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  1. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  2. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  3. PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS%蛋白质作用下医用金属材料的腐蚀行为研究进展

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 王猛; 张春艳; 王玥霁; 曾荣昌; 黄伟九

    2011-01-01

    基于蛋白质与医用金属间的吸附与螯合作用,综合评述了蛋白质作用下医用金属材料(钛及钛合金、不锈钢、钴基合金、镁合金等)腐蚀行为的研究进展,着重讨论了白蛋白、纤维蛋白原及血清影响下医用金属材料的腐蚀行为及机理,并指出了目前研究中存在的科学问题与未来研究的发展方向.%Based on the adsorption and chelation effects between proteins and biomedical metals, this review focuses its attention mainly on the impact of proteins on the corrosion behavior of biomedical metal materials, such as titanium& titanium alloys, stainless steels, cobalt-based alloys, magnesium alloys, and so on.The paper mainly discusses the corrosion behavior and mechanism of biomedical metals affected by albumin, fibrinogen, and serum.Some scientific issues in the present studies and the future research directions are pointed out.

  4. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  5. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  6. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  7. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  8. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  9. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  10. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  11. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  12. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  13. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  14. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  15. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  16. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  17. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  18. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  19. Bio-functionalization of biomedical metals.

    Science.gov (United States)

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions.

  20. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  1. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  2. 生物医用材料与3D打印技术的完美结合%The Binding of Bio-medical Materials and 3D Printing

    Institute of Scientific and Technical Information of China (English)

    陈贤明; 陆国英

    2015-01-01

    Bio-medical materials have been consider for implants or in combination with biological tissue with no bad influence. As a typical example of smart manufacturing,3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. 3D priting can been used to print out quickly and accurately for different bio-medical materials. Therefore, for further explore its application in the bio-medical ifeld, 3D priting technology wil be more widly applied and developed.%生物医用材料指的是用于医疗上能够植入生物体或与生物组织相结合,而对生物体组织不会产生不良影响的材料。3D打印技术,即快速成型技术的一种,它是一种以数字模型文件为基础,配合机械制造和材料科学,使材料在液态或是气态时直接固化成所需结构。临床医学研究人员可根据不同患者的需求,采用3D打印技术快速精确打印出适合不同患者的个性化生物医用生物材料,同时,还可以对材料的微观结构进行精确控制。因此,这种新兴生物医用材料的研制结合3D打印技术,在未来生物医学领域将会得到更广泛的应用和发展。

  3. Statistics in biomedical research

    OpenAIRE

    González-Manteiga, Wenceslao; Cadarso-Suárez, Carmen

    2007-01-01

    The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new p...

  4. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  5. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  6. 激光成形制备生物医用钛合金材料研究进展%Laser Fabrication of Biomedical Titanium Materials

    Institute of Scientific and Technical Information of China (English)

    杨海欧; 林鑫; 陈静; 黄卫东

    2011-01-01

    Laser fabrication is a new fabricating technique that combing rapid prototype and laser processing techniques. It can meet the requirement for the performance of the dense or porous complicated biomedical titanium alloys components, and realize the personalized design and fabrication of titanium and titanium alloy implants, through the suitable adjustment of the laser processing parameters. These advantage make it have a great potention in fabricating titanium alloys implants for medical applications. There are two main laser fabrication methods for the preparation of the biomedical titanium alloys; laser solid forming (LSF) and selective laser sintering/melting(SLS/SLM). In this paper, the current research status and applications of thes two laser fabrication method in fabricating titanium alloys implants are review, and the future research and development trends are also indicated.%激光成形制造技术是在快速原型技术的基础上结合激光加工技术发展起来的一项高新制造技术.它能够通过不同的加工方式调整结构及功能零件的性能,满足复杂致密或者多孔钛合金生物医用材料的成形需求,实现医用钛合金零件的个性化设计和制备,因此在医用钛合金人工肢体和植入体领域方面具有巨大的应用潜力.目前在制备生物医用钛合金材料领域研究较多的激光成形制造技术主要有激光立体成形和选择性激光烧结/熔化.本文综述了这两种激光成形制造在生物医用钛及钛合金制备方面的应用情况和研究现状,并指出了该领域未来的发展趋势.

  7. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  9. Biomedical implantable microelectronics.

    Science.gov (United States)

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  10. Ethics in biomedical engineering.

    Science.gov (United States)

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  11. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  12. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  13. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  14. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  15. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  16. What is biomedical informatics?

    Science.gov (United States)

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  17. Biodegradable polymers for electrospinning: towards biomedical applications.

    Science.gov (United States)

    Kai, Dan; Liow, Sing Shy; Loh, Xian Jun

    2014-12-01

    Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions.

  18. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  19. Biomedical Applications for Introductory Physics

    Science.gov (United States)

    Tuszynski, J. A.; Dixon, J. M.

    2001-12-01

    Can be utilized in either Algebra or Calculus-based courses and is available either as a standalone text or as a supplement for books like Cutnell PHYSICS, 5e or Halliday, Resnick, & Walker FUNDAMENTALS OF PHYSICS, 6e. Math level is Algebra & Trigonometry; however, a few examples require the use of integration and differentiation. Unlike competing supplements, Tuszinski offers both a wealth of engaging biomedical applications as well as quantitative problem-solving. The quantitative problem-solving is presented in the form of worked examples and homework problems. The quantitative problem-solving is presented in the form of worked examples and homework problems. The standard organization facilitates the integration of the material into most introductory courses.

  20. Cell mechanics in biomedical cavitation

    Science.gov (United States)

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  1. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  2. Adaptive Biomedical Innovation.

    Science.gov (United States)

    Honig, P K; Hirsch, G

    2016-12-01

    Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.

  3. [Biomedical activity of biosurfactants].

    Science.gov (United States)

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  4. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  5. Application of third-generation biomedical materials in dentistry%第三代生物医用材料在口腔领域中的应用

    Institute of Scientific and Technical Information of China (English)

    李鑫; 周进茹; 李紫嫣; 陈文川

    2016-01-01

    Biomedical materials are special functional materials used to replace and repair diseased, damaged, or aging tissues. The histories of medicine, especially dentistry, are closely related to the development of medical materials. With the development of materials science, life science, and clinical medicine, research about biomedical materials has made great progress. New generation(third-generation) biomedical materials, such as bone tissue engineering scaffold, biofilm for periodontal regeneration, drug controlled-release carrier, etc., are widely used in the field of oral medicine because of their good biocompatibility and biodegradability. In this review, the development of biomedical materials and the research progress of the third-generation biomedical materials in dentistry are discussed. This review aims to help readers understand third-generation biomedical materials and to provide a reference for the application and selection of them in dentistry.%生物医用材料是指以医疗为目的,用于修复或替换人体组织器官或增进其功能的材料。医学尤其是口腔医学的发展史是与医用材料的发展密切相关的,随着材料科学、生命科学和临床医学的不断发展,生物医用材料的研究也取得了很大的进步。新一代(第三代)生物医用材料因其良好的生物活性及生物降解性,在口腔医学领域得到了广泛应用,如骨组织工程支架材料、促进牙周组织再生的生物膜、运载药物的缓释载体等。本文就生物医用材料的发展历程以及第三代生物医用材料在口腔领域的应用研究进展作一综述,旨在使读者能够简单了解第三代生物医用材料的基本知识,并在

  6. Research Progress on Preparation and Surface Activation of Porous Biomedical Metal Materials%医用多孔金属的制备及其生物活化研究进展

    Institute of Scientific and Technical Information of China (English)

    刘辉; 憨勇

    2012-01-01

    Biomedical porous metal materials, especially the porous titanium and titanium alloys, can provide the mechanical properties similar to human bone and promote growth of bone tissue into pores of the materials to enhance the fixation between their implants and bone at early periods of implantation, exhibiting a great potential for the application of human hard tissue repair and replacement. This paper focuses on the preparation methods and research progress of porous titanium and titanium alloys and their surface bio-activation technologies which are suitable for the complex pore structure. Nowadays, the main methods suitable for preparing porous titanium and titanium alloys include powder metallurgy (PM) , titanimn fibers sintering, self-propagating high-temperature synthesis (SHS), selective electron beam mehing (SEBM) and selective laser mehing ( SLM). Surface bio-activation technologies suitable for porous titanium and titanium alloys, including sol-gel processing, bionic solution, electrochemical deposition, and micro-arc oxidation, are also reviewed. As biomedical materials, both mechanical compatibility and surface bioactivity of porous titanium and titanium alloys must be achieved to meet clinical criteria.%医用多孔金属材料,特别是多孔钛及钛合金能够提供与人体骨组织相匹配的力学性能,并促进骨组织长人以提高其与骨的固定度,在人体硬组织修复与替换方面具有广泛的应用前景。重点围绕多孔钛及钛合金的制备方法及适用于其复杂孔隙结构的表面生物活化方法,综述了各种方法在多孔钛及钛合金上的应用现状。目前适用于多孔钛及钛合金制备的技术主要有粉末冶金法、钛纤维烧结法、自蔓延高温合成法、选区电子束熔化技术和选区激光熔化技术,适用于多孔钛及钛合金表面生物活化的技术主要有溶胶凝胶法、仿生矿化法、电化学沉积法和微

  7. NIH Funding for Biomedical Imaging

    Science.gov (United States)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  8. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  9. Inorganic nanolayers: structure, preparation, and biomedical applications

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  10. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  11. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  12. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  13. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  14. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  15. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  18. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  19. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  20. Mimicking biological functionality with polymers for biomedical applications

    Science.gov (United States)

    Green, Jordan J.; Elisseeff, Jennifer H.

    2016-12-01

    The vast opportunities for biomaterials design and functionality enabled by mimicking nature continue to stretch the limits of imagination. As both biological understanding and engineering capabilities develop, more sophisticated biomedical materials can be synthesized that have multifaceted chemical, biological and physical characteristics designed to achieve specific therapeutic goals. Mimicry is being used in the design of polymers for biomedical applications that are required locally in tissues, systemically throughout the body, and at the interface with tissues.

  1. Biomedical problems of hydrotechnical construction

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.B.; El' piner, L.I.; Delitsyn, V.M.

    1988-04-01

    The effect of hydrotechnical and water-management construction on the living conditions and health of the population was examined. The results were used to develop the scientific bases and methods of biomedical predictions in several stages: evaluating biomedical conditions in territories where a change is expected, and constructing biomedical prediction proper of the effect of hydrotechnical constructions. The development of the indicated predictions make it possible to include measures on intensifying the positive and preventing or abating undesired effects on the biomedical situation when designing hydrotechnical and water-management construction.

  2. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  3. Injectable hydrogels as unique biomedical materials.

    Science.gov (United States)

    Yu, Lin; Ding, Jiandong

    2008-08-01

    A concentrated fish soup could be gelled in the winter and re-solled upon heating. In contrast, some synthetic copolymers exhibit an inverse sol-gel transition with spontaneous physical gelation upon heating instead of cooling. If the transition in water takes place below the body temperature and the chemicals are biocompatible and biodegradable, such gelling behavior makes the associated physical gels injectable biomaterials with unique applications in drug delivery and tissue engineering etc. Various therapeutic agents or cells can be entrapped in situ and form a depot merely by a syringe injection of their aqueous solutions at target sites with minimal invasiveness and pain. This tutorial review summarizes and comments on this soft matter, especially thermogelling poly(ethylene glycol)-(biodegradable polyester) block copolymers. The main types of injectable hydrogels are also briefly introduced, including both physical gels and chemical gels.

  4. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  5. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  6. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  7. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  8. Biomedical waste in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, S.

    2000-07-01

    In its broadest sense, medical waste applies to solid or liquid waste generated in the diagnosis, treatment of immunization of human beings or animals in research, in the production or testing of biological material. Of all the wastes produced by hospitals, the World Health Organization estimated that 10 per cent of it is infectious and 5 per cent consists of hazardous chemicals such as methylchloride and formaldehyde. Of course, one of the major concerns is the transmission of human immunodeficiency virus (HIV) and hepatitis B or C viruses. If the medical waste is not properly managed, a high degree of pollution and public health risks exists, particularly if the medical waste is mixed with municipal solid waste and dumped in uncontrolled areas. In New Delhi, the daily medical waste generated is 60 metric tons. In 1989, the Bureau of Indian Standards, New Delhi published guidelines for the management of Solid Wastes-Hospitals. Some rules governing the classification of biomedical waste were published in 1997-98 by the Ministry of Environment and Forests. Recommendations by the author included the segregation of hospital wastes, the set up of common medical waste treatment facilities as well as the training of Municipality workers in the safe handling of medical wastes. 7 refs., 3 tabs.

  9. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  10. Biomedical education for clinical engineers.

    Science.gov (United States)

    Langevin, Francois; Donadey, Alain; Hadjes, Pierre; Blagosklonov, Oleg

    2007-01-01

    Biomedical equipment Master's degree is recognized by the French Ministry of Health, since its creation in 1975 under the denomination of "Specialization for Hospital Biomedical Engineers". Since the new national status of technical staff in the public service by decree of September 5th of 1991, it allows to access directly to the level of Chief Hospital Engineer (first category, second class, by ordinance of October 23rd, 1992). Biomedical Engineers jobs in French hospitals are selected after an examination organized by the recruiting hospital. Master's graduates are most often the best qualified.

  11. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology.

  12. Thermoforming of film-based biomedical microdevices.

    Science.gov (United States)

    Truckenmüller, Roman; Giselbrecht, Stefan; Rivron, Nicolas; Gottwald, Eric; Saile, Volker; van den Berg, Albert; Wessling, Matthias; van Blitterswijk, Clemens

    2011-03-18

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated to a softened, but still solid state and formed to thin-walled microdevices by three-dimensional stretching. The high material coherence during forming is in contrast to common polymer microreplication processes where the material is processed in a liquid or flowing state. It enables the preservation of premodifications of the film material. In this progress report, we review the still young state of the art of microthermoforming technology as well as its first applications. So far, the applications are mainly in the biomedical field. They benefit from the fact that thermoformed microdevices have unique properties resulting from their special, unusual morphology. The focus of this paper is on the impact of the new class of micromoulding processes and the processed film materials on the characteristics of the moulded microdevices and on their applications.

  13. Biocompatible silicon wafer bonding for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek; Desai, Tejal A.; Tu, Jay K.; Ferrari, Mauro

    1998-03-01

    In this paper,several candidate bonding materials are reviewed for use in biomedical microdevices. These include poly propylmethacrylate (PPMA), poly methylmethacrylate (PMMA), a copolymer of poly methacrylate and two types of silicone gels. They were evaluated based on their cytotoxicity and bond strength, as well as several other qualitative assessments. The cytotoxicity was determined through a cell growth assay protocol in which cells were grown on the various substrate and their growth was compared to cells grown on control substrate. The adhesive strength was assessed by using a pressurized plate test in which the adhesive interface was pressurized to failure. All of the substrate were found to be non-cytotoxic in an inert manner except for the industrial silicone adhesive gel. The adhesive strengths of the various materials are compared to each other and to previously published adhesive strengths. All of the materials were found to have a sufficient bonding strength for biomedical applications, but several other factors were determined that limit the use of each material.

