WorldWideScience

Sample records for biomedical computational science

  1. Effective Computer Aided Instruction in Biomedical Science

    OpenAIRE

    Hause, Lawrence L.

    1985-01-01

    A menu-driven Computer Aided Instruction (CAI) package was integrated with word processing and effectively applied in five curricula at the Medical College of Wisconsin. Integration with word processing facilitates the ease of CAI development by instructors and was found to be the most important step in the development of CAI. CAI modules were developed and are currently used to reinforce lectures in medical pathology, laboratory quality control, computer programming and basic science reviews...

  2. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields.

  3. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  4. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  5. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  6. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  7. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  8. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  9. Science gateways for biomedical big data analysis

    OpenAIRE

    Kampen, van, PJW; Olabarriaga, S.D.; Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists from different organizations. Data-driven or e-Science methods are defined as a combination of Information Technology (IT) and science that enables scientists to tackle the data deluge challenges. Th...

  10. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  11. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  12. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  13. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  14. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  15. Computer science

    CERN Document Server

    Blum, Edward K

    2011-01-01

    Computer Science: The Hardware, Software and Heart of It focuses on the deeper aspects of the two recognized subdivisions of Computer Science, Software and Hardware. These subdivisions are shown to be closely interrelated as a result of the stored-program concept. Computer Science: The Hardware, Software and Heart of It includes certain classical theoretical computer science topics such as Unsolvability (e.g. the halting problem) and Undecidability (e.g. Godel's incompleteness theorem) that treat problems that exist under the Church-Turing thesis of computation. These problem topics explain in

  16. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  17. Computational Science

    Institute of Scientific and Technical Information of China (English)

    K. Li

    2007-01-01

    @@ Computer science is the discipline that anchors the computer industry which has been improving processor performance, communication bandwidth and storage capacity on the so called "Moore's law" curve or at the rate of doubling every 18 to 24 months during the past decades.

  18. Computer vision for biomedical image applications. Proceedings

    International Nuclear Information System (INIS)

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  19. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  20. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  1. Computer literacy and E-learning perception in Cameroon: the case of Yaounde Faculty of Medicine and Biomedical Sciences

    OpenAIRE

    Bediang, Georges Wylfred; Stoll, Beat; Geissbuhler, Antoine; Klohn, Axel Maximo; Stuckelberger, Astrid; Nko'o, Samuel; Chastonay, Philippe

    2013-01-01

    Background Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of ...

  2. Effective written communication in biomedical sciences.

    Science.gov (United States)

    Rugh, K S; Hahn, A W

    1996-01-01

    The written word is the biomedical scientist's most important and most enduring communication tool. Nevertheless, the development of writing skills receives little attention in most scientific disciplines and the ability to conduct research is often viewed as more important than the ability to communicate the results of that research. Consequently, many scientists lack the writing skills necessary to effectively convey essential aspects of their research. In this paper, we will discuss the importance of good writing skills, give examples of common mistakes that are made in biomedical science writing and offer suggestions on how to improve written communication. PMID:8672681

  3. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  4. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  5. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  6. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Meurer, Maria Ines [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Pathology]. E-mail: emaninha@gmail.com; Meurer, Eduardo [Universidade do Sul de Santa Catarina (UNISUL), Tubarao, SC (Brazil); Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton [Centro de Pesquisa Renato Archer (CenPRA), Campinas, SP (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Clinical Practice; Oliveira, Marilia Gerhardt de [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Dept. of Surgery; Silva, Daniela Nascimento [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Faculdade de Odontologia. Dept. of Surgery

    2008-01-15

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  7. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  8. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  9. Biomedical Applications of NASA Science and Technology

    Science.gov (United States)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  10. Biomedical cloud computing with Amazon Web Services.

    Science.gov (United States)

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

  11. Biomedical cloud computing with Amazon Web Services.

    Directory of Open Access Journals (Sweden)

    Vincent A Fusaro

    2011-08-01

    Full Text Available In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster, provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/. More information about cloud computing, detailed cost analysis, and security can be found in references.

  12. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  13. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  14. Interactive processing and visualization of image data for biomedical and life science applications

    OpenAIRE

    Staadt, Oliver G.; Natarajan, Vijay; Weber, Gunther H.; Wiley, David F; Hamann, Bernd

    2007-01-01

    Background Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results We show that new data processing tools and visualization systems can be used successfully in biomedical and life s...

  15. Interactive processing and visualization of image data for biomedical and life science applications

    OpenAIRE

    Staadt, Oliver G; Natarajan, Vijay; Weber, Gunther H.; Wiley, David F.; Hamann, Bernd

    2007-01-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and l...

  16. Interactive Processing and Visualization of Image Data for Biomedical and Life Science Applications

    OpenAIRE

    Staadt, Oliver G; Natarjan, Vijay; Weber, Gunther H.; Wiley, David F.; Hamann, Bernd

    2007-01-01

    Background Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results We show that new data processing tools and visualization systems can be used successfully in biomedical and life s...

  17. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  18. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  19. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  20. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  1. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  2. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  3. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  4. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.

  5. New methodology in biomedical science: methodological errors in classical science.

    Science.gov (United States)

    Skurvydas, Albertas

    2005-01-01

    The following methodological errors are observed in biomedical sciences: paradigmatic ones; those of exaggerated search for certainty; science dehumanisation; deterministic and linearity; those of making conclusions; errors of reductionism or quality decomposition as well as exaggerated enlargement; errors connected with discarding odd; unexpected or awkward facts; those of exaggerated mathematization; isolation of science; the error of "common sense"; Ceteris Paribus law's ("other things being equal" laws) error; "youth" and common sense; inflexibility of criteria of the truth; errors of restricting the sources of truth and ways of searching for truth; the error connected with wisdom gained post factum; the errors of wrong interpretation of research mission; "laziness" to repeat the experiment as well as the errors of coordination of errors. One of the basic aims for the present-day scholars of biomedicine is, therefore, mastering the new non-linear, holistic, complex way of thinking that will, undoubtedly, enable one to make less errors doing research. The aim of "scientific travelling" will be achieved with greater probability if the "travelling" itself is performed with great probability. PMID:15687745

  6. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  7. Early progress of the Biomedical Computing Technology Information Center (BCTIC)

    International Nuclear Information System (INIS)

    Through five years of effort by the Society of Nuclear Medicine Computer Committee, the Biomedical Computing Technology Information Center (BCTIC) was established by the Division of Biomedical and Environmental Research (DBER) of the U. S. Energy Research and Development Administration (ERDA) at the Oak Ridge National Laboratory in July of 1975. BCTIC forged ahead into the tasks of designing guidelines and procedures, acquisition and packaging of computer codes, data, and interface designs; building a bibliographic data base; and maintaining a directory of the user community. Important contacts were made with societies and individuals involved in biomedical computing; and BCTIC was publicized through news releases, the BCTIC newsletter (bimonthly, since October, 1975), presentations at meetings, and personal contacts. This paper presents the response BCTIC has received in its initial months, gives a progress report on the developmental phase, and takes a look to the future of BCTIC as a national technology resource in nuclear medicine computing

  8. Theory and computational science

    International Nuclear Information System (INIS)

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  9. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  10. Recognizing Computational Science

    Science.gov (United States)

    Bland-Hawthorn, J.

    2006-08-01

    There are prestigious international awards that recognize the role of theory and experiment in science and mathematics, but there are no awards of a similar stature that explicitly recognize the role of computational science in a scientific field. In 1945, John von Neumann noted that "many branches of both pure and applied mathematics are in great need of computing instruments to break the present stalemate created by the failure of the purely analytical approach to nonlinear problems." In the past few decades, great strides in mathematics and in the applied sciences can be linked to computational science.

  11. Philosophy of Computer Science

    Directory of Open Access Journals (Sweden)

    Aatami Järvinen

    2014-06-01

    Full Text Available The diversity and interdisciplinary of Computer Sciences, and the multiplicity of its uses in other sciences make it difficult to define them and prescribe how to perform them. Furthermore, also cause friction between computer scientists from different branches. Because of how they are structured, these sciences programs are criticized for not offer an adequate methodological training, or a deep understanding of different research traditions. To collaborate on a solution, some have decided to include in their curricula courses that enable students to gain awareness about epistemology and methodological issues in Computer Science, as well as give meaning to the practice of computer scientists. In this article the needs and objectives of the courses on the philosophy of Computer Science are analyzed, and its structure and management are explained.

  12. The Computer Science Network

    OpenAIRE

    Landweber, Lawrence H.

    1982-01-01

    The CSNET project, sponsored by the National Science Foundation, has as its goal the design and implementation of a computer communications network to provide services to computer science research groups in the United States. Experience with Arpanet has shown that access to a computer network can lead to significantly higher level of interaction between geographically dispersed researchers. This can result in an increase in the quantity and quality of research produced by these researchers. I...

  13. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  14. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  15. Evaluation of Biomedical Science Students Use and Perceptions of Podcasting

    Science.gov (United States)

    Smith, Katie; Morris, Neil P.

    2014-01-01

    The use of podcasting in higher education has escalated in recent years. The aim of this case study was to analyse undergraduate student use and perceptions of lecture audio recordings in the School of Biomedical Sciences at the University of Leeds. Students completed an online survey over a two-week period based on their use of lecture audio…

  16. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  17. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  18. Quantum computer science

    CERN Document Server

    Lanzagorta, Marco

    2009-01-01

    In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin

  19. Computer science : recursion

    OpenAIRE

    Duong, Van Anh

    2012-01-01

    The purpose of this thesis is to analyze recursion in the field of computer science field. There are three sections in this thesis which are introduction, examples of using recursion and applying recursion. The first sectionintroduces recursion and related topics from general to details. First of all, definitions of computer science, algorithm, mathematical induction and recursion are introduced. Then, recursive function, algorithm and data types are discussed. Finally, there is the cl...

  20. Theory and experiment in biomedical science

    Science.gov (United States)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani

  1. Biomedical science postdocs: an end to the era of expansion.

    Science.gov (United States)

    Garrison, Howard H; Justement, Louis B; Gerbi, Susan A

    2016-01-01

    After >3 decades of steady growth, the number of biological and medical science postdoctorates at doctoral degree-granting institutions recently began to decline. From 2010 through 2013, the most recent survey years, the postdoctoral population decreased from 40,970 to 38,719, a loss of 5.5%. This decline represents a notable departure from the previous long-standing increases in the number of postdoctorates in the biomedical workforce. The rate of contraction appears to be accelerating in the most recent survey years, and this has important implications for the biomedical workforce.

  2. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  3. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  4. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  5. Java and its future in biomedical computing.

    OpenAIRE

    Rodgers, R P

    1996-01-01

    Java, a new object-oriented computing language related to C++, is receiving considerable attention due to its use in creating network-sharable, platform-independent software modules (known as "applets") that can be used with the World Wide Web. The Web has rapidly become the most commonly used information-retrieval tool associated with the global computer network known as the Internet, and Java has the potential to further accelerate the Web's application to medical problems. Java's potential...

  6. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  7. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  8. Computer science I essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.

  9. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  10. In silico discoveries for biomedical sciences

    NARCIS (Netherlands)

    Haagen, Herman van

    2011-01-01

    Text-mining is a challenging field of research initially meant for reading large text collections with a computer. Text-mining is useful in summarizing text, searching for the informative documents, and most important to do knowledge discovery. Knowledge discovery is the main subject of this thesis.

  11. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  12. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  13. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  14. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    Science.gov (United States)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  15. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... involve a wide range of medical specialties within the general areas of biomedical, behavioral...

  16. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the... location changes have been made for the following panel meetings of the of the Joint Biomedical...

  17. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  18. Information-theoretic evaluation for computational biomedical ontologies

    CERN Document Server

    Clark, Wyatt Travis

    2014-01-01

    The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are

  19. Annual review of computer science

    Energy Technology Data Exchange (ETDEWEB)

    Traub, J.F. (Columbia Univ., New York, NY (USA)); Grosz, B.J. (Harvard Univ., Cambridge, MA (USA)); Lampson, B.W. (Digital Equipment Corp. (US)); Nilsson, N.J. (Stanford Univ., CA (USA))

    1988-01-01

    This book contains the annual review of computer science. Topics covered include: Database security, parallel algorithmic techniques for combinatorial computation, algebraic complexity theory, computer applications in manufacturing, and computational geometry.

  20. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  1. Computer Science and Technology Board

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, M.S.

    1990-01-01

    The Computer Science and Technology Board (CSTB) meets three times a year to consider scientific and policy issues in computer science as well as relevant problems in associated technologies. The objectives of the Board include: initiating studies involving computer science and technology as a critical national resource; responding to requests from the government, nonprofit foundations, and industry for advice on computer science and technology; promoting the health of the technology and other fields of pure and applied science and technology; and providing a base of expertise within the NRC in the area of computer science and technology.

  2. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  3. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  4. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  5. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  6. The skewness of computer science

    OpenAIRE

    Franceschet, Massimo

    2009-01-01

    Computer science is a relatively young discipline combining science, engineering, and mathematics. The main flavors of computer science research involve the theoretical development of conceptual models for the different aspects of computing and the more applicative building of software artifacts and assessment of their properties. In the computer science publication culture, conferences are an important vehicle to quickly move ideas, and journals often publish deeper versions of papers alread...

  7. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  8. Computer Science Research: Computation Directorate

    Energy Technology Data Exchange (ETDEWEB)

    Durst, M.J. (ed.); Grupe, K.F. (ed.)

    1988-01-01

    This report contains short papers in the following areas: large-scale scientific computation; parallel computing; general-purpose numerical algorithms; distributed operating systems and networks; knowledge-based systems; and technology information systems.

  9. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  10. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406

  11. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with…

  12. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  13. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  14. OCR A level computer science

    CERN Document Server

    Rouse, George; O'Byrne, Sean

    2015-01-01

    Develop confident students with our expert authors: their insight and guidance will ensure a thorough understanding of OCR A Level computer science, with challenging tasks and activities to test essential analytical and problem-solving skills. - Endorsed by OCR for use with the OCR AS and A Level Computer Science specification and written by a trusted and experienced author team, OCR Computer Science for A Level:- Endorsed by OCR for use with the OCR AS and A Level Computer Science specification and written by a trusted and experienced author team, OCR Computer Science for A Level:- Builds stu

  15. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  16. Does science need computer science?

    OpenAIRE

    Frey, Jeremy; Reynolds, Andrew; Roberts, Matt; Legg, Steve; Jones, Nick; Glover-Gunn, May

    2004-01-01

    IBM Hursley Talks Series 3 An afternoon of talks, to be held on Wednesday March 10 from 2:30pm in Bldg 35 Lecture Room A, arranged by the School of Chemistry in conjunction with IBM Hursley and the Combechem e-Science Project. The talks are aimed at science students (undergraduate and post-graduate) from across the faculty. This is the third series of talks we have organized, but the first time we have put them together in an afternoon. The talks are general in nature and knowledge...

  17. Towards a computational transportation science

    OpenAIRE

    Stephan Winter; Monika Sester; Ouri Wolfson; Glenn Geers

    2011-01-01

    This report of a community activity, a Dagstuhl Seminar earlier in 2010, postulates the need for a computational transportation science, as the science behind intelligent transportation systems. In addition to the argument for establishing a discipline, we present a first research agenda for computational transportation science.

  18. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  19. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    Science.gov (United States)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  20. Medical Computing: Another Basic Science?

    OpenAIRE

    Shortliffe, Edward H.

    1980-01-01

    Medical computing is frequently viewed as the application of established computer science techniques in medical domains. However, it is the thesis of this paper that many clinical computing tasks demand techniques that are as yet undeveloped. As a result, medical computing research should logically be closely tied to basic research in computer science. Failure to recognize that this developing discipline often requires fundamental investigation has tended to foster unrealistic expectations of...

