WorldWideScience

Sample records for biomedical materials

  1. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  2. FULERENIC MATERIALS WITH BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Radu Claudiu FIERASCU

    2010-05-01

    Full Text Available Soluble fullerenic derivates are essential for numerous biomedical techniques that exploit the unique structural chemical and physical properties of carbon nanospheres. Their toxicity, demonstrated in vitro and in vivo is important for the characterization and limitation of those applications. The phototoxicity of some fullerene molecules was identified as a future therapeutical instrument. Other studies focused on the decrease of the phototoxicity of hydrosoluble fullerenes follow the use of those compounds as drug delivery systems or their use in environment protection. Starting from the characteristics of those compounds, which can be by themeselves cytotoxic, or could become during irradiation (photosensitizers we have tried to obtain new materials based on fullerenes and diads/triads fullerene/porphyrines or fullerenes/calixarenes.The obtained complexes were characterized by UV Vis and IR spectroscopy.

  3. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  4. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  5. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  6. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  7. Switchable and responsive surfaces and materials for biomedical applications

    CERN Document Server

    Zhang, Johnathan

    2015-01-01

    Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering,  drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit

  8. Digital fabrication of multi-material biomedical objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, H H; Choi, S H, E-mail: shchoi@hku.h [Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-12-15

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  9. Digital fabrication of multi-material biomedical objects

    International Nuclear Information System (INIS)

    Cheung, H H; Choi, S H

    2009-01-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  10. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  11. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  12. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  13. Applicability of existing magnesium alloys as biomedical implant materials

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.; Mannens, R.G.T.M.; Werkhoven, R.J.

    2009-01-01

    Being biocompatible and biodegradable, magnesium alloys are considered as the new generation biomedical implant materials, such as for stents, bone fixtures, plates and screws. A major drawback is the poor chemical stability of metallic magnesium; it corrodes at a pace that is too high for most

  14. Bioactive materials for biomedical applications using sol-gel technology

    International Nuclear Information System (INIS)

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    This review paper focuses on the sol-gel technology that has been applied in many of the potential research areas and highlights the importance of sol-gel technology for preparing bioactive materials for biomedical applications. The versatility of sol-gel chemistry enables us to manipulate the characteristics of material required for particular applications. Sol-gel derived materials have proved to be good biomaterials for coating films and for the construction of super-paramagnetic nanoparticles, bioactive glasses and fiberoptic applicators for various biomedical applications. The introduction of the sol-gel route in a conventional method of preparing implants improves the mechanical strength, biocompatibility and bioactivity of scaffolds and prevents corrosion of metallic implants. The use of organically modified silanes (ORMOSILS) yields flexible and bioactive materials for soft and hard tissue replacement. A novel approach of nitric-oxide-releasing sol-gels as antibacterial coatings for reducing the infection around orthopedic implants has also been discussed

  15. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  16. Disclosing discourses: biomedical and hospitality discourses in patient education materials.

    Science.gov (United States)

    Öresland, Stina; Friberg, Febe; Määttä, Sylvia; Öhlen, Joakim

    2015-09-01

    Patient education materials have the potential to strengthen the health literacy of patients. Previous studies indicate that readability and suitability may be improved. The aim of this study was to explore and analyze discourses inherent in patient education materials since analysis of discourses could illuminate values and norms inherent in them. Clinics in Sweden that provided colorectal cancer surgery allowed access to written information and 'welcome letters' sent to patients. The material was analysed by means of discourse analysis, embedded in Derrida's approach of deconstruction. The analysis revealed a biomedical discourse and a hospitality discourse. In the biomedical discourse, the subject position of the personnel was interpreted as the messenger of medical information while that of the patients as the carrier of diagnoses and recipients of biomedical information. In the hospitality discourse, the subject position of the personnel was interpreted as hosts who invite and welcome the patients as guests. The study highlights the need to eliminate paternalism and fosters a critical reflective stance among professionals regarding power and paternalism inherent in health care communication. © 2015 John Wiley & Sons Ltd.

  17. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  18. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  19. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  20. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  1. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  2. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  3. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  4. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Giedrius Janusas

    2015-12-01

    Full Text Available A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  5. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications.

    Science.gov (United States)

    De Sanctis, A; Russo, S; Craciun, M F; Alexeev, A; Barnes, M D; Nagareddy, V K; Wright, C D

    2018-06-06

    Graphene-based materials are being widely explored for a range of biomedical applications, from targeted drug delivery to biosensing, bioimaging and use for antibacterial treatments, to name but a few. In many such applications, it is not graphene itself that is used as the active agent, but one of its chemically functionalized forms. The type of chemical species used for functionalization will play a key role in determining the utility of any graphene-based device in any particular biomedical application, because this determines to a large part its physical, chemical, electrical and optical interactions. However, other factors will also be important in determining the eventual uptake of graphene-based biomedical technologies, in particular the ease and cost of manufacture of proposed device and system designs. In this work, we describe three novel routes for the chemical functionalization of graphene using oxygen, iron chloride and fluorine. We also introduce novel in situ methods for controlling and patterning such functionalization on the micro- and nanoscales. Our approaches are readily transferable to large-scale manufacturing, potentially paving the way for the eventual cost-effective production of functionalized graphene-based materials, devices and systems for a range of important biomedical applications.

  6. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  8. Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials

    International Nuclear Information System (INIS)

    Wanna, Dwi; Alam, Parvez; Alam, Catharina; Toivola, Diana M

    2013-01-01

    This short communication provides preliminary experimental details on the structure–property relationships of novel biomedical kaolin–bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin–cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials. (paper)

  9. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  10. A Study of Hybrid Composite Hydroxyapatite (HA-Geopolymers as a Material for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Saleha

    2017-01-01

    Full Text Available The main purpose of this research is to study the physical properties and microstructure characters of hybrid composites HA-geopolymers as a material for biomedical application. Hybrid composite HA–geopolymers were produced through alkaline activation method of metakaolin as a matrix and HA as the filler. HA was synthesized from eggshell particles by using a precipitation method. The addition of HA in metakaolin paste was varied from 0.5%, 1.0%, 1.5%, and 2.0% relative the weight of metakaolin. FTIR was used to examine the absorption bands the composites. X-ray diffraction (XRD was used to study the crystal structure of the starting and the resulting materials. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS was used to investigate the surface morphology of the composites. The thermal properties of the samples was examined by means of Differential Scanning Calorimetry (DSC. Capacitance measurement was conducted to investigate the bioactive properties of HA. The study results suggest that hybrid composite HA-geopolymers has a potential to be applied as a biomedical such as biosensor material.

  11. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.

    Science.gov (United States)

    Xue, Yan; Mou, Zihao; Xiao, Huining

    2017-10-12

    Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.

  12. OBTAINING HYSTERESIS LOOPS AT LOW FREQUENCY FOR CHARACTERIZATION OF MATERIALS TO BE USED IN BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2015-05-01

    Full Text Available The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired

  13. Construction of Multimedia Courseware and Web-based E-Learning Courses of "Biomedical Materials".

    Science.gov (United States)

    Xiaoying, Lu; Jian, He; Tian, Qin; Dongxu, Jiang; Wei, Chen

    2005-01-01

    In order to reform the traditional teaching methodology and to improve the teaching effect, we developed new teaching system for course "Biomedical Materials" in our university by the support of the computer technique and Internet. The new teaching system includes the construction of the multimedia courseware and web-based e-learning courses. More than 2000 PowerPoint slides have been designed and optimized and flash movies for several capitals are included. On the basis of this multimedia courseware, a web-based educational environment has been established further, which includes course contents, introduction of the teacher, courseware download, study forum, sitemap of the web, and relative link. The multimedia courseware has been introduced in the class teaching for "Biomedical Materials" for 6 years and a good teaching effect has been obtained. The web-based e-learning courses have been constructed for two years and proved that they are helpful for the students by their preparing and reviewing the teaching contents before and after the class teaching.

  14. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  15. Green Chemistry: Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Amri Setyawati

    2016-10-01

    Full Text Available Microwave assisted chitosan synthesis as biodegradable material for biomedical application has been done. The purpose of this research is to synthesis of chitosan with high DD and low molecular weight using microwave energy, the study of reaction conditions include parameters of power and reaction time. Chitosan was prepared by deacetylation of chitin with 60% NaOH solution. Conventional method has been done by reflux for 90minutes, resulting chitosan with DD of 79.5%, 72.6% yields and molecular weight 6051 g/mol. Green chemistry method using microwave radiation at 800 Watts for 5 minutes has produced chitosan with highest DD, yield and molecular weight of 86%, 75% and 3797 g/mole respectively. Synthesis of Chitosan by microwave radiation method can save 10x electrical energy for the reaction, also rapidly and effectively to produce chitosan with low molecular weight compared to conventional methods

  16. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  17. Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Matěj Březina

    2017-10-01

    Full Text Available Magnesium with its mechanical properties and nontoxicity is predetermined as a material for biomedical applications; however, its high reactivity is a limiting factor for its usage. Powder metallurgy is one of the promising methods for the enhancement of material mechanical properties and, due to the introduced plastic deformation, can also have a positive influence on corrosion resistance. Pure magnesium samples were prepared via powder metallurgy. Compacting pressures from 100 MPa to 500 MPa were used for samples’ preparation at room temperature and elevated temperatures. The microstructure of the obtained compacts was analyzed in terms of microscopy. The three-point bendisng test and microhardness testing were adopted to define the compacts’ mechanical properties, discussing the results with respect to fractographic analysis. Electrochemical corrosion properties analyzed with electrochemical impedance spectroscopy carried out in HBSS (Hank’s Balanced Salt Solution and enriched HBSS were correlated with the metallographic analysis of the corrosion process. Cold compacted materials were very brittle with low strength (up to 50 MPa and microhardness (up to 50 HV (load: 0.025 kg and degraded rapidly in both solutions. Hot pressed materials yielded much higher strength (up to 250 MPa and microhardness (up to 65 HV (load: 0.025 kg, and the electrochemical characteristics were significantly better when compared to the cold compacted samples. Temperatures of 300 °C and 400 °C and high compacting pressures from 300 MPa to 500 MPa had a positive influence on material bonding, mechanical and electrochemical properties. A compacting temperature of 500 °C had a detrimental effect on material compaction when using pressure above 200 MPa.

  18. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications.

    Science.gov (United States)

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Katunar, Maria R, E-mail: mkatunar@fi.mdp.edu.ar [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Gomez Sanchez, Andrea [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Santos Coquillat, Ana [Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, España (Spain); Civantos, Ana [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid (Spain); Martinez Campos, Enrique [Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, España (Spain); Ballarre, Josefina; Vico, Tamara [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Baca, Matias [Traumatologia y Ortopedia, Hospital Interzonal General de Agudos “Oscar Alende”, Mar del Plata (Argentina); Ramos, Viviana [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid (Spain); Cere, Silvia [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina)

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue–implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60 V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60 V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30 days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60 V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. - Highlights: • Surface modification by anodisation stimulates cell attachment and proliferation. • The anodising process on Zr as a substrate modification improves bone formation. • The mineral processes are accelerated in the Zr60V showing a faster cell response.

  20. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications

    International Nuclear Information System (INIS)

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-01-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue–implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60 V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60 V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30 days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60 V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. - Highlights: • Surface modification by anodisation stimulates cell attachment and proliferation. • The anodising process on Zr as a substrate modification improves bone formation. • The mineral processes are accelerated in the Zr60V showing a faster cell response.

  1. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  2. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  3. A novel combined polyphenol-aldehyde crosslinking of collagen film-Applications in biomedical materials.

    Science.gov (United States)

    Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua

    2017-08-01

    Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    Science.gov (United States)

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    Science.gov (United States)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  6. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  7. Electrochemically deposited conducting polymers for reliable biomedical interfacing materials: Formulation, mechanical characterization, and failure analysis

    Science.gov (United States)

    Qu, Jing

    Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel

  8. Laser-assisted development of titanium alloys: the search for new biomedical materials

    Science.gov (United States)

    Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui

    2011-02-01

    Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.

  9. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    International Nuclear Information System (INIS)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de; Falchete do Prado, Renata; Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto; Rodarte Carvalho, Yasmin

    2015-01-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys

  10. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  11. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    International Nuclear Information System (INIS)

    Wu, Huan-ling; Bremner, David H.; Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu; Zhu, Li-min

    2016-01-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  12. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan-ling [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Jiuzhou College of Pharmacy, Yancheng Institute of Industry Technology, Yancheng 224005 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Li-min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  13. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  14. Bacterial spores as possible contaminants of biomedical materials and devices. [Bacillus anthracis, clostridium botulinum, C. perfringens, C. tetani

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N; Kang, T

    1973-01-01

    Destruction of spores on biomedical devices in drugs, and biologicals is essential for prevention of infection of patients with pathogenic sporeformers. Of particular concern are Clostridium tetani, C. perfringens, C. botulinum, Bacillus anthracis and other sporeforming pathogens. Spores are ubiquitous in nature and contamination of biomedical devices varies depending on manufacturing process, handling, raw materials and other variables. In the last 20 years the number of cases per year of specific notifiable diseases in the United States was as follows: tetanus, 120 to 500 cases, botulism, 7 to 47 cases, and anthrax, 2 to 10 cases. Gas gangrene is caused by a mixed flora consisting predominantly of sporeformers. C botulinum, which usually acts as saprophytic agent of food poisoning, may also initiate pathogenic processes; there are nine cases on record in the United States of botulism wound infections almost half of which ended in death. The spores of these organisms are distinguished by high radiation resistance and their erradication often requires severe radiation treatments. Representative bacterial spores in various suspending media show D/sub 10/ values (dose necessary to destroy 90 percent of a given population) ranging from approximately 0.1 to 0.4 Mrad. Some viruses show D/sub 10/ values up to greater than 1 Mrad. The D/sub 10/-values of spores vary depending on physical, chemical and biological factors. This variability is important in evaluation and selection of biological indicator organisms. Radiation sterilization of biomedical devices and biomedical materials must provide safety from infectious microorganisms including radiation resistant spores and viruses.

  15. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  16. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Development of a new dynamic method for quantitative evaluation of in vitro hemocompatibility of biomedical materials.

    Science.gov (United States)

    Groth, T; Vassilieff, C; Wolf, H; Richter, G; Foerster, F

    1992-01-01

    In this study a new dynamic method is introduced allowing the estimation of blood cell adhesion on flat test surfaces by measuring the cell loss in the bulk phase of surface contacting test blood under defined rheological conditions. This was achieved by constructing a novel test chamber permitting the contact of small amounts of blood with a large geometrical test surface. The construction consists of a spiral-shaped flow channel of 0.3 cm width, 0.02 cm height and 78 cm length covered with the biomaterials to be tested from both sides. Laminarity of blood flow in the conduit was confirmed theoretically by the calculation of an equivalent to the Reynolds number for curved systems the so-called Dean number. Furthermore, flow laminarity was proved experimentally finding that the flow rate of blood with different hematocrit values was proportional to the hydrostatic pressure applied. The applicability of the novel 'spiral method' for the estimation of hemocompatibility was demonstrated by evaluation of platelet adhesion onto different polymers in comparison to siliconized and fibrinogen coated glass as reference surfaces. Additionally, it was possible under distinct conditions to determine the adhesion of leucocytes and the detachment of platelet aggregates. Therefore, it was concluded that the spiral method can be used for the assessment of the hemocompatibility of flat biomedical polymers. As main advantages of the new method can be considered the high time efficiency and accuracy without labelling or optical detection of adherent cells.