  14. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  15. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  16. Biomedical engineer: an international job.

    Science.gov (United States)

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  17. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  18. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  19. Biomedical ontologies: a functional perspective.

    Science.gov (United States)

    Rubin, Daniel L; Shah, Nigam H; Noy, Natalya F

    2008-01-01

    The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips.

  20. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  1. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  2. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications.

    Science.gov (United States)

    Santos, Hélder A; Mäkilä, Ermei; Airaksinen, Anu J; Bimbo, Luis M; Hirvonen, Jouni

    2014-04-01

    The research on porous silicon (PSi) materials for biomedical applications has expanded greatly since the early studies of Leigh Canham more than 25 years ago. Currently, PSi nanoparticles are receiving growing attention from the scientific biomedical community. These nanostructured materials have emerged as promising multifunctional and versatile platforms for nanomedicine in drug delivery, diagnostics and therapy. The outstanding properties of PSi, including excellent in vivo biocompatibility and biodegradability, have led to many applications of PSi for delivery of therapeutic agents. In this review, we highlight current advances and recent efforts on PSi nanoparticles regarding the production properties, efficient drug delivery, multidrug delivery, permeation across biological barriers, biosafety and in vivo tracking for biomedical applications. The constant boost on successful preclinical in vivo data reported so far makes this the 'golden age' for PSi, which is expected to finally be translated into the clinic in the near future.

  3. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, Erhan

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to exhibi

  4. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  5. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  6. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  7. Nature inspired structured surfaces for biomedical applications.

    Science.gov (United States)

    Webb, H K; Hasan, J; Truong, V K; Crawford, R J; Ivanova, E P

    2011-01-01

    Nature has created an array of superhydrophobic surfaces that possess water-repellent, self-cleaning and anti-icing properties. These surfaces have a number of potential applications in the biomedical industry, as they have the potential to control protein adsorption and cell adhesion. Natural superhydrophobic surfaces are typically composed of materials with a low intrinsic surface free-energy (e.g the cuticular waxes of lotus leaves and insect wings) with a hierarchical structural configuration. This hierarchical surface topography acts to decrease the contact area of water droplets in contact with the surface, thereby increasing the extent of the air/water interface, resulting in water contact angles greater than 150º. In order to employ these surfaces in biotechnological applications, fabrication techniques must be developed so that these multi-scale surface roughness characteristics can be reproduced. Additionally, these fabrication techniques must also be able to be applied to the material required for the intended application. An overview of some of the superhydrophobic surfaces that exist in nature is presented, together with an explanation of the theories of their wettability. Also included is a description of some of the biomedical applications of superhydrophobic surfaces and fabrication techniques that can be used to mimic superhydrophobic surfaces found in nature.

  8. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  9. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  10. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  11. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  12. Biomedical Waste Management

    OpenAIRE

    Sikovska, Biljana; Dimova, Cena; Sumanov, Gorgi; Vankovski, Vlado

    2016-01-01

    Medical waste is all waste material generated at health care facilities, such as hospitals, clinics, physician’s offices, dental practices, blood banks, and veterinary hospitals/clinics, as well as medical research facilities and laboratories. Poor management of health care waste potentially exposes health care workers, waste handlers, patients and the community at large to infection, toxic effects and injuries, and risks polluting the environment. It is essential that all medical waste ma...

  13. Metallic glass thin films for potential biomedical applications.

    Science.gov (United States)

    Kaushik, Neelam; Sharma, Parmanand; Ahadian, Samad; Khademhosseini, Ali; Takahashi, Masaharu; Makino, Akihiro; Tanaka, Shuji; Esashi, Masayoshi

    2014-10-01

    We introduce metallic glass thin films (TiCuNi) as biocompatible materials for biomedical applications. TiCuNi metallic glass thin films were deposited on the Si substrate and their structural, surface, and mechanical properties were investigated. The fabricated films showed good biocompatibility upon exposure to muscle cells. Also, they exhibited an average roughness of films was shown to be free from Ni and mainly composed of a thin titanium oxide layer, which resulted in the high surface biocompatibility. In particular, there was no cytotoxicity effect of metallic glass films on the C2C12 myoblasts and the cells were able to proliferate well on these substrates. Low cost, viscoelastic behavior, patternability, high electrical conductivity, and the capability to coat various materials (e.g., nonbiocompatible materials) make TiCuNi as an attractive material for biomedical applications.

  14. Current investigations into magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Li, Xiaoming; Wei, Jianrong; Aifantis, Katerina E; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2016-05-01

    It is generally recognized that nanoparticles possess unique physicochemical properties that are largely different from those of conventional materials, specifically the electromagnetic properties of magnetic nanoparticles (MNPs). These properties have attracted many researchers to launch investigations into their potential biomedical applications, which have been reviewed in this article. First, common types of MNPs were briefly introduced. Then, the biomedical applications of MNPs were reviewed in seven parts: magnetic resonance imaging (MRI), cancer therapy, the delivery of drugs and genes, bone and dental repair, tissue engineering, biosensors, and in other aspects, which indicated that MNPs possess great potentials for many kinds of biomedical applications due to their unique properties. Although lots of achievements have been obtained, there is still a lot of work to do. New synthesis techniques and methods are still needed to develop the MNPs with satisfactory biocompatibility. More effective methods need to be exploited to prepare MNPs-based composites with fine microstructures and high biomedical performances. Other promising research points include the development of more appropriate techniques of experiments both in vitro and in vivo to detect and analyze the biocompatibility and cytotoxicity of MNPs and understand the possible influencing mechanism of the two properties. More comprehensive investigations into the diagnostic and therapeutic applications of composites containing MNPs with "core-shell" structure and deeper understanding and further study into the properties of MNPs to reveal their new biomedical applications, are also described in the conclusion and perspectives part.

  15. Nanomaterials and nanofabrication for biomedical applications

    Science.gov (United States)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  16. National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    ... Health & Human Services National Institutes of Health Creating Biomedical Technologies to Improve Health En Español | Site Map | ... 2016 VIEW MORE NEWS AND HIGHLIGHTS Design by Biomedical Undergraduate Teams Challenge RSS LISTSERV YOUTUBE FACEBOOK TWITTER ...

  17. Introducing the B I P (Biomedical Instrumentation Package). Many Important Electronic Functions in One Instrument.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described are the use and purposes of the Biomedical Instrumentation Package (BIP) in science classrooms. Science activities are suggested and equipment use is described. A sample laboratory activity, which includes materials, procedure, and discussion, is provided. (SA)

  18. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  19. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  20. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  1. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  2. On Biomedical Research Policy in the Future

    Science.gov (United States)

    1989-01-01

    0 ON BIOMEDICAL RESEARCH POLICY IN THE FUTURE Albert P. Williams January 1989 DTIC ELECTE P-7520 "’T,, . The RAND Corporation Papers are issued by...BIOMEDICAL RESEARCH POLICY IN THE FUTURE[l] Mr. Walden, members of the Science Policy Task Force, I am honored to be invited to appear on this panel and...to offer my thoughts on future biomedical research policy . My perspective is that of an outsider with a longstanding interest in federal biomedical

  3. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications.

    Science.gov (United States)

    Usman, Ali; Zia, Khalid Mahmood; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima; Zia, Fatima

    2016-05-01

    Chitin and chitosan are amino polysaccharides having massive structural propensities to produce bioactive materials with innovative properties, functions and diverse applications particularly in biomedical field. The specific physico-chemical, mechanical, biological and degradation properties offer efficient way to blend these biopolymers with synthetic ones. Polyurethane (PU) gained substantial attention owing to its structure-properties relationship. The immense activities of chitin/chitosan are successfully utilized to enhance the bioactive properties of polyurethanes. This review shed a light on chitin and chitosan based PU materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement in the biomedical field.

  4. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  5. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  6. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications

    OpenAIRE

    Zhang, Hongbin; Chiao, Mu

    2015-01-01

    Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-...

  7. Multi-scale biomedical systems: measurement challenges

    Science.gov (United States)

    Summers, R.

    2016-11-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.

  8. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  9. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  10. Biomedical Applications of Carbon Nanotubes: A Critical Review.

    Science.gov (United States)

    Sharma, Priyanka; Mehra, Neelesh Kumar; Jain, Keerti; Jain, N K

    2016-08-01

    The convergence of nano and biotechnology is enabling scientific and technical knowledge for improving human well being. Carbon nanotubes have become most fascinating material to be studied and unveil new avenues in the field of nanobiotechnology. The nanometer size and high aspect ratio of the CNTs are the two distinct features, which have contributed to diverse biomedical applications. They have captured the attention as nanoscale materials due to their nanometric structure and remarkable list of superlative and extravagant properties that encouraged their exploitation for promising applications. Significant progress has been made in order to overcome some of the major hurdles towards biomedical application of nanomaterials, especially on issues regarding the aqueous solubility/dispersion and safety of CNTs. Functionalized CNTs have been used in drug targeting, imaging, and in the efficient delivery of gene and nucleic acids. CNTs have also demonstrated great potential in diverse biomedical uses like drug targeting, imaging, cancer treatment, tissue regeneration, diagnostics, biosensing, genetic engineering and so forth. The present review highlights the possible potential of CNTs in diagnostics, imaging and targeted delivery of bioactives and also outlines the future opportunities for biomedical applications.

  11. Molecular engineering of polymer actuators for biomedical and industrial use

    Science.gov (United States)

    Banister, Mark; Eichorst, Rebecca; Gurr, Amy; Schweitzer, Georgette; Geronov, Yordan; Rao, Pavalli; McGrath, Dominic

    2012-04-01

    Five key materials engineering components and how each component impacted the working performance of a polymer actuator material are investigated. In our research we investigated the change of actuation performance that occurred with each change we made to the material. We investigated polymer crosslink density, polymer chain length, polymer gelation, type and density of reactive units, as well as the addition of binders to the polymer matrix. All five play a significant role and need to be addressed at the molecular level to optimize a polymer gel for use as a practical actuator material for biomedical and industrial use.

  12. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  13. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  14. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review.

    Science.gov (United States)

    Xin, Y; Hu, T; Chu, P K

    2011-04-01

    In spite of the immense potential of biodegradable magnesium alloys, the fast degradation rates of Mg-based biomedical implants in the physiological environment impose severe limitations in many clinical applications. Consequently, extensive in vitro studies have been carried out to investigate the materials' performance and fathom the associated mechanisms. Here, an up-to-date review of the in vitro studies on biomedical magnesium alloys in a simulated physiological environment is provided. This review focuses on four topics: (1) materials selection and in vitro biocompatibility of biomedical magnesium alloys; (2) in vitro degradation of biomedical magnesium alloys in simulated physiological environments, specifically discussing corrosion types, degradation rates, corrosion products and impact of the constituents in body fluids on materials degradation; (3) selection of suitable test media for in vitro assessment; and (4) future research trends.

  15. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  16. Irradiation effects on hydrases for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    2000-03-01

    To apply an irradiation technique to sterilize 'Hybrid' biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against {sup 60}Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N{sub 2} gas to suppress the formation of free radicals. (author)

  17. New biomedical applications of radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  18. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  19. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  20. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  1. ISIFC - dual Biomedical Engineering School.

    Science.gov (United States)

    Butterlin, Nadia; Soto-Romero, Georges; Duffaud, Jacques; Blagosklonov, Oleg

    2007-01-01

    The Superior Institute for Biomedical Engineering (ISIFC), created in 2001, is part of the Franche-Comté University and is accredited by the French Ministry of National Education. Its originality lies in its innovative course of studies, which trains engineers in the scientific and medical fields to get both competencies. The Institute therefore collaborates with the University Hospital Centre of Besançon (CHU), biomedical companies and National Research Centres (CNRS and INSERM). The dual expertise trainees will have acquired at the end of their 3 years course covers medical and biological skills, scientific and Technical expertises. ISIFC engineers answer to manufacturer needs for skilled scientific and technical staff in instrumentation and techniques adapted to diagnosis, therapeutics and medical control, as well as the needs of potential users for biomedical devices, whether they are doctors, hospital staff, patients, laboratories, etc... Both the skills and the knowledge acquired by an ISIFC engineer will enable him/her to fulfil functions of study, research and development in the industrial sector.

  2. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  3. Potential of Electrospun Nanofibers for Biomedical and Dental Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar

    2016-01-01

    Full Text Available Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed.

  4. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  5. Preparation and biomedical applications of chitin and chitosan nanofibers.

    Science.gov (United States)

    Azuma, Kazuo; Ifuku, Shinsuke; Osaki, Tomohiro; Okamoto, Yoshiharu; Minami, Saburo

    2014-10-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. Chitin occurs in nature as ordered macrofibrils. It is the major structural component in the exoskeleton of crab and shrimp shells and the cell wall of fungi and yeast. As chitin is not readily dissolved in common solvents, it is often converted to its more deacetylated derivative, chitosan. Chitin, chitosan, and its derivatives are widely used in tissue engineering, wound healing, and as functional foods. Recently, easy methods for the preparation of chitin and chitosan nanofibers have been developed, and studies on biomedical applications of chitin and chitosan nanofibers are ongoing. Chitin and chitosan nanofibers are considered to have great potential for various biomedical applications, because they have several useful properties such as high specific surface area and high porosity. This review summarizes methods for the preparation of chitin and chitosan nanofibers. Further, biomedical applications of chitin and chitosan nanofibers in (i) tissue engineering, (ii) wound dressing, (iii) cosmetic and skin health, (iv) stem cell technology, (v) anti-cancer treatments and drug delivery, (vi) anti-inflammatory treatments, and (vii) obesity treatment are summarized. Many studies indicate that chitin and chitosan nanofibers are suitable materials for various biomedical applications.

  6. [Scientometrics and bibliometrics of biomedical engineering periodicals and papers].

    Science.gov (United States)

    Zhao, Ping; Xu, Ping; Li, Bingyan; Wang, Zhengrong

    2003-09-01

    This investigation was made to reveal the current status, research trend and research level of biomedical engineering in Chinese mainland by means of scientometrics and to assess the quality of the four domestic publications by bibliometrics. We identified all articles of four related publications by searching Chinese and foreign databases from 1997 to 2001. All articles collected or cited by these databases were searched and statistically analyzed for finding out the relevant distributions, including databases, years, authors, institutions, subject headings and subheadings. The source of sustentation funds and the related articles were analyzed too. The results showed that two journals were cited by two foreign databases and five Chinese databases simultaneously. The output of Journal of Biomedical Engineering was the highest. Its quantity of original papers cited by EI, CA and the totality of papers sponsored by funds were higher than those of the others, but the quantity and percentage per year of biomedical articles cited by EI were decreased in all. Inland core authors and institutions had come into being in the field of biomedical engineering. Their research topics were mainly concentrated on ten subject headings which included biocompatible materials, computer-assisted signal processing, electrocardiography, computer-assisted image processing, biomechanics, algorithms, electroencephalography, automatic data processing, mechanical stress, hemodynamics, mathematical computing, microcomputers, theoretical models, etc. The main subheadings were concentrated on instrumentation, physiopathology, diagnosis, therapy, ultrasonography, physiology, analysis, surgery, pathology, method, etc.