  1. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... medical specialties within the general areas of biomedical, behavioral and clinical science research. The... under the Public Law 92-463 (Federal Advisory Committee Act) that the panels of the Joint...

  2. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... review by the Board involve a wide range of medical specialties within the general areas of...

  3. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... under the Public Law 92-463 (Federal Advisory Committee Act) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific...

  4. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... range of medical specialties within the general areas of biomedical, behavioral and clinical science... under Public Law 92-463 (Federal Advisory Committee Act), that the panels of the Joint...

  5. Computer science and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, T.

    1988-01-01

    This volume aims to provide up-to-date information on recent research and development in computer science and technology in Japan. In view of the rapid developments in these fields and the urgent demand for more detailed information about Japanese activities and achievements, it has been decided to concentrate on only a few selected topics in each volume. The topics covered will change each year so as to obtain adequate coverage of a broad range of activities over a period of a few years. This edition should not only contribute to the international understanding of technical developments in Japan, but also shed light on the cultural background to these theoretical and practical developments.

  6. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  7. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  8. AQA A level computer science

    CERN Document Server

    Reeves, Bob

    2015-01-01

    AQA A-level Computer Science gives students the chance to think creatively and progress through the AQA AS and A-level Computer Science specifications. Detailed coverage of the specifications will enrich understanding of the fundamental principles of computing, whilst a range of activities help to develop the programming skills and computational thinking skills at A-level and beyond. - Enables students to build a thorough understanding of the fundamental principles in the AQA AS and A-Level Computer Science specifications, with detailed coverage of programming, algorithms, data structures a

  9. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  10. Maps of Computer Science

    CERN Document Server

    Fried, Daniel

    2013-01-01

    We describe a practical approach for visual exploration of research papers. Specifically, we use the titles of papers from the DBLP database to create what we call maps of computer science (MoCS). Words and phrases from the paper titles are the cities in the map, and countries are created based on word and phrase similarity, calculated using co-occurrence. With the help of heatmaps, we can visualize the profile of a particular conference or journal over the base map. Similarly, heatmap profiles can be made of individual researchers or groups such as a department. The visualization system also makes it possible to change the data used to generate the base map. For example, a specific journal or conference can be used to generate the base map and then the heatmap overlays can be used to show the evolution of research topics in the field over the years. As before, individual researchers or research groups profiles can be visualized using heatmap overlays but this time over the journal or conference base map. Fin...

  11. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  12. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  13. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.

  14. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives. PMID:27182669

  15. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  16. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  17. Mining biomedical images towards valuable information retrieval in biomedical and life sciences

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  18. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  19. Instruction Sequences for Computer Science

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2012-01-01

    This book demonstrates that the concept of an instruction sequence offers a novel and useful viewpoint on issues relating to diverse subjects in computer science. Selected issues relating to well-known subjects from the theory of computation and the area of computer architecture are rigorously inves

  20. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  1. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  2. British Journal of Biomedical Science in 2015: what have we learned?

    Science.gov (United States)

    Blann, Andrew; Nation, Brian

    2016-01-01

    In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.

  3. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  4. Computer simulation in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, R.J.; Beeler, J.R.; Esterling, D.M.

    1988-01-01

    This book contains papers on the subject of modeling in materials science. Topics include thermodynamics of metallic solids and fluids, grain-boundary modeling, fracture from an atomistic point of view, and computer simulation of dislocations on an atomistic level.

  5. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    Science.gov (United States)

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  6. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  7. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  8. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  9. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; Sinderen, van Marten; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  10. Computational colour science using MATLAB

    CERN Document Server

    Westland, Stephen; Cheung, Vien

    2012-01-01

    Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t

  11. Computational mechanics in science, applications and teaching

    Directory of Open Access Journals (Sweden)

    Kojić M.

    2013-01-01

    Full Text Available We express our opinion about the role of Computational Mechanics (CM in science, applications and education. The presented thoughts rely on our experience gained by working over decades (first author in particular in the field of CM. First, as a challenge of an opinion that computational mechanics is rather a tool, not the science, we give our view that computational mechanics is a complex interdisciplinary scientific field where new methods and solutions are sought, new hypotheses are tested, and events in material world are elucidated or predicted. It is quite an art to achieve the goal that general analytical formulations or experimental findings become useful and practical numbers, graphs, and even simulations of living systems response. Second, we would like to emphasize the enormous impact of CM in applications; ranging from the support of experimental investigations, to everyday engineering in design and industry, to bioengineering and medicine. Giant steps have been undertaken by invention of the finite element method in the 6th decade of last century. From that time on, a huge number of researchers have opened new frontiers, introducing new computational methods, improving the algorithms and incorporating achievements in computer technology. Third, we want to address the issue of the CM participation within university programs. We believe that the CM methods, software development and application should be a significant part of the overall education in engineering departments, but also (to appropriate extent in other departments of natural and biomedical sciences, technology and medicine. All courses should be accompanied by the corresponding software. We here cite our experience where around 40 PhD and MS theses have been completed at University of Kragujevac, with the CM topics, development of engineering software (our system of programs PAK and applications in engineering and bioengineering. This approach in education will result in

  12. Computer Science Security

    OpenAIRE

    Ocotlan Diaz-Parra; Ruiz-Vanoye, Jorge A.; Barrera-Cámara, Ricardo A.; Alejandro Fuentes-Penna; Natalia Sandoval

    2014-01-01

    Soft Systems Methodology (SSM) is a problem-solving methodology employing systems thinking. SSM has been applied to the management, planning, health and medical systems, information systems planning, human resource management, analysis of the logistics systems, knowledge management, project management, construction management and engineering, and development of expert systems. This paper proposes using SSM for strategic planning of Enterprise Computer Security.

  13. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  14. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  15. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  16. Cambridge IGCSE computer science

    CERN Document Server

    Watson, Dave; Konrad, Nina

    2015-01-01

    Endorsed by Cambridge International Examinations. Develop your students computational thinking and programming skills with complete coverage of the latest syllabus (0478) from experienced examiners and teachers. - Includes a Student CD-ROM with interactive tests, based on the short answer questions from both papers - Follows the order of the syllabus exactly, ensuring complete coverage - Introduces students to self-learning exercises, helping them learn how to use their knowledge in new scenarios This syllabus is for first examination from 2015.

  17. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  18. Linking computers for science

    CERN Multimedia

    2005-01-01

    After the success of SETI@home, many other scientists have found computer power donated by the public to be a valuable resource - and sometimes the only possibility to achieve their goals. In July, representatives of several “public resource computing” projects came to CERN to discuss technical issues and R&D activities on the common computing platform they are using, BOINC. This photograph shows the LHC@home screen-saver which uses the BOINC platform: the dots represent protons and the position of the status bar indicates the progress of the calculations. This summer, CERN hosted the first “pangalactic workshop” on BOINC (Berkeley Open Interface for Network Computing). BOINC is modelled on SETI@home, which millions of people have downloaded to help search for signs of extraterrestrial intelligence in radio-astronomical data. BOINC provides a general-purpose framework for scientists to adapt their software to, so that the public can install and run it. An important part of BOINC is managing the...

  19. Biomedical scientist training officers' evaluation of integrated (co-terminus) Applied Biomedical Science BSc programmes: a multicentre study.

    Science.gov (United States)

    Pitt, S J; Cunningham, J M

    2011-01-01

    The introduction of the Institute of Biomedical Science (IBMS) portfolio for pre-registration training in 2003 allowed universities to develop integrated (co-terminus) biomedical science BSc programmes. Students undertake structured placements within clinical pathology laboratories as part of their degree. The clinical training and professional development of students is undertaken by training officers (TOs), who are experienced Health Professions Council (HPC)-registered biomedical scientists and usually also members of the IBMS. This study aims to evaluate TOs' perceptions of these integrated degrees as a means of delivering pre-registration training for biomedical scientists. A questionnaire to collect quantitative data and be completed anonymously was sent to TOs, via staff at participating universities. Items considered TOs' perceptions in four categories: how well students fitted into the laboratory team, their professional and scientific development, the impact of delivering integrated degrees on service delivery, and the commitment to training students. Surveys took place in 2007, 2008 and 2009 and involved TOs taking students from 10, 14 and 17 universities each year, respectively. The response rates to the survey were 60% in 2007, 34% in 2008 and 12% in 2009. Participants were representative in terms of age, gender and pathology discipline and had a broad range of experience with students. The overall mean score for TOs perceptions was 3.38 in 2007 which increased significantly to 3.99 in 2009 (Kruskall Wallis test chi2 = 21.13, P<0.01). Mean scores in three of the four categories were positive in 2007, although the impact on service delivery was perceived negatively. In all areas, means were significantly greater in 2009. The results indicate that TOs view the integrated degrees favourably and are happy with the scientific and professional development of students. Although designing training sessions suitable for undergraduates took extra work initially

  20. Computer Science Professionals and Greek Library Science

    OpenAIRE

    Δενδρινός, Μάρκος

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated library processes impose the need for a hybrid form of scientists, equipped with both the rich experience of traditional librarianship and the knowledg...

  1. The Future of Computer Science

    Institute of Scientific and Technical Information of China (English)

    John E.Hopcroft

    2009-01-01

    @@ It's a great pleasure for me to be here today and have this opportunity to talk to you about my view of the future of computer science.because I think this is a very important time for those of you,the students.What I like to do is I like tostart out by telling you a very quick story about the early part of my career.I graduated from Standford in 1964 from the electrical engineering department.This was before computer science got started.I was hired in coincidence in the electrical engineering department,and what I was asked to do was to teach a new course in computer science.

  2. Transactions on Computational Science IX

    DEFF Research Database (Denmark)

    The 9th issue of the Transactions on Computational Science journal, edited by François Anton, is devoted to the subject of Voronoi diagrams in science and engineering. The 9 papers included in the issue constitute extended versions of selected papers from the International Symposium on Voronoi...... Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...

  3. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  4. The Faculty Costs to Educate a Biomedical Sciences Graduate Student

    Science.gov (United States)

    Smolka, Adam J.; Halushka, Perry V.; Garrett-Mayer, Elizabeth

    2015-01-01

    Academic medical centers nationwide face numerous fiscal challenges resulting from implementation of restructured healthcare delivery models, contracting state support for higher education, and increased competition for federal and other sources of biomedical research funding. In pursuing greater accountability and transparency in its fiscal…

  5. Bridging the social and the biomedical: engaging the social and political sciences in HIV research

    OpenAIRE

    Kippax Susan C; Holt Martin; Friedman Samuel R

    2011-01-01

    Abstract This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologi...

  6. The Role Biomedical Science Laboratories Can Play in Improving Science Knowledge and Promoting First-Year Nursing Academic Success

    Science.gov (United States)

    Arneson, Pam

    2011-01-01

    The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an…

  7. Bringing computational science to the public

    OpenAIRE

    McDonagh, James; Barker, Daniel; Alderson, Rosanna Grace

    2016-01-01

    Background The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were use...

  8. Reproducible research in computational science.

    Science.gov (United States)

    Peng, Roger D

    2011-12-01

    Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.

  9. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014. As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterprise (Proc. Natl. Acad. Sci. USA 112, 1912-1913 (2015, we have formed a 16-member steering committee to oversee a new website that is designed to collect suggestions for actions that can ameliorate the identified problems, as well as to highlight promising changes that are either underway or proposed (see http://rescuingbiomedicalresearch.org.  Despite widespread agreement concerning the problems, any substantial change in the system is bound to be controversial. Experiments are therefore needed. In my talk, I will outline some possible ideas for overcoming the inertia that prevents moving forward.We are encouraging both national and international contributions to this effort, since the problems that we have described are by no means unique to the United States.

  10. Computational intelligence methods on biomedical signal analysis and data mining in medical records

    OpenAIRE

    Vladutu, Liviu-Mihai

    2004-01-01

    This thesis is centered around the development and application of computationally effective solutions based on artificial neural networks (ANN) for biomedical signal analysis and data mining in medical records. The ultimate goal of this work in the field of Biomedical Engineering is to provide the clinician with the best possible information needed to make an accurate diagnosis (in our case of myocardial ischemia) and to propose advanced mathematical models for recovering the complex de...

  11. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  12. Computability, complexity, and languages fundamentals of theoretical computer science

    CERN Document Server

    Davis, Martin D; Rheinboldt, Werner

    1983-01-01

    Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa

  13. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  14. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  15. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  16. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    Science.gov (United States)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  17. Establishment of an index system for evaluating outstanding biomedical scientists for science foundation of Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-jing; CHEN Xin; REN Xu-feng

    2007-01-01

    Objective:To establish a scientific, objective and applicable index system for evaluating outstanding biomedical scientists for science foundation of Shanghai. Methods: According to the principal indices that have been used in the developed countries for evaluating their talented personnel and the reality of our country, an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation. The following parameters were used to simplify the indices: correlation coefficient,multiple correlation coefficient, partial correlation coefficient, creditability, and discriminatory power.And analytic hierarchy process was used to determine the weights of each index. Results and Conclusions:The established index system is scientific and applicable; it is helpful for cultivating and evaluating outstanding biomedical scientists.

  18. Computer science faculty explore thermal-aware computing

    OpenAIRE

    Daniilidi, Christina

    2007-01-01

    Kirk Cameron and Dimitrios Nikolopoulos, associate professors of computer science in the College of Engineering at Virginia Tech, have earned a National Science Foundation (NSF) - Computer Science Research (CSR) award of $350,000 to help improve the reliability of computer systems' processors.

  19. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  20. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  1. [Application of the life sciences platform based on oracle to biomedical informations].

    Science.gov (United States)

    Zhao, Zhi-Yun; Li, Tai-Huan; Yang, Hong-Qiao

    2008-03-01

    The life sciences platform based on Oracle database technology is introduced in this paper. By providing a powerful data access, integrating a variety of data types, and managing vast quantities of data, the software presents a flexible, safe and scalable management platform for biomedical data processing. PMID:18581881

  2. The impact of blended learning technologies on student performance/learning in biomedical science higher education

    OpenAIRE

    Heugh, Sheelagh Mary Bernadette

    2015-01-01

    This study examines the benefits of learning innovations in e-learning (asynchronous classrooms only) and blended learning (asynchronous virtual classrooms plus traditional learning) compared to traditional learning (classroom lectures). It specifically investigates effects on student satisfaction, retention, progression and achievement. We focussed on core biomedical science modules at London Metropolitan University: and four such modules were electronically supported using a learning and co...

  3. A New Voice in Science : Patient participation in decision-making on biomedical research

    NARCIS (Netherlands)

    Caron-Flinterman, J.F.

    2005-01-01

    End-users are increasingly involved in decision-making concerning science and technology. This dissertation focuses on a specific kind of end-user participation: patient participation in decision-making on bio-medical research. Since patients can be considered relevant experts and stakeholders with

  4. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  5. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  6. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics.

  7. Computer Science and the Liberal Arts

    Science.gov (United States)

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  8. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  9. Girls Save the World through Computer Science

    Science.gov (United States)

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  10. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    OpenAIRE

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical sciences. For our analysis, we developed and used a theoretical framework which integrates concepts from identity-in-practice literature with Bourdieu’s ...

  11. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  12. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  13. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  14. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  15. Computational problems in science and engineering

    CERN Document Server

    Bulucea, Aida; Tsekouras, George

    2015-01-01

    This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.