  18. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Directory of Open Access Journals (Sweden)

    Gianpaolo Savio

    2018-01-01

    Full Text Available Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  19. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    Science.gov (United States)

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  20. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Science.gov (United States)

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  1. Functional Materials Based on Surface Modification of Carbon Nanotubes for Biomedical and Environmental Applications

    KAUST Repository

    Mashat, Afnan

    2015-05-01

    Since the discovery of carbon nanotubes (CNTs), they have gained much interest in many science and engineering fields. The modification of CNTs by introducing different functional groups to their surface is important for CNTs to be tailored to fit the need of specific applications. This dissertation presents several CNT-based systems that can provide biomedical and environmental advantages. In this research, polyethylenimine (PEI) and polyvinyl alcohol (PVA) were used to coat CNTs through hydrogen bonding. The release of doxorubicin (DOX, an anticancer drug) from this system was controlled by temperature. This system represents a promising method for incorporating stimuli triggered polymer-gated CNTs in controlled release applications. To create an acid responsive system CNTs were coated with 1,2-Distearoyl-snglycero- 3-Phosphoethanolamine-N-[Amino(Polyethylene glycol)2000]-(PE-PEG) and Poly(acrylic acid) modified dioleoy lphosphatidyl-ethanolamine (PE-PAA). An acidlabile linker was used to cross-link PAA, forming ALP@CNTs, thus making the system acid sensitive. The release of DOX from ALP@CNTs was found to be higher in an acidic environment. Moreover, near infrared (NIR) light was used to enhance the release of DOX from ALP@CNTs. A CNT-based membrane with controlled diffusion was prepared in the next study. CNTs were used as a component of a cellulose/gel membrane due to their optical property, which allows them to convert NIR light into heat. Poly(Nisopropylacrylamide) (PNIPAm) was used due to its thermo-sensitivity. The properties of both the CNTs and PNIPAm’s were used to control the diffusion of the cargo from the system, under the influence of NIR. CNTs were also used to fabricate an antibacterial agent, for which they were coated with polydopamine (PDA) and decorated with silver particles (Ag). Galactose (Gal) terminated with thiol groups conjugated with the above system was used to strengthen the bacterial targeting ability. The antibacterial activity of

  2. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  3. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    International Nuclear Information System (INIS)

    2009-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  4. Hydroxyapatites enriched in silicon–Bioceramic materials for biomedical and pharmaceutical applications

    Institute of Scientific and Technical Information of China (English)

    Katarzyna Szurkowska; Joanna Kolmas

    2017-01-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, abbreviated as HA) plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin), it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physico-chemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA). Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  5. Hydroxyapatites enriched in silicon – Bioceramic materials for biomedical and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Katarzyna Szurkowska

    2017-08-01

    Full Text Available Hydroxyapatite (Ca10(PO46(OH2, abbreviated as HA plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin, it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physicochemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA. Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  6. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Giada Graziana Genchi

    2017-12-01

    Full Text Available With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities, underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.

  7. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.

    Science.gov (United States)

    Cirillo, Giuseppe; Hampel, Silke; Klingeler, Rüdiger; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Parisi, Ortensia Ilaria; Spizzirri, Umile Gianfranco; Picci, Nevio; Leonhardt, Albrecht; Ritschel, Manfred; Büchner, Bernd

    2011-02-01

    To prove the possibility of covalently functionalizing multi-walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in-vitro assays. Antioxidant CNTs were synthesized by radical grafting of gallic acid onto pristine CNTs. The synthesis of carbon nanotubes was carried out in a fixed-bed reactor and, after the removal of the amorphous carbon, the grafting process was performed. The obtained materials were characterized by fluorescence and Fourier transform infrared spectroscopy (FT-IR) analyses. After assessment of the biocompatibility and determination of the disposable phenolic group content, the antioxidant properties were evaluated in terms of total antioxidant activity and scavenger ability against 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and peroxyl radicals. Finally the inhibition activity on acetylcholinesterase was evaluated.   The covalent functionalization of CNTs with gallic acid was confirmed and the amount of gallic acid bound per g of CNTs was found to be 2.1±0.2 mg. Good antioxidant and scavenging properties were recorded in the functionalized CNTs, which were found to be able to inhibit the acetylcholinesterase with potential improved activity for biomedical and pharmaceutical applications. For the first time, a free radical grafting procedure was proposed as a synthetic approach for the covalent functionalization of CNTs with an antioxidant polyphenol. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  8. Synthesis of irregular graphene oxide tubes using green chemistry and their potential use as reinforcement materials for biomedical applications.

    Directory of Open Access Journals (Sweden)

    Ángel Serrano-Aroca

    Full Text Available Micrometer length tubes of graphene oxide (GO with irregular form were synthesised following facile and green metal complexation reactions. These materials were obtained by crosslinking of GO with calcium, zinc or strontium chlorides at three different temperatures (24, 34 and 55°C using distilled water as solvent for the compounds and following a remarkably simple and low-cost synthetic method, which employs no hazardous substances and is conducted without consumption of thermal or sonic energy. These irregular continuous GO networks showed a very particular interconnected structure by Field Emission Scanning Electron Microscopy with Energy-Disperse X-Ray Spectroscopy for elemental analysis and High-resolution Transmission Electron Microscopy with Scanning Transmission Electron Microscope Dark Field Imaging, and were analysed by Raman Spectroscopy. To demonstrate the potential use of these 3D GO networks as reinforcement materials for biomedical applications, two composites of calcium alginate with irregular tubes of GO and with single GO nanosheets were prepared with the same amount of GO and divalent atoms and analysed. Thus, the dynamic-mechanical modulus of the composites synthesised with the 3D crosslinked GO networks showed a very significant mechanical improvement due to marked microstructural changes confirmed by confocal microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy.

  9. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications.

    Science.gov (United States)

    Tuček, Jiří; Błoński, Piotr; Ugolotti, Juri; Swain, Akshaya Kumar; Enoki, Toshiaki; Zbořil, Radek

    2018-03-26

    Graphene, a single two-dimensional sheet of carbon atoms with an arrangement mimicking the honeycomb hexagonal architecture, has captured immense interest of the scientific community since its isolation in 2004. Besides its extraordinarily high electrical conductivity and surface area, graphene shows a long spin lifetime and limited hyperfine interactions, which favors its potential exploitation in spintronic and biomedical applications, provided it can be made magnetic. However, pristine graphene is diamagnetic in nature due to solely sp2 hybridization. Thus, various attempts have been proposed to imprint magnetic features into graphene. The present review focuses on a systematic classification and physicochemical description of approaches leading to equip graphene with magnetic properties. These include introduction of point and line defects into graphene lattices, spatial confinement and edge engineering, doping of graphene lattice with foreign atoms, and sp3 functionalization. Each magnetism-imprinting strategy is discussed in detail including identification of roles of various internal and external parameters in the induced magnetic regimes, with assessment of their robustness. Moreover, emergence of magnetism in graphene analogues and related 2D materials such as transition metal dichalcogenides, metal halides, metal dinitrides, MXenes, hexagonal boron nitride, and other organic compounds is also reviewed. Since the magnetic features of graphene can be readily masked by the presence of magnetic residues from synthesis itself or sample handling, the issue of magnetic impurities and correct data interpretations is also addressed. Finally, current problems and challenges in magnetism of graphene and related 2D materials and future potential applications are also highlighted.

  10. Textural Properties of Hybrid Biomedical Materials Made from Extracts of Tournefortia hirsutissima L. Imbibed and Deposited on Mesoporous and Microporous Materials

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández

    2016-01-01

    Full Text Available Our research group has developed a group of hybrid biomedical materials potentially useful in the healing of diabetic foot ulcerations. The organic part of this type of hybrid materials consists of nanometric deposits, proceeding from the Mexican medicinal plant Tournefortia hirsutissima L., while the inorganic part is composed of a zeolite mixture that includes LTA, ZSM-5, clinoptilolite, and montmorillonite (PZX as well as a composite material, made of CaCO3 and montmorillonite (NABE. The organic part has been analyzed by GC-MS to detect the most abundant components present therein. In turn, the inorganic supports were characterized by XRD, SEM, and High Resolution Adsorption (HRADS of N2 at 76 K. Through this latter methodology, the external surface area of the hybrid materials was evaluated; besides, the most representative textural properties of each substrate such as total pore volume, pore size distribution, and, in some cases, the volume of micropores were calculated. The formation and stabilization of nanodeposits on the inorganic segments of the hybrid supports led to a partial blockage of the microporosity of the LTA and ZSM5 zeolites; this same effect occurred with the NABE and PZX substrates.

  11. Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications

    Czech Academy of Sciences Publication Activity Database

    Březina, M.; Minda, J.; Doležal, P.; Krystýnová, M.; Fintová, Stanislava; Zapletal, J.; Wasserbauer, J.; Ptáček, P.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 461. ISSN 2075-4701 Institutional support: RVO:68081723 Keywords : magnesium * powder metallurgy * cold pressing * hot pressing * EIS (Electrochemical impedance spectroscopy) * three-point bending test * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.984, year: 2016 http://www.mdpi.com/2075-4701/7/11/461

  12. Iodinated glycidyl methacrylate copolymer as a radiopaque material for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayabalan, M

    2013-07-01

    Polymeric biomaterial was synthesized by copolymerizing 50:50 mol% of monomers, glycidyl methacrylate and methyl methacrylate. Iodine atoms were then grafted to the epoxide groups of glycidyl methacrylate units, rendering the copolymer radiopaque. The percentage weight of iodine in the present copolymer was found to be as high as 23%. The iodinated copolymer showed higher glass transition temperature and thermal stability in comparison with unmodified polymer. Radiographic analysis showed that the copolymer possessed excellent radiopacity. The iodinated copolymer was cytocompatible to L929 mouse fibroblast cells. The in vivo toxicological evaluation by intracutaneous reactivity test of the copolymer extracts has revealed that the material was nontoxic. Subcutaneous implantation of iodinated copolymer in rats has shown that the material was well tolerated. Upon explantation and histological examination, no hemorrhage, infection or necrosis was observed. The samples were found to be surrounded by a vascularized capsule consisting of connective tissue cells. The results indicate that the iodinated copolymer is biocompatible and may have suitable applications as implantable materials.

  13. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  14. Biocompatibility evaluations and biomedical sensing applications of nitric oxide-releasing/generating polymeric materials

    Science.gov (United States)

    Wu, Yiduo

    Nitric oxide (NO) is a potent signaling molecule secreted by healthy vascular endothelial cells (EC) that is capable of inhibiting the activation and adhesion of platelets, preventing inflammation and inducing vasodilation. Polymeric materials that mimic the EC through the continuous release or generation of NO are expected to exhibit enhanced biocompatibility in vivo. In this dissertation research, the biocompatibility of novel NO-releasing/generating materials has been evaluated via both in vitro and in vivo studies. A new in vitro platelet adhesion assay has been designed to quantify platelet adhesion on NO-releasing/generating polymer surfaces via their innate lactate dehydrogenase (LDH) content. Using this assay, it was discovered that continuous NO fluxes of up to 7.05 x10-10 mol cm-2 min-1 emitted from the polymer surfaces could reduce platelet adhesion by almost 80%. Such an in vitro biocompatibility assay can be employed as a preliminary screening method in the development of new NO-releasing/generating materials. In addition, the first in vivo biocompatibility evaluation of NO-generating polymers was conducted in a porcine artery model for intravascular oxygen sensing catheters. The Cu(I)-catalyzed decomposition of endogenous S-nitrosothiols (RSNOs) generated NO in situ at the polymer/blood interface and offered enhanced biocompatibility to the NO-generating catheters along with more accurate analytical results for intra-arterial measurements of PO2 levels. NO-generating polymers can also be utilized to fabricate electrochemical RSNO sensors based on the amperometric detection of NO generated by the reaction of RSNOs with immobilized catalysts. Unlike conventional methodologies employed to measure labile RSNO, the advantage of the RSNO sensor method is that measurement in whole blood samples is possible and this minimizes sample processing artifacts in RSNO measurements. An electrochemical RSNO sensor with organoselenium crosslinked polyethylenimine (RSe

  15. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  16. Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.

    Science.gov (United States)

    Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo

    2011-01-01

    The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.

  17. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    Science.gov (United States)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  18. Recent advances in syntheses and biomedical applications of nano-rare earth metal-organic framework materials

    Directory of Open Access Journals (Sweden)

    Xin Pengyan

    2017-12-01

    Full Text Available In recent years,the syntheses of nano-rare earth metal-organic framework (MOF materials and their applications in biomedicine,especially in the diagnosis and treatment of cancer have attracted extensive attentions.On the one hand,nano-rare earth MOFs,which have unique optical and magnetic properties,are promising multimodal imaging contrast agents for biomedical imaging,such as fluorescence imaging and magnetic resonance imaging.On the other hand,nano-rare earth MOFs have various compositions and structures,and excellent intrinsic properties such as large specific surface area,high pore volume and tunable pore size,which enable them to perform as promising nanoplatforms for drug delivery.Therefore,nano-rare earth MOFs may provide a new platform for the development of diagnostic and therapeutic reagents.In this article,the recent advances in the syntheses of nano-rare earth MOFs and their applications in biomedicine are summarized.

  19. ESR (Electronic Spin Resonance Spectroscopy) study of irradiated paper for biomedical material wrapping

    International Nuclear Information System (INIS)

    Huarte, Monica; Rubin de Celis, Emilio; Kairiyama, Eulogia; Zapata, Miguel; Santoro, Natalia; Magnavacca, Cecilia

    2009-01-01

    Ionising radiation treatments are used for sterilization, microbiological decontamination, disinfection, insect disinfestation and food preservation. This ionising radiation generates free radicals (FR) in matter, which can be detected by Electronic Spin Resonance Spectroscopy (ESR). For this work it had analysed different kind of irradiated package papers of syringes, surgical gloves and dressings by ESR. These were irradiated with doses between 20 and 35 kGy of gamma radiation (Cobalt 60). The processed samples were measured in a Bruker ECS 106 spectrometer. The obtained results were: 1-) The irritated samples showed a central peak and two satellites induced by the applied radiation; 2-) The non-irradiated samples did not show the characteristic satellite peaks of the irritated ones; 3-) A linear relationship between the signal heights per unit mass and the applied doses was found; and 4-) The signals were highly stable, with half-time values between 240 and 370 days for 20 and 30 kGy, permitting more than one year of monitoring proceedings. In conclusion, the ESR allows the detection, quantification and time monitoring processes of this kind of irradiated materials. (author) [es

  20. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    International Nuclear Information System (INIS)

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-01-01

    Selenium-substituted hydroxyapatites containing selenate SeO 4 2− or selenite SeO 3 2− ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO 3 2− and SeO 4 2− into the crystal lattice. • The toxicity of the materials was studied

  1. Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kolmas, Joanna, E-mail: joanna.kolmas@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Oledzka, Ewa; Sobczak, Marcin [Medical University of Warsaw, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, ul. Banacha 1, 02-097 Warsaw (Poland); Nałęcz-Jawecki, Grzegorz [Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, ul. Banacha 1, 02-097 Warsaw (Poland)

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO{sub 4}{sup 2−} or selenite SeO{sub 3}{sup 2−} ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. - Highlights: • We synthesized and analyzed hydroxyapatites doped with selenium oxyanions. • We used various analytical methods, i.e. XRD, TEM, AAS and FT-IR. • We confirmed incorporation of SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} into the crystal lattice. • The toxicity of the materials was studied.

  2. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  3. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  4. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  5. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  6. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  8. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  9. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  10. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    Science.gov (United States)

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules.