  7. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2016-11-01

    Full Text Available Additive manufacturing (AM, sometimes called three-dimensional (3D printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  8. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    Science.gov (United States)

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  9. Carbon nanotubes as optical biomedical sensors.

    Science.gov (United States)

    Kruss, Sebastian; Hilmer, Andrew J; Zhang, Jingqing; Reuel, Nigel F; Mu, Bin; Strano, Michael S

    2013-12-01

    Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.

  10. Composite Gels Based on Poly (Vinyl alcohol) for Biomedical Uses

    OpenAIRE

    Hoppe, Cristina Elena; Alvarez, Vera Alejandra; Maiolo, Sebastián; Gonzalez, Jimena Soledad

    2016-01-01

    Nowadays, poly (vinyl alcohol) (PVA) hydrogels are being studied for several biomedical applications such as joint replacement, wound dressings and controlled drug-releasing devices, among others. Reinforced PVA hydrogels show good mechanical properties and are a suitable option to replace cartilages. Furthermore, these materials can prevent loss of body fluids, be a barrier against bacteria and also permeable to oxygen, for these all interesting properties, they are used like wound dressing...

  11. Multiple energy synchrotron biomedical imaging system

    Science.gov (United States)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  12. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  13. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  14. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  15. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  16. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  17. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  18. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    OpenAIRE

    Bat, Erhan

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to exhibit a wide range of physical- and biological properties and a range of degradation profiles. Interest in biodegradable elastomers is increasing, particularly for the engineering of soft and elastic t...

  19. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  20. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012)

    OpenAIRE

    Rabia Latif

    2015-01-01

    Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA) in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to ...

  1. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  2. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  3. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  4. Biological and mechanical compatibility of biomedical titanium alloy materials%生物医用钛合金材料的生物及力学相容性***☆

    Institute of Scientific and Technical Information of China (English)

    于振涛; 韩建业; 麻西群; 余森; 张明华; 张于胜

    2013-01-01

      背景:保证生物材料优良的生物及力学相容性是研制开发外科植入物及矫形器械产品的关键,但目前对其研究缺乏系统性和统一性认识。目的:初步分析生物医用钛合金材料生物及力学相容性的概念、内涵,指导医疗器械产品的选型设计与应用。方法:应用计算机检索PubMed、Elsiver、Springerlink、CNKI及维普等数据库1995至2012年相关文献,围绕“生物及力学相容性”主题词,探讨合金成分、显微组织及相变控制和材料表面状态优化等因素对钛合金材料生物及力学相容性的影响规律。结果与结论:生物及力学相容性是一个综合评价概念。进行医用钛合金材料选型设计时,首先要求合金中的组成元素无不良反应,并保证其与组织、血液及免疫和全身反应的安全性,同时要求所添加元素对钛合金的机械性能等其他性能不良影响最小。钛合金中常见的合金化元素主要包括α相稳定元素、β相稳定元素和中性元素3类。要使生物医用钛合金植入材料获得优良的生物及力学相容性,对材料内部显微组织和相变进行控制,以及开展材料表面状态改性优化也至关重要。但不能单纯追求一种钛合金的低模量或高强度等某一单项力学指标与人体骨组织接近或匹配而简单判定其生物力学相容性的优劣。%  BACKGROUND: Biomechanical compatibility is the key factor for the research and development of surgical implants and orthopedic devices. But the present research lacks systematic and common knowledge. OBJECTIVE: To preliminarily analyze the concept and intension of biomechanical compatibility of biomedical titanium al oys in order to direct the designing and applying of medical devices. METHODS: A computer-based search was performed for articles related to biomechanical compatibility in PubMed, Elsiver, SpringerLink, CNKI and VIP databases (1995

  5. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.

  6. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  7. ENLIGHT and LEIR biomedical facility.

    Science.gov (United States)

    Dosanjh, M; Cirilli, M; Navin, S

    2014-07-01

    Particle therapy (including protons and carbon ions) allows a highly conformal treatment of deep-seated tumours with good accuracy and minimal dose to surrounding tissues, compared to conventional radiotherapy using X-rays. Following impressive results from early phase trials, over the last decades particle therapy in Europe has made considerable progress in terms of new institutes dedicated to charged particle therapy in several countries. Particle therapy is a multidisciplinary subject that involves physicists, biologists, radio-oncologists, engineers and computer scientists. The European Network for Light Ion Hadron Therapy (ENLIGHT) was created in response to the growing needs of the European community to coordinate such efforts. A number of treatment centres are already operational and treating patients across Europe, including two dual ion (protons and carbon ions) centres in Heidelberg (the pioneer in Europe) and Pavia. However, much more research needs to be carried out and beamtime is limited. Hence there is a strong interest from the biomedical research community to have a facility with greater access to relevant beamtime. Such a facility would facilitate research in radiobiology and the development of more accurate techniques of dosimetry and imaging. The Low Energy Ion Ring (LEIR) accelerator at CERN presents such an opportunity, and relies partly on CERN's existing infrastructure. The ENLIGHT network, European Commission projects under the ENLIGHT umbrella and the future biomedical facility are discussed.

  8. Biomedical and environmental applications of magnetic nanoparticles

    Science.gov (United States)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol-gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  9. Stimuli responsive magnetic nanogels for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, I.; Petran, A.; Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Daia, C.; Marinica, O.; Vekas, L. [Romanian Academy, Timisoara Branch, Magnetic Fluids Laboratory, Timisoara (Romania)

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.

  10. Stimuli responsive magnetic nanogels for biomedical application

    Science.gov (United States)

    Craciunescu, I.; Petran, A.; Daia, C.; Marinica, O.; Vekas, L.; Turcu, R.

    2013-11-01

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe3O4 magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.

  11. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  12. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  13. Cross language information retrieval for biomedical literature

    NARCIS (Netherlands)

    Schuemie, M.; Trieschnigg, D.; Kraaij, W.

    2007-01-01

    This workshop report discusses the collaborative work of UT, EMC and TNO on the TREC Genomics Track 2007. The biomedical information retrieval task is approached using cross language methods, in which biomedical concept detection is combined with effective IR based on unigram language models. Furthe

  14. Locally Learning Biomedical Data Using Diffusion Frames

    Science.gov (United States)

    2012-01-01

    expands, increasingly detailed biomedical data must be integrated to betterunderstand normal function and evolution of multifactorial chronic disease ...1259 approach on two standard datasets, we aimed to classify and predict disease progression in AMD patients. Drusen were classified in multispectral...early disease stages in standard and new biomedical datasets. Key words: graphs and networks, machine learning. 1. INTRODUCTION As personalized medicine

  15. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  16. Precision biopolymers from protein precursors for biomedical applications.

    Science.gov (United States)

    Kuan, Seah Ling; Wu, Yuzhou; Weil, Tanja

    2013-03-12

    The synthesis of biohybrid materials with tailored functional properties represents a topic of emerging interest. Combining proteins as natural, macromolecular building blocks, and synthetic polymers opens access to giant brush-like biopolymers of high structural definition. The properties of these precision polypeptide copolymers can be tailored through various chemical modifications along their polypeptide backbone, which expands the repertoire of known protein-based materials to address biomedical applications. In this article, the synthetic strategies for the design of precision biopolymers from proteins through amino acid specific conjugation reagents are highlighted and the different functionalization strategies, their characterization, and applications are discussed.

  17. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  18. Fabrication of keratin-silica hydrogel for biomedical applications.

    Science.gov (United States)

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications.

  19. Synthesis and biomedical applications of aerogels: Possibilities and challenges.

    Science.gov (United States)

    Maleki, Hajar; Durães, Luisa; García-González, Carlos A; Del Gaudio, Pasquale; Portugal, António; Mahmoudi, Morteza

    2016-10-01

    Aerogels are an exceptional group of nanoporous materials with outstanding physicochemical properties. Due to their unique physical, chemical, and mechanical properties, aerogels are recognized as promising candidates for diverse applications including, thermal insulation, catalysis, environmental cleaning up, chemical sensors, acoustic transducers, energy storage devices, metal casting molds and water repellant coatings. Here, we have provided a comprehensive overview on the synthesis, processing and drying methods of the mostly investigated types of aerogels used in the biological and biomedical contexts, including silica aerogels, silica-polymer composites, polymeric and biopolymer aerogels. In addition, the very recent challenges on these aerogels with regard to their applicability in biomedical field as well as for personalized medicine applications are considered and explained in detail.

  20. Stimulus-responsive polymeric nanoparticles for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymeric nanoparticles with unique properties are regarded as the most promising materials for biomedical applications including drug delivery and in vitro/in vivo imaging.Among them,stimulus-responsive polymeric nanoparticles,usually termed as "intelligent" nanoparticles,could undergo structure,shape,and property changes after being exposed to external signals including pH,temperature,magnetic field,and light,which could be used to modulate the macroscopical behavior of the nanoparticles.This paper reviews the recent progress in stimulus-responsive nanoparticles used for drug delivery and in vitro/in vivo imaging,with an emphasis on double/multiple stimulus-responsive systems and their biomedical applications.

  1. Metal-Based Antibacterial Substrates for Biomedical Applications.

    Science.gov (United States)

    Paladini, Federica; Pollini, Mauro; Sannino, Alessandro; Ambrosio, Luigi

    2015-07-13

    The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.

  2. Leveraging Industry-Academia Collaborations in Adaptive Biomedical Innovation.

    Science.gov (United States)

    Stewart, S R; Barone, P W; Bellisario, A; Cooney, C L; Sharp, P A; Sinskey, A J; Natesan, S; Springs, S L

    2016-12-01

    Despite the rapid pace of biomedical innovation, research and development (R&D) productivity in the pharmaceutical industry has not improved broadly. Increasingly, firms need to leverage new approaches to product development and commercial execution, while maintaining adaptability to rapid changes in the marketplace and in biomedical science. Firms are also seeking ways to capture some of the talent, infrastructure, and innovation that depends on federal R&D investment. As a result, a major transition to external innovation is taking place across the industry. One example of these external innovation initiatives is the Sanofi-MIT Partnership, which provided seed funding to MIT investigators to develop novel solutions and approaches in areas of interest to Sanofi. These projects were highly collaborative, with information and materials flowing both ways. The relatively small amount of funding and short time frame of the awards built an adaptable and flexible process to advance translational science.

  3. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement.

  4. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  5. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    Biomedicine is a field that has great influence on the majority of mankind. The constant development has considerably changed our way of life during the last centuries. This has been achieved through the dedication of biomedical researchers along with the tremendous ressources that over time have...... been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for biomedical studies are a recurring theme in this thesis. Data collected in some biomedical studies are positively skewed; hence methods relying on the normal distribution are not directly applicable. We investigated how data from one of these studies are suitably analyzed. We extracted 23 different summary...

  6. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  7. Animals in biomedical space research

    Science.gov (United States)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  8. Biomedical Perspective of Electrochemical Nanobiosensor

    Institute of Scientific and Technical Information of China (English)

    Priti Singh; Shailendra Kumar Pandey; Jyoti Singh; Sameer Srivastava; Sadhana Sachan; Sunil Kumar Singh

    2016-01-01

    Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensi-tivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.

  9. Tritium AMS for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing {sup 3}H-AMS to measure {sup 3}H activity of mg-sized biological samples. LLNL has already successfully applied {sup 14}C AMS to a variety of problems in the area of biomedical research. Development of {sup 3}H AMS would greatly complement these studies. The ability to perform {sup 3}H AMS measurements at sensitivities equivalent to those obtained for {sup 14}C will allow us to perform experiments using compounds that are not readily available in {sup 14}C-tagged form. A {sup 3}H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds.

  10. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  11. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  12. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  13. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    Science.gov (United States)

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  14. Biomedical Effects and Nanomaterials: Nanosafety of Engineered Recent Progress%Biomedical Effects and Nanomaterials: Nanosafety of Engineered Recent Progress

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 朱墨桃; 李敬源

    2012-01-01

    With the development of nanotechnology, there are growing concerns about biological effects and biosafety of engineered nanomaterials. On the other hand, nanoparticles are widely used in medical fields based on their novel interactions with biological entities. However, there are still a lot of challenges to establish systematic knowledge about nanotoxicology and develop biologically safer biomedical materials due to the variety of factors determining their biomedical effects and nanotoxicity. Understanding the interactions of engineered nanomaterials with the bio- logical entities becomes crucial to the further development of nanoscience and nanotechnology. In the past decade, colleagues in our laboratory intensively studied the toxic properties of various kinds of nanomaterials and their chemical mechanisms. In this paper we review the recent advance in the research on the biological effects of engi- neered nanomaterials and nanosafety issue, by focusing on the studies about representative nanomaterials in our la- boratory.

  15. Nanomedicine: magnetic nanoparticles and their biomedical applications.

    Science.gov (United States)

    Banerjee, Reshmi; Katsenovich, Yelena; Lagos, Leonel; McIintosh, M; Zhang, Xueji; Li, Chen-Zhong

    2010-01-01

    During this past decade, science and engineering have seen a rapid increase in interest for nanoscale materials with dimensions less than 100 nm, which lie in the intermediate state between atoms and bulk (solid) materials. Their attributes are significantly altered relative to the corresponding bulk materials as they exhibit size dependent behavior such as quantum size effects (depending on bulk Bohr radius), optical absorption and emission, coulomb staircase behavior (electrical transport), superparamagnetism and various unique properties. They are active components of ferrofluids, recording tape, flexible disk recording media along with potential future applications in spintronics: a new paradigm of electronics utilizing intrinsic charge and spin of electrons for ultra-high-density data storage and quantum computing. They are used in a gamut of biomedical applications: bioseparation of biological entities, therapeutic drugs and gene delivery, radiofrequency-induced destruction of cells and tumors (hyperthermia), and contrast-enhancement agents for magnetic resonance imaging (MRI). The magnetic nanoparticles have optimizable, controllable sizes enabling their comparison to cells (10-100 µm), viruses (20-250 nm), proteins (3-50 nm), and genes (10-100 nm). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) provide necessary characterization methods that enable accurate structural and functional analysis of interaction of the biofunctional particles with the target bioentities. The goal of the present discussion is to provide a broad review of magnetic nanoparticle research with a special focus on the synthesis, functionalization and medical applications of these particles, which have been carried out during the past decade, and to examine several prospective directions.

  16. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  17. Evaluation of research in biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gkoutos, Georgios V

    2013-11-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.