  16. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  17. Assessment of computer science knowledge, achieved with »Computer Science Unplugged« activities

    OpenAIRE

    Zaviršek, Manca

    2015-01-01

    The master thesis discusses assessment of computer science knowledge, which students achieved with »Computer Science Unplugged« activities. First off we define what exactly computer science knowledge is and what the computer science concepts are. Then we get over to the modern approaches of teaching computer science, where the emphasis is problem solving. These approaches can be realized with »CS Unplugged« activities and Bebras tasks. The aim of the empirical part is to research whether asse...

  18. Alliance for Computational Science Collaboration HBCU Partnership at Fisk University. Final Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W. E.

    2004-08-16

    Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing, visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).

  19. The placebo puzzle: examining the discordant space between biomedical science and illness/healing.

    Science.gov (United States)

    Pohlman, Shawn; Cibulka, Nancy J; Palmer, Janice L; Lorenz, Rebecca A; SmithBattle, Lee

    2013-03-01

    The placebo response presents an enigma to biomedical science: how can 'inert' or 'sham' procedures reduce symptoms and produce physiological changes that are comparable to prescribed treatments? In this study, we examine this puzzle by explicating the discordant space between the prevailing biomedical paradigm, which focuses on a technical understanding of diagnosis and treatment, and a broader understanding of illness and healing as relational and embodied. Although biomedical achievements are impressive, the knowledge resulting from this paradigm is limited by its ontological and epistemological assumptions. When the body and world are objectified, illness meanings, therapeutic relationships, and healing practices are dismissed or distorted. In spite of a robust critique of the tenets of biomedicine for guiding practice, the biomedical paradigm retains a tenacious hold on evidence-based medicine and nursing, downplaying our clinical understanding of the sentient body, patients' life-worlds, and illness and healing. In reality, skilled nurses rely on multiple forms of knowledge in providing high-quality care to particular patients. Clinically wise nurses integrate their experience and knowledge of patients' priorities, fears, and illness trajectories along with biomedical findings to make astute judgments and promote health and healing.

  20. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  1. A virtual computer lab for distance biomedical technology education

    Directory of Open Access Journals (Sweden)

    Liu Wei-Li

    2008-03-01

    Full Text Available Abstract Background The National Library of Medicine's National Center for Biotechnology Information offers mini-courses which entail applying concepts in biochemistry and genetics to search genomics databases and other information sources. They are highly interactive and involve use of 3D molecular visualization software that can be computationally taxing. Methods Methods were devised to offer the courses at a distance so as to provide as much functionality of a computer lab as possible, the venue where they are normally taught. The methods, which can be employed with varied videoconferencing technology and desktop sharing software, were used to deliver mini-courses at a distance in pilot applications where students could see demonstrations by the instructor and the instructor could observe and interact with students working at their remote desktops. Results Student ratings of the learning experience and comments to open ended questions were similar to those when the courses are offered face to face. The real time interaction and the instructor's ability to access student desktops from a distance in order to provide individual assistance and feedback were considered invaluable. Conclusion The technologies and methods mimic much of the functionality of computer labs and may be usefully applied in any context where content changes frequently, training needs to be offered on complex computer applications at a distance in real time, and where it is necessary for the instructor to monitor students as they work.

  2. Truth in basic biomedical science will set future mankind free.

    Science.gov (United States)

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  3. Writing Instruction for the Computer Sciences.

    Science.gov (United States)

    Orr, Thomas

    This paper examines patterns of English discourse related to computer science and makes suggestions for the design and content of a technical writing course in English as a Second Language for computer specialists. An introductory section provides background information on computer science education and two professional associations with which…

  4. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  5. Know Your Discipline: Teaching the Philosophy of Computer Science

    Science.gov (United States)

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

  6. Innovations in Computing Sciences and Software Engineering

    CERN Document Server

    Sobh, Tarek

    2010-01-01

    "Innovations in Computing Sciences and Software Engineering" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. The topics covered include: Image and Pattern Recognition: Compression, Image processing, Signal Processing Architectures, Signal Processing for Communication, Signal Processing Implementation, Speech Compression, and Video Coding Architectures; Languages and Systems: Algorithms, Databases,

  7. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  8. Interdisciplinary Educational Collaborations: Chemistry and Computer Science

    Science.gov (United States)

    Haines, Ronald S.; Woo, Daniel T.; Hudson, Benjamin T.; Mori, Joji C.; Ngan, Evey S. M.; Pak, Wing-Yee

    2007-01-01

    Research collaborations between chemists and other scientists resulted in significant outcomes such as development of software. Such collaboration provided a realistic learning experience for computer science students.

  9. Snowmass 2013 Computing Frontier: Accelerator Science

    CERN Document Server

    Spentzouris, P; Joshi, C; Amundson, J; An, W; Bruhwiler, D L; Cary, J R; Cowan, B; Decyk, V K; Esarey, E; Fonseca, R A; Friedman, A; Geddes, C G R; Grote, D P; Kourbanis, I; Leemans, W P; Lu, W; Mori, W B; Ng, C; Qiang, Ji; Roberts, T; Ryne, R D; Schroeder, C B; Silva, L O; Tsung, F S; Vay, J -L; Vieira, J

    2013-01-01

    This is the working summary of the Accelerator Science working group of the Computing Frontier of the Snowmass meeting 2013. It summarizes the computing requirements to support accelerator technology in both Energy and Intensity Frontiers.

  10. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  11. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  12. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  13. In silico clinical trials: how computer simulation will transform the biomedical industry

    OpenAIRE

    Viceconti, M.; Henney, A; Morley-Fletcher, E.

    2016-01-01

    The term ‘in silico clinical trials indicates the use of individualised computer simulation in the development or regulatory evaluation of a medicinal product, medical device, or medical intervention. This review article summarises the research and technological roadmap developed by the Avicenna Support Action during an 18 month consensus process that involved 577 international experts from academia, the biomedical industry, the simulation industry, the regulatory world, etc. The roadmap docu...

  14. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  15. Collaboration in computer science: a network science approach. Part I

    OpenAIRE

    Franceschet, Massimo

    2010-01-01

    Co-authorship in publications within a discipline uncovers interesting properties of the analysed field. We represent collaboration in academic papers of computer science in terms of differently grained networks, including those sub-networks that emerge from conference and journal co-authorship only. We take advantage of the network science paraphernalia to take a picture of computer science collaboration including all papers published in the field since 1936. We investigate typical bibliomet...

  16. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  17. Basic proof skills of computer science students

    NARCIS (Netherlands)

    Hartel, P.H.; Es, van B.; Tromp, Th.J.M.

    1995-01-01

    Computer science students need mathematical proof skills. At our University, these skills are being taught as part of various mathematics and computer science courses. To test the skills of our students, we have asked them to work out a number of exercises. We found that our students are not as well

  18. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  19. A New K-12 Computer Science Curriculum

    Science.gov (United States)

    Tucker, Allen B.

    2004-01-01

    Although there are numerous challenges for implementing a comprehensive K-12 computer science curriculum in the United States, the need is obvious, and the time to begin is now. Computer science is a well-established academic discipline at the collegiate and postgraduate levels, as well as a distinct and important profession in the world economy.…

  20. Creating Science Simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    2012-01-01

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction.…

  1. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  2. Resident's morning report: an opportunity to reinforce principles of biomedical science in a clinical context.

    Science.gov (United States)

    Brass, Eric P

    2013-01-01

    The principles of biochemistry are core to understanding cellular and tissue function, as well as the pathophysiology of disease. However, the clinical utility of biochemical principles is often obscure to clinical trainees. Resident's Morning Report is a common teaching conference in which residents present clinical cases of interest to a faculty member for discussion. This venue provides an opportunity to illustrate how basic biomedical principles facilitate an understanding of the clinical presentation, the relevant pathophysiology, and the rationale for diagnostic and therapeutic strategies. A discussion of biochemical principles can easily be incorporated into these case discussions, with the potential to reinforce these concepts and to illustrate their application to clinical decision making. This approach maintains the effort to teach basic biomedical sciences in the context of clinical application across the educational continuum.

  3. Understanding Science Through the Computational Lens

    Institute of Scientific and Technical Information of China (English)

    Richard M. Karp

    2011-01-01

    This article explores the changing nature of the interaction between computer science and the natural and social sciences.After briefly tracing the history of scientific computation,the article presents the concept of computational lens,a metaphor for a new relationship that is emerging between the world of computation and the world of the sciences.Our main thesis is that,in many scientific fields,the processes being studied can be viewed as computational in nature,in the sense that the processes perform dynamic transformations on information represented as digital data.Viewing natural or engineered systems through the lens of their computational requirements or capabilities provides new insights and ways of thinking.A number of examples are discussed in support of this thesis.The examples are from various fields,including quantum computing,statistical physics,the World Wide Web and the Internet,mathematics,and computational molecular biology.

  4. Three New Concepts of Future Computer Science

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Xu; Dan-Dan Tu

    2011-01-01

    This article presents an observation resulted from the six-year Sino-USA computer science leadership exchanges:the trend towards the emergence of a new computer science that is more universal and fundamental than that in the past.In the 21st century,the field of computer science is experiencing fundamental transformations,from its scope,objects of study,basic metrics,main abstractions,fundamental principles,to its relationship to other sciences and to the human society,while inheriting the basic way of thinking and time-tested body of knowledge accumulated through the past 50 years.We discuss three new concepts related to this trend.They are computational lens and computational thinking articulated by US scientists,and ternary computing for the masses proposed by Chinese scientists.We review the salient features of these concepts,discuss their impact,and summarize future research directions.

  5. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).

    Science.gov (United States)

    Charlton, Bruce G

    2007-01-01

    The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. One hundred and nineteen NLG prizes and awards were made during the past fifteen years (about eight per year) when overlapping awards had been removed. Eighty-five were won by the USA, revealing a massive domination in revolutionary biomedical science by this nation; the UK was second with sixteen awards; Canada had five, Australia four and Germany three. The USA had twelve elite centres of revolutionary biomedical science, with University of Washington at Seattle and MIT in first position with six awards and prizes each; Rockefeller University and Caltech were jointly second placed with five. Surprisingly, Harvard University--which many people rank as the premier world research centre--failed to reach the threshold of three prizes and awards, and was not included in the elite list. The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies

  6. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti

    2014-01-01

    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  7. Computers in Education and Education in Computer Science

    Directory of Open Access Journals (Sweden)

    José Luis SIERRA-RODRÍGUEZ

    2015-12-01

    Full Text Available Selection of the extended papers related to Computers in Education and Computer Science Education topics presented at the sixteenth edition of the International Symposium on Computers in Education (SIIE 2014, held between 12 and 14 November 2014 in Logroño, La Ri-oja, Spain.

  8. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  9. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  10. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences.

  11. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  12. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated.

  13. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  14. 1987 computer science research: Computation directorate

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, J.R.; Grupe, K.F. (eds.)

    1987-01-01

    The topics of research presented here reflect our view of the broad range of issues we need to address in support of our computing environment. Large-scale Scientific Computations represents one of our newest ventures. The goal is to more closely link expertise in the problem domains (e.g., fluid dynamics) with expertise in sophisticated numerical methods, thus allowing for a broader range of solution strategies to get better answers. Parallel Numerical Algorithms focuses more tightly on the development and analysis of numerical techniques for use in parallel computing situations. Issues here include the solution of extremely large partial differential equations, matrix solution techniques, and Monte Carlo programming techniques. In the area of General Numerical Algorithms we recognize the need for a significant amount of research on numerics without the additional complexity of parallelism. This area includes work on partial differential equations, ordinary differential equations, interpolation, and a variety of statistical analysis. Parallel Systems Software addresses issues related to going from a parallel algorithm to its correct and efficient implementation on a particular system. Distributed Operating Systems and Networks describes our efforts to provide a very flexible environment for users to access a diverse set of machines and services in an efficient and simple manner. Expert Systems Software covers another relatively new and expanding area. We are looking at various ways that knowledge engineering ideas can reduce development time for writing new code systems and improve our control over experimental processes. In the section on General Purpose Software we include several projects that span a wide range of topics. The last section, Technology Information Systems, reports the status of a special effort to provide sophisticated methods for allowing users to access remote information centers.

  15. Should there be greater use of preprint servers for publishing reports of biomedical science?

    Science.gov (United States)

    Chalmers, Iain; Glasziou, Paul

    2016-01-01

    Vitek Tracz and Rebecca Lawrence declare the current journal publishing system to be broken beyond repair. They propose that it should be replaced by immediate publication followed by transparent peer review as the starting place for more open and efficient reporting of science. While supporting this general objective, we suggest that research is needed both to understand why biomedical scientists have been slow to take up preprint options, as well as to assess the relative merits of this and other alternatives to journal publishing.

  16. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  17. Recent developments in fluorescence-based microscopy applied in biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present short review aims to give an overview of the most recent de velopments in fluorescence microscopy and its applications in biomedical science s. Apart from improvements in well-established methods based on conventional fl u orescence microscopy and confocal microscopy (fluorescence in situ hybridisa tion (FISH), tyramide signal amplification (TSA) in immunocytochemistry, new fluorop hores), more recently introduced techniques like fluorescence resonance energy t ransfer (FRET), fluorescence recovery after photobleaching (FRAP), multiphoton m icroscopy and fluorescence correlation spectroscopy (FCS) will be discussed.

  18. Mechanistic Models in Computational Social Science

    CERN Document Server

    Holme, Petter

    2015-01-01

    Quantitative social science is not only about regression analysis or, in general, data inference. Computer simulations of social mechanisms have an over 60 years long history. They have been used for many different purposes -- to test scenarios, to test the consistency of descriptive theories (proof-of-concept models), to explore emerging phenomena, for forecasting, etc. In this essay, we sketch these historical developments, the role of mechanistic models in the social sciences and the influences from natural and formal sciences. We argue that mechanistic computational models form a natural common ground for social and natural sciences, and look forward to possible future information flow across the social-natural divide.

  19. Cloud computing with e-science applications

    CERN Document Server

    Terzo, Olivier

    2015-01-01

    The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific

  20. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  1. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  2. Predicting Transition and Adjustment to College: Biomedical and Behavioral Science Aspirants' and Minority Students' First Year of College

    Science.gov (United States)

    Hurtado, Sylvia; Han, June C.; Saenz, Victor B.; Espinosa, Lorelle L.; Cabrera, Nolan L.; Cerna, Oscar S.

    2007-01-01

    The purpose of this study is to explore key factors that impact the college transition of aspiring underrepresented minority students in the biomedical and behavioral sciences, in comparison with White, Asian students and non-science minority students. We examined successful management of the academic environment and sense of belonging during the…

  3. Physics and computer science: quantum computation and other approaches

    OpenAIRE

    Salvador E. Venegas-Andraca

    2011-01-01

    This is a position paper written as an introduction to the special volume on quantum algorithms I edited for the journal Mathematical Structures in Computer Science (Volume 20 - Special Issue 06 (Quantum Algorithms), 2010).

  4. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  5. Should MD-PhD Programs Encourage Graduate Training in Disciplines Beyond Conventional Biomedical or Clinical Sciences?

    OpenAIRE

    O'Mara, Ryan J.; Hsu, Stephen I.; Wilson, Daniel R.

    2015-01-01

    The goal of MD–PhD training programs is to produce physician–scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician–scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD–PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This quest...

  6. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears". PMID:20841902

  7. Effective use of Latent Semantic Indexing and Computational Linguistics in Biological and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hongyu eChen

    2013-01-01

    Full Text Available Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI, a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  8. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications.

    Science.gov (United States)

    Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M; Maudsley, Stuart

    2013-01-01

    Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  9. Computing semantic similarity between biomedical concepts using new information content approach.