    Science.gov (United States)

    Solano, Francisco

    2017-07-18

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  12. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Science.gov (United States)

    2017-01-01

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications. PMID:28718807

  13. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Directory of Open Access Journals (Sweden)

    Francisco Solano

    2017-07-01

    Full Text Available The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA can easily polymerize to get polydopamine melanin (PDAM, that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  14. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  15. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  16. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    International Nuclear Information System (INIS)

    2010-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working_materials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation synthesize

  17. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  18. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  19. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working{sub m}aterials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation

  20. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Lizundia, E., E-mail: erlantz.liizundia@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Meaurio, E., E-mail: emiliano.meaurio@ehu.es [Department of Mining-Metallurgy and Materials Science and BERC POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) (Spain); Laza, J.M., E-mail: josemanuel.laza@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Vilas, J.L., E-mail: joseluis.vilas@bcmaterials.net [Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain); León Isidro, L.M., E-mail: luismanuel.leon@ehu.es [Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU) (Spain); Basque Center for Materials, Applications and Nanostructures (BCMaterials), Parque Tecnológico de Bizkaia, Ed. 500, Derio 48160 (Spain)

    2015-05-01

    The development of thermally-sensitive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible/biodegradable poly(L-lactide) (PLLA) blends offers us an efficient strategy in order to obtain materials with improved functional properties to be used in the emerging field of biomedicine. In this sense, thermal properties of PLLA and PNIPAAm have been investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD) were conducted to shed more light on the obtained results. For a better understanding of PLLA/PNIPAAm system, both low and high molecular weight PLLA and PNIPAAm have been synthesized by ring opening polymerization and aqueous redox polymerization respectively. Obtained results are interpreted from the viewpoint of chain microstructure of each homopolymer and the ratio between two constituent materials. DSC, SEM and WAXD results show a phase separation over the entire composition range irrespectively of the molecular weight of both homopolymers. Additionally, it was found a nucleating agent behavior of low molecular weight PNIPAAm, while high molecular weight PNIPAAm hinders the crystallization of PLLA. FTIR results suggest that the strong autoassociation present in PNIPAAm plays a key role impairing the miscibility of the whole system. Thermogravimetric analysis reveals that thermodegradation process of PLLA could be continuously delayed with the addition of PNIPAAm due to the increased thermal stability of N-isopropylacrylamide in regard to L-lactide sequences. - Highlights: • Poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials are synthesized. • Results are interpreted in terms of the building block nature of each constituent. • Phase separation behavior over the entire composition range is achieved. • Strong autoassociation present in PNIPAAm impairs the miscibility of the whole blend

  1. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.

    Science.gov (United States)

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Jönsson, Leif J; Hong, Feng F

    2016-07-08

    Bacterial nanocellulose (BNC) is a microbial nanofibrillar hydrogel with many potential applications. Its use is largely restricted by insufficient strength when in a highly swollen state and by inefficient production using static cultivation. In this study, an in situ nanocellulose-coating technology created a fabric-frame reinforced nanocomposite of BNC hydrogel with superior strength but retained BNC native attributes. By using the proposed technology, production time could be reduced from 10 to 3 days to obtain a desirable hydrogel sheet with approximately the same thickness. This novel technology is easier to scale up and is more suitable for industrial-scale manufacture. The mechanical properties (tensile strength, suture retention strength) and gel characteristics (water holding, absorption and wicking ability) of the fabric-reinforced BNC hydrogel were investigated and compared with those of ordinary BNC hydrogel sheets. The results reveal that the fabric-reinforced BNC hydrogel was equivalent with regard to gel characteristics, and exhibited a qualitative improvement with regard to its mechanical properties. For more advanced applications, coating technology via dynamic bacterial cultures could be used to upgrade conventional biomedical fabrics, i.e. medical cotton gauze or other mesh materials, with nanocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1077-1084, 2016. © 2016 American Institute of Chemical Engineers.

  2. Biomedical applications of nanotechnology.

    Science.gov (United States)

    Ramos, Ana P; Cruz, Marcos A E; Tovani, Camila B; Ciancaglini, Pietro

    2017-04-01

    The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.

  3. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  4. Biomedical microsystems

    CERN Document Server

    Meng, Ellis

    2010-01-01

    IntroductionEvolution of MEMSApplications of MEMSBioMEMS ApplicationsMEMS ResourcesText Goals and OrganizationMiniaturization and ScalingBioMEMS MaterialsTraditional MEMS and Microelectronic MaterialsPolymeric Materials for MEMSBiomaterialsMicrofabrication Methods and Processes for BioMEMSIntroductionMicrolithographyDopingMicromachiningWafer Bonding, Assembly, and PackagingSurface TreatmentConversion Factors for Energy and Intensity UnitsLaboratory ExercisesMicrofluidicsIntroduction and Fluid PropertiesConcepts in MicrofluidicsFluid-Transport Phenomena and PumpingFlow ControlLaboratory Exercis

  5. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  6. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  7. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  8. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  9. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  10. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  11. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  12. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  13. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  14. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  15. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  16. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  17. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  18. Biomedical applications of nanodiamond (Review)

    Science.gov (United States)

    Turcheniuk, K.; Mochalin, Vadym N.

    2017-06-01

    The interest in nanodiamond applications in biology and medicine is on the rise over recent years. This is due to the unique combination of properties that nanodiamond provides. Small size (∼5 nm), low cost, scalable production, negligible toxicity, chemical inertness of diamond core and rich chemistry of nanodiamond surface, as well as bright and robust fluorescence resistant to photobleaching are the distinct parameters that render nanodiamond superior to any other nanomaterial when it comes to biomedical applications. The most exciting recent results have been related to the use of nanodiamonds for drug delivery and diagnostics—two components of a quickly growing area of biomedical research dubbed theranostics. However, nanodiamond offers much more in addition: it can be used to produce biodegradable bone surgery devices, tissue engineering scaffolds, kill drug resistant microbes, help us to fight viruses, and deliver genetic material into cell nucleus. All these exciting opportunities require an in-depth understanding of nanodiamond. This review covers the recent progress as well as general trends in biomedical applications of nanodiamond, and underlines the importance of purification, characterization, and rational modification of this nanomaterial when designing nanodiamond based theranostic platforms.

  19. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  1. NDE in biomedical engineering

    International Nuclear Information System (INIS)

    Bhagwat, Aditya; Kumar, Pradeep

    2015-01-01

    Biomedical Engineering (BME) is an interdisciplinary field, marking the conjunction of Medical and Engineering disciplines. It combines the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy

  2. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  3. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  4. Luminescent nanodiamonds for biomedical applications.

    Science.gov (United States)

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  5. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications?Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    OpenAIRE

    Solano, Francisco

    2017-01-01

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomate...

  6. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  7. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. © 2013 John Wiley & Sons Ltd.

  8. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  9. Magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Sora, Sergiu; Ion, Rodica Mariana

    2010-01-01

    This work aims to establish and to optimize the conditions for chemical synthesis of nanosized magnetic core-shell iron oxide. The core is magnetite and for the shell we used gold in order to obtain different nanoparticles. Iron oxides was synthesized by sonochemical process using ferrous salts, favoring the synthesis at low-temperature, low costs, high material purity and nanostructure control. After synthesis, some investigation techniques as: X-ray diffraction (XRD), atomic force microscopy (AFM), Thermogravimetric analysis (TGA), Fourier-Transform Infrared Spectroscopy (FTIR) and UVVis absorbance spectroscopy, have been used to see the characteristics of the nanoparticles. For in vitro applications, it is important to prevent any aggregation of the nanoparticles, and may also enable efficient excretion and protection of the cells from toxicity. For biomedical applications like magnetic biofunctional material vectors to target tissues, the particles obtained have to be spherical with 10 nm average diameter. Key words: magnetite, nanocomposite, core-shell, sonochemical method

  10. Biomedical applications using low temperature plasma technology

    International Nuclear Information System (INIS)

    Dai Xiujuan; Jiang Nan

    2006-01-01

    Low temperature plasma technology and biomedicine are two different subjects, but the combination of the two may play a critical role in modern science and technology. The 21 st century is believed to be a biotechnology century. Plasma technology is becoming a widely used platform for the fabrication of biomaterials and biomedical devices. In this paper some of the technologies used for material surface modification are briefly introduced. Some biomedical applications using plasma technology are described, followed by suggestions as to how a bridge between plasma technology and biomedicine can be built. A pulsed plasma technique that is used for surface functionalization is discussed in detail as an example of this kind of bridge or combination. Finally, it is pointed out that the combination of biomedical and plasma technology will be an important development for revolutionary 21st century technologies that requires different experts from different fields to work together. (authors)

  11. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  12. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  13. The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Souza, S.A.; Batista, W.W.; Macedo, M.C.S.S.

    2014-01-01

    Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. This study, the corrosion resistance of the Ti-35Nb-(0; 0,15; 0,35; 0,55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by XPS. Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization- Rp-pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (author)

  14. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  15. Biomedical Image Registration

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The pap...

  16. Biomedical Data Mining

    NARCIS (Netherlands)

    Peek, N.; Combi, C.; Tucker, A.

    2009-01-01

    Objective: To introduce the special topic of Methods of Information in Medicine on data mining in biomedicine, with selected papers from two workshops on Intelligent Data Analysis in bioMedicine (IDAMAP) held in Verona (2006) and Amsterdam (2007). Methods: Defining the field of biomedical data

  17. Careers in biomedical engineering.

    Science.gov (United States)

    Madrid, R E; Rotger, V I; Herrera, M C

    2010-01-01

    Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.

  18. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  19. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  20. Cyclotrons for clinical and biomedical research with PET

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use

  1. Ceramic Materials in a Ti–C–Co–Ca3(PO42–Ag–Mg System Obtained by MA SHS for the Deposition of Biomedical Coatings

    Directory of Open Access Journals (Sweden)

    Artem Potanin

    2017-09-01

    Full Text Available This study aimed to obtain biocompatible ceramic materials in a Ti–C–Co–Ca3(PO42–Ag–Mg system by the combustion mode of mechanically activated (MA reaction mixtures. The influence of the MA time on the reaction ability capability of the mixtures, on their structural and chemical homogeneity, on the combustion parameters and structural-phase conversions in the combustion wave, as well as on the structure and phase composition of the electrode materials has been researched. It was found that the intense treatment of powder mixtures causes plastic deformation of components, the formation of lamellar composite granules, a reduction in the sizes of coherent scattering regions, and also the formation of minor amounts of products. The influence of the activation duration of the ignition temperature and heat release during the combustion of the reaction mixtures was studied. By the method of quenching the combustion front, it was demonstrated that in a combustion wave, chemical transformations occur within the lamellar structures formed during the process of mechanoactivation. It was shown that in the combustion wave, parallel chemical reactions of Ti with C as well as Ti with Co and Ca3(PO42 occur, with a Ti–Co-based melt forming the reaction surface. Ceramic electrodes with different contents of Ag and Mg were synthesized by force self-propagating high-temperature synthesis (SHS-pressing technology using the MA mixtures. The microstructure of the materials consisted of round-shaped grains of nonstoichiometric titanium carbide TiCx grains, intermetallic matrix (TiCo, TiCo2, CoTiP, inclusions of Ca and Mg oxides, and grains of the Ag-based solid solution. An increased content of Ag and Mg in the composition of the electrodes, as well as an increased MA duration, leads to an enlargement of the inclusions of the Ag-containing phase size and deterioration in the uniformity of their distribution.

  2. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  3. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  4. Combinatorial nanodiamond in pharmaceutical and biomedical applications.

    Science.gov (United States)

    Lim, Dae Gon; Prim, Racelly Ena; Kim, Ki Hyun; Kang, Eunah; Park, Kinam; Jeong, Seong Hoon

    2016-11-30

    One of the newly emerging carbon materials, nanodiamond (ND), has been exploited for use in traditional electric materials and this has extended into biomedical and pharmaceutical applications. Recently, NDs have attained significant interests as a multifunctional and combinational drug delivery system. ND studies have provided insights into granting new potentials with their wide ranging surface chemistry, complex formation with biopolymers, and combination with biomolecules. The studies that have proved ND inertness, biocompatibility, and low toxicity have made NDs much more feasible for use in real in vivo applications. This review gives an understanding of NDs in biomedical engineering and pharmaceuticals, focusing on the classified introduction of ND/drug complexes. In addition, the diverse potential applications that can be obtained with chemical modification are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  6. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  7. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  9. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  10. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  11. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  12. Radiochemicals in biomedical research

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    This volume describes the role of radiochemicals in biomedical research, as tracers in the development of new drugs, their interaction and function with receptor proteins, with the kinetics of binding of hormone - receptor interactions, and their use in cancer research and clinical oncology. The book also aims to identify future trends in this research, the main objective of which is to provide information leading to improvements in the quality of life, and to give readers a basic understanding of the development of new drugs, how they function in relation to receptor proteins and lead to a better understanding of the diagnosis and treatment of cancers. (author)

  13. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  14. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  15. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  16. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  17. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  18. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  19. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  20. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project ... of the journal led to the formation of a group (Biomedical Communications Group, ... analysis of multidrug resistant aerobic gram-negative clinical isolates from a ... Dental formula and dental abnormalities observed in the Eidolon helvum ...

  1. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  2. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  3. Journal of Biomedical Investigation: Editorial Policies

    African Journals Online (AJOL)

    Journal of Biomedical Investigation: Editorial Policies. Journal Home ... The focus of the Journal of Biomedical Research is to promote interdisciplinary research across all Biomedical Sciences. It publishes ... Business editor – Sam Meludu.

  4. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  5. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  6. Customization of biomedical terminologies.

    Science.gov (United States)

    Homo, Julien; Dupuch, Laëtitia; Benbrahim, Allel; Grabar, Natalia; Dupuch, Marie

    2012-01-01

    Within the biomedical area over one hundred terminologies exist and are merged in the Unified Medical Language System Metathesaurus, which gives over 1 million concepts. When such huge terminological resources are available, the users must deal with them and specifically they must deal with irrelevant parts of these terminologies. We propose to exploit seed terms and semantic distance algorithms in order to customize the terminologies and to limit within them a semantically homogeneous space. An evaluation performed by a medical expert indicates that the proposed approach is relevant for the customization of terminologies and that the extracted terms are mostly relevant to the seeds. It also indicates that different algorithms provide with similar or identical results within a given terminology. The difference is due to the terminologies exploited. A special attention must be paid to the definition of optimal association between the semantic similarity algorithms and the thresholds specific to a given terminology.

  7. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  8. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  9. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  10. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  11. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  12. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  14. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  15. Bio-medical CMOS ICs

    CERN Document Server

    Yoo, Hoi-Jun

    2011-01-01

    This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors. It includes an introduction and overview to biomedical ICs and provides information on the current trends in research.

  16. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  17. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  18. Summer Biomedical Engineering Institute 1972

    Science.gov (United States)

    Deloatch, E. M.

    1973-01-01

    The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.

  19. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  20. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  1. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  2. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  3. The use of AMS to the biomedical sciences

    International Nuclear Information System (INIS)

    Vogel, J.S.

    1991-04-01

    The Center for Accelerator Mass Spectroscopy (AMS) began making AMS measurements in 1989. Biomedical experiments were originally limited by sample preparation techniques, but we expect the number of biomedical samples to increase five-fold. While many of the detailed techniques for making biomedical measurements resemble those used in other fields, biological tracer experiments differ substantially from the observational approaches of earth science investigators. The role of xenobiotius in initiating mutations in cells is of particular interest. One measure of the damage caused to the genetic material is obtained by counting the number of adducts formed by a chemical agent at a given dose. AMS allows direct measurement of the number of adducts through stoichiometric quantification of the 14 C label attached to the DNA after exposure to a labelled carcinogen. Other isotopes of interest include tritium, 36 Cl, 79 SE, 41 Ca, 26 Al and 129 I. Our experiments with low dose environmental carcinogens reflect the protocols which will become a common part of biomedical AMS. In biomedical experiments, the researcher defines the carbon to be analyzed through dissection and/or chemical purification; thus the sample is ''merely'' combusted and graphitized at the AMS facility. However, since biomedical samples can have a 14 C range of five orders of magnitude, preparation of graphite required construction of a special manifold to prevent cross-contamination. Additionally, a strain of 14 C-depleted C57BL/6 mice is being developed to further reduce background in biomedical experiments. AMS has a bright and diverse future in radioisotope tracing. Such work requires a dedicated amalgamation of AMS scientists and biomedical researchers who will redesign experimental protocols to maximize the AMS technique and minimize the danger of catastrophic contamination. 18 refs., 4 figs., 1 tab

  4. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  5. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  6. Additive manufacturing techniques and their biomedical applications

    Directory of Open Access Journals (Sweden)

    Yujing Liu

    2017-12-01

    Full Text Available Additive manufacturing (AM, also known as three-dimensional (3D printing, is gaining increasing attention in medical fields, especially in dental and implant areas. Because AM technologies have many advantages in comparison with traditional technologies, such as the ability to manufacture patient-specific complex components, high material utilization, support of tissue growth, and a unique customized service for individual patients, AM is considered to have a large potential market in medical fields. This brief review presents the recent progress of 3D-printed biomedical materials for bone applications, mainly for metallic materials, including multifunctional alloys with high strength and low Young’s modulus, shape memory alloys, and their 3D fabrication by AM technologies. It describes the potential of 3D printing techniques in precision medicine and community health.