  18. TLC/HPTLC in Biomedical Applications

    Science.gov (United States)

    Mohammad, A.; Moheman, A.

    The main objective of this chapter is to encapsulate the applications of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) as used in the analysis of compounds of pharmaceutical importance. The chapter discusses the advantages of using TLC or HPTLC for biomedical applications and summarizes important information on stationary and mobile phases, adopted methodology, sample application, zone detection, and identification and quantification of amino acids and proteins, carbohydrates, lipids, bile acids, drugs, vitamins, and porphyrins in biological matrices such as blood, urine, feces, saliva, cerebrospinal fluid, body tissues, etc. Among the stationary phases, silica gel has been the most preferred layer material in combination of mixed aqueous- organic or multicomponent organic solvent systems as mobile phase. For quantitative determination of analyte in various matrices, densitometry has been more commonly used. According to the literature survey, the interest of chromatographers in using the TLC/HPTLC has been in the following order: drugs > amino acids and proteins > lipids > bile acids > carbohydrates/vitamins > porphyrins.

  19. Biomedical Applications of Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2011-01-01

    behaviors, due to the peculiar crystallographic structure of the alloys, assure the recovery of the original shape even after large deformations and the maintenance of a constant applied force in correspondence of significant displacements. These properties, joined with good corrosion and bending resistance, biological and magnetic resonance compatibility, explain the large diffusion, in the last 20 years, of SMA in the production of biomedical devices, in particular for mini-invasive techniques. In this paper a detailed review of the main applications of NiTi alloys in dental, orthopedics, vascular, neurological, and surgical fields is presented. In particular for each device the main characteristics and the advantages of using SMA are discussed. Moreover, the paper underlines the opportunities and the room for new ideas able to enlarge the range of SMA applications. However, it is fundamental to remember that the complexity of the material and application requires a strict collaboration between clinicians, engineers, physicists and chemists for defining accurately the problem, finding the best solution in terms of device design and accordingly optimizing the NiTi alloy properties.

  20. Veterans administration biomedical engineer training program.

    Science.gov (United States)

    Bradley, D E

    1981-01-01

    The Veterans administration's Department of Medical and Surgery includes in its Graduate Engineer Training Program a special program for Biomedical Engineers. The program is intended for recent graduates in biomedical engineering and provides for the VA a means of recruiting and training biomedical engineers for employment in its medical centers nationwide. This paper discusses the structure and objectives of the program, the opportunities that exist for the trainee within the program and the results of the program since its inception in 1973, and provides an outlook on the future of the program.

  1. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  2. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  3. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    XIAO ChunSheng; TIAN HuaYu; ZHUANG XiuLi; CHEN XueSi; JING XiaBin

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  4. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  5. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  6. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique ’intelligent’ characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  7. Decoration of silk fibroin by click chemistry for biomedical application.

    Science.gov (United States)

    Zhao, Hongshi; Heusler, Eva; Jones, Gabriel; Li, Linhao; Werner, Vera; Germershaus, Oliver; Ritzer, Jennifer; Luehmann, Tessa; Meinel, Lorenz

    2014-06-01

    Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material's biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.

  8. Natural Polymers and their Application in Drug Delivery and Biomedical Field

    Directory of Open Access Journals (Sweden)

    Jana S*,1

    2011-01-01

    Full Text Available Biodegradable polymers are widely being studied as a potential carrier material for site specific drug delivery because of its non-toxic,biocompatible in nature. Natural polysaccharides have been investigated for drug delivery applications as well as in biomedical fields. Modified polymer has found its application as a support material for gene delivery, cell culture, and tissue engineering. Now a day, the polymer is being modified to obtain novel biomaterial for controlled drug delivery applications. This review provides an overview of the different modified polymer derivatives and their applications with special attention being put on controlled drug delivery and biomedical engineering.

  9. Centrifugal microfluidics for biomedical applications.

    Science.gov (United States)

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  10. Zirconium: biomedical and nephrological applications.

    Science.gov (United States)

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  11. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  12. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  13. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  14. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  15. Pharmaceutical and biomedical applications of quantum dots.

    Science.gov (United States)

    Bajwa, Neha; Mehra, Neelesh K; Jain, Keerti; Jain, Narendra K

    2016-05-01

    Quantum dots (QDs) have captured the fascination and attention of scientists due to their simultaneous targeting and imaging potential in drug delivery, in pharmaceutical and biomedical applications. In the present study, we have exhaustively reviewed various aspects of QDs, highlighting their pharmaceutical and biomedical applications, pharmacology, interactions, and toxicological manifestations. The eventual use of QDs is to dramatically improve clinical diagnostic tests for early detection of cancer. In recent years, QDs were introduced to cell biology as an alternative fluorescent probe.

  16. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang; Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  17. Optomechatronics for Biomedical Optical Imaging: An Overview

    OpenAIRE

    Cho Hyungsuck

    2015-01-01

    The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical ...

  18. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei

    2015-01-01

    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  19. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  20. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  1. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  2. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  3. Layer-by-layer films for biomedical applications

    CERN Document Server

    Picart, Catherine; Voegel, Jean-Claude

    2015-01-01

    The layer-by-layer (LbL) deposition technique is a versatile approach for preparing nanoscale multimaterial films: the fabrication of multicomposite films by the LbL procedure allows the combination of literally hundreds of different materials with nanometer thickness in a single device to obtain novel or superior performance. In the last 15 years the LbL technique has seen considerable developments and has now reached a point where it is beginning to find applications in bioengineering and biomedical engineering. The book gives a thorough overview of applications of the LbL technique in the c

  4. Application of ionizing radiation processing in biomedical engineering and microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Hongfej, H.; Jilan, W.

    1988-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristics reaction means such as crosslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become a important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this technique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics.

  5. Semiconductor microlasers with intracavity microfluidics for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E.

    1997-03-01

    Microfabricated electro-optical-mechanical systems are expected to play an important role in future biomedical, biochemical and environmental technologies. Semiconductor photonic materials and devices are attractive components of such systems because of their ability to generate, transmit, modulate, and detect light. In this paper the authors report investigations of light-emitting semiconductor/glass microcavities filled with simple fluids. They examine surface tension for transporting liquids into the intracavity space and study the influence of the liquid on the spectral emission of the microcavity.

  6. End-functionalized ROMP polymers for Biomedical Applications.

    Science.gov (United States)

    Madkour, Ahmad E; Koch, Amelie H R; Lienkamp, Karen; Tew, Gregory N

    2010-05-25

    We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs' third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated.

  7. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  8. Nonlinear acoustics in biomedical ultrasound

    Science.gov (United States)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  9. Bioresponsive materials

    Science.gov (United States)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen

    2016-10-01

    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  10. Factors of Biomedical Polymer Material Sterilization Using Ethylene Oxide%医用高分子材料环氧乙烷灭菌效果影响因素分析

    Institute of Scientific and Technical Information of China (English)

    朱静; 周冬; 张弦

    2016-01-01

    Objective To analyze the factors of the ethylene oxide′s sterilization effect in order to improve its effect. Methods Rataed factors in the sterilization process were analysed one by one. Results There were so many factors impacting the sterilization effect. The mechanism of each factor was very various,i. e. ,temperature,humidity,concentration,reaction time,loading methods,each factor had dif-ferent mechanism. Conclusion In the use of ethylene oxide for the sterilization of medical polymer materials,we should fully consider the impact of various factors in order to achieve good sterilization effect.%目的:分析环氧乙烷灭菌效果的影响因素,提高灭菌效果。方法对灭菌过程中涉及的相关因素逐一分析。结果影响医用高分子材料环氧乙烷灭菌效果的因素较多,主要有温度、湿度、浓度、作用时间、装载方式等,各个因素的影响机理差异很大。结论在运用环氧乙烷对医用高分子材料进行灭菌时,应充分考虑各个因素的影响,以达到良好的灭菌效果。

  11. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  12. On the Crisis in Biomedical Education: Is There an Overproduction of Biomedical PhDs?

    Science.gov (United States)

    Domer, Judith E.; And Others

    1996-01-01

    The debate over whether there is an oversupply of doctorates in the biomedical sciences is examined, and a case study of doctoral graduates and postdoctoral fellows at the Tulane University (Louisiana) Medical Center is reported. It is concluded that there is no biomedical doctoral glut and that doctoral program downsizing would have serious…

  13. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2014-01-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  14. Report: biomedical waste management practices at Balrampur Hospital, Lucknow, India.

    Science.gov (United States)

    Gupta, Saurabh; Boojh, Ram

    2006-12-01

    Biomedical waste has become a serious health hazard in many countries, including India. Careless and indiscriminate disposal of this waste by healthcare establishments and research institutions can contribute to the spread of serious diseases such as hepatitis and AIDS (HIV) among those who handle it and also among the general public. The present study pertains to the biomedical waste management practices at Balrampur Hospital, a premier healthcare establishment in Lucknow, in North India. The study shows that infectious and non-infectious wastes are dumped together within the hospital premises, resulting in a mixing of the two, which are then disposed of with municipal waste at the dumping sites in the city. All types of wastes are collected in common bins placed outside the patients wards. For disposal of this waste the hospital depends on the generosity of the Lucknow Municipal Corporation, whose employees generally collect it every 2 or 3 days. The hospital does not have any treatment facility for infectious waste. The laboratory waste materials, which are disposed of directly into the municipal sewer without proper disinfection of pathogens, ultimately reach the Gomti River. All disposable plastic items are segregated by the rag pickers from the hospital as well as municipal bins and dumps. The waste is deposited either inside the hospital grounds, or outside in the community bin for further transportation and disposal along with municipal solid waste. The open dumping of the waste makes it freely accessible to rag pickers who become exposed to serious health hazards due to injuries from sharps, needles and other types of material used when giving injections. The results of the study demonstrate the need for strict enforcement of legal provisions and a better environmental management system for the disposal of biomedical waste in the Balrampur Hospital, as well as other healthcare establishments in Lucknow.

  15. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants

    Science.gov (United States)

    Yu, Zhen-Tao; Zhang, Ming-Hua; Tian, Yu-Xing; Cheng, Jun; Ma, Xi-Qun; Liu, Han-Yuan; Wang, Chang

    2014-09-01

    Developing the new titanium alloys with excellent biomechanical compatibility has been an important research direction of surgical implants materials. Present paper summarizes the international researches and developments of biomedical titanium alloys. Aiming at increasing the biomechanical compatibility, it also introduces the exploration and improvement of alloy designing, mechanical processing, microstructure and phase transformation, and finally outlines the directions for scientific research on the biomedical titanium alloys in the future.

  16. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  17. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  18. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  19. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  20. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    Science.gov (United States)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  1. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M.; Wawszczak, D.; Starosta, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  2. Antibacterial properties of biomedical surfaces containing micrometric silver islands

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Tanoira, R; Perez-Jorge, C; Endrino, J L; Gomez-Barrena, E; Horwat, D; Pierson, J F; Esteban, J, E-mail: rptanoira@fjd.es

    2010-11-01

    A set of Cu-Mn-O and Ag-Cu-Mn-O films were sputter-deposited onto polished Ti-6Al-4V coupons and the microbiological adherence of Staphylococcus sp. was studied in these biomedical surfaces modified using advanced ternary and quaternary oxides that incorporated micrometric silver islands. The as-deposited ternary and quaternary compounds were amorphous. Upon air annealing the Ag-Cu-Mn-O films, silver-oxygen bonds in the compound destabilize, resulting in the segregation of metallic silver in the form of micrometric layered silver islands with high specific area dispersed at the surface of the remaining oxide. Silver is well known to have a natural biocidal character and its presence in the surface forming large micrometric escalonated islands is, in principle, predicted to enhance the antimicrobial properties of biomedical surfaces. Microbial adhesion tests were performed in triplicates using collection strains of Staphylococcus aureus and Staphylococcus epidermidis. Preliminary results indicate that both strains showed decreased adherence to modified materials, S. epidermidis showed higher adherence these materials than S. aureus, however, there was no statistically significant differences between Cu-Mn-O and Ag-Cu-Mn-O containing silver islands.

  3. Biomedical nanomaterials for imaging-guided cancer therapy

    Science.gov (United States)

    Huang, Yuran; He, Sha; Cao, Weipeng; Cai, Kaiyong; Liang, Xing-Jie

    2012-09-01

    To date, even though various kinds of nanomaterials have been evaluated over the years in order to develop effective cancer therapy, there is still significant challenges in the improvement of the capabilities of nano-carriers. Developing a new theranostic nanomedicine platform for imaging-guided, visualized cancer therapy is currently a promising way to enhance therapeutic efficiency and reduce side effects. Firstly, conventional imaging technologies are reviewed with their advantages and disadvantages, respectively. Then, advanced biomedical materials for multimodal imaging are illustrated in detail, including representative examples for various dual-modalities and triple-modalities. Besides conventional cancer treatment (chemotherapy, radiotherapy), current biomaterials are also summarized for novel cancer therapy based on hyperthermia, photothermal, photodynamic effects, and clinical imaging-guided surgery. In conclusion, biomedical materials for imaging-guided therapy are becoming one of the mainstream treatments for cancer in the future. It is hoped that this review might provide new impetus to understand nanotechnology and nanomaterials employed for imaging-guided cancer therapy.

  4. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  5. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  6. Biomedical data analysis by supervised manifold learning.

    Science.gov (United States)

    Alvarez-Meza, A M; Daza-Santacoloma, G; Castellanos-Dominguez, G

    2012-01-01

    Biomedical data analysis is usually carried out by assuming that the information structure embedded into the biomedical recordings is linear, but that statement actually does not corresponds to the real behavior of the extracted features. In order to improve the accuracy of an automatic system to diagnostic support, and to reduce the computational complexity of the employed classifiers, we propose a nonlinear dimensionality reduction methodology based on manifold learning with multiple kernel representations, which learns the underlying data structure of biomedical information. Moreover, our approach can be used as a tool that allows the specialist to do a visual analysis and interpretation about the studied variables describing the health condition. Obtained results show how our approach maps the original high dimensional features into an embedding space where simple and straightforward classification strategies achieve a suitable system performance.

  7. Optomechatronics for Biomedical Optical Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Cho Hyungsuck

    2015-01-01

    Full Text Available The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical phenomena. This paper addresses the technical issues related to tissue imaging, visualization of interior surfaces of organs, laparoscopic and endoscopic imaging and imaging of neuronal activities and structures. Within such problem domains the paper overviews the states of the art technology focused on how optical components are fused together with those of mechatronics to create the functionalities required for the imaging systems. Future perspective of the optical imaging in biomedical field is presented in short.

  8. NASA Biomedical Informatics Capabilities and Needs

    Science.gov (United States)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  9. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  10. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  11. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  12. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  13. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation.

    Science.gov (United States)

    Wen, Ming; Wen, Cuie; Hodgson, Peter; Li, Yuncang

    2014-04-01

    Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

  14. Carbon nanotubes reinforced composites for biomedical applications.

    Science.gov (United States)

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  15. Biomedical Applications of Terahertz Spectroscopy and Imaging.