    Science.gov (United States)

    Ben Aouicha, Mohamed; Hadj Taieb, Mohamed Ali

    2016-02-01

    The exploitation of heterogeneous clinical sources and healthcare records is fundamental in clinical and translational research. The determination of semantic similarity between word pairs is an important component of text understanding that enables the processing and structuring of textual resources. Some of these measures have been adapted to the biomedical field by incorporating domain information extracted from clinical data or from medical ontologies such as MeSH. This study focuses on Information Content (IC) based measures that exploit the topological parameters of the taxonomy to express the semantics of a concept. A new intrinsic IC computing method based on the taxonomical parameters of the ancestors' subgraph is then assigned to a biomedical concept into the "is a" hierarchy. Moreover, we present a study of the topological parameters through the MeSH taxonomy. This study treats the semantic interpretation and the different ways of expressing the parameters of depth and the descendants' subgraph. Using MeSH as an input ontology, the accuracy of our proposal is evaluated and compared against other IC-based measures according to several widely-used benchmarks of biomedical terms. The correlation between the results obtained for the evaluated measure using the proposed approach and those from the ratings of human' experts shows that our proposal outperforms the previous measures. PMID:26707454

  10. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  11. Computational Science: Ensuring America`s Competitiveness

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...rationalization and restructuring of computational science within universities and Federal agencies, and the development and maintenance of a multi-decade...

  12. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  13. Duality in Computer Science (Dagstuhl Seminar 13311)

    OpenAIRE

    Gehrke, Mai; Pin, Jean-Eric; Selivanov, Victor; Spreen, Dieter

    2013-01-01

    Duality allows one to move between the two worlds: the world of certain algebras of properties and a spacial world of individuals, thereby leading to a change of perspective that may, and often does, lead to new insights. Dualities have given rise to active research in a number of areas of theoretical computer science. Dagstuhl Seminar 13311 "Duality in Computer Science" was held to stimulate research in this area. This report collects the ideas that were presented and discussed during th...

  14. Computational Thinking in Life Science Education

    OpenAIRE

    Rubinstein, Amir; Chor, Benny

    2014-01-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational “culture.” The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and...

  15. Computational thinking in life science education.

    OpenAIRE

    Amir Rubinstein; Benny Chor

    2014-01-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and...

  16. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  17. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  18. Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr

    2010-03-24

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.

  19. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS.

    Science.gov (United States)

    Jiao, Xiangmin; Einstein, Daniel R; Dyedov, Vladimir

    2010-03-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.

  20. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  1. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  2. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Document Server

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  3. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  4. Teaching Computer Science through Problems, Not Solutions

    Science.gov (United States)

    Fee, Samuel B.; Holland-Minkley, Amanda M.

    2010-01-01

    Regardless of the course topic, every instructor in a computing field endeavors to engage their students in deep problem-solving and critical thinking. One of the specific learning outcomes throughout our computer science curriculum is the development of independent, capable problem solving--and we believe good pedagogy can bring such about. Our…

  5. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  6. The Case for Multidisciplinary Computer Science

    OpenAIRE

    Burge, Jamika

    2015-01-01

    Multidisciplinary computer science approaches problem solving from a range of disciplines. Arguably, some of today’s most salient areas of technical research – social computing, data analytics (“big data”), and cyber security – are multidisciplinary in nature. Moreover, multidisciplinary computing has the unique quality of empowering technology users in ways that did not exist just ten years ago (think Google Glass and quantified self applications). In this talk, I share a series of research ...

  7. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  8. College Student Notions of Computer Science

    Science.gov (United States)

    Ruslanov, Anatole D.; Yolevich, Andrew P.

    2011-08-01

    Two surveys of college students were conducted to study the students' perceptions and knowledge of computer science as a profession and as a career. Ignorance of the field was consistently observed in both samples. Students with an aptitude for computing tend to blame their high schools, media, and society for their lack of knowledge. These findings suggest that high school students need to be provided with a more balanced perspective on computing.

  9. Fundamentals: IVC and computer science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    2013-01-01

    The working group on “Fundamentals: IVC and Computer Science” discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  10. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  11. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  12. Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli

    2015-04-01

    The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise.

  13. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-03-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs.Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA.Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself.Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes.Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  14. Fundamentals: IVC and computer science

    OpenAIRE

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F; Hartenstein, H.; Tonguz, O.K.

    2013-01-01

    The working group on “Fundamentals: IVC and Computer Science” discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly the focus on IEEE 802.11p in the last decade) and the struggling with bringing self-organizing networks to deployment/market. The team started with a retrospective view and identified the following...

  15. Plagiarism in computer science courses

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.K. [Francis Marion Univ., Florence, SC (United States)

    1994-12-31

    Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.

  16. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  17. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252Cf sources. Three projects at the CUF that demonstrate the versatility of 252Cf for biological and biomedical neutron-based research are described: future establishment of a 252Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  18. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  19. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  20. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  1. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  2. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  3. Adventurism in biomedical science: Washington University-Monsanto program in biotechnology.

    Science.gov (United States)

    Gordon, J I

    1992-01-01

    The Washington University-Monsanto relationship has supported innovation in the biological sciences. It has done so in part by making the fence between an industrial and an academic institution more transparent and more easy to cross. A unique means of promoting intellectual adventurism may be lost, however, if this type of relationship is not structured to maximize the likelihood of obtaining products or if products are the only financial benefit that the industrial partner can derive from such interactions (for example other benefits could include governmental R&D tax credits for those relationships that satisfy some minimal criteria for size and/or length of commitment). I hope that this and other forms of industrial-university relationships that encourage discovery by providing institutional support for new ideas will flourish. Whatever their fate, the responsibility for promoting dreams must be shared by all of us: by those who are privileged to have students in their labs, by academic institutions as they seek to define their roles in the next century, by peer review boards, by national science policymakers, and perhaps by industry. I have presented the Washington University-Monsanto collaboration not as a complete answer to the question of how to promote intellectual adventurism in the biomedical sciences but rather as a concrete response to a problem that must be clearly articulated, thoroughly examined, and creatively addressed.

  4. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  5. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  6. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  7. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Brand, T.L. van den; Hopman, M.T.E.

    2013-01-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade <6), moderate (grade 6-8) and excellen

  8. Computers, health care, and medical information science.

    Science.gov (United States)

    Lincoln, T L; Korpman, R A

    1980-10-17

    The clinical laboratory is examined as a microcosm of the entire health care delivery system. The introduction of computers into the clinical laboratory raises issues that are difficult to resolve by the methods of information science or medical science applied in isolation. The melding of these two disciplines, together with the contributions of other disciplines, has created a new field of study called medical information science. The emergence of this new discipline and some specific problem-solving approaches used in its application in the clinical laboratory are examined.

  9. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  10. AQA GCSE computer science student's book

    CERN Document Server

    Cushing, Steve

    2013-01-01

    Written by a subject expert and experienced author, AQA GCSE Computer Science Student's Book guide you through the differently assessed elements of the specification and covers Component 1: Practical Programming (controlled assessment) and Component 2: Computing Fundamental s (examined component). - Provides strategies for teachers and students for tackling the practical elements of the course. - Supports students in understanding the theoretical aspects of the course and developing key skills. - Covers the key aspects of designing a solution, solution development, programming techniques, and

  11. MDE in Practice for Computational Science

    OpenAIRE

    Bruel, Jean-Michel; Combemale, Benoit; Ober, Ileana; Raynal, Hélène

    2015-01-01

    International audience The complex problems that computational science addresses are more and more benefiting from the progress of computing facilities (simulators, librairies, accessible languages,. . .). Nevertheless , the actual solutions call for several improvements. Among those, we address in this paper the needs for leveraging on knowledge and expertise by focusing on Domain-Specific Mod-eling Languages application. In this vision paper we illustrate, through concrete experiments, h...

  12. Democratizing Children's Computation: Learning Computational Science as Aesthetic Experience

    Science.gov (United States)

    Farris, Amy Voss; Sengupta, Pratim

    2016-01-01

    In this essay, Amy Voss Farris and Pratim Sengupta argue that a democratic approach to children's computing education in a science class must focus on the "aesthetics" of children's experience. In "Democracy and Education," Dewey links "democracy" with a distinctive understanding of "experience." For Dewey,…

  13. My revision notes AQA GCSE computer science computing fundamentals

    CERN Document Server

    Cushing, Steve

    2013-01-01

    Unlock your full potential with this revision guide which focuses on the key content and skills you need to know. With My Revision Notes for AQA GCSE Computer Science, which perfectly matches the latest examined elements of the course, you can:. - Take control of your revision: plan and focus on the areas you need to revise, with advice, summaries and notes from author Steve Cushing. - Show you fully understand key topics by using specific strategies and theories to add depth to your knowledge of programming and computing issues and processes. - Apply programming and computing terms accurately

  14. What Has Literature to Offer Computer Science?

    Directory of Open Access Journals (Sweden)

    Mark Dougherty

    2004-04-01

    Full Text Available In this paper I ask the question: what has literature to offer computer science? Can a bilateral programme of research be started with the aim of discovering the same kind of deep intertwining of ideas between computer science and literature, as already exists between computer science and linguistics? What practical use could such results yield? I begin by studying a classic forum for some of the most unintelligible pieces of prose ever written, the computer manual. Why are these books so hard to understand? Could a richer diet of metaphor and onomatopoeia help me get my laser printer working? I then dig down a little deeper and explore computer programs themselves as literature. Do they exhibit aesthetics, emotion and all the other multifarious aspects of true literature? If so, does this support their purpose and understandability? Finally I explore the link between computer code and the human writer. Rather than write large amounts of code directly, we encourage students to write algorithms as pseudo-code as a first step. Pseudo-code tells a story within a semi-formalised framework of conventions. Is this the intertwining we should be looking for?

  15. Computer science approach to quantum control

    Energy Technology Data Exchange (ETDEWEB)

    Janzing, D.

    2006-07-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  16. Democratizing Children's Computation: Learning Computational Science as Aesthetic Experience

    CERN Document Server

    Farris, Amy

    2015-01-01

    In this paper, we argue that a democratic approach to children's computing education in a science class must focus on the aesthetics of children's experience. In Democracy and Education, Dewey links "democracy" with a distinctive understanding of "experience". For Dewey, the value of educational experiences lies in "the unity or integrity of experience" (DE, 248). In Art as Experience, Dewey presents aesthetic experience as the fundamental form of human experience that undergirds all other forms of experiences, and can also bring together multiple forms of experiences, locating this form of experience in the work of artists. Particularly relevant to our current concern (computational literacy), Dewey calls the process through which a person transforms a material into an expressive medium an aesthetic experience (AE, 68-69). We argue here that the kind of experience that is appropriate for a democratic education in the context of children's computational science is essentially aesthetic in nature. Given that a...

  17. Science Prospects And Benefits with Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Douglas B [ORNL

    2007-12-01

    Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.

  18. Learning Computer Science Concepts with Scratch

    Science.gov (United States)

    Meerbaum-Salant, Orni; Armoni, Michal; Ben-Ari, Mordechai

    2013-01-01

    Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two…

  19. Handbook of mathematics and computational science

    CERN Document Server

    Harris, John W

    1998-01-01

    Handbook of Mathematics and Computational Science Offers mathematics information for everyday use in problem solving, examinations, and homework. This book includes hundreds of tables of frequently used functions, formulae, transformations, and series. It is suitable for working scientists, engineers, and students.

  20. Foundations of computer science : lecture notes

    OpenAIRE

    Escardó, Martín

    2005-01-01

    Lecture given at Foundations of Computer Science, 2nd term In this part of the module are studied data structures and algorithms. The firts module have been treated some data structures (e.g. arrays, lists, stacks, queues) and some algorithms (e.g. linear search and binary search).

  1. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  2. Situated Learning in Computer Science Education

    Science.gov (United States)

    Ben-Ari, Mordechai

    2004-01-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software…

  3. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  4. International Conference on Computational Engineering Science

    CERN Document Server

    Yagawa, G

    1988-01-01

    The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

  5. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  6. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others. PMID:25411839

  7. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  8. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science. PMID:27191836

  9. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science.

  10. Informaticology: combining Computer Science, Data Science, and Fiction Science

    OpenAIRE

    J.A. Bergstra

    2012-01-01

    Motivated by an intention to remedy current complications with Dutch terminology concerning informatics, the term informaticology is positioned to denote an academic counterpart of informatics where informatics is conceived of as a container for a coherent family of practical disciplines ranging from computer engineering and software engineering to network technology, data center management, information technology, and information management in a broad sense. Informaticology escapes from the ...

  11. Computer simulations in the science classroom

    Science.gov (United States)

    Richards, John; Barowy, William; Levin, Dov

    1992-03-01

    In this paper we describe software for science instruction that is based upon a constructivist epistemology of learning. From a constructivist perspective, the process of learning is viewed as an active construction of knowledge, rather than a passive reception of information. The computer has the potential to provide an environment in which students can explore their understanding and better construct scientific knowledge. The Explorer is an interactive environment that integrates animated computer models with analytic capabilities for learning and teaching science. The system include graphs, a spreadsheet, scripting, and interactive tools. During formative evaluation of Explorer in the classroom, we have focused on learning the function and effectiveness of computer models in teaching science. Models have helped students relate theory to experiment when used in conjunction with hands-on activities and when the simulation addressed students' naive understanding of the phenomena. Two classroom examples illustrate our findings. The first is based on the dynamics of colliding objects. The second describes a class modeling the function of simple electric circuits. The simulations bridge between phenomena and theory by providing an abstract representation on which students may make measurements. Simulations based on scientific theory help to provide a set of interrelated experiences that challenge students' informal understanding of the science.

  12. Scientific Visualization and Computational Science: Natural Partners

    Science.gov (United States)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization

  13. Soft Computing in Humanities and Social Sciences

    CERN Document Server

    González, Veronica

    2012-01-01

    The field of Soft Computing in Humanities and Social Sciences is at a turning point. The strong distinction between “science” and “humanities” has been criticized from many fronts and, at the same time, an increasing cooperation between the so-called “hard sciences” and “soft sciences” is taking place in a wide range of scientific projects dealing with very complex and interdisciplinary topics. In the last fifteen years the area of Soft Computing has also experienced a gradual rapprochement to disciplines in the Humanities and Social Sciences, and also in the field of Medicine, Biology and even the Arts, a phenomenon that did not occur much in the previous years.   The collection of this book presents a generous sampling of the new and burgeoning field of Soft Computing in Humanities and Social Sciences, bringing together a wide array of authors and subject matters from different disciplines. Some of the contributors of the book belong to the scientific and technical areas of Soft Computing w...

  14. Applications of Graph Theory in Computer Science

    Directory of Open Access Journals (Sweden)

    U. Sekar

    2013-11-01

    Full Text Available The field of mathematics plays vital role in various fields. One of the important areas in mathematics is graph theory which is used in structural models. This structural arrangements of various objects or technologies lead to new inventions and modifications in the existing environment for enhancement in those fields. The field graph theory started its journey from the problem of Konigsberg Bridge in 1735. This paper gives an overview of the applications of graph theory in heterogeneous fields to some extent but mainly focuses on the computer science applications that uses graph theoretical concepts. Various papers based on graph theory have been studied related to scheduling concepts, computer science applications and an overview has been presented here.Graph theoretical ideas are highly utilized by computer science applications. Especially in research areas of computer science such data mining, image segmentation, clustering, image capturing, networking etc., For example a data structure can be designed in the form of tree which in turn utilized vertices and edges. Similarly modeling of network topologies can be done using graph concepts. In the same way the most important concept of graph coloring is utilized in resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in tremendous applications say traveling salesman problem, database design concepts, resource networking. This leads to the development of new algorithms and new theorems that can be used in tremendous applications. First section gives the historical background of graph theory and some applications in scheduling. Second section emphasizes how graph theory is utilized in various computer applications.