  7. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, E.

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to

  8. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  9. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  10. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  11. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  12. The biomedical waste management in selected hospitals of Chittoor ...

    African Journals Online (AJOL)

    Introduction: Poor waste management practices pose a huge risk to the health of the public, patients, professionals and contribute to environmental degradation. Aims and objectives: Our study was aimed to assess the present status of biomedical waste management in Government and Private Hospitals. Materials and ...

  13. Contamination control training for biomedical facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1994-10-01

    In 1991, a contamination control course was developed for the Biology and Biotechnology Research Program (BBRP) at the Lawrence Livermore National Laboratory (LLNL). This course was based on the developer's experience in Radiation Safety at the University of Utah and University of Kansas Medical Center. This course has been well received at LLNL because it addresses issues that are important to individuals handling small quantities of radioactive materials. This group of users is often overlooked. They are typically very well educated and are expected to ''know'' what they should do. Many of these individuals are not initially comfortable working with radioactive materials. They appreciate the opportunity to be introduced to contamination control techniques and to discuss issues they may have. In addition, the authors benefit by experience that researchers bring from other facilities. The training course will address the specific radiological training requirements for chemists, biologists, and medical researchers who are using small amounts of dispersible radionuclides in tabletop experiments, and will not be exposed to other radiation sources. The training will include: the potential hazards of typical radionuclides, contamination control procedures, and guidance for developing and including site-specific information. The training course will eliminate the need for Radiological Worker II training for bio-medical researchers. The target audience for this training course is bio-medical researchers

  14. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  15. Application of nanotechnology in antimicrobial finishing of biomedical textiles

    International Nuclear Information System (INIS)

    Zille, Andrea; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria Fátima; Souto, António Pedro; Silva, Carla J

    2014-01-01

    In recent years, the antimicrobial nanofinishing of biomedical textiles has become a very active, high-growth research field, assuming great importance among all available material surface modifications in the textile industry. This review offers the opportunity to update and critically discuss the latest advances and applications in this field. The survey suggests an emerging new paradigm in the production and distribution of nanoparticles for biomedical textile applications based on non-toxic renewable biopolymers such as chitosan, alginate and starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP) size, its concentration on the fabric, and the antimicrobial activity exists, allowing the optimization of antimicrobial functionality. (topical review)

  16. Application of nanotechnology in antimicrobial finishing of biomedical textiles

    Science.gov (United States)

    Zille, Andrea; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Fátima Esteves, Maria; Silva, Carla J.; Souto, António Pedro

    2014-09-01

    In recent years, the antimicrobial nanofinishing of biomedical textiles has become a very active, high-growth research field, assuming great importance among all available material surface modifications in the textile industry. This review offers the opportunity to update and critically discuss the latest advances and applications in this field. The survey suggests an emerging new paradigm in the production and distribution of nanoparticles for biomedical textile applications based on non-toxic renewable biopolymers such as chitosan, alginate and starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP) size, its concentration on the fabric, and the antimicrobial activity exists, allowing the optimization of antimicrobial functionality.

  17. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  18. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  19. [Research Progress and Development Prospect of Biomedical Plate].

    Science.gov (United States)

    Li, Xiao; Liu, Jing; Wu, Qiang; Wang, Yanjie; Xiao, Tao; Liu, Lihong; Yu, Shu

    2016-12-01

    Different generations of biomedical materials are analyzed in this paper.The current clinical uses of plates made of metals,polymers or composite materials are evaluated,and nano hydroxyapatite/polylactic acid composites and carbon/carbon composite plates are introduced as emphasis.It is pointed out that the carbon/carbon composites are of great feasibility and advantage as a new generation of biomedical materials,especially in the field of bone plate.Compared to other biomaterials,carbon/carbon composites have a good biocompatibility and mechanical compatibility because they have similar elastic modulus,porosity and density to that of human bones.With the development of the technology in knitting and material preparation,carbon/carbon composite plates have a good application prospect.

  20. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  1. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  2. Archives: Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    Items 1 - 20 of 20 ... Archives: Journal of Medical and Biomedical Sciences. Journal Home > Archives: Journal of Medical and Biomedical Sciences. Log in or Register to get access to full text downloads.

  3. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  4. Archives: Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Journal of Medicine and Biomedical Research. Journal Home > Archives: Journal of Medicine and Biomedical Research. Log in or Register to get access to full text downloads.

  5. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists

  6. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  7. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  8. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  9. Statistics in three biomedical journals

    Czech Academy of Sciences Publication Activity Database

    Pilčík, Tomáš

    2003-01-01

    Roč. 52, č. 1 (2003), s. 39-43 ISSN 0862-8408 R&D Projects: GA ČR GA310/03/1381 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323 Institutional research plan: CEZ:AV0Z5052915 Keywords : statistics * usage * biomedical journals Subject RIV: EC - Immunology Impact factor: 0.939, year: 2003

  10. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is

  11. Research evaluation support services in biomedical libraries

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Gutzman

    2018-01-01

    Conclusions: Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  12. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  13. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  14. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  15. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  17. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  18. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  19. Irradiation effects on hydrases for biomedical applications

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    2000-01-01

    To apply an irradiation technique to sterilize 'Hybrid' biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against 60 Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N 2 gas to suppress the formation of free radicals. (author)

  20. New biomedical applications of radiocarbon

    International Nuclear Information System (INIS)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  1. Figure mining for biomedical research.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  2. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  3. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  4. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  5. Biomedical signal and image processing.

    Science.gov (United States)

    Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro

    2011-01-01

    Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.

  6. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  7. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Adrian Martinez-Rivas

    2017-11-01

    Full Text Available Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS, point-of-care (POC devices, or organs-on-chips (OOC, which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.

  8. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.

    Science.gov (United States)

    Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen

    2016-11-09

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  9. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  10. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  11. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    Science.gov (United States)

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  12. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  13. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  14. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tritium AMS for biomedical applications

    International Nuclear Information System (INIS)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing 3 H-AMS to measure 3 H activity of mg-sized biological samples. LLNL has already successfully applied 14 C AMS to a variety of problems in the area of biomedical research. Development of 3 H AMS would greatly complement these studies. The ability to perform 3 H AMS measurements at sensitivities equivalent to those obtained for 14 C will allow us to perform experiments using compounds that are not readily available in 14 C-tagged form. A 3 H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds

  16. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  17. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  18. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  19. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  20. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  1. Mathematics and physics of emerging biomedical imaging

    National Research Council Canada - National Science Library

    Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging, National Research Council

    .... Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists...

  2. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  3. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  4. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  5. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.

  6. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  7. Reviewing Manuscripts for Biomedical Journals

    Science.gov (United States)

    Garmel, Gus M

    2010-01-01

    Writing for publication is a complex task. For many professionals, producing a well-executed manuscript conveying one's research, ideas, or educational wisdom is challenging. Authors have varying emotions related to the process of writing for scientific publication. Although not studied, a relationship between an author's enjoyment of the writing process and the product's outcome is highly likely. As with any skill, practice generally results in improvements. Literature focused on preparing manuscripts for publication and the art of reviewing submissions exists. Most journals guard their reviewers' anonymity with respect to the manuscript review process. This is meant to protect them from direct or indirect author demands, which may occur during the review process or in the future. It is generally accepted that author identities are masked in the peer-review process. However, the concept of anonymity for reviewers has been debated recently; many editors consider it problematic that reviewers are not held accountable to the public for their decisions. The review process is often arduous and underappreciated, one reason why biomedical journals acknowledge editors and frequently recognize reviewers who donate their time and expertise in the name of science. This article describes essential elements of a submitted manuscript, with the hopes of improving scientific writing. It also discusses the review process within the biomedical literature, the importance of reviewers to the scientific process, responsibilities of reviewers, and qualities of a good review and reviewer. In addition, it includes useful insights to individuals who read and interpret the medical literature. PMID:20740129

  8. Archives of Medical and Biomedical Research

    African Journals Online (AJOL)

    Archives of Medical and Biomedical Research is the official journal of the International Association of Medical and Biomedical Researchers (IAMBR) and the Society for Free Radical Research Africa (SFRR-Africa). It is an internationally peer reviewed, open access and multidisciplinary journal aimed at publishing original ...

  9. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  10. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular Biology, Pharmaceutical Sciences, Biotechnology in relation to Medicine, ...

  11. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  12. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  13. The addition of Si to the Ti-35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials; Efeito da adicao de Si sobre a resistencia a corrosao da liga Ti-35Nb para aplicacoes biomedicas

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, A.M.G.; Souza, S.A.; Batista, W.W.; Macedo, M.C.S.S., E-mail: sasouza.sandra@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Ciencia e Engenharia de Materiais

    2014-07-01

    Alloy elements such as niobium and silicon have been added to titanium as an alternative for new materials to be used in orthopedic implants. However, these new materials' behavior, in face of corrosion is still demanding careful investigations because they will be subjected to an aggressive environ, such as the human body. This study, the corrosion resistance of the Ti-35Nb-(0; 0,15; 0,35; 0,55)Si (% in mass) when in physiological medium was assessed by means of polarization curves, open circuit potential and electrochemical impedance spectroscopy. The compositions of the passive films were analyzed by XPS. Outcomes show that the alloys presented good rapid repassivation capacity after film breaking under high potentials. The high values of resistance to polarization- Rp-pinpoint that the formed oxide films are resistive. They work as a protecting barrier against aggressive ions. Data suggest that the studied alloys are promising for orthopedic implant applications. (author)

  14. Publishing priorities of biomedical research funders

    Science.gov (United States)

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  15. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  16. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  17. Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Novák, P.; Mlynár, J.; Vojtěch, D.; Kubatík, Tomáš František; Málek, J.

    2015-01-01

    Roč. 128, č. 4 (2015), s. 597-601 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA) /13./. Prague, 31.08.2014-04.09.2014] Institutional support: RVO:61389021 Keywords : powder metallurgy * mechanical properties * biomedical applications Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.525, year: 2015

  18. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  19. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  20. Carbon nanotubes for biological and biomedical applications

    International Nuclear Information System (INIS)

    Yang Wenrong; Thordarson, Pall; Gooding, J Justin; Ringer, Simon P; Braet, Filip

    2007-01-01

    Ever since the discovery of carbon nanotubes, researchers have been exploring their potential in biological and biomedical applications. The recent expansion and availability of chemical modification and bio-functionalization methods have made it possible to generate a new class of bioactive carbon nanotubes which are conjugated with proteins, carbohydrates, or nucleic acids. The modification of a carbon nanotube on a molecular level using biological molecules is essentially an example of the 'bottom-up' fabrication principle of bionanotechnology. The availability of these biomodified carbon nanotube constructs opens up an entire new and exciting research direction in the field of chemical biology, finally aiming to target and to alter the cell's behaviour at the subcellular or molecular level. This review covers the latest advances of bio-functionalized carbon nanotubes with an emphasis on the development of functional biological nano-interfaces. Topics that are discussed herewith include methods for biomodification of carbon nanotubes, the development of hybrid systems of carbon nanotubes and biomolecules for bioelectronics, and carbon nanotubes as transporters for a specific delivery of peptides and/or genetic material to cells. All of these current research topics aim at translating these biotechnology modified nanotubes into potential novel therapeutic approaches. (topical review)

  1. Inverse Opal Scaffolds and Their Biomedical Applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. TLC/HPTLC in Biomedical Applications

    Science.gov (United States)

    Mohammad, A.; Moheman, A.

    The main objective of this chapter is to encapsulate the applications of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) as used in the analysis of compounds of pharmaceutical importance. The chapter discusses the advantages of using TLC or HPTLC for biomedical applications and summarizes important information on stationary and mobile phases, adopted methodology, sample application, zone detection, and identification and quantification of amino acids and proteins, carbohydrates, lipids, bile acids, drugs, vitamins, and porphyrins in biological matrices such as blood, urine, feces, saliva, cerebrospinal fluid, body tissues, etc. Among the stationary phases, silica gel has been the most preferred layer material in combination of mixed aqueous- organic or multicomponent organic solvent systems as mobile phase. For quantitative determination of analyte in various matrices, densitometry has been more commonly used. According to the literature survey, the interest of chromatographers in using the TLC/HPTLC has been in the following order: drugs > amino acids and proteins > lipids > bile acids > carbohydrates/vitamins > porphyrins.

  3. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  4. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  5. ICNBME-2011: International Conference on Nanotechnologies and Biomedical Engineering; German-Moldovan Workshop on Novel Nanomaterials for Electronic, Photonic and Biomedical Applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2011-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  6. ICNBME-2013: 2. international conference on nanotechnologies and biomedical engineering; German-Moldovan workshop on novel nanomaterials for electronic, photonic and biomedical applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2013-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  7. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  8. Relational Databases and Biomedical Big Data.

    Science.gov (United States)

    de Silva, N H Nisansa D

    2017-01-01

    In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. More often than not, the default and classical solution to this in the biomedical domain according to past research is relational databases. While this used to be the norm for a long while, it is evident that there is a trend to move away from relational databases in favor of other types and paradigms of databases. However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.

  9. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  10. VII Latin American Congress on Biomedical Engineering

    CERN Document Server

    Bustamante, John; Sierra, Daniel

    2017-01-01

    This volume presents the proceedings of the CLAIB 2016, held in Bucaramanga, Santander, Colombia, 26, 27 & 28 October 2016. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL), offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies to bring together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth.

  11. International Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The International Journal of Medicine and Biomedical Research (IJMBR) is a peer-reviewed ... useful to researchers in all aspects of Clinical and Basic Medical Sciences including Anatomical Sciences, Biochemistry, Dentistry, Genetics, ...

  12. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    MHRL

    Sierra Leone Journal of Biomedical Research. (A publication of the College of Medicine and Allied Health Sciences, University of Sierra Leone). ©Sierra Leone Journal .... was used to. She seemed to have had a change of mind after ingesting.

  13. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  14. Distributed System for Spaceflight Biomedical Support

    Data.gov (United States)

    National Aeronautics and Space Administration — Our project investigated whether a software platform could integrate as wide a variety of devices and data types as needed for spaceflight biomedical support. The...

  15. Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The Journal of Medical and Biomedical Science publishes original, novel, peer-reviewed reports that pertain to medical and allied health sciences; confirmatory reports of previously ...

  16. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  17. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  18. Computer vision for biomedical image applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxi [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Computer Science, The Robotics Institute; Jiang, Tianzi [Chinese Academy of Sciences, Beijing (China). National Lab. of Pattern Recognition, Inst. of Automation; Zhang, Changshui (eds.) [Tsinghua Univ., Beijing, BJ (China). Dept. of Automation

    2005-07-01

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  19. Center for Advanced Materials Manufacturing | College of Engineering &

    Science.gov (United States)

    generation, transmission and purification; biomedical applications; green manufacturing techniques, and finally materials used for national defense by the Navy, Air Force, and Army. Specific areas of research

  20. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  1. European virtual campus for biomedical engineering EVICAB.

    Science.gov (United States)

    Malmivuo, Jaakko A; Nousiainen, Juha O; Lindroos, Kari V

    2007-01-01

    European Commission has funded building a curriculum on Biomedical Engineering to the Internet for European universities under the project EVICAB. EVICAB forms a curriculum which will be free access and available free of charge. Therefore, in addition to the European universities, it will be available worldwide. EVICAB will make high quality education available for everyone, not only for the university students, and facilitate the development of the discipline of Biomedical Engineering.

  2. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  3. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  4. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  5. Special Issue: 3D Printing for Biomedical Engineering.