    Science.gov (United States)

    Yang, Xiang; Zhao, Xiang; Yang, Ke; Liu, Yueping; Liu, Yu; Fu, Weiling; Luo, Yang

    2016-10-01

    Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology.

  16. Advanced Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the third in a series of short books on probability theory and random processes for biomedical engineers. This book focuses on standard probability distributions commonly encountered in biomedical engineering. The exponential, Poisson and Gaussian distributions are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF. Many important properties of jointly Gaussian random variables are presented. The primary subjects of the final chapter are methods for determining the probability distribution of a function of a random variable. We first evaluate the prob

  17. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites, their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  18. Ontology-Oriented Programming for Biomedical Informatics.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2016-01-01

    Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.

  19. Functionalized Gold Nanoparticles and Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shree R. Singh

    2011-06-01

    Full Text Available Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology.

  20. Should biomedical research be like Airbnb?

    Science.gov (United States)

    Bonazzi, Vivien R; Bourne, Philip E

    2017-04-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research.

  1. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  2. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  3. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  4. "Smart" polymeric nanospheres as new materials for possible biomedical applications.

    Science.gov (United States)

    Szczubiałka, Krzysztof; Jankowska, Monika; Nowakowska, Maria

    2003-08-01

    Novel random terpolymers of N-isopropylacrylamide (NIPAM), sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS), and cinnamoyloxyethylmethacrylate (CEMA) were synthesized by free radical copolymerization using AIBN as an initiator. Five terpolymers were obtained by copolymerization of the monomer mixtures containing a fixed amount of 10 mol % of AMPS while the content of CEMA ranged from 5 to 25 mol % and was changed in 5 mol % increments. The terpolymers obtained are water-soluble. Because of their amphiphilic nature they undergo self-organization in the aqueous solution with the formation of micelles capable of solubilizing sparingly water soluble organic compounds, such as drugs. The terpolymers are susceptible to three external stimuli, i.e. temperature, ionic strength and UV light. Due to the presence of NIPAM in the terpolymers they display the lower critical solution temperature (LCST), the presence of AMPS makes them sensitive to the ionic strength of the solution, while the light-responsiveness of the terpolymers is due to the presence of cinnamoyl chromophores, which undergo photodimerization when irradiated with UV light at about 280 nm. Application of any of these stimuli alone or in combination with other stimuli allows changing the copolymer properties in a controlled way.

  5. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  6. A review on stereolithography and its applications in biomedical engineering.

    Science.gov (United States)

    Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-08-01

    Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s. Although many other techniques have been developed since then, stereolithography remains one of the most powerful and versatile of all SFF techniques. It has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available. In this paper we discuss the characteristic features of the stereolithography technique and compare it to other SFF techniques. The biomedical applications of stereolithography are reviewed, as well as the biodegradable resin materials that have been developed for use with stereolithography. Finally, an overview of the application of stereolithography in preparing porous structures for tissue engineering is given.

  7. Silicatein: nanobiotechnological and biomedical applications.

    Science.gov (United States)

    Schröder, Heinz C; Schlossmacher, Ute; Boreiko, Alexandra; Natalio, Filipe; Baranowska, Malgorzata; Brandt, David; Wang, Xiaohong; Tremel, Wolfgang; Wiens, Matthias; Müller, Werner E G

    2009-01-01

    Silica-based materials are used in many high-tech products including microelectronics, optoelectronics, and catalysts. Siliceous sponges (Demospongiae and Hexactinellida) are unique in their ability to synthesize silica enzymatically. We have cloned the silica-forming enzymes, silicateins, from both demosponges (marine and freshwater sponges) and hexactinellid sponges. The recombinant enzymes allow the synthesis of silica under environmentally benign ambient conditions, while the technical (chemical) production of silica commonly requires high temperatures and pressures, and extremes of pH. Silicateins can be used for the fabrication of highly-ordered inorganic-organic composite materials with defined optical, electrical, and mechanical properties. The simple self-assembly properties of silicateins which are able to form silica and other metal oxides in aqueous solution allow the development of novel products in nano(bio)technology, medicine, and dentistry.

  8. Crosslinking biopolymers for biomedical applications.

    Science.gov (United States)

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications.

  9. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  10. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  11. [The application of Fourier transform infrared technology in biomedical sphere].

    Science.gov (United States)

    Zhang, Xiao-qing; Xu, Zhi; Ling, Xiao-feng; Xu, Yi-zhuang; Wu, Jin-guang

    2010-01-01

    The authors systemically reviewed the development of FTIR technology and its innovative advances during the past fifty years. FTIR technique was once abandoned after initial exploration in biomedical fields, which could not confirm its reliability and credibility. After technological innovation and refined numerical analysis methods, FTIR technique has been applied to a wide range of fields, from single cellular to the complex biomedical tissue components. Nowadays, mature and advanced FTIR technology, such as FTIR microspectrometer and FTIR imaging system, with the aid of pattern recognition and tissue microarray, greatly facilitated the large parallel scale investigation of molecular structure. The recent development of FTIR spectroscopic imaging has enhanced our capability to examine, on a microscopic scale, the spatial distribution of vibrational spectroscopic signatures of materials spanning the physical and biomedical disciplines. The integration of instrumentation development, theoretical analyses to provide guidelines for imaging practice, novel data processing algorithms, and the introduction of the technique to new fields. FTIR technique has helped analyze the complex components of bile stones, which persisted to be a vexing problem and causing high death rate in China. Besides, FTIR technology could provide reliable information in discriminating benign and malignancy. It has been used in detecting thyroid nodules, mammary gland, gastrointestinal tract, cardiovascular and prostate diseases, and parotid gland tissue in combination with ATR detecting device, and has broad clinical application prospects. Till now, FTIR technology has achieved the fast and accurate diagnosis for freshly dissected tissues such as discriminating thyroid carcinoma from nodular goiter intraoperatively. However, further investigations need to be done in this sphere to achieve greater accomplishments.

  12. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications.

    Science.gov (United States)

    Zhang, Hongbin; Chiao, Mu

    Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-fouling coatings of PDMS. In this review, typical nonfouling materials for PDMS coatings are introduced and the associated basic anti-fouling mechanisms, including the steric repulsion mechanism and the hydration layer mechanism, are described. Understanding the relationships between the characteristics of coating materials and the accompanying anti-fouling mechanisms is critical for preparing PDMS coatings with desirable anti-fouling properties.

  13. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012

    Directory of Open Access Journals (Sweden)

    Rabia Latif

    2015-01-01

    Full Text Available Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to 2012. The search was limited to medical and biomedical subjects. Results were saved in a text file and later checked carefully to exclude false positive errors. The quality of the publication was assessed using Journal Citation Report 2012. Results: Biomedical research production in KSA in those 5 years showed a clear linear progression. Riyadh was the main hub of medical and biomedical research activity. Most of the publications (40.9% originated from King Saud University (KSU. About half of the articles were published in journals with an Impact Factor (IF of < 1, one-fourth in journals with no IF, and the remaining one-fourth in journals with a high IF (≥1. Conclusion: This study revealed that research activity in KSA is increasing. However, there is an increasing trend of publishing in local journals with a low IF. More effort is required to promote medical research in Saudi Arabia.

  14. Evaluation of Bio-Medical Waste Management Practices in a Government Medical College and Hospital

    Directory of Open Access Journals (Sweden)

    Srivastav Shalini, Mahajan Harsh, Mathur B P

    2012-01-01

    Full Text Available Background: Biomedical waste (BMW collection and proper disposal has become a significant concern for both the medical and the general community as improper management poses risks to the health care workers, waste handlers, patients, community in general and largely the environment. Objectives: (i Assessment of current Bio-medical waste management practices including collection, segregation, transportation, storage, treatment and disposal technologies in tertiary health care center. (ii Assessment of health and safety practices for the health care personnel involved in Bio-Medical Waste Management. Materials and Methods: Waste management practices in the Government Hospital was studied during March 2009 – May 2009.The information / data regarding Bio-Medical Waste Management practices and safety was collected by way of semi- structured interview. Results: M.L.B Medical College generates 0.52Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in wards for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory, it was basically due to un-awareness of health hazards which may occur because of improper waste management practices. Conclusion: Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute; training and motivation must be given paramount importance to meet the current needs and standards of bio-medical waste management.

  15. International Symposium on Biomedical Engineering and Medical Physics

    CERN Document Server

    Katashev, Alexei; Lancere, Linda

    2013-01-01

    This volume presents the proceedings of the International Symposium on Biomedical Engineering and Medical Physics and is dedicated to the 150 anniversary of the Riga Technical University, Latvia. The content includes various hot topics in biomedical engineering and medical physics.

  16. Students as Signal Sources in the Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    Laboratory courses are used throughout Biomedical Engineering curriculum to give students hands-on, practical experience in scientific, computing and... biomedical engineering principles as well as increase student appreciation of the scientific process.

  17. Natural Polymers and their Application in Drug Delivery and Biomedical Field

    OpenAIRE

    Jana S; Gandhi A; Sen KK; Basu SK

    2011-01-01

    Biodegradable polymers are widely being studied as a potential carrier material for site specific drug delivery because of its non-toxic,biocompatible in nature. Natural polysaccharides have been investigated for drug delivery applications as well as in biomedical fields. Modified polymer has found its application as a support material for gene delivery, cell culture, and tissue engineering. Now a day, the polymer is being modified to obtain novel biomaterial for controlled drug delivery appl...

  18. Chaos theory for the biomedical engineer.

    Science.gov (United States)

    Eberhart, R C

    1989-01-01

    A brief introduction to chaos theory is provided. Definitions of chaos and attributes of chaos and fractals are discussed. Several general examples are examined, and fractals are introduced with a brief look at the Mandelbrot and Julia sets. Biomedical examples of chaotic behaviour and fractals are presented.

  19. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment.

  20. Micro and Nano Manipulations for Biomedical Applications

    CERN Document Server

    Yih, Tachung C

    2007-01-01

    Taking bio-device research and development to "the next level," this book covers the latest advances in biomedical microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). The book presents new developments in the synthesis and use of metallic nanoparticles in bio-sensing and drug delivery, including quantum dots semiconductors nanocrystals.

  1. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  2. Biomedical Engineering Education: A Conservative Approach

    Science.gov (United States)

    Niemi, Eugene E., Jr.

    1973-01-01

    Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)

  3. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  4. CONAN : Text Mining in the Biomedical Domain

    NARCIS (Netherlands)

    Malik, R.

    2006-01-01

    This thesis is about Text Mining. Extracting important information from literature. In the last years, the number of biomedical articles and journals is growing exponentially. Scientists might not find the information they want because of the large number of publications. Therefore a system was cons

  5. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius

    2010-01-01

    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt

  6. Integrating image data into biomedical text categorization.

    Science.gov (United States)

    Shatkay, Hagit; Chen, Nawei; Blostein, Dorothea

    2006-07-15

    Categorization of biomedical articles is a central task for supporting various curation efforts. It can also form the basis for effective biomedical text mining. Automatic text classification in the biomedical domain is thus an active research area. Contests organized by the KDD Cup (2002) and the TREC Genomics track (since 2003) defined several annotation tasks that involved document classification, and provided training and test data sets. So far, these efforts focused on analyzing only the text content of documents. However, as was noted in the KDD'02 text mining contest-where figure-captions proved to be an invaluable feature for identifying documents of interest-images often provide curators with critical information. We examine the possibility of using information derived directly from image data, and of integrating it with text-based classification, for biomedical document categorization. We present a method for obtaining features from images and for using them-both alone and in combination with text-to perform the triage task introduced in the TREC Genomics track 2004. The task was to determine which documents are relevant to a given annotation task performed by the Mouse Genome Database curators. We show preliminary results, demonstrating that the method has a strong potential to enhance and complement traditional text-based categorization methods.

  7. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  8. Advances in Swine biomedical Model Genomics

    Science.gov (United States)

    This manuscript is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease pro...

  9. Thermoforming of Film-Based Biomedical Microdevices

    NARCIS (Netherlands)

    Truckenmuller, Roman; Giselbrecht, Stefan; Rivron, Nicolas; Gottwald, Eric; Saile, Volker; Berg, van den Albert; Wessling, Matthias; Blitterswijk, van Clemens

    2011-01-01

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated

  10. Biomedical engineering at UCT - challenges and opportunities.

    Science.gov (United States)

    Douglas, Tania S

    2012-03-02

    The biomedical engineering programme at the University of Cape Town has the potential to address some of South Africa's unique public health challenges and to contribute to growth of the local medical device industry, directly and indirectly, through research activities and postgraduate education. Full realisation of this potential requires engagement with the clinical practice environment and with industry.

  11. Electrosprayed calcium phosphate coatings for biomedical purposes

    NARCIS (Netherlands)

    Leeuwenburgh, Sander Cornelis Gerardus

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it wa

  12. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  13. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  14. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  15. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.

    Science.gov (United States)

    Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D

    2017-03-30

    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice.

  16. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Introdução: O peixe-zebra (Danio rerio) é um excelente organismo modelo para o estudo do desenvolvimento dos vertebrados. Este facto deve-se às grandes ninhadas que cada casal produz, que podem atingir 200 embriões a cada sete dias, e ao facto dos embriões serem pequenos, transparentes e com um rápido desenvolvimento externo.Material e Métodos: Usando ferramentas de pesquisa bibliográfica científica disponíveis online e utilizando e as palavras-chave “Zebrafish”, “biomedical research”, “human disease” e “drug screening”, avaliámos estudos originais e revisões indexadas na PubMed.Resultados: Neste artigo de revisão fazemos um resumo do trabalho realizado com este modelo no melhoramento doconhecimento de várias doenças humanas. Fizemos ainda um breve relato da investigação biomédica realizada em Portugal com o modelo de peixe-zebra.Discussão: Têm sido desenvolvidas poderosas ferramentas genéticas e de microscopia in vivo, que também tornaram o peixe-zebra num modelo valioso em investigação biomédica. A conjugação destes atributos com a optimização de sistemas automatizados de triagem de medicamentos, transformaram o peixe-zebra num top model da investigação em biomedicina, nomeadamente na triagem de compostos químicos com efeitos terapêuticos e em testes de toxicidade. Além disso, com a otimização da tecnologia dos xenografos, será possível usar o peixe-zebra na escolha de uma terapia personalizada.Conclusão: O peixe-zebra é um excelente organismo modelo na pesquisa biomédica, em screens de medicamentos e na terapia clinica.

  17. [The Chilean Association of Biomedical Journal Editors].