  15. [Computer Science and Telecommunications Board activities

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, M.S.

    1993-02-23

    The board considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. Functions include providing a base of expertise for these fields in NRC, monitoring and promoting health of these fields, initiating studies of these fields as critical resources and sources of national economic strength, responding to requests for advice, and fostering interaction among the technologies and the other pure and applied science and technology. This document describes its major accomplishments, current programs, other sponsored activities, cooperative ventures, and plans and prospects.

  16. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  17. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce. PMID:25354071

  18. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  19. My revision notes Edexcel GCSE computer science

    CERN Document Server

    Cushing, Steve

    2015-01-01

    Unlock your full potential with this revision guide which focuses on the key content and skills you need to know. With My Revision Notes for AQA GCSE Computer Science, which perfectly matches the latest examined elements of the course, you can: - Take control of your revision: plan and focus on the areas you need to revise, with advice, summaries and notes from author Steve Cushing - Show you fully understand key topics by using specific strategies and theories to add depth to your knowledge of programming and computing issues and processes - Apply programming and com

  20. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  1. 06381 Executive Summary -- Computer Science in Sport

    OpenAIRE

    Baca, Arnold

    2006-01-01

    The seminar dealt with a dynamically developing interdisciplinary area, where qualitative and non-deterministic paradigms from Sport like behavioural processes and modelling meet technological and structural paradigms from Computer Science. New demands, new concepts and technologies, and future trends in both disciplines were discussed. Internationally well known researchers as well as researchers from the younger generation participated in this seminar and discussed their recent work an...

  2. What is that Thing Called Computer Science?

    Directory of Open Access Journals (Sweden)

    Nadya Schokosva

    2013-07-01

    Full Text Available XXI century society, called Knowledge Society, has a direct dependency of the software products, considered by many as the most important development of modern technology. This dependence generates the need of scientists and professionals who research and develop products that meet social demands. This article describes the computer science area as one of the most demanded professions in this reality, and in order to make it known to more people.

  3. Digital Library Education in Computer Science Programs

    OpenAIRE

    Pomerantz, Jeffrey P.; Oh, Sanghee; Wildemuth, Barbara M.; Yang, Seungwon; Fox, Edward A

    2007-01-01

    In an effort to identify the "state of the art" in digital library education in computer science (CS) programs, we analyzed CS courses on digital libraries and digital library-related topics. Fifteen courses that mention digital libraries in the title or short description were identified; of these, five are concerned with digital libraries as the primary topic of the course. The readings from these five courses were analyzed further, in terms of their authors and the journals in which they we...

  4. Toward Psychoinformatics: Computer Science Meets Psychology

    OpenAIRE

    Montag, Christian; Duke, Éilish; Markowetz, Alexander

    2016-01-01

    The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting ...

  5. Information Diffusion in Computer Science Citation Networks

    OpenAIRE

    Shi, XiaoLin; Tseng, Belle; Adamic, Lada A.

    2009-01-01

    The paper citation network is a traditional social medium for the exchange of ideas and knowledge. In this paper we view citation networks from the perspective of information diffusion. We study the structural features of the information paths through the citation networks of publications in computer science, and analyze the impact of various citation choices on the subsequent impact of the article. We find that citing recent papers and papers within the same scholarly community garners a sli...

  6. Logic in the curricula of Computer Science

    OpenAIRE

    Margareth Quindeless

    2014-01-01

    The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers a...

  7. Introductory Problem Solving in Computer Science

    OpenAIRE

    Barnes, David J; Fincher, Sally; Thompson, Simon

    1997-01-01

    This paper describes our experiences in devising a lightweight, informal methodology for problem solving in introductory, university level, computer science. We first describe the original context of the experiment and the background to the methodology. We then give the details of the steps of the Problem Solving Cycle - Understanding, Designing, Writing and Reviewing - and the lessons we learned about our teaching from devising the material. We also present practical examples of how it has b...

  8. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  9. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  10. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  11. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  12. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  13. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  14. Reflections about Research in Computer Science regarding the Classification of Sciences and the Scientific Method

    Directory of Open Access Journals (Sweden)

    WAZLAWICK, R. S.

    2010-12-01

    Full Text Available This paper presents some observations about Computer Science and the Scientific Method. Initially, the paper discusses the different aspects of Computer Science regarding the classification of sciences. It is observed that different areas inside Computer Science can be classified as different Sciences. The paper presents the main philosophical schools that define what is understood as the Scientific Method, and their influence on Computer Science. Finally, the paper discusses the distinction between Science and Technology and the degrees of maturity in Computer Science research.

  15. A citation analysis of top research papers of computer science

    OpenAIRE

    Hussain, Akhtar; Swain, Dillip-K.

    2011-01-01

    The study intends to evaluate the top papers of Computer Science as reflected in Science Direct. Moreover, it aims to find out authorship pattern, ranking of authors, ranking of country productivity, ranking of journals, and highly cited papers of Computer Science. The citations data have been collected from the quarterly list of hottest 25 research articles in the subject field of Computer Science from Science Direct database. In the present study, 20 issues of the alert service beginning fr...

  16. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  17. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  18. Education for Computational Science and Engineering

    CERN Document Server

    Grcar, Joseph F

    2011-01-01

    Computational science and engineering (CSE) embodies President Obama's challenge for the future, "ours to win." For decades, CSE has been misunderstood to require massive computers, whereas breakthroughs in CSE have historically been the mathematical programs of computing rather than the machines themselves. Whether scientists and engineers become inventors who make these breakthroughs depends on circumstances and their educations. The USA currently has the largest CSE professorate, but the data suggest this prominence is ephemeral. Just one-third of the universities with very high research activity have formal programs for CSE education, and many smaller countries with strong manufacturing sectors have more CSE educators per capita. Considering the contributions that CSE has made which enable all manner of commercial, consumer, medical, military, and scientific devices and the associated industries, the future appears to be ours to lose.

  19. Computational science: Emerging opportunities and challenges

    Science.gov (United States)

    Hendrickson, Bruce

    2009-07-01

    In the past two decades, computational methods have emerged as an essential component of the scientific and engineering enterprise. A diverse assortment of scientific applications has been simulated and explored via advanced computational techniques. Computer vendors have built enormous parallel machines to support these activities, and the research community has developed new algorithms and codes, and agreed on standards to facilitate ever more ambitious computations. However, this track record of success will be increasingly hard to sustain in coming years. Power limitations constrain processor clock speeds, so further performance improvements will need to come from ever more parallelism. This higher degree of parallelism will require new thinking about algorithms, programming models, and architectural resilience. Simultaneously, cutting edge science increasingly requires more complex simulations with unstructured and adaptive grids, and multi-scale and multi-physics phenomena. These new codes will push existing parallelization strategies to their limits and beyond. Emerging data-rich scientific applications are also in need of high performance computing, but their complex spatial and temporal data access patterns do not perform well on existing machines. These interacting forces will reshape high performance computing in the coming years.

  20. Is ""predictability"" in computational sciences a myth?

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M [Los Alamos National Laboratory

    2011-01-31

    Within the last two decades, Modeling and Simulation (M&S) has become the tool of choice to investigate the behavior of complex phenomena. Successes encountered in 'hard' sciences are prompting interest to apply a similar approach to Computational Social Sciences in support, for example, of national security applications faced by the Intelligence Community (IC). This manuscript attempts to contribute to the debate on the relevance of M&S to IC problems by offering an overview of what it takes to reach 'predictability' in computational sciences. Even though models developed in 'soft' and 'hard' sciences are different, useful analogies can be drawn. The starting point is to view numerical simulations as 'filters' capable to represent information only within specific length, time or energy bandwidths. This simplified view leads to the discussion of resolving versus modeling which motivates the need for sub-scale modeling. The role that modeling assumptions play in 'hiding' our lack-of-knowledge about sub-scale phenomena is explained which leads to discussing uncertainty in simulations. It is argued that the uncertainty caused by resolution and modeling assumptions should be dealt with differently than uncertainty due to randomness or variability. The corollary is that a predictive capability cannot be defined solely as accuracy, or ability of predictions to match the available physical observations. We propose that 'predictability' is the demonstration that predictions from a class of 'equivalent' models are as consistent as possible. Equivalency stems from defining models that share a minimum requirement of accuracy, while being equally robust to the sources of lack-of-knowledge in the problem. Examples in computational physics and engineering are given to illustrate the discussion.

  1. Biomedical, Artificial Intelligence, and DNA Computing Photonics Applications and Web Engineering, Wilga, May 2012

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the fifth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Biomedical, Artificial Intelligence and DNA Computing technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  2. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    Sijde, van der Pieter C.; Doornekamp, B. Gerard

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an in

  3. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  4. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  5. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  6. Empirical Determination of Competence Areas to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  7. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    A. Tirado-Ramos; A. Shiflet

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work pr

  8. Computer Science researchers explore virtualization potential for high-end computing

    OpenAIRE

    Daniilidi, Christina

    2007-01-01

    Dimitrios Nikolopoulos, associate professor of computer science, and Godmar Back, assistant professor of computer science, both at Virginia Tech, have received a National Science Foundation (NSF) - Computer Science Research (CSR) grant of $300,000 for their Virtualization Technologies for Application-Specific Operating Systems (VT ASOS) project.

  9. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  10. Information sources in biomedical science and medical journalism: methodological approaches and assessment.

    Science.gov (United States)

    Miranda, Giovanna F; Vercellesi, Luisa; Bruno, Flavia

    2004-09-01

    Throughout the world the public is showing increasing interest in medical and scientific subjects and journalists largely spread this information, with an important impact on knowledge and health. Clearly, therefore, the relationship between the journalist and his sources is delicate: freedom and independence of information depend on the independence and truthfulness of the sources. The new "precision journalism" holds that scientific methods should be applied to journalism, so authoritative sources are a common need for journalists and scientists. We therefore compared the individual classifications and methods of assessing of sources in biomedical science and medical journalism to try to extrapolate scientific methods of evaluation to journalism. In journalism and science terms used to classify sources of information show some similarities, but their meanings are different. In science primary and secondary classes of information, for instance, refer to the levels of processing, but in journalism to the official nature of the source itself. Scientists and journalists must both always consult as many sources as possible and check their authoritativeness, reliability, completeness, up-to-dateness and balance. In journalism, however, there are some important differences and limits: too many sources can sometimes diminish the quality of the information. The sources serve a first filter between the event and the journalist, who is not providing the reader with the fact, but with its projection. Journalists have time constraints and lack the objective criteria for searching, the specific background knowledge, and the expertise to fully assess sources. To assist in understanding the wealth of sources of information in journalism, we have prepared a checklist of items and questions. There are at least four fundamental points that a good journalist, like any scientist, should know: how to find the latest information (the sources), how to assess it (the quality and

  11. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  12. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  13. Computer-Game Construction: A Gender-Neutral Attractor to Computing Science

    Science.gov (United States)

    Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan

    2010-01-01

    Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…

  14. Computer Applications in Health Science Education.

    Science.gov (United States)

    Juanes, Juan A; Ruisoto, Pablo

    2015-09-01

    In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC). PMID:26254251

  15. Computer Applications in Health Science Education.

    Science.gov (United States)

    Juanes, Juan A; Ruisoto, Pablo

    2015-09-01

    In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC).

  16. How to pass National 5 Computing Science

    CERN Document Server

    Frame, Frank; High, Bannerman

    2013-01-01

    Get your best grade with the SQA endorsed guide to National 5 Computing Science. This book contains all the advice and support you need to revise successfully for your National 5 exam. It combines an overview of the course syllabus with advice from a top expert on how to improve exam performance, so you have the best chance of success.; Refresh your knowledge with complete course notes.; Prepare for the exam with top tips and hints on revision technique.; Get your best grade with advice on how to gain those vital extra marks.

  17. Situated Learning in Computer Science Education

    Science.gov (United States)

    Ben-Ari, Mordechai

    2004-06-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software development, but it is not directly applicable to other CS communities, especially those that deal with non-CS application areas. Nevertheless, situated learning can inform CS education by analyzing debates on curriculum and pedagogy within this framework. CS educators should closely examine professional CS communities of practice and design educational activities to model the actual activities of those communities.

  18. Computer science in issues in Baduk

    OpenAIRE

    Ramon, Jan; Struyf, Jan

    2003-01-01

    In this paper we discuss current issues in computer science and its application to Baduk. We present an overview of the current state of the art in a number of baduk-related domains and applications. Next, we present some suggestions for improvement. In particular we discuss Internet go, including the distribution of baduk information on the net and servers such as Dashn and KGS, training software such as Life and Death, Junsuk(joseki) and related tools and playing programs. We discuss these ...

  19. Review of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine" by Edward H. Shortliffe and James J. Cimino

    OpenAIRE

    Clifford Gari D

    2006-01-01

    Abstract This article is an invited review of the third edition of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine", one of thirty-six volumes in Springer's 'Health Informatics Series', edited by E. Shortliffe and J. Cimino. This book spans most of the current methods and issues in health informatics, ranging through subjects as varied as data acquisition and storage, standards, natural language processing, imaging, electronic health records, decision support, te...

  20. Computer and Information Sciences III : 27th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo

    2013-01-01

    Information technology is the enabling foundation science and technology for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 27th International Symposium on Computer and Information Systems, held at the Institut Henri Poincare' in Paris on October 3 and 4, 2012. Computer and Information Sciences III: 27th International Symposium on Computer and Information Sciences contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams ...

  1. The University of Wisconsin Women and Science Project: Is Computer Science Different from Other Sciences?

    Science.gov (United States)

    Bernstein, Danielle

    1997-01-01

    Discusses the University of Wisconsin's Women and Science program which is a four-year program aimed at addressing the underrepresentation of women and minorities in mathematics, science, and engineering. Discusses extra challenges in computing, encourages faculty to share concerns with students, and offers some solutions that can be applied in…

  2. Computer and Information Sciences II : 26th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo; Sakellari, Georgia

    2012-01-01

    Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.

  3. The Computer Science Journal of Moldova (ISSN 1561-4042

    Directory of Open Access Journals (Sweden)

    Editorial Board of CSJM

    2008-11-01

    Full Text Available The Computer Science Journal of Moldova (CSJM is being published since 1993. It is a peer-reviewed international journal. The Advisory Board consists from 19 world recognized researchers. The editorial board is formed from moldavian researchers. The Computer Science Journal of Moldova (CSJMol is issued three times a year by the Institute of Mathematics and Computer Science of the Academy of Sciences of Moldova.

  4. The quantum computer game: citizen science

    Science.gov (United States)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  5. Computer Science and Telecommunications Board summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, M.S.

    1992-03-27

    The Computer Science and Telecommunications Board (CSTB) considers technical and policy issues pertaining to computer science, telecommunications, and associated technologies. CSTB actively disseminates the results of its completed projects to those in a position to help implement their recommendations or otherwise use their insights. It provides a forum for the exchange of information on computer science, computing technology, and telecommunications. This report discusses the major accomplishments of CSTB.

  6. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  7. Democratizing Computer Science Knowledge: Transforming the Face of Computer Science through Public High School Education

    Science.gov (United States)

    Ryoo, Jean J.; Margolis, Jane; Lee, Clifford H.; Sandoval, Cueponcaxochitl D. M.; Goode, Joanna

    2013-01-01

    Despite the fact that computer science (CS) is the driver of technological innovations across all disciplines and aspects of our lives, including participatory media, high school CS too commonly fails to incorporate the perspectives and concerns of low-income students of color. This article describes a partnership program -- Exploring Computer…

  8. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  9. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    Science.gov (United States)

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  10. Defining Computational Thinking for Mathematics and Science Classrooms

    Science.gov (United States)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  11. Identifying Factors Influencing Computer Science Aptitude and Achievement.