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  6. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  7. Application of ionizing radiation processing in biomedical engineering and microelectronics

    International Nuclear Information System (INIS)

    Hongfej, H.; Jilan, W.

    1988-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristics reaction means such as crosslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become a important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this technique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics

  8. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2018-01-04

    Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.

  9. Applications of ionizing radiation processing in biomedical engineering and microelectronics

    International Nuclear Information System (INIS)

    Ha Hongfei; Wu Jilan

    1987-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristic reaction means such as corsslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become an important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this techique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics. (author)

  10. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  11. Layer-by-layer films for biomedical applications

    CERN Document Server

    Picart, Catherine; Voegel, Jean-Claude

    2015-01-01

    The layer-by-layer (LbL) deposition technique is a versatile approach for preparing nanoscale multimaterial films: the fabrication of multicomposite films by the LbL procedure allows the combination of literally hundreds of different materials with nanometer thickness in a single device to obtain novel or superior performance. In the last 15 years the LbL technique has seen considerable developments and has now reached a point where it is beginning to find applications in bioengineering and biomedical engineering. The book gives a thorough overview of applications of the LbL technique in the c

  12. Fabricating biomedical origami: a state-of-the-art review.

    Science.gov (United States)

    Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-01

    Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.

  13. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    Science.gov (United States)

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Antimicrobial Peptides in Biomedical Device Manufacturing

    Directory of Open Access Journals (Sweden)

    Martijn Riool

    2017-08-01

    Full Text Available Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured/3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel

  15. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  16. Antimicrobial Peptides in Biomedical Device Manufacturing

    Science.gov (United States)

    Riool, Martijn; de Breij, Anna; Drijfhout, Jan W.; Nibbering, Peter H.; Zaat, Sebastian A. J.

    2017-08-01

    Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal of the biomaterial is then the last option to control the infection. Clearly, there is a pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial peptides (AMPs) are considered promising candidates as they are active against a broad spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria are less likely to develop resistance to these rapidly-acting peptides. In this review we highlight the four main strategies, three of which applying AMPs, in biomedical device manufacturing to prevent BAI. The first involves modification of the physicochemical characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical devices with a variety of chemical techniques is essential in the second strategy. The main disadvantage of these two strategies relates to the limited antibacterial effect in the tissue surrounding the implant. This limitation is addressed by the third strategy that releases AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the design and manufacturing of additively manufactured / 3D-printed implants, owing to the physicochemical characteristics of the implant material and the versatile manufacturing technologies compatible with antimicrobials incorporation. These novel technologies utilizing AMPs will contribute to development of novel and safe

  17. Wireless RF communication in biomedical applications

    Science.gov (United States)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek

    2008-02-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.

  18. Wireless RF communication in biomedical applications

    International Nuclear Information System (INIS)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon

    2008-01-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control

  19. Globalizing and crowdsourcing biomedical research.

    Science.gov (United States)

    Afshinnekoo, Ebrahim; Ahsanuddin, Sofia; Mason, Christopher E

    2016-12-01

    Crowdfunding and crowdsourcing of medical research has emerged as a novel paradigm for many biomedical disciplines to rapidly collect, process and interpret data from high-throughput and high-dimensional experiments. The novelty and promise of these approaches have led to fundamental discoveries about RNA mechanisms, microbiome dynamics and even patient interpretation of test results. However, these methods require robust training protocols, uniform sampling methods and experimental rigor in order to be useful for subsequent research efforts. Executed correctly, crowdfunding and crowdsourcing can leverage public resources and engagement to generate support for scientific endeavors that would otherwise be impossible due to funding constraints and or the large number of participants needed for data collection. We conducted a comprehensive literature review of scientific studies that utilized crowdsourcing and crowdfunding to generate data. We also discuss our own experiences conducting citizen-science research initiatives (MetaSUB and PathoMap) in ensuring data robustness, educational outreach and public engagement. We demonstrate the efficacy of crowdsourcing mechanisms for revolutionizing microbiome and metagenomic research to better elucidate the microbial and genetic dynamics of cities around the world (as well as non-urban areas). Crowdsourced studies have been able to create an improved and unprecedented ability to monitor, design and measure changes at the microbial and macroscopic scale. Thus, the use of crowdsourcing strategies has dramatically altered certain genomics research to create global citizen-science initiatives that reveal new discoveries about the world's genetic dynamics. The effectiveness of crowdfunding and crowdsourcing is largely dependent on the study design and methodology. One point of contention for the present discussion is the validity and scientific rigor of data that are generated by non-scientists. Selection bias, limited sample

  20. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  1. Simbody: multibody dynamics for biomedical research.

    Science.gov (United States)

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

  2. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  3. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  4. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  5. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  6. Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Allan S., E-mail: hoffman@u.washington.edu [Bioengineering Department, Box 355061—Foege, room N530R 1705 NE Pacific St., University of Washington Seattle WA 98195-5061 (United States)

    2010-07-01

    We are using RAFT polymerization to synthesize smart polymer nanocarriers for intracellular delivery of protein, peptide and nucleic acid drugs. In the coming program period we plan to synthesize these carriers using radiation to initiate the RAFT polymerizations. In this way we will avoid the need to add free radical initiators to initiate this polymerization, yielding a purer polymer-drug nanocarrier. (author)

  7. Nanoscale Radiation Engineering of Advanced Materials for Potential Biomedical Applications

    International Nuclear Information System (INIS)

    Hoffman, Allan S.

    2010-01-01

    We are using RAFT polymerization to synthesize smart polymer nanocarriers for intracellular delivery of protein, peptide and nucleic acid drugs. In the coming program period we plan to synthesize these carriers using radiation to initiate the RAFT polymerizations. In this way we will avoid the need to add free radical initiators to initiate this polymerization, yielding a purer polymer-drug nanocarrier. (author)

  8. Synthesis of new porphyrinoids for biomedical and materials applications

    Science.gov (United States)

    Stewart, Fraser

    The facile synthesis of three non-hydrolysable thioglycosylated porphyrinoids is reported. Starting from meso perfluorophenylporphyrin (TPPF20), the non-hydrolysable thioglycosylated porphyrin (PGlc4), chlorin (CGlc4), isobacteriochlorin (IGlc4), and bacteriochlorin (BGlc4) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. With reduction of one or two pyrrole double bonds, there is a red shift in the lowest energy absorption band and a significant increase in intensity. The fluorescence of these porphyrinoids is in the order PGlc4 = BGlc4 spectroscopy (DOSY) in solution. The hydrocarbon chains on the melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A water soluble zinc (II) phthalocyanine symmetrically appended with eight thioglucose units was synthesized from commercially available hexadecafluoro-phthalocyaninato zinc(II) by controlled nucleophilic substitution of the peripheral fluoro groups by thio-sugars. The photophysical properties and cancer cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new compound has amphiphilic character, is chemically and photochemically stable, and can potentially be used as a photosensitizer in photodynamic therapy. A porphyrin bearing pyridyl groups at the meso positions was synthesized using 2,6-diacetamido-4-formylpyridine. A new method has been developed for the synthesis of the precursor aldehyde that avoid much of the problems associated with the earlier synthesis. With this porphyrin it is possible to build hetero-complementary rigid, multi-porphyrin supramolecular arrays via hydrogen bonds. For example, when using naphthalenediimide (NDI) units a checkerboard pattern is expected to be formed using this porphyrin as a donor and NDI as an acceptor where triple hydrogen bond is formed between the diimide and pyridyl units. Energy transfer can be studied through this hydrogen bonded supramolecular assembly. The synthesis of a triply bridged diporphyrin appended with six thioglucose units is reported. The electronic spectrum of this triply bridged porphyrin has enhanced intensity at low-energy wavelengths that reaches the near infrared region. The goal of this project is to create tumor targeting dyes that can be activated with red wavelengths of light that penetrate deeper into tissues. This new compound is amphiphilic in nature, chemically and photochemically stable, expected to have unusual photophysical and electrochemical properties, and can potentially be used as a photosensitizer in photodynamic therapy.

  9. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    Science.gov (United States)

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  10. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M; Wawszczak, D; Starosta, W [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  11. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  12. Functionalization of 2D transition metal dichalcogenides for biomedical applications

    International Nuclear Information System (INIS)

    Li, Zibiao; Wong, Swee Liang

    2017-01-01

    Recent research has revealed a gamut of interesting properties present in layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as photoluminescence, comparatively high electron mobility, flexibility, mechanical strength and relatively low toxicity. The large surface to area ratio inherent in these materials also allows easy functionalization and maximal interaction with the external environment. Due to its unique physical and chemical properties, much work has been done in tailoring TMDCs through chemical functionalization for use in a diverse range of biomedical applications as biosensors, drug delivery carriers or even as therapeutic agents. In this review, current progress on the different types of TMDC functionalization for various biological applications will be presented and its future outlook will be discussed. - Highlights: • The different functionalization strategies and approaches of transition metal dichalcogenides are reviewed. • Properties of transition metal dichalcogenides useful for biomedical usage and their methods of synthesis are introduced. • Functionalization approaches are presented according to material type and their different application purpose is discussed.

  13. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  14. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  15. Practical radiation shielding for biomedical research

    International Nuclear Information System (INIS)

    Klein, R.C.; Reginatto, M.; Party, E.; Gershey, E.L.

    1990-01-01

    This paper reports on calculations which exist for estimating shielding required for radioactivity; however, they are often not applicable for the radionuclides and activities common in biomedical research. A variety of commercially available Lucite shields are being marketed to the biomedical community. Their advertisements may lead laboratory workers to expect better radiation protection than these shields can provide or to assume erroneously that very weak beta emitters require extensive shielding. The authors have conducted a series of shielding experiments designed to simulate exposures from the amounts of 32 P, 51 Cr and 125 I typically used in biomedical laboratories. For most routine work, ≥0.64 cm of Lucite covered with various thicknesses of lead will reduce whole-body occupational exposure rates of < 1mR/hr at the point of contact

  16. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  17. Finding and accessing diagrams in biomedical publications.

    Science.gov (United States)

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.

  18. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  19. Building the biomedical data science workforce.

    Science.gov (United States)

    Dunn, Michelle C; Bourne, Philip E

    2017-07-01

    This article describes efforts at the National Institutes of Health (NIH) from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K) training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  20. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  2. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  3. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  4. Polydopamine--a nature-inspired polymer coating for biomedical science.

    Science.gov (United States)

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  5. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  6. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    Science.gov (United States)

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  7. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  8. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  9. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  10. Conference on medical physics and biomedical engineering

    International Nuclear Information System (INIS)

    2013-01-01

    Due to the rapid technological development in the world today, the role of physics in modern medicine is of great importance. The frequent use of equipment that produces ionizing radiation further increases the need for radiation protection, complicated equipment requires technical support, the diagnostic and therapeutic methods impose the highest professionals in the field of medical physics. Thus, medical physics and biomedical engineering have become an inseparable part of everyday medical practice. There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia who committed themselves to work towards resolving medical physics issues. In 2000 they established the first and still only professional Association for Medical Physics and Biomedical Engineering (AMPBE) in Macedonia; a one competent to cope with problems in the fields of medicine, which applies methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will ultimately lead to improve the quality of medical practice in general. The First National Conference on Medical Physics and Biomedical Engineering was organized by the AMPBE in 2007. The idea was to gather all the professionals working in medical physics and biomedical engineering in one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and professors of physics at the University also took part and contributed to the success of the conference. As a result, the Proceedings were published in Macedonian, with summaries in English. In order to further promote the medical physics amongst the scientific community in Macedonia, our society decided to organize The Second Conference on Medical Physics and Biomedical Engineering in November 2010. Unlike the first, this one was with international participation. This was very suitable

  11. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  12. Should biomedical research be like Airbnb?

    Directory of Open Access Journals (Sweden)

    Vivien R Bonazzi

    2017-04-01

    Full Text Available The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH and elsewhere, as an example of the move towards platforms for research.

  13. Should biomedical research be like Airbnb?

    Science.gov (United States)

    Bonazzi, Vivien R; Bourne, Philip E

    2017-04-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research.

  14. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  15. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  16. Optimization of the Performance of a Biomedical Micro-Pump

    Directory of Open Access Journals (Sweden)

    E Bourbaba

    2016-06-01

    Full Text Available This paper discusses the optimization of a micro-pump composed by deformable polymeric membrane in contact with reservoir and examines the effect of the materials property at the performance and the functionality of the system. The Neo Hookean  hyperelastic material model is used to simulate the deformation of polydimethylsiloxane (PDMS elastomer and compared with Poly methyl methacrylate (PMMA. The results of simulation by finite element are presented and discussed.  In second steps we study the power to inject by active membrane a Newtonian and a non Newtonian fluid in microcanalization, the power law is used to model the variation of the blood viscosity and precise the maximum value of flow rate at minimum applied pressure and control the fluid transportation. This type of micropump appears to be suitable for biomedical applications and demonstrate the versatile use of active membrane as moving parts to inject the fluids us blood or glucose.

  17. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  18. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  19. Few-Layered Black Phosphorus: From Fabrication and Customization to Biomedical Applications.

    Science.gov (United States)

    Wang, Huaiyu; Yu, Xue-Feng

    2018-02-01

    As a new kind of 2D material, black phosphorus has gained increased attention in the past three years. Although few-layered black phosphorus nanosheets (BPs) degrade quickly under ambient conditions to phosphate anions, which greatly hampers their optical and electronic applications, this property also makes BPs highly biocompatible and biodegradable, and is regarded as an advantage for various biomedical applications. This Concept summarizes the state-of-art progresses of BPs, from fabrication and surface modification to biomedical applications. It is expected that BPs with such fascinating properties will encourage more scientists to engage in expanding its biomedical applications by tackling the scientific challenges involved in their development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. New software developments for quality mesh generation and optimization from biomedical imaging data.

    Science.gov (United States)

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  2. Development of an information retrieval tool for biomedical patents.

    Science.gov (United States)

    Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel

    2018-06-01

    The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Knowledge, attitude, and practices about biomedical waste management among healthcare personnel: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Vanesh Mathur

    2011-01-01

    Full Text Available Background: The waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Inadequate and inappropriate knowledge of handling of healthcare waste may have serious health consequences and a significant impact on the environment as well. Objective: The objective was to assess knowledge, attitude, and practices of doctors, nurses, laboratory technicians, and sanitary staff regarding biomedical waste management. Materials and Methods: This was a cross-sectional study. Setting: The study was conducted among hospitals (bed capacity >100 of Allahabad city. Participants: Medical personnel included were doctors (75, nurses (60, laboratory technicians (78, and sanitary staff (70. Results: Doctors, nurses, and laboratory technicians have better knowledge than sanitary staff regarding biomedical waste management. Knowledge regarding the color coding and waste segregation at source was found to be better among nurses and laboratory staff as compared to doctors. Regarding practices related to biomedical waste management, sanitary staff were ignorant on all the counts. However, injury reporting was low across all the groups of health professionals. Conclusion: The importance of training regarding biomedical waste management needs emphasis; lack of proper and complete knowledge about biomedical waste management impacts practices of appropriate waste disposal.

  4. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    Science.gov (United States)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  5. International Symposium on Biomedical Engineering and Medical Physics

    CERN Document Server

    Katashev, Alexei; Lancere, Linda

    2013-01-01

    This volume presents the proceedings of the International Symposium on Biomedical Engineering and Medical Physics and is dedicated to the 150 anniversary of the Riga Technical University, Latvia. The content includes various hot topics in biomedical engineering and medical physics.

  6. Time-Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-02-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental field. These projects are ranging from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria which effect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  7. Time Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-12-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental fields. These projects range from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria, which affect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  8. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  9. Research evaluation support services in biomedical libraries.

    Science.gov (United States)

    Gutzman, Karen Elizabeth; Bales, Michael E; Belter, Christopher W; Chambers, Thane; Chan, Liza; Holmes, Kristi L; Lu, Ya-Ling; Palmer, Lisa A; Reznik-Zellen, Rebecca C; Sarli, Cathy C; Suiter, Amy M; Wheeler, Terrie R

    2018-01-01

    The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  10. Biomedical engineering at UCT - challenges and opportunities.