    Science.gov (United States)

    Reyes, H

    2001-01-01

    On September 29th, 2000, The Chilean Association of Biomedical Journal Editors was founded, sponsored by the "Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)" (the Governmental Agency promoting and funding scientific research and technological development in Chile) and the "Sociedad Médica de Santiago" (Chilean Society of Internal Medicine). The Association adopted the goals of the World Association of Medical Editors (WAME) and therefore it will foster "cooperation and communication among Editors of Chilean biomedical journals; to improve editorial standards, to promote professionalism in medical editing through education, self-criticism and self-regulation; and to encourage research on the principles and practice of medical editing". Twenty nine journals covering a closely similar number of different biomedical sciences, medical specialties, veterinary, dentistry and nursing, became Founding Members of the Association. A Governing Board was elected: President: Humberto Reyes, M.D. (Editor, Revista Médica de Chile); Vice-President: Mariano del Sol, M.D. (Editor, Revista Chilena de Anatomía); Secretary: Anna María Prat (CONICYT); Councilors: Manuel Krauskopff, Ph.D. (Editor, Biological Research) and Maritza Rahal, M.D. (Editor, Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello). The Association will organize a Symposium on Biomedical Journal Editing and will spread information stimulating Chilean biomedical journals to become indexed in international databases and in SciELO-Chile, the main Chilean scientific website (www.scielo.cl).

  18. Biomedical technology prosperity game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

  19. A flexible organic resistance memory device for wearable biomedical applications.

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-08

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>10(4)), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications.

  20. Recommending images of user interests from the biomedical literature

    Science.gov (United States)

    Clukey, Steven; Xu, Songhua

    2013-03-01

    Every year hundreds of thousands of biomedical images are published in journals and conferences. Consequently, finding images relevant to one's interests becomes an ever daunting task. This vast amount of literature creates a need for intelligent and easy-to-use tools that can help researchers effectively navigate through the content corpus and conveniently locate materials of their interests. Traditionally, literature search tools allow users to query content using topic keywords. However, manual query composition is often time and energy consuming. A better system would be one that can automatically deliver relevant content to a researcher without having the end user manually manifest one's search intent and interests via search queries. Such a computer-aided assistance for information access can be provided by a system that first determines a researcher's interests automatically and then recommends images relevant to the person's interests accordingly. The technology can greatly improve a researcher's ability to stay up to date in their fields of study by allowing them to efficiently browse images and documents matching their needs and interests among the vast amount of the biomedical literature. A prototype system implementation of the technology can be accessed via http://www.smartdataware.com.

  1. Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation

    Directory of Open Access Journals (Sweden)

    Hak Soo Choi

    2010-11-01

    Full Text Available Because of their large size compared to small molecules and their multifunctionality, nanoparticles (NPs hold promise as biomedical imaging, diagnostic, and theragnostic agents. However, the key to their success hinges on a detailed understanding of their behavior after administration into the body. NP biodistribution, target binding, and clearance are complex functions of their physicochemical properties in serum, which include hydrodynamic diameter, solubility, stability, shape and flexibility, surface charge, composition, and formulation. Moreover, many materials used to construct NPs have real or potential toxicity or may interfere with other medical tests. In this review, we discuss the design considerations that mediate NP behavior in the body and the fundamental principles that govern clinical translation. By analyzing those nanomaterials that have already received regulatory approval, most of which are actually therapeutic agents, we attempt to predict which types of NPs hold potential as diagnostic agents for biomedical imaging. Finally, using quantum dots as an example, we provide a framework for deciding whether an NP-based agent is the best choice for a particular clinical application.

  2. Gold Nanoparticles: Recent Advances in the Biomedical Applications.

    Science.gov (United States)

    Zhang, Xiaoying

    2015-07-01

    Among the multiple branches of nanotechnology applications in the area of medicine and biology, Nanoparticle technology is the fastest growing and shows significant future promise. Nanoscale structures, with size similar to many biological molecules, show different physical and chemical properties compared to either small molecules or bulk materials, find many applications in the fields of biomedical imaging and therapy. Gold nanoparticles (AuNPs) are relatively inert in biological environment, and have a number of physical properties that are suitable for several biomedical applications. For example, AuNPs have been successfully employed in inducing localized hyperthermia for the destruction of tumors or radiotherapy for cancer, photodynamic therapy, computed tomography imaging, as drug carriers to tumors, bio-labeling through single particle detection by electron microscopy and in photothermal microscopy. Recent advances in synthetic chemistry makes it possible to make gold nanoparticles with precise control over physicochemical and optical properties that are desired for specific clinical or biological applications. Because of the availability of several methods for easy modification of the surface of gold nanoparticles for attaching a ligand, drug or other targeting molecules, AuNPs are useful in a wide variety of applications. Even though gold is biologically inert and thus shows much less toxicity, the relatively low rate of clearance from circulation and tissues can lead to health problems and therefore, specific targeting of diseased cells and tissues must be achieved before AuNPs find their application for routine human use.

  3. Bacterial Treatment and Metal Characterization of Biomedical Waste Ash

    Directory of Open Access Journals (Sweden)

    Shelly Heera

    2014-01-01

    Full Text Available Biomedical waste ash generated due to the incineration of biomedical waste contains large amounts of heavy metals and polycyclic aromatic hydrocarbons (PAHs, which is disposed of in regular landfills, and results in unfavorable amounts of hazardous materials seeping into the ground and may pollute surface water and groundwater. Therefore, it is essential to remove the toxicity of ash before disposal into landfills or reutilization. Environmental characteristic analysis of BMW ash showed increased hardness (1320 mg/L and chloride (8500 mg/L content in leachate compared to World Health Organization (WHO and Environment Protection Agency (EPA guidelines for drinking water (hardness, 300 mg/L; chloride, 250 mg/L. The alkalinity and pH of the ash leachate were 400 mg/L and 8.35, respectively. In this paper, study was carried out to investigate the metal tolerance level of bacterial isolates isolated from soil. The isolate Bacillus sp. KGMDI can tolerate up to 75 mg/L of metal concentration (Mn, Mo, Cr, Fe, Cu, and Zn in enriched growth medium. This shows that the isolated culture is capable of growing in presence of high concentration of heavy metals and acts as potential biological tool to reduce the negative impact of BMW ash on the environment during landfilling.

  4. A flexible organic resistance memory device for wearable biomedical applications

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-01

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>104), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius <10 mm). Finally, the underlying mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications.

  5. Application of ceramic phosphors for near infrared biomedical imaging technologies

    Science.gov (United States)

    Soga, Kohei; Tokuzen, Kimikazu; Tsuji, Kosuke; Yamano, Tomoyoshi; Venkatachalam, Nallusamy; Hyodo, Hiroshi; Kishimoto, Hidehiro

    2010-02-01

    Near infrared wavelength region between 0.8 and 2 μm is an attractive region for biomedical imaging due to the low loss in biomedical objects in the region. Rare-earth doped ceramic phosphors are known to emit efficient fluorescence in the same wavelength region. The authors have developed micro fluorescence bioimaging system for cellular or tissue imaging and macro one for in vivo imaging. This paper will review the materials synthesis for the near infrared fluorescence probes as well as the system development and demonstrative works. Er-doped or Yb/Er-doped ceramic phosphors were synthesized with required particle size. The phosphors were partly modified with polyethylene glycol to give dispersion and controlled interaction with the biological objects. By using the micro imaging system, nematodes, mouse tissue and M1 cells were observed by detecting 1.5 μm emission from Er doped in the ceramic phosphor. in vivo imaging with the same fluorescence scheme was also performed for the digestive organs of live mouse.

  6. Biomedical applications of capillary electrophoresis

    Science.gov (United States)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  7. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools.

  8. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  9. Design of experiments in Biomedical Signal Processing Course.

    Science.gov (United States)

    Li, Ling; Li, Bin

    2008-01-01

    Biomedical Signal Processing is one of the most important major subjects in Biomedical Engineering. The contents of Biomedical Signal Processing include the theories of digital signal processing, the knowledge of different biomedical signals, physiology and the ability of computer programming. Based on our past five years teaching experiences, in order to let students master the signal processing algorithm well, we found that the design of experiments following algorithm was very important. In this paper we presented the ideas and aims in designing the experiments. The results showed that our methods facilitated the study of abstractive signal processing algorithms and made understanding of biomedical signals in a simple way.

  10. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  11. Stress and morale of academic biomedical scientists.

    Science.gov (United States)

    Holleman, Warren L; Cofta-Woerpel, Ludmila M; Gritz, Ellen R

    2015-05-01

    Extensive research has shown high rates of burnout among physicians, including those who work in academic health centers. Little is known, however, about stress, burnout, and morale of academic biomedical scientists. The authors interviewed department chairs at one U.S. institution and were told that morale has plummeted in the past five years. Chairs identified three major sources of stress: fear of not maintaining sufficient funding to keep their positions and sustain a career; frustration over the amount of time spent doing paperwork and administrative duties; and distrust due to an increasingly adversarial relationship with the executive leadership.In this Commentary, the authors explore whether declining morale and concerns about funding, bureaucracy, and faculty-administration conflict are part of a larger national pattern. The authors also suggest ways that the federal government, research sponsors, and academic institutions can address these concerns and thereby reduce stress and burnout, increase productivity, and improve overall morale of academic biomedical scientists.

  12. Multifunctional Nanofibers towards Active Biomedical Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaishri Sharma

    2015-02-01

    Full Text Available One-dimensional (1-D nanostructures have attracted enormous research interest due to their unique physicochemical properties and wide application potential. These 1-D nanofibers are being increasingly applied to biomedical fields owing to their high surface area-to-volume ratio, high porosity, and the ease of tuning their structures, functionalities, and properties. Many biomedical nanofiber reviews have focused on tissue engineering and drug delivery applications but have very rarely discussed their use as wound dressings. However, nanofibers have enormous potential as wound dressings and other clinical applications that could have wide impacts on the treatment of wounds. Herein, the authors review the main fabrication methods of nanofibers as well as requirements, strategies, and recent applications of nanofibers, and provide perspectives of the challenges and opportunities that face multifunctional nanofibers for active therapeutic applications.

  13. Ultralow-power electronics for biomedical applications.

    Science.gov (United States)

    Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C

    2008-01-01

    The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

  14. Cyanine polyene reactivity: scope and biomedical applications.

    Science.gov (United States)

    Gorka, Alexander P; Nani, Roger R; Schnermann, Martin J

    2015-07-28

    Cyanines are indispensable fluorophores that form the chemical basis of many fluorescence-based applications. A feature that distinguishes cyanines from other common fluorophores is an exposed polyene linker that is both crucial to absorption and emission and subject to covalent reactions that dramatically alter these optical properties. Over the past decade, reactions involving the cyanine polyene have been used as foundational elements for a range of biomedical techniques. These include the optical sensing of biological analytes, super-resolution imaging, and near-IR light-initiated uncaging. This review surveys the chemical reactivity of the cyanine polyene and the biomedical methods enabled by these reactions. The overarching goal is to highlight the multifaceted nature of cyanine chemistry and biology, as well as to point out the key role of reactivity-based insights in this promising area.

  15. Biomedical Terminology Mapper for UML projects.

    Science.gov (United States)

    Thibault, Julien C; Frey, Lewis

    2013-01-01

    As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies.

  16. Wireless tuning fork gyroscope for biomedical applications

    Science.gov (United States)

    Abraham, Jose K.; Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    This paper presents the development of a Bluetooth enabled wireless tuning fork gyroscope for the biomedical applications, including gait phase detection system, human motion analysis and physical therapy. This gyroscope is capable of measuring rotation rates between -90 and 90 and it can read the rotation information using a computer. Currently, the information from a gyroscope can trigger automobile airbag deployment during rollover, improve the accuracy and reliability of GPS navigation systems and stabilize moving platforms such as automobiles, airplanes, robots, antennas, and industrial equipment. Adding wireless capability to the existing gyroscope could help to expand its applications in many areas particularly in biomedical applications, where a continuous patient monitoring is quite difficult. This wireless system provides information on several aspects of activities of patients for real-time monitoring in hospitals.

  17. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.

  18. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  19. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. PMID:28223805

  20. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  1. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  2. Syntactic dependency parsers for biomedical-NLP.

    Science.gov (United States)

    Cohen, Raphael; Elhadad, Michael

    2012-01-01

    Syntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies. We evaluate the models trained in the biomedical domains of EasyFirst and Clear-Parser in a number of task oriented metrics. Both parsers provide stat of the art speed and accuracy in the Genia of over 89%. We show that Clear-Parser excels at tasks relating to negation identification while EasyFirst excels at tasks relating to Named Entities and is more robust to changes in domain.

  3. Porous shape memory alloy scaffolds for biomedical applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C E; Xiong, J Y; Li, Y C; Hodgson, P D [Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, VIC 3217 (Australia)

    2010-05-01

    The interest in using porous shape memory alloy (SMA) scaffolds as implant materials has been growing in recent years due to the combination of their unique mechanical and functional properties, i.e. shape memory effect and superelasticity, low elastic modulus combined with new bone tissue ingrowth ability and vascularization. These attractive properties are of great benefit to the healing process for implant applications. This paper reviews current state-of-the art on the processing, porous characteristics and mechanical properties of porous SMAs for biomedical applications, with special focus on the most widely used SMA nickel-titanium (NiTi), including (i) microstructural features, mechanical and functional properties of NiTi SMAs; (ii) main processing methods for the fabrication of porous NiTi SMAs and their mechanical properties and (iii) new-generation Ni-free, biocompatible porous SMA scaffolds.

  4. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  5. Nanometric Finishing on Biomedical Implants by Abrasive Flow Finishing

    Science.gov (United States)

    Subramanian, Kavithaa Thirumalai; Balashanmugam, Natchimuthu; Shashi Kumar, Panaghra Veeraiah

    2016-01-01

    Abrasive flow finishing (AFF) is a non-conventional finishing technique that offers better accuracy, efficiency, consistency, economy in finishing of complex/difficult to machine materials/components and provides the possibility of effective automation as aspired by the manufacturing sector. The present study describes the finishing of a hip joint made of ASTM grade Co-Cr alloy by Abrasive Flow Machining (AFM) process. The major input parameters of the AFF process were optimized for achieving nanometric finishing of the component. The roughness average (Ra) values were recorded during experimentation using surface roughness tester and the results are discussed in detail. The surface finished hip joints were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and residual stress analysis using X-Ray Diffraction (XRD). The discussion lays emphasis on the significance, efficacy and versatile nature of the AFF process in finishing of bio-medical implants.

  6. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  7. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    Science.gov (United States)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  8. Biostatistics and epidemiology a primer for health and biomedical professionals

    CERN Document Server

    Wassertheil-Smoller, Sylvia

    2015-01-01

    Since the publication of the first edition, Biostatistics and Epidemiology has attracted loyal readers from across specialty areas in the biomedical community. Not only does this textbook teach foundations of epidemiological design and statistical methods, but it also includes topics applicable to new areas of research. Areas covered in the fourth edition include a new chapter on risk prediction, risk reclassification and evaluation of biomarkers, new material on propensity analyses, and a vastly expanded chapter on genetic epidemiology, which  is particularly relevant to those who wish to understand the epidemiological and statistical aspects of scientific articles in this rapidly advancing field. Biostatistics and Epidemiology was written to be accessible for readers without backgrounds in mathematics. It provides clear explanations of underlying principles, as well as practical guidelines of "how to do it" and "how to interpret it."a philosophical explanation of the logic of science, subsections that ...