    Science.gov (United States)

    Konvalina, John; And Others

    1983-01-01

    Examines the effects of high school performance, high school and university mathematics background, previous computer experience, and age on computer science aptitude and achievement as measured by a computer science aptitude test and final exam respectively. Methodology and analysis of results by stepwise regression are presented. (EAO)

  12. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  13. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  14. Increasing Diversity in Computer Science: Acknowledging, yet Moving Beyond, Gender

    Science.gov (United States)

    Larsen, Elizabeth A.; Stubbs, Margaret L.

    Lack of diversity within the computer science field has, thus far, been examined most fully through the lens of gender. This article is based on a follow-on to Margolis and Fisher's (2002) study and includes interviews with 33 Carnegie Mellon University students from the undergraduate senior class of 2002 in the School of Computer Science. We found evidence of similarities among the perceptions of these women and men on definitions of computer science, explanations for the notoriously low proportion of women in the field, characterizations of a typical computer science student, impressions of recent curricular changes, a sense of the atmosphere/culture in the program, views of the Women@SCS campus organization, and suggestions for attracting and retaining well-rounded students in computer science. We conclude that efforts to increase diversity in the computer science field will benefit from a more broad-based approach that considers, but is not limited to, notions of gender difference.

  15. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    Science.gov (United States)

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  16. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  17. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  18. Analysis of activities for learning computer science unplugged

    OpenAIRE

    Zaviršek, Manca

    2013-01-01

    In following thesis I delve into activities for learning computer science unplugged available at Vidra website. Some activities are analyzed on the basis of learning objectives of Slovenian primary school curriculum for computer science and ACM K-12 Computer Science Curriculum. The main objective of this thesis is to estimate how much the activities match both curriculums. Within the thesis I analyze the goals of those activities in correlation to revised Bloom's taxonomy. By means...

  19. Comparisons Between Swedish and Chinese Students in Computer Science

    OpenAIRE

    Huang, Xuewen

    2009-01-01

    This thesis presents some results concerning similarities and differences between Chinese and Swedish Computer Science students in how they view their studies. The results are drawn from interviews with both Chinese and Swedish students studying Computer Science at Uppsala University, as well as from literature surveys. Of interest have been to study the impact of cultural and educational background, Eastern or Western countries, on their attitudes towards their Computer Science studies. The ...

  20. Computer simulation in nuclear science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke (Tokyo Univ. (Japan)); Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi

    1992-03-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.).

  1. Developing a competence-based core curriculum in biomedical laboratory science: a Delphi study.

    Science.gov (United States)

    Edgren, Gudrun

    2006-08-01

    In this study the Delphi technique has been used to develop a core curriculum for education of the biomedical scientist. The rapid development in biomedicine and the corresponding changes in methodology in biomedical laboratories demand careful planning of the education of biomedical scientists. The Delphi technique uses an anonymous panel of experts for suggestions and assessments aiming at consensus. Twenty-six experts from different kinds of hospital and university laboratories took part in the investigation. They suggested and assessed necessary competences for a recently graduated biomedical scientist, and if 75% or more of the participants agreed on a competence, it was included in the core curriculum. The final list consisted of 66 competences of varying depth, in three categories. This list contained several generic competences, concerning for example basic laboratory methods, handling of samples, dealing with apparatus and applying relevant rules and laws; basic knowledge in chemistry, preclinical medicine and laboratory methods; and finally attitudes that the panel expected in the recently graduated person. The core was sufficiently restricted to be used in a three-year programme and still leave space for about one year of electives/special study modules. It became rather traditional, e.g. it did not include competences that many recent reports consider important for the future professional. PMID:16973452

  2. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  3. 5th Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2016-01-01

    This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.

  4. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  5. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  6. Defining Computational Thinking for Mathematics and Science Classrooms

    Science.gov (United States)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  7. Hyped biomedical science or uncritical reporting? Press coverage of genomics (1992-2001) in Québec.

    Science.gov (United States)

    Racine, Eric; Gareau, Isabelle; Doucet, Hubert; Laudy, Danielle; Jobin, Guy; Schraedley-Desmond, Pamela

    2006-03-01

    Genomics integrates the promises and perils of modern biomedical science. Canada and the province of Québec embarked late but aggressively in genomics research based on the 'discourse of promise' in which genomics is embedded. This did not prevent the emergence of a 'discourse of concerns', and debates on the wider meaning of genomics and on the risks related to genomics applications such as gene therapy and gene testing. Given this context, this study aims to understand the evolution of genomics press coverage from the early days up to the publication of the draft sequence of the human genome. Accordingly, we performed a press content analysis on 749 articles reporting genomics research in Québec from 1992 to 2001. We focused on coverage of benefits and ethical issues, tone, and differences in reporting practices between press agencies and journalists. Results show an increasing number of articles, a general decline in the proportion of articles featuring ethical issues, an increased focus on the economy, and greater optimism from 1992 to 2001. In comparison to articles written by journalists, articles signed by press agencies are more optimistic and less often feature ethical issues. Results are discussed following two non-exclusive interpretations: (1) the successes of genomics and its institutionalization in Québec and Canada brought hype and greater social acceptance, and (2) uncritical reporting practices have emerged under pressures for expedient and consumable writing. We are left with two concerns: given worldwide media concentration movements, what are the challenges for the dissemination of diversified and critical information in print media? And, given limited coverage of ethical issues, and concerns about bioethics being too narrowly focused, should public debates on frontier biomedical science be promoted to broaden the scope of biomedical ethics? PMID:16174544

  8. Development of Computer Science Disciplines - A Social Network Analysis Approach

    CERN Document Server

    Pham, Manh Cuong; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and workshop proceedings. That results in an imprecise and incomplete analysis of the computer science knowledge. This paper presents an analysis on the computer science knowledge network constructed from all types of publications, aiming at providing a complete view of computer science research. Based on the combination of two important digital libraries (DBLP and CiteSeerX), we study the knowledge network created at journal/conference level using citation linkage, to identify the development of sub-disciplines. We investiga...

  9. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Science.gov (United States)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo

    2011-12-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  10. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  11. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  12. Exploring Theoretical Computer Science Using Paper Toys (for kids)

    DEFF Research Database (Denmark)

    Valente, Andrea

    2004-01-01

    In this paper we propose the structure of an exploratory course in theoretical computer science intended for a broad range of students (and especially kids). The course is built on computational cards, a simple paper toy, in which playing cards are computational elements; computing machines can...

  13. Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science

    Science.gov (United States)

    Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.

    2016-01-01

    Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…

  14. 76 FR 20051 - Advisory Committee for Computer and Information; Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-04-11

    ... Advisory Committee for Computer and Information; Science and Engineering; Notice of Meeting In accordance... announces the following meeting: ] Name: Advisory Committee for Computer and Information Science and..., Directorate for Computer and Information, Science and Engineering, National Science Foundation, 4201...

  15. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    Energy Technology Data Exchange (ETDEWEB)

    Alchorn, A L

    2003-04-04

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of the LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do

  16. Pedagogy for the Connected Science Classroom: Computer Supported Collaborative Science and the Next Generation Science Standards

    Science.gov (United States)

    Foley, Brian J.; Reveles, John M.

    2014-01-01

    The prevalence of computers in the classroom is compelling teachers to develop new instructional skills. This paper provides a theoretical perspective on an innovative pedagogical approach to science teaching that takes advantage of technology to create a connected classroom. In the connected classroom, students collaborate and share ideas in…

  17. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  18. Toward Psychoinformatics: Computer Science Meets Psychology.

    Science.gov (United States)

    Montag, Christian; Duke, Éilish; Markowetz, Alexander

    2016-01-01

    The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting "Big Data" sets, because classic psychological methods will only in part be able to analyze this data derived from ubiquitous mobile devices, as well as other everyday technologies. As a consequence, psychologists must enrich their scientific methods through the inclusion of methods from informatics. The paper provides a brief review of one area of this research field, dealing mainly with social networks and smartphones. Moreover, we highlight how data derived from Psychoinformatics can be combined in a meaningful way with data from human neuroscience. We close the paper with some observations of areas for future research and problems that require consideration within this new discipline.

  19. Summer 1994 Computational Science Workshop. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report documents the work performed by the University of New Mexico Principal Investigators and Research Assistants while hosting the highly successful Summer 1994 Computational Sciences Workshop in Albuquerque on August 6--11, 1994. Included in this report is a final budget for the workshop, along with a summary of the participants` evaluation of the workshop. The workshop proceeding have been delivered under separate cover. In order to assist in the organization of future workshops, we have also included in this report detailed documentation of the pre- and post-workshop activities associated with this contract. Specifically, we have included a section that documents the advertising performed, along with the manner in which applications were handled. A complete list of the workshop participants in this section. Sample letters that were generated while dealing with various commercial entities and departments at the University are also included in a section dealing with workshop logistics. Finally, we have included a section in this report that deals with suggestions for future workshops.

  20. Toward Psychoinformatics: Computer Science Meets Psychology

    Science.gov (United States)

    Duke, Éilish; Markowetz, Alexander

    2016-01-01

    The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting “Big Data” sets, because classic psychological methods will only in part be able to analyze this data derived from ubiquitous mobile devices, as well as other everyday technologies. As a consequence, psychologists must enrich their scientific methods through the inclusion of methods from informatics. The paper provides a brief review of one area of this research field, dealing mainly with social networks and smartphones. Moreover, we highlight how data derived from Psychoinformatics can be combined in a meaningful way with data from human neuroscience. We close the paper with some observations of areas for future research and problems that require consideration within this new discipline. PMID:27403204

  1. Logic in the curricula of Computer Science

    Directory of Open Access Journals (Sweden)

    Margareth Quindeless

    2014-12-01

    Full Text Available The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers analyze the behavior of the program during the designed, the depuration, and testing; hardware designers perform minimization and equivalence verification of circuits; designers of operating systems validate routing protocols, programing, and synchronization; and formal logic underlying all these activities. Therefore, a strong background in applied logic would help students to develop or potentiate their ability to reason about complex systems. Unfortunately, few curricula formed and properly trained in logic. Most includes only one or two courses of Discrete Mathematics, which in a few weeks covered truth tables and the propositional calculus, and nothing more. This is not enough, and higher level courses in which they are applied and many other logical concepts are needed. In addition, students will not see the importance of logic in their careers and need to modify the curriculum committees or adapt the curriculum to reverse this situation.

  2. Faculty Perceptions of Teaching in Undergraduate Computer Science Education

    Science.gov (United States)

    Abdelzaher, Ann M.

    2009-01-01

    The purpose of this dissertation is to examine the attitudes of computer science faculty members towards undergraduate teaching. The questions addressed in this study are: (1) How important is effective teaching to computer science faculty members at the undergraduate level and how important do they perceive effective teaching to be to their…

  3. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  4. Computer Science and the Liberal Arts: A Philosophical Examination

    Science.gov (United States)

    Walker, Henry M.; Kelemen, Charles

    2010-01-01

    This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…

  5. Assessment of Examinations in Computer Science Doctoral Education

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  6. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  7. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    Science.gov (United States)

    Fraser, Robert

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…

  8. "Computer Science Can Feed a Lot of Dreams"

    Science.gov (United States)

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  9. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  10. Computer Science Contests for Secondary School Students: Approaches to Classification

    Directory of Open Access Journals (Sweden)

    Wolfgang POHL

    2006-04-01

    Full Text Available The International Olympiad in Informatics currently provides a model which is imitated by the majority of contests for secondary school students in Informatics or Computer Science. However, the IOI model can be criticized, and alternative contest models exist. To support the discussion about contests in Computer Science, several dimensions for characterizing and classifying contests are suggested.

  11. Predicting Computer Science Ph.D. Completion: A Case Study

    Science.gov (United States)

    Cox, G. W.; Hughes, W. E., Jr.; Etzkorn, L. H.; Weisskopf, M. E.

    2009-01-01

    This paper presents the results of an analysis of indicators that can be used to predict whether a student will succeed in a Computer Science Ph.D. program. The analysis was conducted by studying the records of 75 students who have been in the Computer Science Ph.D. program of the University of Alabama in Huntsville. Seventy-seven variables were…

  12. What Do Computer Science Students Think about Software Piracy?

    Science.gov (United States)

    Konstantakis, Nikos I.; Palaigeorgiou, George E.; Siozos, Panos D.; Tsoukalas, Ioannis A.

    2010-01-01

    Today, software piracy is an issue of global importance. Computer science students are the future information and communication technologies professionals and it is important to study the way they approach this issue. In this article, we attempt to study attitudes, behaviours and the corresponding reasoning of computer science students in Greece…

  13. Exploring Computer Science Concepts with a Ready-made Computer Game Framework

    OpenAIRE

    Distasio, Joseph; Way, Thomas P.

    2006-01-01

    Leveraging the prevailing interest in computer games among college students, both for entertainment and as a possible career path, is a major reason for the increasing prevalence of computer game design courses in computer science curricula. Because implementing a computer game requires strong programming skills, game design courses are most often restricted to more advanced computer science students. This paper reports on a ready-made game design and experimentation framework, implemented in...

  14. History in the Computer Science Curriculum

    OpenAIRE

    1995-01-01

    IFIP Working Group 9.7 (History of Computing) is charged with not only encouraging the preservation of computer artifacts, the recording of the memoirs of pioneers, and the analysis of the downstream impact of computer innovations, but also on the development of educational modules on the history of computing. This paper presents an initial report on the study of the history of computing and informatics and preliminary proposals for the inclusion of aspects of the history of computing and i...

  15. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  16. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  17. 11th International Conference on Computer and Information Science

    CERN Document Server

    Computer and Information 2012

    2012-01-01

    The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Critical to both contributors and readers are the short publication time and world-wide distribution - this permits a rapid and broad dissemination of research results.   The purpose of the 11th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2012...

  18. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  19. Logic functions and equations binary models for computer science

    CERN Document Server

    Posthoff, Christian

    2004-01-01

    Logic functions and equations are (some of) the most important concepts of Computer Science with many applications such as Binary Arithmetics, Coding, Complexity, Logic Design, Programming, Computer Architecture and Artificial Intelligence. They are very often studied in a minimum way prior to or together with their respective applications. Based on our long-time teaching experience, a comprehensive presentation of these concepts is given, especially emphasising a thorough understanding as well as numerical and computer-based solution methods. Any applications and examples from all the respective areas are given that can be dealt with in a unified way. They offer a broad understanding of the recent developments in Computer Science and are directly applicable in professional life. Logic Functions and Equations is highly recommended for a one- or two-semester course in many Computer Science or computer Science-oriented programmes. It allows students an easy high-level access to these methods and enables sophist...

  20. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  1. The Biomedical Humanities program: merging humanities and science in a premedical curriculum at Hiram College.