    Science.gov (United States)

    Douglas, Tania S

    2012-03-02

    The biomedical engineering programme at the University of Cape Town has the potential to address some of South Africa's unique public health challenges and to contribute to growth of the local medical device industry, directly and indirectly, through research activities and postgraduate education. Full realisation of this potential requires engagement with the clinical practice environment and with industry.

  11. Welcome to Biomedical Research and Therapy

    OpenAIRE

    Phuc Van Pham

    2014-01-01

    On behalf of the Laboratory of Stem Cell Research and Application (SCL) and the Biomedical Research and Therapy' editorial team, we would like to extend a warm welcome to you. [Biomed Res Ther 2014; 1(1.000): 1-1

  12. Towards precision medicine; a new biomedical cosmology.

    Science.gov (United States)

    Vegter, M W

    2018-02-10

    Precision Medicine has become a common label for data-intensive and patient-driven biomedical research. Its intended future is reflected in endeavours such as the Precision Medicine Initiative in the USA. This article addresses the question whether it is possible to discern a new 'medical cosmology' in Precision Medicine, a concept that was developed by Nicholas Jewson to describe comprehensive transformations involving various dimensions of biomedical knowledge and practice, such as vocabularies, the roles of patients and physicians and the conceptualisation of disease. Subsequently, I will elaborate my assessment of the features of Precision Medicine with the help of Michel Foucault, by exploring how precision medicine involves a transformation along three axes: the axis of biomedical knowledge, of biomedical power and of the patient as a self. Patients are encouraged to become the managers of their own health status, while the medical domain is reframed as a data-sharing community, characterised by changing power relationships between providers and patients, producers and consumers. While the emerging Precision Medicine cosmology may surpass existing knowledge frameworks; it obscures previous traditions and reduces research-subjects to mere data. This in turn, means that the individual is both subjected to the neoliberal demand to share personal information, and at the same time has acquired the positive 'right' to become a member of the data-sharing community. The subject has to constantly negotiate the meaning of his or her data, which can either enable self-expression, or function as a commanding Superego.

  13. Multiplicative calculus in biomedical image analysis

    NARCIS (Netherlands)

    Florack, L.M.J.; Assen, van H.C.

    2011-01-01

    We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed,

  14. Love troubles : human attachment and biomedical enhancements

    NARCIS (Netherlands)

    Nyholm, S.

    ABSTRACT In fascinating recent work, Julian Savulescu and his various co-authors argue that human love is one of the things we can improve upon using biomedical enhancements. Is that so? This article first notes that Savulescu and his co-authors mainly treat love as a means to various other goods.

  15. Usage of cell nomenclature in biomedical literature

    KAUST Repository

    Kafkas, Senay; Sarntivijai, Sirarat; Hoehndorf, Robert

    2017-01-01

    large scale for understanding the level of uptake of cell nomenclature in literature by scientists. In this study, we analyse the usage of cell nomenclature, both in Vivo, and in Vitro in biomedical literature by using text mining methods and present our

  16. Archives of Medical and Biomedical Research: Submissions

    African Journals Online (AJOL)

    Author Guidelines. INFORMATION FOR CONTRIBUTORS This information can also be accessed at http://www.iambr.info/AMBR/author_guidelines.html Articles to Archives of Medical and Biomedical Research are submitted under the condition that the work described has not been published or is not being considered for ...

  17. Electrosprayed calcium phosphate coatings for biomedical purposes.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it

  18. Biomedical Engineering Education: A Conservative Approach

    Science.gov (United States)

    Niemi, Eugene E., Jr.

    1973-01-01

    Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)

  19. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  20. Sierra Leone Journal of Biomedical Research: Submissions

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Sierra Leone Journal of Biomedical Research (SLJBR) publishes papers in all ... An original article should give sufficient detail of experimental procedures for .... For references cited in a paper which has been accepted for publication but not ...

  1. Thermoforming of film-based biomedical microdevices

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, Stefan; Rivron, N.C.; Gottwald, Eric; Saile, Volker; van den Berg, Albert; Wessling, Matthias; van Blitterswijk, Clemens

    2011-01-01

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated

  2. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  3. Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The Journal of Medicine and Biomedical Research is published by the College of Medical Sciences, University of Benin to encourage research into primary health care. The journal will publish original research articles, reviews, editorials, commentaries, case reports and letters to the editor. Articles are welcome in all ...

  4. Nigerian Journal of Health and Biomedical Sciences

    African Journals Online (AJOL)

    The Nigerian Journal of Health and Biomedical Sciences is a multidisciplinary and peer-reviewed journal. This journal was established to meet the challenges of health care delivery in the 21st century in Nigeria and other countries with similar setting in the ever-changing world of science and technology. The health care ...

  5. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it's also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  6. Biomedical image retrieval using microscopic configuration with ...

    Indian Academy of Sciences (India)

    G DEEP

    2018-03-10

    Mar 10, 2018 ... The selection of feature descriptors affects the image .... Example of obtaining LBP for 3 9 3 neighbourhoods (adopted from Ojala et al [9]). 20 Page 2 of 13 ...... Directional binary wavelet patterns for biomedical image indexing ...

  7. Electromembrane extraction for pharmaceutical and biomedical analysis

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid

    2015-01-01

    . The present paper discusses recent development of EME. The paper focuses on the principles of EME, and discusses how to optimize operational parameters. In addition, pharmaceutical and biomedical applications of EME are reviewed, with emphasis on basic drugs, acidic drugs, amino acids, and peptides. Finally...

  8. CONAN : Text Mining in the Biomedical Domain

    NARCIS (Netherlands)

    Malik, R.

    2006-01-01

    This thesis is about Text Mining. Extracting important information from literature. In the last years, the number of biomedical articles and journals is growing exponentially. Scientists might not find the information they want because of the large number of publications. Therefore a system was

  9. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  10. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  11. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  12. Building a biomedical ontology recommender web service

    Directory of Open Access Journals (Sweden)

    Jonquet Clement

    2010-06-01

    Full Text Available Abstract Background Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. Methods We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. Results We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version is available to the community and is embedded into BioPortal.

  13. Biomedical technology prosperity game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

  14. Proof of concept: concept-based biomedical information retrieval

    NARCIS (Netherlands)

    Trieschnigg, Rudolf Berend

    2010-01-01

    In this thesis we investigate the possibility to integrate domain-specific knowledge into biomedical information retrieval (IR). Recent decades have shown a fast growing interest in biomedical research, reflected by an exponential growth in scientific literature. An important problem for biomedical

  15. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering

    Science.gov (United States)

    Blyakhman, Felix A.; Safronov, Alexander P.; Zubarev, Andrey Yu.; Shklyar, Tatyana F.; Makeyev, Oleg G.; Makarova, Emilia B.; Melekhin, Vsevolod V.; Larrañaga, Aitor; Kurlyandskaya, Galina V.

    This study addresses the development of gel-based magnetic material in the purposes of biomedical applications in the fields of tissue engineering, regenerative medicine, drugs delivery and magnetic biosensing. Ferrogels were synthesized by radical polymerization of acrylamide in a stable aqueous suspension of γ-Fe2.04O2.96 nanoparticles (NPs) fabricated by the laser target evaporation technique. Gel network density was set to 1:100, the concentrations of imbedded NPs (average mean diameter of about 11 nm) were fixed at 0.00, 0.25 or 0.75% by weight. Saturation magnetization of the gels showed a linear dependence on concentration of NPs. The main task of proposed investigation was to determine the contribution of the presence of NPs to the change of the physical properties of gels and their biocompatibility. We found that the gradual increase of NPs concentration in the gel network resulted in the significant increase of the gel's Young modulus, effective viscosity, negative value of electrical potential and adhesion index for both the human dermal fibroblasts and the human peripheral blood leucocytes. We concluded that from viewpoint of biomedical applications, the inclusion of small amount of NPs into the polymer network significantly enhances the mechanical and electrical properties of ferrogels, and improves biocompatibility of these systems.

  16. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  17. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  18. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  19. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  20. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    Science.gov (United States)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  1. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  2. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels

    Directory of Open Access Journals (Sweden)

    Umile Gianfranco Spizzirri

    2015-10-01

    Full Text Available Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour, it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.

  3. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  4. Figure text extraction in biomedical literature.

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    2011-01-01

    Full Text Available Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures.We first evaluated an off-the-shelf Optical Character Recognition (OCR tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons.The evaluation on 382 figures (9,643 figure texts in total randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for

  5. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  7. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  8. Legal capacity and biomedicine: Biomedical discrimination

    Directory of Open Access Journals (Sweden)

    Cvetić Radenka

    2011-01-01

    Full Text Available The article begins with the overview of the legal capacity as a general legal qualification recognized by the legal order guaranteeing the right to be a holder of rights and obligations. The article is then focused on the scope of the absolute Constitutional guarantee of the right to legal personality as well as on the Constitutional prohibition of discrimination which gives rise to the general equality before the Constitution and the law. The focus of this article is the moment when the legal capacity, or legal personality, is considered to be acquired. It then moves to the issue whether limiting the access to techniques of assisted reproduction (biomedical conception is contrary to the general rules on legal capacity, and whether this is a genuine form of biomedical discrimination.

  9. MOLIERE: Automatic Biomedical Hypothesis Generation System.

    Science.gov (United States)

    Sybrandt, Justin; Shtutman, Michael; Safro, Ilya

    2017-08-01

    Hypothesis generation is becoming a crucial time-saving technique which allows biomedical researchers to quickly discover implicit connections between important concepts. Typically, these systems operate on domain-specific fractions of public medical data. MOLIERE, in contrast, utilizes information from over 24.5 million documents. At the heart of our approach lies a multi-modal and multi-relational network of biomedical objects extracted from several heterogeneous datasets from the National Center for Biotechnology Information (NCBI). These objects include but are not limited to scientific papers, keywords, genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirichlet Allocation applied on abstracts found near shortest paths discovered within this network, and demonstrate the effectiveness of MOLIERE by performing hypothesis generation on historical data. Our network, implementation, and resulting data are all publicly available for the broad scientific community.

  10. Leveraging the national cyberinfrastructure for biomedical research.

    Science.gov (United States)

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  11. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  12. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.

  13. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... have conducted a literature study strongly indicating that this structure commonly is neglected in the statistical analysis. Based on this closed-form expressions for the approximate type I error rate are formulated. The type I error rates are assessed for a number of factor combinations as they appear...... in practice and in all cases the type I error rates are demonstrated to be severely inflated. Prior to conducting a study it is important to perform power and sample size determinations to ensure that reliable conclusions can be drawn from the statistical analysis. We have formulated closed-form expressions...

  14. Emerging applications of nanoparticles: Biomedical and environmental

    Science.gov (United States)

    Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.

    2018-05-01

    Nanotechnology finds a wide range of applications from energy production to industrial fabrication processes to biomedical applications. Nanoparticles (NPs) can be engineered to possess unique compositions and functionalities to empower novel tools and techniques that have not existed previously in biomedical research. The unique size and shape dependent physicochemical properties along with their unique spectral and optical properties have prompted the development of a wide variety of potential applications in the field of diagnostics and medicines. In the plethora of scientific and technological fields, environmental safety is also a big concern. For this purpose, nanomaterials have been functionalized to cope up the existing pollution, improving manufacturing methods to reduce the generation of new pollution, and making alternative and more cost effective energy sources.

  15. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  16. Frontiers of biomedical text mining: current progress

    Science.gov (United States)

    Zweigenbaum, Pierre; Demner-Fushman, Dina; Yu, Hong; Cohen, Kevin B.

    2008-01-01

    It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or ‘BioNLP’ in general, focusing primarily on papers published within the past year. PMID:17977867

  17. Harnessing supramolecular peptide nanotechnology in biomedical applications.

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.

  18. Biomedical hydrogels biochemistry, manufacture and medical applications

    CERN Document Server

    Rimmer, Steve

    2011-01-01

    Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imag...

  19. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  20. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  1. Biostatistics and epidemiology a primer for health and biomedical professionals

    CERN Document Server

    Wassertheil-Smoller, Sylvia

    2015-01-01

    Since the publication of the first edition, Biostatistics and Epidemiology has attracted loyal readers from across specialty areas in the biomedical community. Not only does this textbook teach foundations of epidemiological design and statistical methods, but it also includes topics applicable to new areas of research. Areas covered in the fourth edition include a new chapter on risk prediction, risk reclassification and evaluation of biomarkers, new material on propensity analyses, and a vastly expanded chapter on genetic epidemiology, which  is particularly relevant to those who wish to understand the epidemiological and statistical aspects of scientific articles in this rapidly advancing field. Biostatistics and Epidemiology was written to be accessible for readers without backgrounds in mathematics. It provides clear explanations of underlying principles, as well as practical guidelines of "how to do it" and "how to interpret it."a philosophical explanation of the logic of science, subsections that ...

  2. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.; Alfadhel, Ahmed; Al-Nassar, Mohammed Y.; Perez, Jose E.; Vazquez, Manuel; Chuvilin, Andrey; Kosel, Jü rgen

    2016-01-01

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  3. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  4. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    Science.gov (United States)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  5. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  6. Pharmaceutical and biomedical applications of lipid-based nanocarriers.

    Science.gov (United States)

    Carbone, Claudia; Leonardi, Antonio; Cupri, Sarha; Puglisi, Giovanni; Pignatello, Rosario

    2014-03-01

    Increasing attention is being given to lipid nanocarriers (LNs) as drug delivery systems, due to the advantages offered of a higher biocompatibility and lower toxicity compared with polymeric nanoparticles. Many administration routes are being investigated for LNs, including topical, oral and parenteral ones. LNs are also proposed for specific applications such as cancer treatment, gene therapy, diagnosis and medical devices production. However, the high number of published research articles does not match an equal amount of patents. A recent Review of ours, published in Pharmaceutical Patent Analyst, reported the patents proposing novel methods for the production of LNs. This review work discusses recent patents, filed in 2007-2013 and dealing with the industrial applications of lipid-based nanocarriers for the vectorization of therapeutically relevant molecules, as well as biotech products such as proteins, gene material and vaccines, in the pharmaceutical, diagnostic and biomedical areas.

  7. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  8. Bibliography of astatine chemistry and biomedical applications

    International Nuclear Information System (INIS)

    Berei, K.; Vasaros, L.

    1992-02-01

    An overall bibliography is presented on astatine chemistry and on the biomedical applications of its 211 At isotope. The references were grouped in the following chapters: General reviews; Discovery, Natural Occurence; Nuclear Data; Preparation, Handling, Radiation Risk; Physico-chemical Properties; Astatine Compounds and Chemical Reactions; Biological Effects and Applications. Entries are sorted alphabetically by authors name in each chapter, and cross-references to other chapters are provided if appropriate. (R.P.)

  9. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  10. Biomedical application of the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1987-01-01

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9x2.9 μm 2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described. (orig.)

  11. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  12. Finding and Accessing Diagrams in Biomedical Publications

    OpenAIRE

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar...

  13. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    Science.gov (United States)

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  14. Opal web services for biomedical applications.

    Science.gov (United States)

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  15. Immune-deficient animals in biomedical research

    International Nuclear Information System (INIS)

    Rygaard, J.; Brunner, N.; Groem, N.; Spang-Thomsen, M.

    1987-01-01

    This book presents paper given at a workshop on immune-dificient animals in biomedical research. Topics presented included the following: differential recovery of antibody production potential after sublethal whole-body irradiation of mice; increased levels of plasma DNA in nude mice transplanted with human tumors; and transplantation of exocrine pancreatic carcinomas to nude mice: A model to investigate immunoscintigraphy, radioimmunotherapy and drug sensitivity

  16. Determination of death: Metaphysical and biomedical discourse

    Directory of Open Access Journals (Sweden)

    Irayda Jakušovaitė

    2016-01-01

    Full Text Available The prominence of biomedical criteria relying on brain death reduces the impact of metaphysical, anthropological, psychosocial, cultural, religious, and legal aspects disclosing the real value and essence of human life. The aim of this literature review is to discuss metaphysical and biomedical approaches toward death and their complimentary relationship in the determination of death. A critical appraisal of theoretical and scientific evidence and legal documents supported analytical discourse. In the metaphysical discourse of death, two main questions about what human death is and how to determine the fact of death clearly separate the ontological and epistemological aspects of death. During the 20th century, various understandings of human death distinguished two different approaches toward the human: the human is a subject of activities or a subject of the human being. Extinction of the difference between the entities and the being, emphasized as rational–logical instrumentation, is not sufficient to understand death thoroughly. Biological criteria of death are associated with biological features and irreversible loss of certain cognitive capabilities. Debating on the question “Does a brain death mean death of a human being?” two approaches are considering: the body-centrist and the mind-centrist. By bridging those two alternatives human death appears not only as biomedical, but also as metaphysical phenomenon. It was summarized that a predominance of clinical criteria for determination of death in practice leads to medicalization of death and limits the holistic perspective toward individual's death. Therefore, the balance of metaphysical and biomedical approaches toward death and its determination would decrease the medicalization of the concept of death.

  17. Electrosprayed calcium phosphate coatings for biomedical purposes.

    OpenAIRE

    Leeuwenburgh, S.C.G.

    2006-01-01

    In this thesis, the suitability of the Electrostatic Spray Deposition (ESD) technique was studied for biomedical purposes, i.e., deposition of calcium phosphate (CaP) coatings onto titanium substrates. Using ESD, which is a simple and cheap deposition method for inorganic and organic coatings, it was possible to obtain thin CaP layers with an extremely wide range of chemical and morphological characteristics. Various CaP phases and phase mixtures were deposited and a broad diversity of coatin...

  18. Determination of death: Metaphysical and biomedical discourse.

    Science.gov (United States)

    Jakušovaitė, Irayda; Luneckaitė, Žydrunė; Peičius, Eimantas; Bagdonaitė, Živilė; Riklikienė, Olga; Stankevičius, Edgaras

    2016-01-01

    The prominence of biomedical criteria relying on brain death reduces the impact of metaphysical, anthropological, psychosocial, cultural, religious, and legal aspects disclosing the real value and essence of human life. The aim of this literature review is to discuss metaphysical and biomedical approaches toward death and their complimentary relationship in the determination of death. A critical appraisal of theoretical and scientific evidence and legal documents supported analytical discourse. In the metaphysical discourse of death, two main questions about what human death is and how to determine the fact of death clearly separate the ontological and epistemological aspects of death. During the 20th century, various understandings of human death distinguished two different approaches toward the human: the human is a subject of activities or a subject of the human being. Extinction of the difference between the entities and the being, emphasized as rational-logical instrumentation, is not sufficient to understand death thoroughly. Biological criteria of death are associated with biological features and irreversible loss of certain cognitive capabilities. Debating on the question "Does a brain death mean death of a human being?" two approaches are considering: the body-centrist and the mind-centrist. By bridging those two alternatives human death appears not only as biomedical, but also as metaphysical phenomenon. It was summarized that a predominance of clinical criteria for determination of death in practice leads to medicalization of death and limits the holistic perspective toward individual's death. Therefore, the balance of metaphysical and biomedical approaches toward death and its determination would decrease the medicalization of the concept of death. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Ethical Issues of Artificial Biomedical Applications

    OpenAIRE

    Alexiou , Athanasios; Psixa , Maria; Vlamos , Panagiotis

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; While the plethora of artificial biomedical applications is enriched and combined with the possibilities of artificial intelligence, bioinformatics and nanotechnology, the variability in the ideological use of such concepts is associated with bioethical issues and several legal aspects. The convergence of bioethics and computer ethics, attempts to illustrate and approach problems, occurring by the fusion of human a...

  20. Harnessing supramolecular peptide nanotechnology in biomedical applications

    OpenAIRE

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedic...

  1. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  2. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  3. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  4. Building the biomedical data science workforce.

    Directory of Open Access Journals (Sweden)

    Michelle C Dunn

    2017-07-01

    Full Text Available This article describes efforts at the National Institutes of Health (NIH from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  5. IEEE International Symposium on Biomedical Imaging.

    Science.gov (United States)

    2017-01-01

    The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.

  6. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  7. Ethical behaviour of authors in biomedical journalism.

    Science.gov (United States)

    Bevan, Joan C

    2002-03-01

    Biomedical journals communicate new information that changes health-care decisions. If authors ignore the fundamental values of honesty and trust, that information becomes flawed, and society or patients may be harmed. By describing two cases of unethical behaviour by authors, and using them as a focus to review acceptable ethics in publication, this article aims to educate readers who have not considered the ethical implications in writing manuscripts for biomedical journals. Two cases of unethical behaviour by authors occurred when the results of new drug trials were reported. They were discovered after publication in a biomedical journal, and in the review process after the submission of a manuscript for publication respectively. In the first case, duplicate publication was identified because the same control data were used, but not acknowledged, in three publications by the same investigators. In the second, ghost writing by a pharmaceutical company writer was suspected because of the atypical presentation of a senior author's work. The editor consulted with the authors of both reports. In the first case, the authors concurred about the duplication, and the editors of the three journals wrote editorials to record the duplicate publications. The second case of ghost writing was unconfirmed by the authors, but the submission was withdrawn, and the article was later published in another journal. These cases draw attention to recently recognized types of scientific misconduct that influence the perception of scientific work. Duplicate publication and ghost writing not only deceive the reader, but may also conceal flawed study design and conflict of interest.

  8. Innovations in biomedical nanoengineering: nanowell array biosensor

    Science.gov (United States)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  9. Successful aging: considering non-biomedical constructs

    Directory of Open Access Journals (Sweden)

    Carver LF

    2016-11-01

    Full Text Available Lisa F Carver,1 Diane Buchanan2 1Department of Sociology, Queen’s University Kingston, ON, Canada; 2School of Nursing, Queen’s University Kingston, ON, Canada Objectives: Successful aging continues to be applied in a variety of contexts and is defined using a number of different constructs. Although previous reviews highlight the multidimensionality of successful aging, a few have focused exclusively on non-biomedical factors, as was done here. Methods: This scoping review searched Ovid Medline database for peer-reviewed English-language articles published between 2006 and 2015, offering a model of successful aging and involving research with older adults. Results: Seventy-two articles were reviewed. Thirty-five articles met the inclusion criteria. Common non-biomedical constructs associated with successful aging included engagement, optimism and/or positive attitude, resilience, spirituality and/or religiosity, self-efficacy and/or self-esteem, and gerotranscendence. Discussion: Successful aging is a complex process best described using a multidimensional model. Given that the majority of elders will experience illness and/or disease during the life course, public health initiatives that promote successful aging need to employ non-biomedical constructs, facilitating the inclusion of elders living with disease and/or disability. Keywords: successful aging, resilience, gerotranscendence, engagement, optimism

  10. Citizen Science for Mining the Biomedical Literature

    Directory of Open Access Journals (Sweden)

    Ginger Tsueng

    2016-12-01

    Full Text Available Biomedical literature represents one of the largest and fastest growing collections of unstructured biomedical knowledge. Finding critical information buried in the literature can be challenging. To extract information from free-flowing text, researchers need to: 1. identify the entities in the text (named entity recognition, 2. apply a standardized vocabulary to these entities (normalization, and 3. identify how entities in the text are related to one another (relationship extraction. Researchers have primarily approached these information extraction tasks through manual expert curation and computational methods. We have previously demonstrated that named entity recognition (NER tasks can be crowdsourced to a group of non-experts via the paid microtask platform, Amazon Mechanical Turk (AMT, and can dramatically reduce the cost and increase the throughput of biocuration efforts. However, given the size of the biomedical literature, even information extraction via paid microtask platforms is not scalable. With our web-based application Mark2Cure (http://mark2cure.org, we demonstrate that NER tasks also can be performed by volunteer citizen scientists with high accuracy. We apply metrics from the Zooniverse Matrices of Citizen Science Success and provide the results here to serve as a basis of comparison for other citizen science projects. Further, we discuss design considerations, issues, and the application of analytics for successfully moving a crowdsourcing workflow from a paid microtask platform to a citizen science platform. To our knowledge, this study is the first application of citizen science to a natural language processing task.

  11. Compound image segmentation of published biomedical figures.

    Science.gov (United States)

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  12. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  13. Finding biomedical categories in Medline®

    Directory of Open Access Journals (Sweden)

    Yeganova Lana

    2012-10-01

    Full Text Available Abstract Background There are several humanly defined ontologies relevant to Medline. However, Medline is a fast growing collection of biomedical documents which creates difficulties in updating and expanding these humanly defined ontologies. Automatically identifying meaningful categories of entities in a large text corpus is useful for information extraction, construction of machine learning features, and development of semantic representations. In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent nouns from Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms as potential biomedical categories. Results We study and compare these two alternative sets of terms to identify semantic categories in Medline. We find that both approaches produce reasonable terms as potential categories. We also find that there is a significant agreement between the two sets of terms. The overlap between the two methods improves our confidence regarding categories predicted by these independent methods. Conclusions This study is an initial attempt to extract categories that are discussed in Medline. Rather than imposing external ontologies on Medline, our methods allow categories to emerge from the text.

  14. The biomedical disciplines and the structure of biomedical and clinical knowledge.

    Science.gov (United States)

    Nederbragt, H

    2000-11-01

    The relation between biomedical knowledge and clinical knowledge is discussed by comparing their respective structures. The knowledge of a disease as a biological phenomenon is constructed by the interaction of facts and theories from the main biomedical disciplines: epidemiology, diagnostics, clinical trial, therapy development and pathogenesis. Although these facts and theories are based on probabilities and extrapolations, the interaction provides a reliable and coherent structure, comparable to a Kuhnian paradigma. In the structure of clinical knowledge, i.e. knowledge of the patient with the disease, not only biomedical knowledge contributes to the structure but also economic and social relations, ethics and personal experience. However, the interaction between each of the participating "knowledges" in clinical knowledge is not based on mutual dependency and accumulation of different arguments from each, as in biomedical knowledge, but on competition and partial exclusion. Therefore, the structure of biomedical knowledge is different from that of clinical knowledge. This difference is used as the basis for a discussion in which the place of technology, evidence-based medicine and the gap between scientific and clinical knowledge are evaluated.

  15. Biomedical informatics: we are what we publish.

    Science.gov (United States)

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  16. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  17. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  18. The development of biomedical engineering as experienced by one biomedical engineer.

    Science.gov (United States)

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  19. An overview of biomedical literature search on the World Wide Web in the third millennium.

    Science.gov (United States)

    Kumar, Prince; Goel, Roshni; Jain, Chandni; Kumar, Ashish; Parashar, Abhishek; Gond, Ajay Ratan

    2012-06-01

    Complete access to the existing pool of biomedical literature and the ability to "hit" upon the exact information of the relevant specialty are becoming essential elements of academic and clinical expertise. With the rapid expansion of the literature database, it is almost impossible to keep up to date with every innovation. Using the Internet, however, most people can freely access this literature at any time, from almost anywhere. This paper highlights the use of the Internet in obtaining valuable biomedical research information, which is mostly available from journals, databases, textbooks and e-journals in the form of web pages, text materials, images, and so on. The authors present an overview of web-based resources for biomedical researchers, providing information about Internet search engines (e.g., Google), web-based bibliographic databases (e.g., PubMed, IndMed) and how to use them, and other online biomedical resources that can assist clinicians in reaching well-informed clinical decisions.

  20. Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications.

    Science.gov (United States)

    Sankar, G Gomathi; Murthy, P Sriyutha; Das, Arindam; Sathya, S; Nankar, Rakesh; Venugopalan, V P; Doble, Mukesh

    2017-07-01

    Polydimethyl siloxane (PDMS) is an excellent implant material for biomedical applications, but often fails as it is prone to microbial colonization which forms biofilms. In the present study CuO, CTAB capped CuO, and ZnO nanoparticles were tested as nanofillers to enhance the antibiofilm property of PDMS against Staphylococcus aureus and Escherichia coli. In general S. aurues (Gram positive and more hydrophobic) favor PDMS surface than glass while E. coli (Gram negative and more hydrophilic) behaves in a reverse way. Incorporation of nanofillers renders the PDMS surface antibacterial and reduces the attachment of both bacteria. These surfaces are also not cytotoxic nor show any cell damage. Contact angle of the material and the cell surface hydrophobicity influenced the extent of bacterial attachment. Cell viability in biofilms was dependent on the antimicrobial property of the nanoparticles incorporated in the PDMS matrix. Simple regression relationships were able to predict the bacterial attachment and number of dead cells on these nanocomposites. Among the nanocomposites tested, PDMS incorporated with CTAB (cetyl trimethylammonium bromide)-capped CuO appears to be the best antibacterial material with good cyto-compatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1075-1082, 2017. © 2016 Wiley Periodicals, Inc.

  1. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  2. Knowledge, attitude, and practices about biomedical waste management among healthcare personnel: A cross-sectional study

    OpenAIRE

    Vanesh Mathur; S Dwivedi; M A Hassan; R P Misra

    2011-01-01

    Background: The waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Inadequate and inappropriate knowledge of handling of healthcare waste may have serious health consequences and a significant impact on the environment as well. Objective: The objective was to assess knowledge, attitude, and practices of doctors, nurses, laboratory technicians, and sanitary staff regarding biomedical waste management. Material...

  3. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  4. Blockchain distributed ledger technologies for biomedical and health care applications.

    Science.gov (United States)

    Kuo, Tsung-Ting; Kim, Hyeon-Eui; Ohno-Machado, Lucila

    2017-11-01

    To introduce blockchain technologies, including their benefits, pitfalls, and the latest applications, to the biomedical and health care domains. Biomedical and health care informatics researchers who would like to learn about blockchain technologies and their applications in the biomedical/health care domains. The covered topics include: (1) introduction to the famous Bitcoin crypto-currency and the underlying blockchain technology; (2) features of blockchain; (3) review of alternative blockchain technologies; (4) emerging nonfinancial distributed ledger technologies and applications; (5) benefits of blockchain for biomedical/health care applications when compared to traditional distributed databases; (6) overview of the latest biomedical/health care applications of blockchain technologies; and (7) discussion of the potential challenges and proposed solutions of adopting blockchain technologies in biomedical/health care domains. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  5. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  6. Building a biomedical cyberinfrastructure for collaborative research.

    Science.gov (United States)

    Schad, Peter A; Mobley, Lee Rivers; Hamilton, Carol M

    2011-05-01

    For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. New roles & responsibilities of hospital biomedical engineering.

    Science.gov (United States)

    Frisch, P H; Stone, B; Booth, P; Lui, W

    2014-01-01

    Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.

  8. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  9. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    1984-01-01

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  10. CMT for biomedical and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Spanne, P. [ESRF, Grenoble (France)

    1997-02-01

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.

  11. Research on pressure sensors for biomedical instruments

    Science.gov (United States)

    Angell, J. B.

    1975-01-01

    The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.

  12. Engineered magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Canfarotta, Francesco; Piletsky, Sergey A

    2014-02-01

    In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Qality assurance program for biomedical radiography

    International Nuclear Information System (INIS)

    Korolyuk, I.P.; Gurvich, A.M.

    1986-01-01

    Essence and purposes of quality assurance program (QAP) in biomedical radiography of population are considered. This program can be determined as organizational and executive activity of radiological service personnel providing the necessary for diagnosis quality of investigation at minimum radiation loads to patients and personnel and the lowest cost of the investigation. QAP includes quality control of technical means and of investigation implementation. Attention is paid to means and methods of quality control. QAP organizational problems are discussed. Necessity of further investigations and technical developments in this direction is noted

  14. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  15. Image BOSS: a biomedical object storage system

    Science.gov (United States)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  16. Biomedical databases: protecting privacy and promoting research.