  9. Biomedical Applications of NASA Science and Technology

    Science.gov (United States)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  10. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    Science.gov (United States)

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  11. Magnetic Fluids: Biomedical Applications and Magnetic Fractionation

    OpenAIRE

    Rheinländer, Thomas; Kötitz, Róman; Weitschies, Werner; Semmler, Wolfhard

    2000-01-01

    In addition to engineering applications, magnetic fluids containing magnetic nanoparticles are being increasingly applied to biomedical purposes. Besides the well established use of magnetic particles for biological separation or as contrast agents for magnetic resonance imaging, magnetic particles are also being tested for the inductive heat treatment of tumors or as markers for the quantification of biologically active substances. The properties of magnetic nanoparticles usually exhibit a b...

  12. [Basis of art phonetics in biomedical engineering].

    Science.gov (United States)

    Chen, Hui; Li, Gelin; Ouyang, Kai; Liu, Yongxiang

    2002-01-01

    Art phonetics' medicine, a new branch of traditional medicine, has not been developed perfectly, especially in the aspects of objective and scientific study. In this paper, the acoustical and anatiomical basis of art phonetics in viewpoint of biomedical engineering is explored, and then our work of quantitative measurement and analysis of art phonetic is introduced. The experiment data show further that quantitative measurement and analysis plays an important role in art phonetic medicine.

  13. Biomedical Device Technology Principles and Design

    CERN Document Server

    Chan, Anthony Y K

    2008-01-01

    For many years, the tools available to physicians were limited to a few simple handpieces such as stethoscopes, thermometers and syringes; medical professionals primarily relied on their senses and skills to perform diagnosis and disease mitigation. Today, diagnosis of medical problems is heavily dependent on the analysis of information made available by sophisticated medical machineries such as electrocardiographs, ultrasound scanners and laboratory analyzers. Patient treatments often involve specialized equipment such as cardiac pacemakers and electrosurgical units. Such biomedical instrumen

  14. Building interdisciplinary biomedical research using novel collaboratives.

    Science.gov (United States)

    Ravid, Katya; Faux, Russell; Corkey, Barbara; Coleman, David

    2013-02-01

    Traditionally, biomedical research has been carried out mainly within departmental boundaries. However, successful biomedical research increasingly relies on development of methods and concepts crossing these boundaries, requiring expertise in different disciplines. Recently, major research institutes have begun experimenting with ways to foster an interdisciplinary ethos. The Evans Center for Interdisciplinary Biomedical Research ("the Evans Center") at Boston University is a new organizational paradigm to address this challenge. The Evans Center is built around interdisciplinary research groups termed affinity research collaboratives (ARCs). Each ARC consists of investigators from several academic departments and at least two research disciplines, bound by a common goal to investigate biomedical problems concerning human disease. Novel aspects of the Evans Center include a "bottom-up" approach to identifying areas of ARC research (research vision and strategy are typically initiated by a core group of faculty with input from the center director); a pre-ARC period of faculty affiliation/project(s)' self-selection prior to formation of a peer-reviewed ARC; and Evans Center support for innovative ARCs for up to three years pending yearly metric evaluation, followed by continued administrative support as a group matures into an ARC program.Since its inception in early 2009, the Evans Center has documented achievements at discovery/publication, grant award, and educational levels. Enhanced interactions between members of individual ARCs, as assessed by quantitative networking analysis, are discussed in the context of high productivity. As universities seek new approaches to stimulate interdisciplinary research, the Evans Center and its ARCs are offered as a productive model for leveraging discovery.

  15. Opal web services for biomedical applications.

    Science.gov (United States)

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  16. [Issues of biomedical support of explorations missions].

    Science.gov (United States)

    Potapov, A N; Sinyak, Yu E; Petrov, V M

    2013-01-01

    Sine qua non for piloted exploration missions is a system of biomedical support. The future system will be considerably different from the analogous systems applied in current orbital missions. The reason is the challenging conditions in expeditions to remote space. In a mission to Mars, specifically, these are high levels of radiation, hypomagnetic environment, alternation of micro- and hypogravity, very long mission duration and autonomy. The paper scrutinizes the major issues of medical support to future explorers of space.

  17. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  18. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  19. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  20. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  1. Successful aging: considering non-biomedical constructs

    Directory of Open Access Journals (Sweden)

    Carver LF

    2016-11-01

    Full Text Available Lisa F Carver,1 Diane Buchanan2 1Department of Sociology, Queen’s University Kingston, ON, Canada; 2School of Nursing, Queen’s University Kingston, ON, Canada Objectives: Successful aging continues to be applied in a variety of contexts and is defined using a number of different constructs. Although previous reviews highlight the multidimensionality of successful aging, a few have focused exclusively on non-biomedical factors, as was done here. Methods: This scoping review searched Ovid Medline database for peer-reviewed English-language articles published between 2006 and 2015, offering a model of successful aging and involving research with older adults. Results: Seventy-two articles were reviewed. Thirty-five articles met the inclusion criteria. Common non-biomedical constructs associated with successful aging included engagement, optimism and/or positive attitude, resilience, spirituality and/or religiosity, self-efficacy and/or self-esteem, and gerotranscendence. Discussion: Successful aging is a complex process best described using a multidimensional model. Given that the majority of elders will experience illness and/or disease during the life course, public health initiatives that promote successful aging need to employ non-biomedical constructs, facilitating the inclusion of elders living with disease and/or disability. Keywords: successful aging, resilience, gerotranscendence, engagement, optimism

  2. Design of Hydrogels for Biomedical Applications.

    Science.gov (United States)

    Kamata, Hiroyuki; Li, Xiang; Chung, Ung-Il; Sakai, Takamasa

    2015-11-18

    Hydrogels are considered key tools for the design of biomaterials, such as wound dressings, drug reservoirs, and temporary scaffolds for cells. Despite their potential, conventional hydrogels have limited applicability under wet physiological conditions because they suffer from the uncontrollable temporal change in shape: swelling takes place immediately after the installation. Swollen hydrogels easily fail under mechanical stress. The morphological change may cause not only the slippage from the installation site but also local nerve compression. The design of hydrogels that can retain their original shape and mechanical properties in an aqueous environment is, therefore, of great importance. On the one hand, the controlled degradation of used hydrogels has to be realized in some biomedical applications. This Progress Report provides a brief overview of the recent progress in the development of hydrogels for biomedical applications. Practical approaches to control the swelling properties of hydrogels are discussed. The designs of hydrogels with controlled degradation properties as well as the theoretical models to predict the degradation behavior are also introduced. Moreover, current challenges and limitation toward biomedical applications are discussed, and future directions are offered.

  3. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  4. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  5. The biomedical disciplines and the structure of biomedical and clinical knowledge.

    Science.gov (United States)

    Nederbragt, H

    2000-11-01

    The relation between biomedical knowledge and clinical knowledge is discussed by comparing their respective structures. The knowledge of a disease as a biological phenomenon is constructed by the interaction of facts and theories from the main biomedical disciplines: epidemiology, diagnostics, clinical trial, therapy development and pathogenesis. Although these facts and theories are based on probabilities and extrapolations, the interaction provides a reliable and coherent structure, comparable to a Kuhnian paradigma. In the structure of clinical knowledge, i.e. knowledge of the patient with the disease, not only biomedical knowledge contributes to the structure but also economic and social relations, ethics and personal experience. However, the interaction between each of the participating "knowledges" in clinical knowledge is not based on mutual dependency and accumulation of different arguments from each, as in biomedical knowledge, but on competition and partial exclusion. Therefore, the structure of biomedical knowledge is different from that of clinical knowledge. This difference is used as the basis for a discussion in which the place of technology, evidence-based medicine and the gap between scientific and clinical knowledge are evaluated.

  6. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  7. Functional modification of chitosan for biomedical application

    Science.gov (United States)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  8. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.

    Science.gov (United States)

    Rafique, Ammara; Mahmood Zia, Khalid; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima

    2016-06-01

    Chitin and chitosan are amino polysaccharides having multidimensional properties, such as biocompatibility, biodegradability, antibacterial properties and non-toxicity, muco-adhesivity, adsorption properties, etc., and thus they can be widely used in variety of areas. Although human history mainly relies on the biopolymers, however synthetic materials like polyvinyl alcohol (PVA) have good mechanical, chemical and physical properties. Functionalization of PVA with chitin and chitosan is considered very appropriate for the development of well-designed biomaterials such as biodegradable films, for membrane separation, for tissue engineering, for food packaging, for wound healing and dressing, hydro gels formation, gels formation, etc. Considering versatile properties of the chitin and chitosan, and wide industrial and biomedical applications of PVA, this review sheds a light on chitin and chitosan based PVA materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement.

  9. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery

    CERN Document Server

    Klingeler, Ruediger; Buechner, Bernd

    2009-01-01

    Due to their extraordinary physical and chemical properties carbon nanotubes reveal a promising potential as biomedical agents for heating, temperature sensoring and drug delivery on the cellular level. Filling carbon nanotubes with tailored materials realises nanoscaled containers in which the active content is encapsulated by a protecting carbon shell. We describe different synthesis routes and show the structural and magnetic properties of carbon nanotubes. In particular, the filling with magnetic materials offers the potential for hyperthermia applications while the insertion of NMR active substances allows the usage as markers and sensors. The potential of carbon nanotubes for biomedical applications is highlighted by hyperthermia studies which prove their applicability for local in-situ heating. In addition we have shown that a non-invasive temperature control by virtue of a carbon-wrapped nanoscaled thermometer and filling with anti-cancer drugs is possible.

  10. The development of biomedical engineering as experienced by one biomedical engineer

    Science.gov (United States)

    2012-01-01

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field. PMID:23234267

  11. The development of biomedical engineering as experienced by one biomedical engineer

    Directory of Open Access Journals (Sweden)

    Newell Jonathan C

    2012-12-01

    Full Text Available Abstract This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  12. The development of biomedical engineering as experienced by one biomedical engineer.

    Science.gov (United States)

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  13. An overview of biomedical literature search on the World Wide Web in the third millennium.

    Science.gov (United States)

    Kumar, Prince; Goel, Roshni; Jain, Chandni; Kumar, Ashish; Parashar, Abhishek; Gond, Ajay Ratan

    2012-06-01

    Complete access to the existing pool of biomedical literature and the ability to "hit" upon the exact information of the relevant specialty are becoming essential elements of academic and clinical expertise. With the rapid expansion of the literature database, it is almost impossible to keep up to date with every innovation. Using the Internet, however, most people can freely access this literature at any time, from almost anywhere. This paper highlights the use of the Internet in obtaining valuable biomedical research information, which is mostly available from journals, databases, textbooks and e-journals in the form of web pages, text materials, images, and so on. The authors present an overview of web-based resources for biomedical researchers, providing information about Internet search engines (e.g., Google), web-based bibliographic databases (e.g., PubMed, IndMed) and how to use them, and other online biomedical resources that can assist clinicians in reaching well-informed clinical decisions.

  14. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  15. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  16. New roles & responsibilities of hospital biomedical engineering.

    Science.gov (United States)

    Frisch, P H; Stone, B; Booth, P; Lui, W

    2014-01-01

    Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.

  17. Biomedical Image Analysis by Program "Vision Assistant" and "Labview"

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2005-01-01

    Full Text Available This paper introduces application in image analysis of biomedical images. General task is focused on analysis and diagnosis biomedical images obtained from program ImageJ. There are described methods which can be used for images in biomedical application. The main idea is based on particle analysis, pattern matching techniques. For this task was chosensophistication method by program Vision Assistant, which is a part of program LabVIEW.

  18. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    OpenAIRE

    Xiao Li; Jiankang He; Weijie Zhang; Nan Jiang; Dichen Li

    2016-01-01

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, dep...

  19. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  20. Analysis and modeling of noise in biomedical systems.

    Science.gov (United States)

    Ranjbaran, Mina; Jalaleddini, Kian; Lopez, Diego Guarin; Kearney, Robert E; Galiana, Henrietta L

    2013-01-01

    Noise characteristics play an important role in evaluating tools developed to study biomedical systems. Despite usual assumptions, noise in biomedical systems is often nonwhite or non-Gaussian. In this paper, we present a method to analyze the noise component of a biomedical system. We demonstrate the effectiveness of the method in the analysis of noise in voluntary ankle torque measured by a torque transducer and eye movements measured by electro-oculography (EOG).

  1. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    OpenAIRE

    Bruce Albert

    2015-01-01

    Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014)). As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterpri...

  2. Fusing Manual and Machine Feedback in Biomedical Domain

    Science.gov (United States)

    2014-11-01

    Fusing manual and machine feedback in biomedical domain 1Jainisha Sankhavara, 1Fenny Thakrar, 2Shamayeeta Sarkar, 1Prasenjit Majumder 1DA-IICT...to obtain efficient biomedical document retrieval. We focused on fusing manual and machine feedback runs. Fusion run performs better and gives...retrieval of biomedical articles relevant for answering generic clini- cal questions about medical records. There are 30 topics provided, each

  3. Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis.

    Science.gov (United States)

    Lenik, Joanna

    2016-12-12

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmacy within the last decade. Recently, the number of publications covering the determination of amino-acids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds have significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials they can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of type guest host, for example with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and

  4. Biomedical Technology Assessment The 3Q Method

    CERN Document Server

    Weinfurt, Phillip

    2010-01-01

    Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) an

  5. Designing fractal nanostructured biointerfaces for biomedical applications.

    Science.gov (United States)

    Zhang, Pengchao; Wang, Shutao

    2014-06-06

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients.

  6. Batteries used to Power Implantable Biomedical Devices

    Science.gov (United States)

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  7. Batteries used to Power Implantable Biomedical Devices.

    Science.gov (United States)

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  8. Introduction to Statistics for Biomedical Engineers

    CERN Document Server

    Ropella, Kristina

    2007-01-01

    There are many books written about statistics, some brief, some detailed, some humorous, some colorful, and some quite dry. Each of these texts is designed for a specific audience. Too often, texts about statistics have been rather theoretical and intimidating for those not practicing statistical analysis on a routine basis. Thus, many engineers and scientists, who need to use statistics much more frequently than calculus or differential equations, lack sufficient knowledge of the use of statistics. The audience that is addressed in this text is the university-level biomedical engineering stud

  9. Basic Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the first in a series of short books on probability theory and random processes for biomedical engineers. This text is written as an introduction to probability theory. The goal was to prepare students, engineers and scientists at all levels of background and experience for the application of this theory to a wide variety of problems--as well as pursue these topics at a more advanced level. The approach is to present a unified treatment of the subject. There are only a few key concepts involved in the basic theory of probability theory. These key concepts are all presented in the first

  10. Intermediate Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the second in a series of three short books on probability theory and random processes for biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the characteristic function. In addition, conditional expectation, conditional moments and the conditional characteristic function are also discussed. Jointly distributed random variables are described, along with joint expectation, joint moments, and the joint characteristic function. Convolution is also developed. A considerable effort has been made to develop the theory in a logical manner--developing sp

  11. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  12. MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; HSIAO Chao-Tsung

    2012-01-01

    Controlling mierobubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge,which can be achieved only through a combination of experimental and numerical/analytical techniques.The present communication presents a multi-physics approach to study the dynamics combining viscousinviseid effects,liquid and structure dynamics,and multi bubble interaction.While complex numerical tools are developed and used,the study aims at identifying the key parameters influencing the dynamics,which need to be included in simpler models.