    Science.gov (United States)

    Fried, Colleen; Madar, Sandra; Donley, Carol

    2003-10-01

    The Biomedical Humanities program at Hiram College, established in 1999, engages premedical and other qualified students in ethical and informed decision making, improves their ability to interact with persons of different backgrounds and cultures, provides them an active introduction to basic medical research and clinical practice, and coaches them in communicating across barriers, appreciating that scientists and humanists typically learn and work differently. The program offers both a major and a minor in biomedical humanities topics. The major requires the core biology and chemistry curriculum necessary for further studies in medicine as well as courses in genetics and statistics. The remainder of the major is devoted to four core areas: Communications, Relationships and Cultural Sensitivity, Ethics and Medical Humanities, and a nonacademic core area, Experiential Learning. Many of the ethics and medical humanities options are team-taught interdisciplinary courses. The Experiential Learning area requires students to take two special topics seminars, two service seminars, and two internships-one shadowing a professional in his or her area of interest and one engaging in basic biomedical research. The shadowing internship and service seminars focus not only on career exploration, but also on human interactions. Students reflect on the personal interactions they observe during their various experiences, and on their own strengths and weaknesses. Essays, designed to help students learn more about their roles in these settings, push them to deal with the sociopolitical issues involved in their service. The major, a robust and vital component of Hiram's undergraduate program, has attracted academically gifted students with a diverse array of career goals. PMID:14534095

  2. MENTAL SHIFT TOWARDS SYSTEMS THINKING SKILLS IN COMPUTER SCIENCE

    OpenAIRE

    Mildeová, Stanislava; Dalihod, Martin; EXNAROVA, Anna

    2012-01-01

    When seeking solutions to current problems in the field of computer science – and other fields – we encounter situations where traditional approaches no longer bring the desired results. Our cognitive skills also limit the implementation of reliable mental simulation within the basic set of relations. The world around us is becoming more complex and mutually interdependent, and this is reflected in the demands on computer support. Thus, in today’s education and science in the field of compute...

  3. Writing and Publishing Scientific Articles in Computer Science

    OpenAIRE

    Brandão, Wladmir Cardoso

    2015-01-01

    Over 15 years of teaching, advising students and coordinating scientific research activities and projects in computer science, we have observed the difficulties of students to write scientific papers to present the results of their research practices. In addition, they repeatedly have doubts about the publishing process. In this article we propose a conceptual framework to support the writing and publishing of scientific papers in computer science, providing a kind of guide for computer scien...

  4. A Theoretical Paradigm of Information Retrieval in Information Science and Computer Science

    OpenAIRE

    M. S. Saleem Basha; Shailesh Pancham Khapre

    2012-01-01

    This paper describes the theoretical paradigms of information retrieval in information science and computer science, and constructs the theory framework of information retrieval from three perspectives that are user, information and technology. It evaluates the research priorities of the two disciplines and cross-domain of information retrieval theory. Finally, it points-out the theory status and development trend of information retrieval in information science and computer science, and provi...

  5. A Theoretical Paradigm of Information Retrieval in Information Science and Computer Science

    Directory of Open Access Journals (Sweden)

    M. S. Saleem Basha

    2012-09-01

    Full Text Available This paper describes the theoretical paradigms of information retrieval in information science and computer science, and constructs the theory framework of information retrieval from three perspectives that are user, information and technology. It evaluates the research priorities of the two disciplines and cross-domain of information retrieval theory. Finally, it points-out the theory status and development trend of information retrieval in information science and computer science, and provides exploration direction in information retrieval theory.

  6. Citizen Science practices for Computational Social Sciences research: The conceptualization of Pop-Up Experiments

    OpenAIRE

    Sagarra, Oleguer; Gutiérrez-Roig, Mario; Bonhoure, Isabelle; Perelló, Josep

    2015-01-01

    Under the name of Citizen Science, many innovative practices in which volunteers partner up with scientists to pose and answer real-world questions are growing rapidly worldwide. Citizen Science can furnish ready-made solutions with citizens playing an active role. However, this framework is still far from being well established as a standard tool for computational social science research. Here, we present our experience in bridging gap between computational social science and the philosophy ...

  7. International Careers of Researchers in Biomedical Sciences: A Comparison of the US and the UK.

    OpenAIRE

    Lawson, Cornelia; Geuna, Aldo; Ana Fernández-Zubieta; Toselli, Manuel; Kataishi, Rodrigo

    2015-01-01

    This chapter analyses the mobility of academic biomedical researchers in the US and the UK. Both countries are at the forefront of research in biomedicine, and able to attract promising researchers from other countries as well as fostering mobility between the US and the UK. Using a database of 292 UK based academics and 327 US based academics covering the period 1956 to 2012, the descriptive analysis shows a high level of international mobility at education level (BA, PhD and Postdoc) with s...

  8. Deliberative ethics in a biomedical institution: an example of integration between science and ethics.

    Science.gov (United States)

    Boniolo, G; Di Fiore, P P

    2010-07-01

    The deliberative ethics guidelines elaborated and implemented by members of the IFOM-IEO Campus (Firc Institute of Molecular Oncology (IFOM) and the European Institute of Oncology (IEO)). These should serve the dual purpose of establishing a minimal set of standard rules for bioethical debate and any ensuing decision-making process, especially for the perspective of providing real instruments to foster public engagement and public awareness on the ethical issues involved in biomedical research. It is shown that these guidelines instantiate the scheme of one of the correct ways of debating formalised by the western thought. PMID:20605995

  9. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  10. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  11. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  12. Does HEP still hold challenges for computer science

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberger, L.O. (Amsterdam Univ. (Netherlands). Computer Systems Group)

    1989-12-01

    The characteristics of High Energy Physics (HEP) as well as Computer Science (CS) are changing. In HEP the ever larger scale of exerpimentation results in a dramatic increase in the amount of data that has to be handled. Consequently, computing techniques have to be found to keep the data manageable. Computing science has become more mature, realizing that it has to develop models and techniques applicable to a wide range of problems. Moreover, the interest has shifted to computing problems in everyday life, where emphasis is more on symbolic than numeric computation. It will be illustrated that HEP still offers challenges to CS, but that the nature of collaboration has changed considerably. (orig.).

  13. Graduate Enrollment Increases in Science and Engineering Fields, Especially in Engineering and Computer Sciences. InfoBrief: Science Resources Statistics.

    Science.gov (United States)

    Burrelli, Joan S.

    This brief describes graduate enrollment increases in the science and engineering fields, especially in engineering and computer sciences. Graduate student enrollment is summarized by enrollment status, citizenship, race/ethnicity, and fields. (KHR)

  14. Integrated Science through Computer-aided Experiments

    Directory of Open Access Journals (Sweden)

    Stanislav HOLEC

    2004-10-01

    Full Text Available The paper outlines curriculum development activities that have been done in science education in the Slovak Republic as a result of an international collaboration within the frame of the Leonardo da Vinci II pilot project Computerised Laboratory in Science and Technology Teaching - ``ComLab-SciTech''. The created teaching and learning materials include integration of science curricula in two meanings: an integration of knowledge and methodology of physics, chemistry and biology, as well as an integration of various true and virtual computerised methods of experiments. The materials contain suggestions for student investigative activities, in which life science processes are studied with the use of laboratory models.

  15. The Challenges of Multidisciplinary Education in Computer Science

    Institute of Scientific and Technical Information of China (English)

    Fred S. Roberts

    2011-01-01

    Some of the most important problems facing the United States and China,indeed facing our entire planet,require approaches that are fundamentally multidisciplinary in nature.Many of those require skills in computer science (CS),basic understanding of another discipline,and the ability to apply the skills in one discipline to the problems of another.Modern training in computer science needs to prepare students to work in other disciplines or to work on multidisciplinary problems.What do we do to prepare them for a multidisciplinary world when there are already too many things we want to teach them about computer science? This paper describes successful examples of multidisciplinary education at the interface between CS and the biological sciences,as well as other examples involving CS and security,CS and sustainability,and CS and the social and economic sciences.It then discusses general principles for multidisciplinary education of computer scientists.

  16. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  17. The Learning Effects of Computer Simulations in Science Education

    Science.gov (United States)

    Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.

    2012-01-01

    This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…

  18. Fertile Zones of Cultural Encounter in Computer Science Education

    Science.gov (United States)

    Kolikant, Yifat Ben-David; Ben-Ari, Mordechai

    2008-01-01

    We explain certain learning difficulties in computer science education as resulting from a clash between the students' culture as computer users and the professional computing culture. We propose the concept of fertile zones of cultural encounter as a way of overcoming these learning difficulties. This pedagogical approach aims to bridge the gap…

  19. CDM: Teaching Discrete Mathematics to Computer Science Majors

    Science.gov (United States)

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  20. Explorations in computing an introduction to computer science

    CERN Document Server

    Conery, John S

    2010-01-01

    Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin

  1. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  2. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  3. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  4. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... and Behavioral Sciences- November 16, 2012...... *VA Central Office. B. Neurobiology-A November 16... Crystal City Hotel. Mental Health and Behavioral Sciences- November 20, 2012...... Sheraton Crystal City... Crystal City Hotel. Clinical Application of Genetics..... December 12, 2012...... *VA Central...

  5. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  6. Mie scattering field inside and near a coated sphere: Computation and biomedical applications

    International Nuclear Information System (INIS)

    The Mie field calculation of a coated sphere has significance in photonic and biomedical applications, but roundoff errors are often critical. Such pitfalls can be circumvented by arbitrary precision scheme. The extended Mie theory shows spherically symmetric optical heating in laser–liposome interactions. It also predicts a penetrating standing wave in a silver-coated silica microsphere in water under near-infrared irradiation, where a peculiar pattern in the core field is found. The intensity distribution and the dominant mode analysis may be useful to characterize microshells for the near-field applications in nonlinear optics and signal sensitization. -- Highlights: ► Roundoff errors are circumvented by arbitrary precision scheme. ► The theory shows spherically symmetric optical heating in the liposome. ► The intensity distribution is useful for near-field applications

  7. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, T.M.; Richardson, L.L.; Reynolds, T.L.; Willis, B.L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  8. Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

    CERN Document Server

    Nguyen, Quang

    2012-01-01

    The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical.   Computational Science should enhance the quality of human life,  not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science.   This book is a compilation of some recent research findings in computer application and computational sci...

  9. A Computer Security Course in the Undergraduate Computer Science Curriculum.

    Science.gov (United States)

    Spillman, Richard

    1992-01-01

    Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…

  10. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    OpenAIRE

    Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students ...

  11. Is Bloom's Taxonomy Appropriate for Computer Science?

    OpenAIRE

    Johnson, Colin G.; Fuller, Ursula

    2007-01-01

    Bloom's taxonomy attempts to provide a set of levels of cognitive engagement with material being learned. It is usually presented as a generic framework. In this paper we outline some studies which examine whether the taxonomy is appropriate for computing, and how its application in computing might differ from its application elsewhere. We place this in the context of ongoing debates concerning graduateness and attempts to benchmark the content of a computing degree.

  12. Basic research in computer science and software engineering at SKLCS

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG; Xueyang ZHU; Wenhui ZHANG; Naijun ZHAN; Yidong SHEN; Haiming CHEN; Yunquan ZHANG; Yongji WANG; Enhua WU; Hongan WANG

    2008-01-01

    The State Key Laboratory of Computer Science (SKLCS) is committed to basic research in computer sci-ence and software engineering. The research topics of the laboratory include: concurrency theory, theory and algorithms for real-time systems, formal specifications based on context-free grammars, semantics of program-ming languages, model checking, automated reasoning, logic programming, software testing, software process improvement, middleware technology, parallel algo-rithms and parallel software, computer graphics and human-computer interaction. This paper describes these topics in some detail and summarizes some results obtained in recent years.

  13. Investigations on Natural Computing in the Institute of Mathematics and Computer Science

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2010-11-01

    Full Text Available We describe the investigations on natural computing in the Institute of Mathematics and Computer Science of the Academy of Sciences of Moldova during last fifteen years. Most of these investigations are inspired by results and ideas belonging to Corresponding Member of the Romanian Academy Gheorghe Paun.

  14. Logic, mathematics, and computer science modern foundations with practical applications

    CERN Document Server

    Nievergelt, Yves

    2015-01-01

    This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory.  The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and  provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...

  15. Review of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine" by Edward H. Shortliffe and James J. Cimino

    Directory of Open Access Journals (Sweden)

    Clifford Gari D

    2006-11-01

    Full Text Available Abstract This article is an invited review of the third edition of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine", one of thirty-six volumes in Springer's 'Health Informatics Series', edited by E. Shortliffe and J. Cimino. This book spans most of the current methods and issues in health informatics, ranging through subjects as varied as data acquisition and storage, standards, natural language processing, imaging, electronic health records, decision support, teaching methods and ethics. The book is aimed at 'healthcare professionals', and is certainly appropriate for the non-technical informatics user. However, this book is also excellent background reading for the technical engineer who may be interested in the possible problems that confront the users in this field.

  16. Proceedings: Computer Science and Data Systems Technical Symposium, volume 1

    Science.gov (United States)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.

  17. Proceedings: Computer Science and Data Systems Technical Symposium, volume 2

    Science.gov (United States)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.

  18. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  19. 30th International Symposium on Computer and Information Sciences

    CERN Document Server

    Gelenbe, Erol; Gorbil, Gokce; Lent, Ricardo

    2016-01-01

    The 30th Anniversary of the ISCIS (International Symposium on Computer and Information Sciences) series of conferences, started by Professor Erol Gelenbe at Bilkent University, Turkey, in 1986, will be held at Imperial College London on September 22-24, 2015. The preceding two ISCIS conferences were held in Krakow, Poland in 2014, and in Paris, France, in 2013.   The Proceedings of ISCIS 2015 published by Springer brings together rigorously reviewed contributions from leading international experts. It explores new areas of research and technological development in computer science, computer engineering, and information technology, and presents new applications in fast changing fields such as information science, computer science and bioinformatics.   The topics covered include (but are not limited to) advances in networking technologies, software defined networks, distributed systems and the cloud, security in the Internet of Things, sensor systems, and machine learning and large data sets.

  20. 3rd Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2014-01-01

    This book is based on the research papers presented in the 3rd Computer Science On-line Conference 2014 (CSOC 2014).   The conference is intended to provide an international forum for discussions on the latest high-quality research results in all areas related to Computer Science. The topics addressed are the theoretical aspects and applications of Artificial Intelligences, Computer Science, Informatics and Software Engineering.   The authors provide new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in their field. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented.   This book is divided into three sections and covers topics including Artificial Intelligence, Computer Science and Software Engineering. Each section consists of new theoretical contributions and applications which can be used for the further development of knowledge of everybod...

  1. 2012 International Conference on Teaching and Computational Science (ICTCS 2012)

    CERN Document Server

    Advanced Technology in Teaching

    2013-01-01

    2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao.   This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas.   This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science.   We hope that all the papers here published can benefit you in the related researching fields.

  2. Interim research assessment 2003-2005 - Computer Science

    OpenAIRE

    Mouthaan, A.J.; Hartel, P.H.

    2007-01-01

    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities.

  3. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    Science.gov (United States)

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine.

  4. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In... Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and.... Contact Person: Carmen Whitson, Directorate for Computer and Information Science and Engineering,...

  5. 75 FR 19428 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Science.gov (United States)

    2010-04-14

    ... Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance... announces the following meeting: Name: Advisory Committee for Computer and Information Science and... Cassandra Queen at the Directorate for Computer and Information Science and Engineering at...

  6. 77 FR 24538 - Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting

    Science.gov (United States)

    2012-04-24

    ... FOUNDATION Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting In... Foundation announces the following meeting: Name: Advisory Committee for Computer and Information Science and...: Carmen Whitson, Directorate for Computer and Information Science and Engineering, National...

  7. Computers and Traditional Teaching Practices: Factors Influencing Middle Level Students' Science Achievement and Attitudes about Science

    Science.gov (United States)

    Odom, Arthur Louis; Marszalek, Jacob M.; Stoddard, Elizabeth R.; Wrobel, Jerzy M.

    2011-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes toward science with student-reported frequency of using computers to learn science and other classroom practices. Baseline comparison data were collected on the frequency of student-centred teaching practices (e.g. the use of group…

  8. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  9. Social Issues in Computational Transportation Science (Dagstuhl Seminar 13512)

    OpenAIRE

    Geers, Glenn; Sester, Monika; WINTER, Stephan; Wolfson, Ouri E.