    Science.gov (United States)

    Wylie, Jean E; Mineau, Geraldine P

    2003-03-01

    When combined with medical information, large electronic databases of information that identify individuals provide superlative resources for genetic, epidemiology and other biomedical research. Such research resources increasingly need to balance the protection of privacy and confidentiality with the promotion of research. Models that do not allow the use of such individual-identifying information constrain research; models that involve commercial interests raise concerns about what type of access is acceptable. Researchers, individuals representing the public interest and those developing regulatory guidelines must be involved in an ongoing dialogue to identify practical models.

  17. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  18. Data Analysis in Experimental Biomedical Research

    DEFF Research Database (Denmark)

    Markovich, Dmitriy

    This thesis covers two non-related topics in experimental biomedical research: data analysis in thrombin generation experiments (collaboration with Novo Nordisk A/S), and analysis of images and physiological signals in the context of neurovascular signalling and blood flow regulation in the brain...... to critically assess and compare obtained results. We reverse engineered the data analysis performed by CAT, a de facto standard assay in the field. This revealed a number of possibilities to improve its methods of data analysis. We found that experimental calibration data is described well with textbook...

  19. [Dendrimers in biomedical sciences and nanotechnology].

    Science.gov (United States)

    Sekowski, Szymon; Miłowska, Katarzyna; Gabryelak, Teresa

    2008-12-30

    Dendrimers are relatively new, hyper-branched polymers that have many interesting abilities. Dendrimers could be used, for example, as drug or gene carriers, contrast agents, sensors for different metal ions, and in developing innovation technology. These spherical polymers are also characterized by pharmacological activity against different bacterial and viral diseases. Dendrimers are currently being intensively investigated as anti-prion and anti-amyloid fibril agents. They can be used to build specific dendrimer films to be applied in modern technology. This review describes different uses of dendrimer particles in biomedical sciences and nanotechnology and shows advantages of their application.

  20. Research groups in biomedical sciences. Some recommendations

    Directory of Open Access Journals (Sweden)

    Ricardo Cardona

    2015-07-01

    Full Text Available Despite the growing number of scientific publications reflecting a greater number of people interested in the biomedical sciences, many research groups disappear secondary to poor internal organization. From the review of the available literature, we generate a series of recommendations that may be useful for the creation of a research group or to improve the productivity of an existing group. Fluid communication between its members with a common overall policy framework allows the creation of a good foundation that will lead to the consolidation of the group.

  1. Introduction to Statistics for Biomedical Engineers

    CERN Document Server

    Ropella, Kristina

    2007-01-01

    There are many books written about statistics, some brief, some detailed, some humorous, some colorful, and some quite dry. Each of these texts is designed for a specific audience. Too often, texts about statistics have been rather theoretical and intimidating for those not practicing statistical analysis on a routine basis. Thus, many engineers and scientists, who need to use statistics much more frequently than calculus or differential equations, lack sufficient knowledge of the use of statistics. The audience that is addressed in this text is the university-level biomedical engineering stud

  2. Biofuel cells for biomedical applications: colonizing the animal kingdom.

    Science.gov (United States)

    Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey

    2013-07-22

    Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biomedical imaging graduate curricula and courses: report from the 2005 Whitaker Biomedical Engineering Educational Summit.

    Science.gov (United States)

    Louie, Angelique; Izatt, Joseph; Ferrara, Katherine

    2006-02-01

    We present an overview of graduate programs in biomedical imaging that are currently available in the US. Special attention is given to the emerging technologies of molecular imaging and biophotonics. Discussions from the workshop on Graduate Imaging at the 2005 Whitaker Educational Summit meeting are summarized.

  4. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  6. Accreditation of Biomedical Engineering Programs in Europe - Challenge and Opportunity

    National Research Council Canada - National Science Library

    Nagel, Joachim

    2001-01-01

    Today, more than 100 universities and polytechnic schools in Europe offer educational programs in Biomedical Engineering at all academic levels, but without any international coordination of contents...

  7. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  8. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    Science.gov (United States)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  9. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  10. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  11. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    Science.gov (United States)

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  13. Mathematics and physics of emerging biomedical imaging

    International Nuclear Information System (INIS)

    1996-01-01

    Although the mathematical sciences were used in a general way for image processing, they were of little importance in biomedical work until the development in the 1970s of computed tomography (CT) for the imaging of x-rays and isotope emission tomography. In the 1980s, MRI eclipsed the other modalities in many ways as the most informative medical imaging methodology. Besides these well-established techniques, computer-based mathematical methods are being explored in applications to other well-known methods, such as ultrasound and electroencephalography, as well as new techniques of optical imaging, impedance tomography, and magnetic source imaging. It is worth pointing out that, while the final images of many of these techniques bear many similarities to each other, the technologies involved in each are completely different and the parameters represented in the images are very different in character as well as in medical usefulness. In each case, rather different mathematical or statistical models are used, with different equations. One common thread is the paradigm of reconstruction from indirect measurements--this is the unifying theme of this report. The imaging methods used in biomedical applications that this report discusses include: (1) x-ray projection imaging; (2) x-ray computed tomography (CT); (3) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy; (4) single photon emission computed tomography (SPECT); (5) positron emission tomography (PET); (6) ultrasonics; (7) electrical source imaging (ESI); (8) electrical impedance tomography (EIT); (9) magnetic source imaging (MSI); and (10) medical optical imaging

  14. Usage of cell nomenclature in biomedical literature

    KAUST Repository

    Kafkas, Senay

    2017-12-21

    Background Cell lines and cell types are extensively studied in biomedical research yielding to a significant amount of publications each year. Identifying cell lines and cell types precisely in publications is crucial for science reproducibility and knowledge integration. There are efforts for standardisation of the cell nomenclature based on ontology development to support FAIR principles of the cell knowledge. However, it is important to analyse the usage of cell nomenclature in publications at a large scale for understanding the level of uptake of cell nomenclature in literature by scientists. In this study, we analyse the usage of cell nomenclature, both in Vivo, and in Vitro in biomedical literature by using text mining methods and present our results. Results We identified 59% of the cell type classes in the Cell Ontology and 13% of the cell line classes in the Cell Line Ontology in the literature. Our analysis showed that cell line nomenclature is much more ambiguous compared to the cell type nomenclature. However, trends indicate that standardised nomenclature for cell lines and cell types are being increasingly used in publications by the scientists. Conclusions Our findings provide an insight to understand how experimental cells are described in publications and may allow for an improved standardisation of cell type and cell line nomenclature as well as can be utilised to develop efficient text mining applications on cell types and cell lines. All data generated in this study is available at https://github.com/shenay/CellNomenclatureStudy.

  15. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  16. Accelerating Biomedical Discoveries through Rigor and Transparency.

    Science.gov (United States)

    Hewitt, Judith A; Brown, Liliana L; Murphy, Stephanie J; Grieder, Franziska; Silberberg, Shai D

    2017-07-01

    Difficulties in reproducing published research findings have garnered a lot of press in recent years. As a funder of biomedical research, the National Institutes of Health (NIH) has taken measures to address underlying causes of low reproducibility. Extensive deliberations resulted in a policy, released in 2015, to enhance reproducibility through rigor and transparency. We briefly explain what led to the policy, describe its elements, provide examples and resources for the biomedical research community, and discuss the potential impact of the policy on translatability with a focus on research using animal models. Importantly, while increased attention to rigor and transparency may lead to an increase in the number of laboratory animals used in the near term, it will lead to more efficient and productive use of such resources in the long run. The translational value of animal studies will be improved through more rigorous assessment of experimental variables and data, leading to better assessments of the translational potential of animal models, for the benefit of the research community and society. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  18. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors.

  19. Localization and Tracking of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Ilknur Umay

    2017-03-01

    Full Text Available Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.

  20. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  1. Analyzing rare diseases terms in biomedical terminologies

    Directory of Open Access Journals (Sweden)

    Erika Pasceri

    2012-03-01

    Full Text Available Rare disease patients too often face common problems, including the lack of access to correct diagnosis, lack of quality information on the disease, lack of scientific knowledge of the disease, inequities and difficulties in access to treatment and care. These things could be changed by implementing a comprehensive approach to rare diseases, increasing international cooperation in scientific research, by gaining and sharing scientific knowledge about and by developing tools for extracting and sharing knowledge. A significant aspect to analyze is the organization of knowledge in the biomedical field for the proper management and recovery of health information. For these purposes, the sources needed have been acquired from the Office of Rare Diseases Research, the National Organization of Rare Disorders and Orphanet, organizations that provide information to patients and physicians and facilitate the exchange of information among different actors involved in this field. The present paper shows the representation of rare diseases terms in biomedical terminologies such as MeSH, ICD-10, SNOMED CT and OMIM, leveraging the fact that these terminologies are integrated in the UMLS. At the first level, it was analyzed the overlap among sources and at a second level, the presence of rare diseases terms in target sources included in UMLS, working at the term and concept level. We found that MeSH has the best representation of rare diseases terms.

  2. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Directory of Open Access Journals (Sweden)

    Chan KH

    2017-02-01

    Full Text Available Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1 nanofibrils in biomaterials that can interact with cells, 2 nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3 nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. Keywords: peptides, self-assembly, nanotechnology

  3. Biomedical engineering undergraduate education in Latin America

    International Nuclear Information System (INIS)

    Allende, R; Morales, D; Avendano, G; Chabert, S

    2007-01-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones

  4. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  6. Biomedical Approaches to HIV Prevention in Women.

    Science.gov (United States)

    Heumann, Christine L

    2018-04-17

    Effective HIV prevention techniques for women are of critical importance, as nearly half of all HIV infections globally are in women. This article reviews the recent literature on biomedical approaches to HIV prevention in women. In trials in which women were adherent to oral pre-exposure prophylaxis (PrEP), PrEP was equally efficacious in men and women. However, in studies of oral PrEP exclusively in women, adherence was low, and it was not efficacious. In trials of topical PrEP, including vaginal tenofovir gel and the monthly dapivirine ring, efficacy was also dependent upon adherence. Treatment as prevention (TasP) is a very effective HIV prevention strategy, though limited in that it is not controlled by the HIV-uninfected partner. Adherence is an important factor in the efficacy of biomedical interventions for HIV prevention in women; continued research is needed to identify the most efficacious and acceptable agents for women. Oral PrEP is currently recommended for the following groups of HIV-negative women: heterosexual women in ongoing sexual relationships with a partner infected with or at substantial risk of HIV infection and women who inject drugs and share injection or drug preparation equipment.

  7. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  8. Recycling and recommissioning a used biomedical cyclotron

    International Nuclear Information System (INIS)

    Carroll, L.R.; Ramsey, F.; Armbruster, J.; Montenero, M.

    2001-01-01

    Biomedical Cyclotrons have a very long life, but there eventually comes a time when any piece of equipment has to be retired from service. From time to time, we have the opportunity to help find new homes for used cyclotrons which, with relatively modest overhaul and refurbishment, can have many additional years of productive service, and thus represent a very valuable asset. The reasons for retiring a cyclotron vary, of course, but in our experience it is often due to an institution's changing priorities or changing needs, rather than the due to any fundamental age-related deficiency in the cyclotron itself. In this paper we will report on the relocation and successful restoration of a used TCC CP-42 cyclotron, which was moved from M.D. Anderson Hospital in Houston to Denton, Texas in early 1998, where it is presently being used for R and D and commercial production of biomedical isotopes. Ownership of the machine has been transferred to the University of North Texas; facility, manpower, and operational resources are provided by International Isotopes, Inc

  9. EVALUATION OF BIOMEDICAL WASTE MANAGEMENT PRACTICES IN MULTI-SPECIALITY TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Shalini Srivastav

    2010-06-01

    Full Text Available Background: Biomedical Waste (BMW, collection and proper disposal has become a significant concern for both the medical and the general community The scientific “Hospital waste Management “is of vital importance as its improper management poses risks to the health care workers ,waste handlers patients, community in general and largely the environment. Objectives: (i To assess current practices of Bio-medical Waste management including generation, collection, transportation storage, treatment and disposal technologies in tertiary health care center. (ii To assess health andsafetypracticesfor the health care personnel involved in Bio-Medical waste Management. Materials and Methods: Waste management practices in tertiary care-centre was studied during May 2010 June 2010. The information/data regarding Bio-Medical Waste Management practices and safety was collected by way of semi structured interview, proforma being the one used for WASTE AUDITING QUESTIONNAIRE. The information collected was verified by personal observations of waste management practices in each ward of hospital. Results : SRMS-IMS generates 1. 25Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in each ward for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory it was not due to unavailability of Personal protective measures but because of un-awareness of health hazards which may occur due to improper waste management practices. Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute, training and motivation must be given paramount importance to meet the current needs and standard of bio-medical waste management.

  10. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Smith, Anne-Louise

    2011-01-01

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  11. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  12. Ion beam modification of surfaces for biomedical applications

    International Nuclear Information System (INIS)

    Sommerfeld, Jana

    2014-01-01

    Human life expectancy increased significantly within the last century. Hence, medical care must ever be improved. Optimizing artificial replacements such as hip joints or stents etc. is of special interest. For this purpose, new materials are constantly developed or known ones modified. This work focused on the possibility to change the chemistry and topography of biomedically relevant materials such as diamond-like carbon (DLC) and titanium dioxide (TiO 2 ) by means of ion beam irradiation. Mass-separated ion beam deposition was used in order to synthesize DLC layers with a high sp 3 content (> 70%), a sufficiently smooth surface (RMS<1 nm) and a manageable film thickness (50 nm). The chemistry of the DLC layers was changed by ion beam doping with different ion species (Ag,Ti) and concentrations. Additionally, the surface topography of silicon and titanium dioxide was altered by ion beam irradiation under non-perpendicular angle of incidence. The created periodic wave structures (so-called ripples) were characterized and their dependency on the ion energy was investigated. Moreover, ripples on silicon were covered with a thin DLC layer in order to create DLC ripples. The biocompatibility of all samples was investigated by adsorption experiments. For this purpose, human plasma fibrinogen (HPF) was used due to its ambiphilic character, which allows the protein to assume different conformations on materials with different hydrophilicities. Moreover, HPF is a crucial factor in the blood coagulation process. This work comes to the conclusion that the interaction of both, the surface chemistry and topography, has a strong influence on the adsorption behavior of HPF and thus the biocompatibility of a material. Both factors can be specifically tuned by means of ion beam irradiation.

  13. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  14. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  15. Potential Use of Plant Fibres and their Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2014-05-01

    Full Text Available Plant-based fibers such as flax, jute, sisal, hemp, and kenaf have been frequently used in the manufacturing of biocomposites. Natural fibres possess a high strength to weight ratio, non-corrosive nature, high fracture toughness, renewability, and sustainability, which give them unique advantages over other materials. The development of biocomposites by reinforcing natural fibres has attracted attention of scientists and researchers due to environmental benefits and improved mechanical performance. Manufacturing of biocomposites from renewable sources is a challenging task, involving metals, polymers, and ceramics. Biocomposites are already utilized in biomedical applications such as drug/gene delivery, tissue engineering, orthopedics, and cosmetic orthodontics. The first essential requirement of materials to be used as biomaterial is its acceptability by the human body. A biomaterial should obtain some important common properties in order to be applied in the human body either for use alone or in combination. Biocomposites have potential to replace or serve as a framework allowing the regeneration of traumatized or degenerated tissues or organs, thus improving the patients’ quality of life. This review paper addresses the utilization of plant fibres and its composites in biomedical applications and considers potential future research directed at environment-friendly biodegradable composites for biomedical applications.

  16. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Defining Compensable Injury in Biomedical Research.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  18. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  19. Advances in electronic-nose technologies developed for biomedical applications

    Science.gov (United States)

    Dan Wilson; Manuela. Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and...

  20. Rewriting and suppressing UMLS terms for improved biomedical term identification

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); E.M. van Mulligen (Erik); M.J. Schuemie (Martijn); R.J.A. Schijvenaars (Bob); J.A. Kors (Jan)

    2010-01-01

    textabstractBackground: Identification of terms is essential for biomedical text mining. We concentrate here on the use of vocabularies for term identification, specifically the Unified Medical Language System (UMLS). To make the UMLS more suitable for biomedical text mining we implemented and