  13. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  14. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  15. CMT for biomedical and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Spanne, P. [ESRF, Grenoble (France)

    1997-02-01

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.

  16. Single-domain antibodies for biomedical applications.

    Science.gov (United States)

    Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald

    2016-01-01

    Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development.

  17. Role of the biomedical engineer in nuclear medicine.

    Science.gov (United States)

    Llaurado, J G

    1981-01-01

    Throughout the short history of the development of radioactivity applied in the biomedical field, there have been many contributions made by engineers. With the advent of Nuclear Medicine as a well systematized specialty and its mushrooming in hospitals, the opportunities for biomedical engineers have increased. This article is written from the viewpoint of historic perspective in order to display the different aspects and situations where engineers, and particularly biomedical and clinical engineers, can participate in Nuclear Medicine. Finally, a more detailed survey is made of the activities of biomedical engineers in the nuclear medicine department.

  18. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  19. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  20. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  1. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  2. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  3. EVALUATION OF BIOMEDICAL WASTE MANAGEMENT PRACTICES IN MULTI-SPECIALITY TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Shalini Srivastav

    2010-06-01

    Full Text Available Background: Biomedical Waste (BMW, collection and proper disposal has become a significant concern for both the medical and the general community The scientific “Hospital waste Management “is of vital importance as its improper management poses risks to the health care workers ,waste handlers patients, community in general and largely the environment. Objectives: (i To assess current practices of Bio-medical Waste management including generation, collection, transportation storage, treatment and disposal technologies in tertiary health care center. (ii To assess health andsafetypracticesfor the health care personnel involved in Bio-Medical waste Management. Materials and Methods: Waste management practices in tertiary care-centre was studied during May 2010 June 2010. The information/data regarding Bio-Medical Waste Management practices and safety was collected by way of semi structured interview, proforma being the one used for WASTE AUDITING QUESTIONNAIRE. The information collected was verified by personal observations of waste management practices in each ward of hospital. Results : SRMS-IMS generates 1. 25Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in each ward for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory it was not due to unavailability of Personal protective measures but because of un-awareness of health hazards which may occur due to improper waste management practices. Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute, training and motivation must be given paramount importance to meet the current needs and standard of bio-medical waste management.

  4. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  5. Localization and Tracking of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Ilknur Umay

    2017-03-01

    Full Text Available Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.

  6. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  7. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  8. Biomedical engineering undergraduate education in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Allende, R [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Morales, D [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Avendano, G [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Chabert, S [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile)

    2007-11-15

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones.

  9. Biomedical engineering undergraduate education in Latin America

    Science.gov (United States)

    Allende, R.; Morales, D.; Avendano, G.; Chabert, S.

    2007-11-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the "state-of-the-art" of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones.

  10. Localization and Tracking of Implantable Biomedical Sensors.

    Science.gov (United States)

    Umay, Ilknur; Fidan, Barış; Barshan, Billur

    2017-03-13

    Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.

  11. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  12. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  13. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  14. Functionalized magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Gudovan, Dragoș; Balaure, Paul Cătălin; Mihăiescu, Dan Eduard; Fudulu, Adrian; Purcăreanu, Bogdan; Radu, Mihai

    2015-01-01

    Functionalized magnetic nanoparticles followed two main directions in the field of biomedical applications: one direction is as image enhancing agents for magnetic resonance imaging (MRI) and the other is as drugdelivery devices for various biologically-active substances. A third field which just emerges in nanomedicine is the field of the so-called theranostic devices which combines in the same delivery vehicle both the therapeutic agent and the contrast substance. The advantages of using nanoparticles instead of larger carriers for delivery of both drug and image contrast enhancing agents will be highlighted throughout this review article. Despite the ever increasing number of articles reporting both in vitro and in vivo studies carried out on functionalized magnetic nanoparticles and envisaging their potential biomedical applications, only few formulations reached the phase of clinical trials and even fewer became marketed products. The perspectives in the field are open, since new drugs require new delivery devices and possibly new means of functionalization. At the same time, the field of nanomedicine also provides the opportunity to better exploit drugs that are already in clinical use by improving their bioavailability through appropriate nanoformulations.

  15. Analyzing rare diseases terms in biomedical terminologies

    Directory of Open Access Journals (Sweden)

    Erika Pasceri

    2012-03-01

    Full Text Available Rare disease patients too often face common problems, including the lack of access to correct diagnosis, lack of quality information on the disease, lack of scientific knowledge of the disease, inequities and difficulties in access to treatment and care. These things could be changed by implementing a comprehensive approach to rare diseases, increasing international cooperation in scientific research, by gaining and sharing scientific knowledge about and by developing tools for extracting and sharing knowledge. A significant aspect to analyze is the organization of knowledge in the biomedical field for the proper management and recovery of health information. For these purposes, the sources needed have been acquired from the Office of Rare Diseases Research, the National Organization of Rare Disorders and Orphanet, organizations that provide information to patients and physicians and facilitate the exchange of information among different actors involved in this field. The present paper shows the representation of rare diseases terms in biomedical terminologies such as MeSH, ICD-10, SNOMED CT and OMIM, leveraging the fact that these terminologies are integrated in the UMLS. At the first level, it was analyzed the overlap among sources and at a second level, the presence of rare diseases terms in target sources included in UMLS, working at the term and concept level. We found that MeSH has the best representation of rare diseases terms.

  16. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  17. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors.

  18. Localization and Tracking of Implantable Biomedical Sensors

    Science.gov (United States)

    Umay, Ilknur; Fidan, Barış; Barshan, Billur

    2017-01-01

    Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed) units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule) inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems. PMID:28335384

  19. Biomedical journals: keeping up and reading critically.

    Science.gov (United States)

    Chase, Karen L; DiGiacomo, Ronald F; Van Hoosier, Gerald L

    2006-09-01

    By extrapolation from studies of physicians, knowledge and practice of laboratory animal medicine and science are expected to become progressively more outdated the longer practitioners are out of school. Keeping up with current literature and practice is a challenge that necessitates the use of many different sources of continuing education. Both veterinarians and physicians consistently list journals as the most beneficial source of new information. Accordingly, they must select from the veterinary and biomedical literature articles that report original studies and systematic reviews and recognize and respond to valid new knowledge to improve diagnostic and therapeutic approaches and maintain consistent clinical skills. Other objectives include selecting journals for general information and for information relevant or specific to one's field of research. Lastly, candidates for board certification need to read articles from journals that potentially provide the basis for questions on the examination. 'High-impact' journals should be identified, and articles should be reviewed critically. In a survey of recent candidates for laboratory animal medicine board examination, these journals included Contemporary Topics (now JAALAS), Comparative Medicine, ILAR Journal, and Laboratory Animals. Strategies for coping with the challenge of staying current with the literature include wise use of technology, journal clubs, and consultation with colleagues. A laboratory animal practitioner can become a better scientist and clinician by evaluating the research performed by others. Thorough, critical review of biomedical literature is paramount to these goals.

  20. Use of a systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices.

    Science.gov (United States)

    Smith, Anne-Louise

    2011-12-01

    Many microorganisms responsible for hospital-acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches.

  1. Marine derived polysaccharides for biomedical applications: chemical modification approaches.

    Science.gov (United States)

    d'Ayala, Giovanna Gomez; Malinconico, Mario; Laurienzo, Paola

    2008-09-03

    Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp) and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol) copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  2. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  3. Surface parameters modification by multilayer coatings deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A [Institute of Surface Engineering, 4 Zalutinskaya Str., Kharkov (Ukraine); Safonov, V [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaja Str., 61108 Kharkov (Ukraine); Virva, O; Luk' yanchenko, V [Institute of Spine and Joint Pathologies, 80 Pushkinskaya Str., 61024 Kharkov (Ukraine); Walkowich, J; Rogowska, R [Institute for Sustainable Technologies, National Research Institute, 6/10 K. Pulaskiego Str., Radom (Poland); Yakovin, S [Department of Physical Technologies, Kharkov National University, 31 Kurchatov Ave., Kharkov (Ukraine)], E-mail: zykov@bi.com.ua

    2008-05-01

    Studies are presented of the surface parameters of various multilayer coatings, namely, TiN, CrN, (Ti, Cr)N, TiN/TiC{sub 10}N{sub 90}, TiN/TiC{sub 20}N{sub 80} deposited by means of Arc-PVD on stainless steel (1H18N9), as well as of the same coatings with an additional Al{sub 2}O{sub 3} film deposited by reactive magnetron sputtering (RMS). The surface thickness, roughness and topography are estimated. Other parameters, such as the surface free energy (SFE) and fractional polarity are determined by means of the Wu and the Owens-Wendt-Rabel-Kaelble methods. Experiments are carried out on the in vitro cell/material interaction (in a fibroblasts culture) in order to determine the materials biomedical response. The results show some correlation between the surface properties and cell adhesion. The best biological response parameters (cell number, proliferation function, morphology) are obtained in the case of coatings with the highest values of the polar part component of the SFE and the fractional polarity, such as TiN, TiN/TiC{sub 10}N{sub 90} and oxide coatings.

  4. Ion beam modification of surfaces for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfeld, Jana

    2014-07-15

    Human life expectancy increased significantly within the last century. Hence, medical care must ever be improved. Optimizing artificial replacements such as hip joints or stents etc. is of special interest. For this purpose, new materials are constantly developed or known ones modified. This work focused on the possibility to change the chemistry and topography of biomedically relevant materials such as diamond-like carbon (DLC) and titanium dioxide (TiO{sub 2}) by means of ion beam irradiation. Mass-separated ion beam deposition was used in order to synthesize DLC layers with a high sp{sup 3} content (> 70%), a sufficiently smooth surface (RMS<1 nm) and a manageable film thickness (50 nm). The chemistry of the DLC layers was changed by ion beam doping with different ion species (Ag,Ti) and concentrations. Additionally, the surface topography of silicon and titanium dioxide was altered by ion beam irradiation under non-perpendicular angle of incidence. The created periodic wave structures (so-called ripples) were characterized and their dependency on the ion energy was investigated. Moreover, ripples on silicon were covered with a thin DLC layer in order to create DLC ripples. The biocompatibility of all samples was investigated by adsorption experiments. For this purpose, human plasma fibrinogen (HPF) was used due to its ambiphilic character, which allows the protein to assume different conformations on materials with different hydrophilicities. Moreover, HPF is a crucial factor in the blood coagulation process. This work comes to the conclusion that the interaction of both, the surface chemistry and topography, has a strong influence on the adsorption behavior of HPF and thus the biocompatibility of a material. Both factors can be specifically tuned by means of ion beam irradiation.

  5. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  6. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  7. Modeling in biomedical informatics - An exploratory analysis (Part 1)

    NARCIS (Netherlands)

    A. Hasman; R. Haux

    2006-01-01

    Objectives: Modeling is a significant part of research, education and practice in biomedical and health informatics. Our objective was to explore, which types of models of processes are used in current biomedical/health informatics research, as reflected in publications of scientific journals in thi

  8. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  9. [A biomedical signal processing toolkit programmed by Java].

    Science.gov (United States)

    Xie, Haiyuan

    2012-09-01

    According to the biomedical signal characteristics, a new biomedical signal processing toolkit is developed. The toolkit is programmed by Java. It is used in basic digital signal processing, random signal processing and etc. All the methods in toolkit has been tested, the program is robust. The feature of the toolkit is detailed explained, easy use and good practicability.

  10. A cross-lingual framework for monolingual biomedical information retrieval

    NARCIS (Netherlands)

    Trieschnigg, D.; Hiemstra, D.; Jong, F. de; Kraaij, W.

    2010-01-01

    An important challenge for biomedical information retrieval (IR) is dealing with the complex, inconsistent and ambiguous biomedical terminology. Frequently, a concept-based representation defined in terms of a domain-specific terminological resource is employed to deal with this challenge. In this p

  11. Rewriting and suppressing UMLS terms for improved biomedical term identification

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); E.M. van Mulligen (Erik); M.J. Schuemie (Martijn); R.J.A. Schijvenaars (Bob); J.A. Kors (Jan)

    2010-01-01

    textabstractBackground: Identification of terms is essential for biomedical text mining. We concentrate here on the use of vocabularies for term identification, specifically the Unified Medical Language System (UMLS). To make the UMLS more suitable for biomedical text mining we implemented and evalu

  12. A robust approach to extract biomedical events from literature

    NARCIS (Netherlands)

    Bui, Q.C.; Sloot, P.M.A.

    2012-01-01

    Motivation: The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein-protein interactions and drug-disease rel

  13. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  14. The AIBS In Yugoslavia: Programs in Biomedical Engineering

    Science.gov (United States)

    Thompson, Mary-Frances

    1978-01-01

    Programs in biomedical engineering have been developing worldwide since World War II. This article describes a multidisciplinary program which operates in Yugoslavia through a cooperative effort between that county and the AIBS. A major problem has been the slowness with which hospitals accept the concept of biomedical engineering. (MA)

  15. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  16. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  17. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  18. Potential Use of Plant Fibres and their Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2014-05-01

    Full Text Available Plant-based fibers such as flax, jute, sisal, hemp, and kenaf have been frequently used in the manufacturing of biocomposites. Natural fibres possess a high strength to weight ratio, non-corrosive nature, high fracture toughness, renewability, and sustainability, which give them unique advantages over other materials. The development of biocomposites by reinforcing natural fibres has attracted attention of scientists and researchers due to environmental benefits and improved mechanical performance. Manufacturing of biocomposites from renewable sources is a challenging task, involving metals, polymers, and ceramics. Biocomposites are already utilized in biomedical applications such as drug/gene delivery, tissue engineering, orthopedics, and cosmetic orthodontics. The first essential requirement of materials to be used as biomaterial is its acceptability by the human body. A biomaterial should obtain some important common properties in order to be applied in the human body either for use alone or in combination. Biocomposites have potential to replace or serve as a framework allowing the regeneration of traumatized or degenerated tissues or organs, thus improving the patients’ quality of life. This review paper addresses the utilization of plant fibres and its composites in biomedical applications and considers potential future research directed at environment-friendly biodegradable composites for biomedical applications.

  19. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.

  20. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and