    2014-01-01

    The Dagstuhl Seminar, "Social Issues in Computational Transportation Science" (13512) took place from 15 to 19 December 2103, attracting 27 participants active in a wide range of academic, commercial, and public sector areas. CTS is an emerging discipline that combines advances in computer science and engineering with the modeling, planning, social, and economic aspects of transportation in order to improve the safety, mobility, and sustainability of transportation systems. The aim of this s...

  10. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  11. Non-parallel processing: Gendered attrition in academic computer science

    Science.gov (United States)

    Cohoon, Joanne Louise Mcgrath

    2000-10-01

    This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an

  12. Developing a Computer Science-specific Learning Taxonomy

    OpenAIRE

    Fuller, Ursula; Johnson, Colin G.; Ahoniemi, Tuukka; Cukierman, Diana; Hernán-Losada, Isidoro; Jackova, Jana; Lahtinen, Essi; Lewis, Tracy L.; McGee Thompson, Donna; Riesdel, Charles; Thompson, Errol

    2007-01-01

    Bloom's taxonomy of the cognitive domain and the SOLO taxonomy are being increasingly widely used in the design and assessment of courses, but there are some drawbacks to their use in computer science. This paper reviews the literature on educational taxonomies and their use in computer science education, identifies some of the problems that arise, proposes a new taxonomy and discusses how this can be used in application-oriented courses such as programming.

  13. Computer Science and Game Theory: A Brief Survey

    OpenAIRE

    Halpern, Joseph Y.

    2007-01-01

    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.

  14. Computer Literacy Among Students of Zahedan University of Medical Sciences

    OpenAIRE

    Robabi, Hassan; Arbabisarjou, Azizollah

    2014-01-01

    Introduction: The need for medical students to be computer literate is vital. With the rapid integration of information technology (IT) in the health care field, equipping students of medical universities withcomputer competencies to effectively use are needed. The purpose of this study was to assess computer literacy (CL) needs of medical sciences students. Methods: This is descriptive-analytic. The population of the study comprised all students at Zahedan University of Medical Sciences. 385...

  15. Computer science approach to quantum control

    OpenAIRE

    Janzing, Dominik

    2006-01-01

    This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. It shows that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer.

  16. Computer animation in mathematics, science and art

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.L.

    1989-01-01

    At the conference whose proceedings make up this volume, my presentation consisted of a collection of excerpts from computer animated films. Since I showed only my own films, a description of my personal experiences in computer animation seems appropriate for this paper, with indications of the films shown at the conference, and where they can be obtained.

  17. Fiction as an Introduction to Computer Science Research

    Science.gov (United States)

    Goldsmith, Judy; Mattei, Nicholas

    2014-01-01

    The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…

  18. Computational Science Guides and Accelerates Hydrogen Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    This fact sheet describes NREL's accomplishments in using computational science to enhance hydrogen-related research and development in areas such as storage and photobiology. Work was performed by NREL's Chemical and Materials Science Center and Biosciences Center.

  19. The evolving profile and role of computer science

    Institute of Scientific and Technical Information of China (English)

    PREPARATA Franco P.

    2009-01-01

    Technological innovation ushered in the computer era, and, after a few years of tutelage by established disciplines, computer science emerged as an independent discipline. In the subsequent decades com-puter science developed its special identity, sharing the dual character of engineering and mathematics. This evolution is revisited here based on my personal experience. In my view, the notion of computa-tional model has been the enabler of extraordinary creativity, and at the same time the source of critical reflection two decades ago. However, capitalizing on a vibrant technology, computer science is re-inventing itself as the indispensable enabler of applications. This is a crucial profile that calls for a pedagogical adaptation, where the notion of model morphs from means to end.

  20. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  1. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  2. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

  3. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.  

  4. Advances and Challenges in Computational Plasma Science

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang; V.S. Chan

    2005-01-03

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

  5. Spatial Learning and Computer Simulations in Science

    Science.gov (United States)

    Lindgren, Robb; Schwartz, Daniel L.

    2009-01-01

    Interactive simulations are entering mainstream science education. Their effects on cognition and learning are often framed by the legacy of information processing, which emphasized amodal problem solving and conceptual organization. In contrast, this paper reviews simulations from the vantage of research on perception and spatial learning,…

  6. Science, Social Science and Primary Eduction Student Teacher’ Attitude Towards The Computer Lesson

    Directory of Open Access Journals (Sweden)

    Hayati ÇAVUŞ

    2007-06-01

    Full Text Available This study was designed to identify science, social science and primary education student teacher’ attitude towards the computer lesson. Besides, the study has aimed to identify the students’ interest according to sex, numerical and social grups. For that purpose the attitude scale was applied to the students registered with . science, social science and primary education departments.As a result, there is no difference between the departments of social science the and science department. It was also seen that male students’ interest was lower compared to the female students.

  7. Computer Science in High School Graduation Requirements. ECS Education Trends

    Science.gov (United States)

    Zinth, Jennifer Dounay

    2015-01-01

    Computer science and coding skills are widely recognized as a valuable asset in the current and projected job market. The Bureau of Labor Statistics projects 37.5 percent growth from 2012 to 2022 in the "computer systems design and related services" industry--from 1,620,300 jobs in 2012 to an estimated 2,229,000 jobs in 2022. Yet some…

  8. The Role of Visualization in Computer Science Education

    Science.gov (United States)

    Fouh, Eric; Akbar, Monika; Shaffer, Clifford A.

    2012-01-01

    Computer science core instruction attempts to provide a detailed understanding of dynamic processes such as the working of an algorithm or the flow of information between computing entities. Such dynamic processes are not well explained by static media such as text and images, and are difficult to convey in lecture. The authors survey the history…

  9. Exploring Computer Science: A Case Study of School Reform

    Science.gov (United States)

    Goode, Joanna; Margolis, Jane

    2011-01-01

    This article will detail efforts to broaden participation in computing in urban schools through a comprehensive reform effort of curricular development, teacher professional development, and policy changes. Beginning with an account of the curricular development of "Exploring Computer Science", we will describe the inquiry-based research that…

  10. Computers in Science and Mathematics Education in the ASEAN Region.

    Science.gov (United States)

    Talisayon, Vivien M.

    1989-01-01

    Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)

  11. Integrating Mobile Robotics and Vision with Undergraduate Computer Science

    Science.gov (United States)

    Cielniak, G.; Bellotto, N.; Duckett, T.

    2013-01-01

    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant…

  12. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... Health and Behavioral. May 30, 2013 Sheraton Crystal City Hotel. Sciences--A. Gastroenterology May 30-31... Office.* Endocrinology--B June 4, 2013 Sheraton Crystal City Hotel. Mental Health and Behavioral. June 6... Application of Genetics..... June 18, 2013 Ritz-Carlton, Pentagon City. Eligibility July 15, 2013...

  13. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-20

    ...) Location Hematology May 23, 2012........ Sheraton Suites--Old Town Alexandria. Mental Health and Behavioral... Alexandria. Mental Health and Behavioral May 31, 2012........ Sheraton Suites--Old Town Alexandria. Science-A........... * VA Central Office. Genetics. Cardiovascular Studies...... June 4, 2012........ Sheraton...

  14. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ...) Location Hematology May 23, 2012..... Sheraton Suites--Old Town Alexandria. Mental Health and Behavioral.... Mental Health and Behavioral May 31, 2012..... Sheraton Suites--Old Science-A. Town Alexandria. Surgery........ *VA Central Office. Genetics. Cardiovascular Studies........ June 4, 2012..... Sheraton...

  15. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  16. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  17. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    Science.gov (United States)

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical…

  18. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    Directory of Open Access Journals (Sweden)

    Robert FRASER

    2014-10-01

    Full Text Available We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer science coursework is somewhat unique, in that there often exist ideal solutions for problems, and work may be shared and copied with very little effort. We discuss the idiosyncratic nature of how collaboration, collusion and plagiarism are defined and perceived by students, instructors and administration. After considering some of the common reasons for dishonest behaviour among students, we look at some methods that have been suggested for mitigating them. Finally, we propose several ideas for improving computer science courses in this context. We suggest emphasizing the intended learning outcomes of each assignment, providing tutorial sessions to facilitate acceptable collaboration, delivering quizzes related to assignment content after each assignment is submitted, and clarifying the boundary between collaboration and collusion in the context of each course. While this discussion is directed at the computer science community, much may apply to other disciplines as well, particularly those with a similar nature such as engineering, other sciences, or mathematics.

  19. 10th International Symposium on Computer Science in Sports

    CERN Document Server

    Soltoggio, Andrea; Dawson, Christian; Meng, Qinggang; Pain, Matthew

    2016-01-01

    This book presents the main scientific results of the 10th International Symposium of Computer Science in Sport (IACSS/ISCSS 2015), sponsored by the International Association of Computer Science in Sport in collaboration with the International Society of Sport Psychology (ISSP), which took place between September 9-11, 2015 at Loughborough, UK. This proceedings aims to build a link between computer science and sport, and reports on results from applying computer science techniques to address a wide number of problems in sport and exercise sciences. It provides a good platform and opportunity for researchers in both computer science and sport to understand and discuss ideas and promote cross-disciplinary research. The strictly reviewed and carefully revised papers cover the following topics: Modelling and Analysis, Artificial Intelligence in Sport, Virtual Reality in Sport,  Neural Cognitive Training,  IT Systems for Sport, Sensing Technologies and Image Processing.

  20. Audit and Evaluation of Computer Security. Computer Science and Technology.

    Science.gov (United States)

    Ruthberg, Zella G.

    This is a collection of consensus reports, each produced at a session of an invitational workshop sponsored by the National Bureau of Standards. The purpose of the workshop was to explore the state-of-the-art and define appropriate subjects for future research in the audit and evaluation of computer security. Leading experts in the audit and…

  1. Mathematical Logic and Deduction in Computer Science Education

    Directory of Open Access Journals (Sweden)

    Hashim HABIBALLA

    2008-04-01

    Full Text Available Mathematical logic is a discipline used in sciences and humanities with different point of view. Although in tertiary level computer science education it has a solid place, it does not hold also for secondary level education. We present a heterogeneous study both theoretical based and empirically based which points out the key role of logic in computer science, computer science education and knowledge representation. We focus on the key contrast of semantics and syntax, the resolution principle as a leading inference technique (giving also interesting non-clausal generalization of the rule. Further we discuss the possibilities of inclusion the non-classical (many-valued logics in education together with the original generalization of the non-clausal resolution rule into fuzzy logic. The last part describes partial results of the research concerning the secondary education in the Czech Republic especially in the mathematical logic field. The generalization of the presented ideas entails the article.

  2. Genost: A System for Introductory Computer Science Education with a Focus on Computational Thinking

    Science.gov (United States)

    Walliman, Garret

    Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.

  3. A Computer Science Educational Program for Establishing an Entry Point into the Computing Community of Practice

    Science.gov (United States)

    Haberman, Bruria; Yehezkel, Cecile

    2008-01-01

    The rapid evolvement of the computing domain has posed challenges in attempting to bridge the gap between school and the contemporary world of computing, which is related to content, learning culture, and professional norms. We believe that the interaction of high-school students who major in computer science or software engineering with leading…

  4. Adapting computational text analysis to social science (and vice versa

    Directory of Open Access Journals (Sweden)

    Paul DiMaggio

    2015-11-01

    Full Text Available Social scientists and computer scientist are divided by small differences in perspective and not by any significant disciplinary divide. In the field of text analysis, several such differences are noted: social scientists often use unsupervised models to explore corpora, whereas many computer scientists employ supervised models to train data; social scientists hold to more conventional causal notions than do most computer scientists, and often favor intense exploitation of existing algorithms, whereas computer scientists focus more on developing new models; and computer scientists tend to trust human judgment more than social scientists do. These differences have implications that potentially can improve the practice of social science.

  5. How Computational Statistics Became the Backbone of Modern Data Science

    OpenAIRE

    James E. Gentle; Härdle, Wolfgang Karl; Mori, Yuichi

    2011-01-01

    This first chapter serves as an introduction and overview for a collection of articles surveying the current state of the science of computational statistics. Earlier versions of most of these articles appeared in the first edition of Handbook of Computational Statistics: Concepts and Methods, published in 2004. There have been advances in all of the areas of computational statistics, so we feel that it is time to revise and update this Handbook. This introduction is a revision of the introdu...

  6. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  7. 10121 Report -- Towards a Computational Transportation Science

    OpenAIRE

    Geers, Glenn; Sester, Monika; WINTER, Stephan; Wolfson, Ouri

    2010-01-01

    In the near future, vehicles, travelers, and the infrastructure will collectively have billions of sensors that can communicate with each other. This environment will enable numerous novel applications and order of magnitude improvements in the performance of existing applications. However, information technology (IT) has not had the dramatic impact on day-to-day transportation that it has had on other domains such as business and science. In terms of the real-time information available to mo...

  8. Bioinformation processing a primer on computational cognitive science

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.

  9. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen

    2014-01-01

    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  10. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  11. Severo Ochoa and the Biomedical Sciences in Spain under Franco, 1959-1975

    OpenAIRE

    Santesmases, María Jesús

    2000-01-01

    The influence of Severo Ochoa in the establishment of biochemistry and molecular biology in Spain is the central topic of this essay. From the time he was awarded the Nobel Prize in Physiology or Medicine in 1959, Ochoa's links with Spanish scientists and top authorities in education and science became instrumental to the development of these areas in the country of his birth. Ochoa's influence is analyzed through investigation of three "events": the reception of the award in Spain and some o...

  12. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  13. Data systems and computer science programs: Overview

    Science.gov (United States)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  14. Learning Computer Science: Perceptions, Actions and Roles

    Science.gov (United States)

    Berglund, Anders; Eckerdal, Anna; Pears, Arnold; East, Philip; Kinnunen, Paivi; Malmi, Lauri; McCartney, Robert; Mostrom, Jan-Erik; Murphy, Laurie; Ratcliffe, Mark; Schulte, Carsten; Simon, Beth; Stamouli, Ioanna; Thomas, Lynda

    2009-01-01

    This phenomenographic study opens the classroom door to investigate teachers' experiences of students learning difficult computing topics. Three distinct themes are identified and analysed. "Why" do students succeed or fail to learn these concepts? "What" actions do teachers perceive will ameliorate the difficulties facing students? "Who" is…

  15. Applying Human Computation Methods to Information Science

    Science.gov (United States)

    Harris, Christopher Glenn

    2013-01-01

    Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…

  16. Where Computer Science and Cultural Studies Collide

    Science.gov (United States)

    Kirschenbaum, Matthew

    2009-01-01

    Most users have no more knowledge of what their computer or code is actually doing than most automobile owners have of their carburetor or catalytic converter. Nor is any such knowledge necessarily needed. But for academics, driven by an increasing emphasis on the materiality of new media--that is, the social, cultural, and economic factors…

  17. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  18. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  19. Discrete Mathematics for Computer Science, Some Notes

    CERN Document Server

    Gallier, Jean

    2008-01-01

    These are notes on discrete mathematics for computer scientists. The presentation is somewhat unconventional. Indeed I begin with a discussion of the basic rules of mathematical reasoning and of the notion of proof formalized in a natural deduction system ``a la Prawitz''. The rest of the material is more or less traditional but I emphasize partial functions more than usual (after all, programs may not terminate for all input) and I provide a fairly complete account of the basic concepts of graph theory.

  20. Probability and statistics for computer science

    CERN Document Server

    Johnson, James L

    2011-01-01

    Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: ""to present the mathematical analysis underlying probability results"" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcem