WorldWideScience

Sample records for biomedical and dental materials

  1. Mercury and Other Biomedical Waste Management Practices among Dental Practitioners in India

    Directory of Open Access Journals (Sweden)

    Raghuwar D. Singh

    2014-01-01

    Full Text Available Objectives. The objective of the study was to assess the awareness and performance towards dental waste including mercury management policy and practices among the dental practitioners in North India. Materials and Methods. An epidemiologic survey was conducted among 200 private dental practitioners. The survey form was composed of 29 self-administered questions frame based on knowledge, attitude, and those regarding the practices of dentists in relation to dental health-care waste management. The resulting data were coded and a statistical analysis was done. Results and Discussion. About 63.7% of the dentists were not aware of the different categories of biomedical waste generated in their clinics. Only 31.9% of the dentists correctly said that outdated and contaminated drugs come under cytotoxic waste. 46.2% said they break the needle and dispose of it and only 21.9% use needle burner to destroy it. 45.0% of the dentists dispose of the developer and fixer solutions by letting them into the sewer, 49.4% of them dilute the solutions and let them into sewer and only 5.6% return them to the supplier. About 40.6% of the dentists dispose of excess silver amalgam by throwing it into common bin. Conclusion. It was concluded that not all dentists were aware of the risks they were exposed to and only half of them observe infection control practices.

  2. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  3. Special cluster issue on tribocorrosion of dental materials

    Science.gov (United States)

    Mathew, Mathew T.; Stack, Margaret M.

    2013-10-01

    Tribocorrosion affects all walks of life from oil and gas conversion to biomedical materials. Wear can interact with corrosion to enhance it or impede it; conversely, corrosion can enhance or impede wear. The understanding of the interactions between physical and chemical phenomena has been greatly assisted by electrochemical and microscopic techniques. In dentistry, it is well recognized that erosion due to dissolution (a term physicists use to denote wear) of enamel can result in tooth decay; however, the effects of the oral environment, i.e. pH levels, electrochemical potential and any interactions due to the forces involved in chewing are not well understood. This special cluster issue includes investigations on the fundamentals of wear-corrosion interactions involved in simulated oral environments, including candidate dental implant and veneer materials. The issue commences with a fundamental study of titanium implants and this is followed by an analysis of the behaviour of commonly used temporomandibular devices in a synovial fluid-like environment. The analysis of tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs is addressed and is followed by a paper on fretting wear, on hydroxyapatite-titanium composites in simulated body fluid, supplemented with protein (bovine serum albumin). The effects of acid treatments on tooth enamel, and as a surface engineering technique for dental implants, are investigated in two further contributions. An analysis of the physiological parameters of intraoral wear is addressed; this is followed by a study of candidate dental materials in common beverages such as tea and coffee with varying acidity and viscosity and the use of wear maps to identify the safety zones for prediction of material degradation in such conditions. Hence, the special cluster issue consists of a range of tribocorrosion contributions involving many aspects of dental tribocorrosion, from analysis of physiological

  4. The Dental Solid Waste Management in Different Categories of Dental Laboratories in Abha City, Saudi Arabia

    Science.gov (United States)

    Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.

    2015-01-01

    Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373

  5. Digital fabrication of multi-material biomedical objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, H H; Choi, S H, E-mail: shchoi@hku.h [Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-12-15

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  6. Digital fabrication of multi-material biomedical objects

    International Nuclear Information System (INIS)

    Cheung, H H; Choi, S H

    2009-01-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  7. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  8. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review

    Science.gov (United States)

    ROSA, Wellington Luiz de Oliveira; SILVA, Tiago Machado; LIMA, Giana da Silveira; SILVA, Adriana Fernandes; PIVA, Evandro

    2016-01-01

    ABSTRACT Objective A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. Material and Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). Results A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Conclusions Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in

  9. Evaluation of radiation effects on dental enamel hardness and dental restorative materials

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Saiki, Mitiko; Campos, Tomie Nakakuki

    2000-01-01

    This research presents the results of the microhardness of human dental enamel and of the following dental restorative materials: three dental porcelains - Ceramco II, Finesse and Noritake, and two resin restorative materials - Artglass and Targis, for materials submitted to different times of irradiation at the IEA-R1m nuclear reactor under a thermal neutron flux of 10 12 n cm -2 .s -1 . The results obtained indicated that there is a decrease of the surface microhardness when the enamel is irradiated for 1 h and when dental materials are irradiated for 3 h. However, enamels irradiated for 30 min. did not show significant change of their surface hardness. Therefore, the selection of irradiation time is an important factor to be considered when irradiated teeth or dental materials are used in the investigations of their properties. (author)

  10. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira; Silva, Tiago Machado; Lima, Giana da Silveira; Silva, Adriana Fernandes; Piva, Evandro

    2016-01-01

    A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in countries such as Brazil.

  11. Switchable and responsive surfaces and materials for biomedical applications

    CERN Document Server

    Zhang, Johnathan

    2015-01-01

    Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering,  drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit

  12. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  13. Future perspectives of resin-based dental materials.

    Science.gov (United States)

    Jandt, Klaus D; Sigusch, Bernd W

    2009-08-01

    This concise review and outlook paper gives a view of selected potential future developments in the area of resin-based biomaterials with an emphasis on dental composites. A selection of key publications (1 book, 35 scientific original publications and 1 website source) covering the areas nanotechnology, antimicrobial materials, stimuli responsive materials, self-repairing materials and materials for tissue engineering with direct or indirect relations and/or implications to resin-based dental materials is critically reviewed and discussed. Connections between these fields and their potential for resin-based dental materials are highlighted and put in perspective. The need to improve shrinkage properties and wear resistance is obvious for dental composites, and a vast number of attempts have been made to accomplish these aims. Future resin-based materials may be further improved in this respect if, for example nanotechnology is applied. Dental composites may, however, reach a completely new quality by utilizing new trends from materials science, such as introducing nanostructures, antimicrobial properties, stimuli responsive capabilities, the ability to promote tissue regeneration or repair of dental tissues if the composites were able to repair themselves. This paper shows selected potential future developments in the area of resin-based dental materials, gives basic and industrial researchers in dental materials science, and dental practitioners a glance into the potential future of these materials, and should stimulate discussion about needs and future developments in the area.

  14. Towards a specific approach to education in dental ethics: a proposal for organising the topics of biomedical ethics for dental education.

    Science.gov (United States)

    Gorkey, Sefik; Guven, Tolga; Sert, Gurkan

    2012-01-01

    Understanding dental ethics as a field separate from its much better known counterpart, medical ethics, is a relatively new, but necessary approach in bioethics. This need is particularly felt in dental education and establishing a curriculum specifically for dental ethics is a challenging task. Although certain topics such as informed consent and patient rights can be considered to be of equal importance in both fields, a number of ethical issues in dental practice are only remotely-if at all-relevant for medical practice. Therefore, any sound approach to education in dental ethics has to recognise the unique aspects of dental practice in order to meet the needs of dental students and prepare them for the ethical challenges they may face during their professional practice. With this goal in mind, this paper examines the approach of the authors to dental ethics education and proposes a system to organise the topics of biomedical ethics for dental education. While the authors' perspective is based on their experience in Turkey, the proposed system of classification is not a rigid one; it is open to interpretation in other contexts with different social, cultural and professional expectations. Therefore, the paper also aims to inspire discussion on the development of an ideal dental ethics curriculum at an international level.

  15. Tribology of dental materials: a review

    International Nuclear Information System (INIS)

    Zhou, Z R; Zheng, J

    2008-01-01

    The application of tribology in dentistry is a growing and rapidly expanding field. Intensive research has been conducted to develop an understanding of dental tribology for successful design and selection of artificial dental materials. In this paper, the anatomy and function of human teeth is presented in brief, three types of current artificial dental materials are summarized, and their advantages and disadvantages, as well as typical clinical applications, are compared based on the literature. Possible tribological damage of tooth structure, which is induced by complex interfacial motion, and friction-wear test methods are reported. According to results obtained by the authors and from the literature, the main progress in the area of dental tribology on both natural teeth and artificial dental materials is reviewed. Problems and challenges are discussed and future research directions for dental tribology are recommended. (topical review)

  16. Tribology of dental materials: a review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z R; Zheng, J [Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: zrzhou@home.swjtu.edu.cn

    2008-06-07

    The application of tribology in dentistry is a growing and rapidly expanding field. Intensive research has been conducted to develop an understanding of dental tribology for successful design and selection of artificial dental materials. In this paper, the anatomy and function of human teeth is presented in brief, three types of current artificial dental materials are summarized, and their advantages and disadvantages, as well as typical clinical applications, are compared based on the literature. Possible tribological damage of tooth structure, which is induced by complex interfacial motion, and friction-wear test methods are reported. According to results obtained by the authors and from the literature, the main progress in the area of dental tribology on both natural teeth and artificial dental materials is reviewed. Problems and challenges are discussed and future research directions for dental tribology are recommended. (topical review)

  17. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  18. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project ... of the journal led to the formation of a group (Biomedical Communications Group, ... analysis of multidrug resistant aerobic gram-negative clinical isolates from a ... Dental formula and dental abnormalities observed in the Eidolon helvum ...

  19. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  20. Awareness of biomedical waste management among dental professionals and auxiliary staff in Amritsar, India.

    Science.gov (United States)

    Narang, Ramandeep S; Manchanda, Adesh; Singh, Simarpreet; Verma, Nitin; Padda, Sarfaraz

    2012-12-01

    The aim of this study was to determine awareness of biomedical waste (BMW) management policies and practices among dental professionals and auxiliary staff in a dental hospital/clinics in Amritsar, India, to inform the development of future policies for effective implementation of BMW rules. The study involved 160 staff members at the Amritsar hospital/clinics (80 dentists and 80 auxiliary staff) to whom a questionnaire was distributed regarding policies, practices and awareness relating to BMW. The questionnaire was first piloted. Completed questionnaires were returned anonymously. The resulting data were statistically tested using the chi-square test for differences between the dentists and auxiliary staff. In respect of BMW management policies, there was a highly significant difference in the responses of the dentists, whose answers suggested far greater knowledge than that of the auxiliaries (Pmanagement practices, the dentists were significantly more aware (Pwaste collection in the hospital and the disposal of various items into different colour-coded bags. As for employee education/awareness, there was a significant difference (Pmanagement among dental auxiliary staff in the dental hospital/clinics in Amritsar and a lack of awareness of some aspects among dentists who work in the hospital/clinics. The results provide the hospital authorities with data upon which they can develop a strategy for improving BMW management.

  1. Effects of dental materials on MR images

    International Nuclear Information System (INIS)

    Hinshaw, D.B. Jr.; Hoishouser, B.; Engstrom, H.

    1986-01-01

    As MR imaging of the head and neck area becomes increasingly important in evaluating pathologic conditions of the brain, mid-face, and pharynx, it is becoming apparent that artifacts due to certain dental materials can obscure the findings. Although this fact has been known for some time, a study to identify which materials produce artifacts has not been performed. The authors examined the degree of artifact production caused by various materials commonly used in dental restorations. Since not all dental materials produce artifacts during MR imaging, these materials are described also

  2. Evaluation of patients with oral lichenoid lesions by dental patch testing and results of removal of the dental restoration material

    Directory of Open Access Journals (Sweden)

    Emine Buket Şahin

    2016-12-01

    Full Text Available Background and Design: Oral lichenoid lesions (OLL are contact stomatitis characterized by white reticular or erosive patches, plaque-like lesions that are clinically and histopathologically indistinguishable from oral lichen planus (OLP. Amalgam dental fillings and dental restoration materials are among the etiologic agents. In the present study, it was aimed to evaluate the standard and dental series patch tests in patients with OLL in comparison to a control group and evaluate our results. Materials and Methods: Thirty-three patients with OLL or OLP and 30 healthy control subjects, who had at least one dental restoration material and/or dental filling, were included in the study. Both groups received standard series and dental patch test and the results were evaluated simultaneously. Results: The most frequent allergens in the dental series patch test in the patient group were palladium chloride (n=4; 12.12% and benzoyl peroxide (n=2, 6.06%. Of the 33 patients with OLL; 8 had positive reaction to allergents in the standard patch test series and 8 had positive reaction in the dental patch test series. There was no significant difference in the rate of patch test reaction to the dental and standard series between the groups. Ten patients were advised to have the dental restoration material removed according to the results of the patch tests. The lesions improved in three patients [removal of all amalgam dental fillings (n=1, replacement of all amalgam dental fillings with an alternative filling material (n=1 and replacement of the dental prosthesis (n=1] following the removal or replacement of the dental restoration material. Conclusion: Dental patch test should be performed in patients with OLL and dental restoration material. Dental filling and/or prosthesis should be removed/replaced if there is a reaction against a dental restoration material-related allergen.

  3. DENTAL MATERIAL BIOCOMPATIBILITY: A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Carmen SAVIN

    2017-06-01

    Full Text Available The aim of this study is to assess the knowledge of the students in the Faculty of Dental Medicine of Iasi on the biocompatibility of the dental materials used in current practice. To this end, we elaborated our own questionnaire, including 10 questions to which 92 students from the last 2 years of study answered. The questionnaire cotains assertions on the potential toxic reactions of the most frequently used dental materials. The students answered correctly to the questions related to the biocompatibility of certain dental materials, such as glass-ionomer cement and calcium hydroxide, and they recognized that allergic reactions determined by acrylic resins may occur. We also noticed the lack of knowledge referring to the irreversible modifications produced by the tooth whitening substances on the enamel and dentin, as well as to the side effects produced by dental amalgam.

  4. Investigation of contact allergy to dental materials by patch testing

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2014-01-01

    Full Text Available Background: Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. Aim: This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Materials and Methods: Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG. Results: Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. Conclusion: The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials.

  5. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  6. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  7. Disclosing discourses: biomedical and hospitality discourses in patient education materials.

    Science.gov (United States)

    Öresland, Stina; Friberg, Febe; Määttä, Sylvia; Öhlen, Joakim

    2015-09-01

    Patient education materials have the potential to strengthen the health literacy of patients. Previous studies indicate that readability and suitability may be improved. The aim of this study was to explore and analyze discourses inherent in patient education materials since analysis of discourses could illuminate values and norms inherent in them. Clinics in Sweden that provided colorectal cancer surgery allowed access to written information and 'welcome letters' sent to patients. The material was analysed by means of discourse analysis, embedded in Derrida's approach of deconstruction. The analysis revealed a biomedical discourse and a hospitality discourse. In the biomedical discourse, the subject position of the personnel was interpreted as the messenger of medical information while that of the patients as the carrier of diagnoses and recipients of biomedical information. In the hospitality discourse, the subject position of the personnel was interpreted as hosts who invite and welcome the patients as guests. The study highlights the need to eliminate paternalism and fosters a critical reflective stance among professionals regarding power and paternalism inherent in health care communication. © 2015 John Wiley & Sons Ltd.

  8. Teeth and bones: applications of surface science to dental materials and related biomaterials

    Science.gov (United States)

    Jones, F. H.

    2001-05-01

    Recent years have seen a considerable upsurge in publications concerning the surface structure and chemistry of materials with biological or biomedical applications. Within the body, gas-solid interactions become relatively less significant and solid-liquid or solid-solid interfaces dominate, providing new challenges for the surface scientist. The current paper aims to provide a timely review of the use of surface analysis and modification techniques within the biomaterials field. A broad overview of applications in a number of related areas is given with particular attention focusing on those materials commonly encountered in dentistry and oral or maxillofacial implantology. Several specific issues of current interest are discussed. The interaction between synthetic and natural solids, both in the oral environment and elsewhere in the body is important in terms of adhesion, related stresses and strains and ultimately the longevity of a dental restoration, biomedical implant, or indeed the surrounding tissue. Exposure to body fluids, of course, can also affect stability, leading to the degradation or corrosion of materials within the body. Whilst this could potentially be harmful, e.g., if cytotoxic elements are released, it may alternatively provide a route to the preferential release of beneficial substances. Furthermore, in some cases, the controlled disintegration of a biomaterial is desirable, allowing the removal of an implant, e.g., without the need for further surgery. The presence of cells in the immediate bioenvironment additionally complicates the situation. A considerable amount of current research activity is targeted at the development of coatings or surface treatments to encourage tissue growth. If this is to be achieved by stimulating enhanced cell productivity, determination of the relationship between cell function and surface composition is essential.

  9. Recent Advances in Material and Geometrical Modelling in Dental Applications

    Directory of Open Access Journals (Sweden)

    Waleed M. S. Al Qahtani

    2018-06-01

    Full Text Available This article touched, in brief, the recent advances in dental materials and geometric modelling in dental applications. Most common categories of dental materials as metallic alloys, composites, ceramics and nanomaterials were briefly demonstrated. Nanotechnology improved the quality of dental biomaterials. This new technology improves many existing materials properties, also, to introduce new materials with superior properties that covered a wide range of applications in dentistry. Geometric modelling was discussed as a concept and examples within this article. The geometric modelling with engineering Computer-Aided-Design (CAD system(s is highly satisfactory for further analysis or Computer-Aided-Manufacturing (CAM processes. The geometric modelling extracted from Computed-Tomography (CT images (or its similar techniques for the sake of CAM also reached a sufficient level of accuracy, while, obtaining efficient solid modelling without huge efforts on body surfaces, faces, and gaps healing is still doubtable. This article is merely a compilation of knowledge learned from lectures, workshops, books, and journal articles, articles from the internet, dental forum, and scientific groups' discussions.

  10. Surface degradation of nanocrystalline zirconia dental implants

    NARCIS (Netherlands)

    Ocelík, Václav; Schepke, Ulf; Rasoul, Hamid Haji; Cune, Marco S.; De Hosson, Jeff Th M.

    2017-01-01

    Yttria-stabilized zirconia prepared by hot isostatic pressing represents attractive material for biomedical applications. In this work the degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation after one year of clinical use was

  11. The Historical Evolution of Dental Impression Materials.

    Science.gov (United States)

    Papadiochos, Ioannis; Papadiochou, Sofia; Emmanouil, Ioannis

    The concept of impression making process in dentistry began in the mid 1800s. Dentists realized that the construction of a prosthetic restoration required both a detailed capture of the oral tissues along with stone cast fabrications. To accomplish these goals, impression materials were essential. Beeswax represents the first impression material, while important bechmarks during the historical evolution of dental impression materials are considered to be the introduction of dental trays in the early 1800s and the invention of the gutta-percha, thermoplastic resins and plaster of Paris. The double (corrective) impression technique, along with the functional impression concept that was established after mid 1800s, are also identified as pivotal innovations. During the 20th century, the advances in material development slowed significantly since the majority of the current impression materials had already been invented. However, the introduction of elastomeric impression materials in the field of prosthodontics that offered the advantages of accuracy and dimensional stability substantially upgraded both the impression accuracy and the quality of the final restoration. Presently, the dental practitioner has access to a variety of impression materials and should be aware of their properties, indications and limitations as well. Futhermore, while continuous attempts are being made to enhance these materials, the ideal impression material has yet to be developed. The purpose of this article was to provide a comprehensive review about the historical development of impression dental materials. Copyright American Academy of the History of Dentistry.

  12. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  13. A useful and non-invasive microanalysis method for dental restoration materials

    International Nuclear Information System (INIS)

    Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.

    2012-01-01

    Highlights: ► This method for the microanalysis of dental alloys is beneficial for patients with allergies to dental materials. ► This metal sample is easy to mail it for inspection at specialist institutes. ► This method can be also be used in general dental clinics. - Abstract: The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 μg. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  14. A useful and non-invasive microanalysis method for dental restoration materials

    Energy Technology Data Exchange (ETDEWEB)

    Hosoki, M., E-mail: hosoki@tokushima-u.ac.jp [Department of Fixed Prosthodontics, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan); Satsuma, T.; Nishigawa, K.; Takeuchi, H. [General Dentistry, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan); Asaoka, K. [Department of Biomaterials and Bioengineering, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer This method for the microanalysis of dental alloys is beneficial for patients with allergies to dental materials. Black-Right-Pointing-Pointer This metal sample is easy to mail it for inspection at specialist institutes. Black-Right-Pointing-Pointer This method can be also be used in general dental clinics. - Abstract: The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 {mu}g. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  15. Mechanical behaviour of dental composite filling materials using digital holography

    OpenAIRE

    Monteiro, J.M.; Lopes, H.; Vaz, M.A.P.; Campos, J.C. Reis

    2010-01-01

    One of the most common clinical problems in dentistry is tooth decay. Among the dental filling materials used to repair tooth structure that has been destroyed by decay are dental amalgam and composite materials based on acrylics. Dental amalgam has been used by dentists for the past 150 years as a dental restorative material due to its low cost, ease of application, strength, durability, and bacteriostatic effects. However its safety as a filling material has been questioned due to th...

  16. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  17. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  18. Role of dental restoration materials in oral mucosal lichenoid lesions

    Directory of Open Access Journals (Sweden)

    Rajneesh Sharma

    2015-01-01

    Full Text Available Background: Dental restorative materials containing silver-mercury compounds have been known to induce oral lichenoid lesions. Objectives: To determine the frequency of contact allergy to dental restoration materials in patients with oral lichenoid lesions and to study the effect of removal of the materials on the lesions. Results: Forty-five patients were recruited in three groups of 15 each: Group A (lesions in close contact with dental materials, Group B (lesions extending 1 cm beyond the area of contact and Group C (no topographic relationship. Thirty controls were recruited in two groups of 15 individuals each: Group D (oral lichenoid lesions but no dental material and Group E (dental material but no oral lichenoid lesions. Patch tests were positive in 20 (44.5% patients. Mercury was the most common allergen to elicit a positive reaction in eight patients, followed by nickel (7, palladium (5, potassium dichromate (3, balsam of Peru, gold sodium thiosulphate 2 and tinuvin (2 and eugenol (1, cobalt chloride (1 and carvone (1. Seven patients elicited positive response to more than one allergen. In 13 of 20 patients who consented to removal of the dental material, complete healing was observed in 6 (30%, marked improvement in 7 (35% and no improvement in 7 (35% patients. Relief of symptoms was usually observed 3 months after removal. Limitations: Limited number of study subjects and short follow up after removal/replacement of dental restoration materials are the main limitations of this study. Conclusion: Contact allergy to amalgam is an important etiologic factor in oral lichenoid lesions and removal of restorative material should be offered to patients who have lesions in close proximity to the dental material.

  19. Evaluation of radiation effects on dental enamel hardness and dental restorative materials; Avaliacao do efeito da irradiacao na dureza do esmalte dental e de materiais odontologicos

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radioquimica; Campos, Tomie Nakakuki [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese

    2000-07-01

    This research presents the results of the microhardness of human dental enamel and of the following dental restorative materials: three dental porcelains - Ceramco II, Finesse and Noritake, and two resin restorative materials - Artglass and Targis, for materials submitted to different times of irradiation at the IEA-R1m nuclear reactor under a thermal neutron flux of 10{sup 12}n cm{sup -2}.s{sup -1} . The results obtained indicated that there is a decrease of the surface microhardness when the enamel is irradiated for 1 h and when dental materials are irradiated for 3 h. However, enamels irradiated for 30 min. did not show significant change of their surface hardness. Therefore, the selection of irradiation time is an important factor to be considered when irradiated teeth or dental materials are used in the investigations of their properties. (author)

  20. Physical properties and compatibility with dental stones of current alginate impression materials.

    Science.gov (United States)

    Murata, H; Kawamura, M; Hamada, T; Chimori, H; Nikawa, H

    2004-11-01

    This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material.

  1. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  2. A useful and non-invasive microanalysis method for dental restoration materials

    Science.gov (United States)

    Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.

    2012-12-01

    The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.

  3. Additive manufacturing techniques and their biomedical applications

    Directory of Open Access Journals (Sweden)

    Yujing Liu

    2017-12-01

    Full Text Available Additive manufacturing (AM, also known as three-dimensional (3D printing, is gaining increasing attention in medical fields, especially in dental and implant areas. Because AM technologies have many advantages in comparison with traditional technologies, such as the ability to manufacture patient-specific complex components, high material utilization, support of tissue growth, and a unique customized service for individual patients, AM is considered to have a large potential market in medical fields. This brief review presents the recent progress of 3D-printed biomedical materials for bone applications, mainly for metallic materials, including multifunctional alloys with high strength and low Young’s modulus, shape memory alloys, and their 3D fabrication by AM technologies. It describes the potential of 3D printing techniques in precision medicine and community health.

  4. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  5. Determination of dose rate from natural radionuclide in porcelain dental materials

    International Nuclear Information System (INIS)

    Nouri, A.D.; El-Zourgany, A.; Elmashat, Alia; El-Masri, Karima

    2010-01-01

    There are three main aims that make this study particularly important and interesting to radiometric studies. Firstly, it will provides information on the concentration composition of natural and the associated man-made radioactivity of imported dental porcelain materials to be used by most dental laboratories in Great Jamahiriya. Since these materials do not pass radiation inspection tests before their entry or use and there is a large variety of supply source of these dental materials to be used for all dental works on Libyan patients, anomalies can be identified easily. Secondly, the analysis of selective elemental abundance (U, Th, and K ) and dose rate calculations may be used to calculate effective dose rates to dental laboratory technicians and also to the patient who will be using these specific materials. This research project will provide the first results of such measurements and the corresponding average annual effective dose rates equivalent to the patients using these materials and also to the dental technician and doctors work in the various dental laboratories that make use of these materials in their daily work. A total number of 30 dental powder samples were collected from a number of dental laboratories around Tripoli area will be analyzed. In this research project, the results from this preliminary survey regarding Th, U and K elemental concentrations in a wide variety of dental materials by means of high-resolution X-ray spectrometry will be presented. Further results from these investigations concerning activity concentrations and the associated dose rates, effective dose and the committed dose due to the use of these materials are going to be calculated and compared with other published data elsewhere and recommendation of their use will be derived accordingly. (author)

  6. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular Biology, Pharmaceutical Sciences, Biotechnology in relation to Medicine, ...

  7. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects.

    Science.gov (United States)

    Padovani, Gislaine C; Feitosa, Victor P; Sauro, Salvatore; Tay, Franklin R; Durán, Gabriela; Paula, Amauri J; Durán, Nelson

    2015-11-01

    Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization.

    Science.gov (United States)

    Minamikawa, Hajime; Yamada, Masahiro; Iwasa, Fuminori; Ueno, Takeshi; Deyama, Yoshiaki; Suzuki, Kuniaki; Yawaka, Yasutaka; Ogawa, Takahiro

    2010-10-01

    Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

  9. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  10. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. [Influence of the fluoride releasing dental materials on the bacterial flora of dental plaque].

    Science.gov (United States)

    Płuciennik, Małgorzata; Sakowska, Danuta; Krzemiński, Zbigniew; Piatowska, Danuta

    2008-01-01

    The assessment of influence of silver-free, fluor releasing dental materials on dental plaque bacteria quantity. 17 patients were included into the study. 51 restorations were placed following manufacturers recommendations. Following materials were used: conventional glassionomer Ketac-Molar ESPE, resin modified glassionomer Fuji II LC GC and fluor containing composite Charisma Heraeus Kulzer Class V restorations were placed in following teeth of upper and lower jaw: canines, first bicuspids, second bicuspids. Sound enamel was a control. After 10 weeks the 72 hours old dental plaque was collected from surface of restorations and control using sterile probe. Total amount of 68 dental plaques were investigated. Each plaque was placed on scaled and sterile aluminum foil. The moist weight of dental plaque was scaled. Dental plaque was moved into 7 ml 0.85% NaCl solution reduced by cystein chlorine hydrogen and disintegrated by ultrasounds (power:100 Watt, wave amplitude: 5 micorm). The suspension of dental plaque was serially diluted from 10(-4) to 10(-5) in sterile 0,85% NaCl solution, and seeded with amount of 0.1 ml on appropriate base. In dental plaque trials the amount of cariogenic bacteria was calculated--Streptococcus mutans, Streptococcus, Lactobacillus, Veillonella and Neisseria, and also total amount of aerobic and anaerobic bacteria was measured. Microbiologic studies were performed in Institute of Microbiology, Medical University, Łódź. Statistical analysis of collected data was accomplished. In 72 hours old dental plaques collected from the surfaces of Ketac -Molar, Fuji II LC, Charisma after 10 weeks since being placed into the class V cavity, results show no statistically significant differences in the amount of Streptococcus mutans, Streptococcus spp., Lactobacillus spp., Veillonella spp., Neisseria spp, in total amount of aerobic and anaerobic bacteria and in the quantity proportion of Streptococcus mutans versus Streptococcus spp. in comparison

  12. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2013-01-01

    The aim of this study was to evaluate the fluoride release of five fluoride-releasing restorative materials and three dental adhesives, before and after NaF solution treatment. Five restorative materials (Fuji IX GP, GC Corp.; Ketac N100, 3M ESPE; Dyract Extra, Dentsply; Beautifil II, Shofu Inc.; Wave, SDI) and three dental adhesives (Stae, SDI; Fluorobond II - Shofu Inc.; Prime & Bond NT, Dentsply) were investigated before and after NaF solution treatment. A fluoride ion-selective electrode was to measure fluoride concentrations. During the 86-day period before NaF solution treatment, Fuji IX GP released the highest amount of fluoride among the restorative materials while Prime & Bond NT was the highest among the dental adhesives. After NaF solution treatment, Fuji IX GP again ranked the highest in fluoride release among the restorative materials while Fluorobond II ranked the highest among dental adhesives. It was concluded that the compositions and setting mechanisms of fluoride-containing dental materials influenced their fluoride release and recharge abilities.

  13. Current biomedical waste management practices and cross-infection control procedures of dentists in India.

    Science.gov (United States)

    Singh, Balendra Pratap; Khan, Suleman A; Agrawal, Neeraj; Siddharth, Ramashanker; Kumar, Lakshya

    2012-06-01

    To investigate the knowledge, attitudes and behaviour of dentists working in dental clinics and dental hospitals regarding biomedical waste management and cross-infection control. A national survey was conducted. Self-administered questionnaires were sent to 800 dentists across India. A total of 494 dentists responded, giving a response rate of 61.8%. Of these, 228 of 323 (70.6%) general dentists reported using boiling water as a sterilising medium and 339 (68.6%) dentists reported disposing of hazardous waste such as syringes, blades and ampoules in dustbins and emptying these into municipal corporation bins. Dentists should undergo continuing education programmes on biomedical waste management and infection control guidelines. Greater cooperation between dental clinics and hospitals and pollution control boards is needed to ensure the proper handling and disposal of biomedical waste. © 2012 FDI World Dental Federation.

  14. Adhesive dental materials

    International Nuclear Information System (INIS)

    Unlu, N.

    2005-01-01

    Two main classes of material are involved, the glass-ionomer cements and the composite resins. This investigation describes the way they are bonded to the tooth and highlights their differences. Glass ionomers develop a zone of interaction with the tooth as they age which ultimately gives an extremely strong bond, and results in excellent retention rates. By contrast, bonding of composite resins is more complicated and possibly less effective, though these materials have better wear resistance and better aesthetics than glass ionomers. Assessment of bond durability is difficult. This is because a dental restorative can fail by a number of mechanisms apart from de bonding: for example, through wear or fracture

  15. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  16. An evaluation of dental operative simulation materials.

    Science.gov (United States)

    He, Li-Hong; Foster Page, Lyndie; Purton, David

    2012-01-01

    The study was to evaluate the performance of different materials used in dental operative simulation and compare them with those of natural teeth. Three typical phantom teeth materials were compared with extracted permanent teeth by a nanoindentation system and evaluated by students and registered dentists on the drilling sensation of the materials. Moreover, the tool life (machinability) of new cylindrical diamond burs on cutting the sample materials was tested and the burs were observed. Although student and dentist evaluations were scattered and inconclusive, it was found that elastic modulus (E) and hardness (H) were not the main factors in determining the drilling sensation of the materials. The sensation of drilling is a reflection of cutting force and power consumption.An ideal material for dental simulation should be able to generate similar drilling resistance to that of natural tooth, which is the machinability of the material.

  17. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  18. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  19. Bioactive materials for biomedical applications using sol-gel technology

    International Nuclear Information System (INIS)

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    This review paper focuses on the sol-gel technology that has been applied in many of the potential research areas and highlights the importance of sol-gel technology for preparing bioactive materials for biomedical applications. The versatility of sol-gel chemistry enables us to manipulate the characteristics of material required for particular applications. Sol-gel derived materials have proved to be good biomaterials for coating films and for the construction of super-paramagnetic nanoparticles, bioactive glasses and fiberoptic applicators for various biomedical applications. The introduction of the sol-gel route in a conventional method of preparing implants improves the mechanical strength, biocompatibility and bioactivity of scaffolds and prevents corrosion of metallic implants. The use of organically modified silanes (ORMOSILS) yields flexible and bioactive materials for soft and hard tissue replacement. A novel approach of nitric-oxide-releasing sol-gels as antibacterial coatings for reducing the infection around orthopedic implants has also been discussed

  20. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  1. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  2. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  3. Optical investigations of various polymeric materials used in dental technology

    Science.gov (United States)

    Negrutiu, Meda Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Ionita, Ciprian; Goguta, Luciana; Marcauteanu, Corina; Rominu, Mihai; Podoleanu, Adrian Gh.

    2011-10-01

    Dental prosthetic restorations have to satisfy high stress as well as aesthetic requirements. In order to avoid deficiencies of dental prostheses, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Increasing the biomechanical comportment of polymeric materials implies fiber reinforcing. The different fibers reinforcing products made very difficult the evaluation of their performances and biomechanical properties analysis. There are several known methods which are used to assess the quality of dental prostheses, but most are invasive. These lead to the destruction of the samples and often no conclusion could be drawn in the investigated areas of interest. Using a time domain en-face OCT system, we have recently demonstrated real time thorough evaluation of quality of various dental treatments. The aim of this study was to assess the quality of various polymeric materials used in dental technology and to validate the en face OCT imagistic evaluation of polymeric dental prostheses by using scanning electron microscopy (SEM) and microcomputer tomography (μCT). SEM investigations evidenced the nonlinear aspect of the interface between the polymeric material and the fiber reinforcement and materials defects in some samples. The results obtained by microCT revealed also some defects inside the polymeric materials and at the interfaces with the fiber reinforcement. The advantages of the OCT method consist in non-invasiveness and high resolution. In addition, en face OCT investigations permit visualization of the more complex stratified structure at the interface between the polymeric material and the fiber reinforcement.

  4. Today's threat is tomorrow's crisis: advocating for dental education, dental and biomedical research, and oral health.

    Science.gov (United States)

    Bresch, Jack E; Luke, Gina G; McKinnon, Monette D; Moss, Myla J; Pritchard, Daryl; Valachovic, Richard W

    2006-06-01

    The current political environment in the nation's capital threatens federal support for programs vital to the academic dental community. To develop a strong cadre of advocates who can deliver an effective and unified message to members of Congress on behalf of dental education and dental research, the American Dental Education Association (ADEA) and the American Association for Dental Research (AADR) created a new organizational structure: the National Oral Health Advocacy Committee (NOHAC) and the National Advocacy Network (NAN). The basic skills and knowledge required to function as an effective advocate include an understanding of the political environment, a working knowledge of the legislative processes and the political players, and the ability to build and work with grassroots networks and coalitions. NOHAC and NAN are designed to provide leadership in these areas to support effective advocacy for dental education and dental research.

  5. Dental ceramics: a review of new materials and processing methods.

    Science.gov (United States)

    Silva, Lucas Hian da; Lima, Erick de; Miranda, Ranulfo Benedito de Paula; Favero, Stéphanie Soares; Lohbauer, Ulrich; Cesar, Paulo Francisco

    2017-08-28

    The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  6. Various Effects of Sandblasting of Dental Restorative Materials.

    Directory of Open Access Journals (Sweden)

    Goro Nishigawa

    Full Text Available Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials.We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC group and non-ultrasonic cleaning (NUSC group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength.For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group.Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials.

  7. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth

    Directory of Open Access Journals (Sweden)

    GORAN M. NIKOLIC

    2004-07-01

    Full Text Available Potentiometric stipping analysis (PSA was applied for the determination of lead and cadmium leaching from dental prosthetic materials and teeth. The soluble lead content in finished dental implants was found to be much lower than that of the individual components used for their preparation. Cadmium was not detected in dental implants and materials under the defined conditions. The soluble lead and cadmium content of teeth was slightly lower than the lead and cadmium content in whole teeth (w/w reported by other researchers, except in the case of a tooth with removed amalgam filling. The results of this work suggest that PSA may be a good method for lead and cadmium leaching studies for investigation of the biocompatibility of dental prosthetic materials.

  8. Dental ceramics: a review of new materials and processing methods

    Directory of Open Access Journals (Sweden)

    Lucas Hian da SILVA

    2017-08-01

    Full Text Available Abstract The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I monolithic zirconia restorations; II multilayered dental prostheses; III new glass-ceramics; IV polymer infiltrated ceramics; and V novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.

  9. 3D printed versus conventionally cured provisional crown and bridge dental materials.

    Science.gov (United States)

    Tahayeri, Anthony; Morgan, MaryCatherine; Fugolin, Ana P; Bompolaki, Despoina; Athirasala, Avathamsa; Pfeifer, Carmem S; Ferracane, Jack L; Bertassoni, Luiz E

    2018-02-01

    To optimize the 3D printing of a dental material for provisional crown and bridge restorations using a low-cost stereolithography 3D printer; and compare its mechanical properties against conventionally cured provisional dental materials. Samples were 3D printed (25×2×2mm) using a commercial printable resin (NextDent C&B Vertex Dental) in a FormLabs1+ stereolithography 3D printer. The printing accuracy of printed bars was determined by comparing the width, length and thickness of samples for different printer settings (printing orientation and resin color) versus the set dimensions of CAD designs. The degree of conversion of the resin was measured with FTIR, and both the elastic modulus and peak stress of 3D printed bars was determined using a 3-point being test for different printing layer thicknesses. The results were compared to those for two conventionally cured provisional materials (Integrity ® , Dentsply; and Jet ® , Lang Dental Inc.). Samples printed at 90° orientation and in a white resin color setting was chosen as the most optimal combination of printing parameters, due to the comparatively higher printing accuracy (up to 22% error), reproducibility and material usage. There was no direct correlation between printing layer thickness and elastic modulus or peak stress. 3D printed samples had comparable modulus to Jet ® , but significantly lower than Integrity ® . Peak stress for 3D printed samples was comparable to Integrity ® , and significantly higher than Jet ® . The degree of conversion of 3D printed samples also appeared higher than that of Integrity ® or Jet ® . Our results suggest that a 3D printable provisional restorative material allows for sufficient mechanical properties for intraoral use, despite the limited 3D printing accuracy of the printing system of choice. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations.

    Science.gov (United States)

    Hedayat, Assem; Nagy, Nicole; Packota, Garnet; Monteith, Judy; Allen, Darcy; Wysokinski, Tomasz; Zhu, Ning

    2016-05-01

    Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non-biocompatible material. Non-destructive micro-computed tomography using the BioMedical Imaging & Therapy facility 05ID-2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X-ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide-cobalt, which is bio-incompatible.

  11. Characterization of the ODS MA 956 superalloy for biomedical surgical implants

    International Nuclear Information System (INIS)

    Escudero, M.L.; Ruiz, J.; Gonzalez-Carrasco, J.L.; Chao, J.; Lopez, M.F.; Garcia-Alonso, M.C.; Canahua, H.; Adeva, P.; Coedo, A.G.; Dorado, M.T.; Rubio, J.C.; Martinez, M.E.; Munuera, L.; Agustin, D. de; Ruiz, J.

    1998-01-01

    Since the MA 956 was proposed as a possible new biomaterial due to its good corrosion resistance values in physiological fluids a long way, still not finished, has been done. An exhaustive characterization of this alloy at room temperature has been developed. The technological objectives are well established: the possible use of this material for biomedical as hip or knee prostheses and as dental implants. The study was performed comparing the results of this alloy with the materials used nowadays as surgical implants, i.e., titanium alloys and polyethylene. (Author) 5 refs

  12. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  13. DEGREE OF AWARENESS OF SOFT RELINING MATERIALS BY DENTAL TECHNICIANS

    Directory of Open Access Journals (Sweden)

    Ilian Hristov

    2017-10-01

    Full Text Available The aim of the current investigation is to analyze the dental-technicians’ awareness of the soft relining materials, their characteristics, advantages, shortcomings and methods for relining. Materials and methods: For the purpose of this investigation a standard questionnaire has been presented. A direct survey method, documentary and statistical method, as well as graphical methods, including tables, charts, graphics and figures, were used. Data were analysed with the help of IBM SPSS Statistics (ver. 19. Results: One hundred and eight dental technicians were included in the survey, evenly distributed by gender. Removable and fixed prosthodontics is the most commonly mentioned spheres of dental activities. Almost all included in the investigation point out the laboratory relining method as the most frequently used. Acrylic and silicone SRM are the most used groups of relining materials. Change of colour and hardness are the most frequently noticed shortcomings of these materials. The majority of the dental technicians declare that they have never done replacement of SRM or the relining has lasted more than a year. Discussion: The correlation between the age and the years of labour service among the participants is quite obvious. Most of them start working soon after their graduation. Removable prosthodontics is among the priorities for the majority of the labs. Conclusion: Although their unambiguous advantages, the soft relining materials have lots of shortcomings as well. The major problems are connected with their change of colour and hardness. Nevertheless, the dental technicians find them useful and reliable in overcoming specific prosthetic problems.

  14. Equity in children's dental caries before and after cessation of community water fluoridation: differential impact by dental insurance status and geographic material deprivation.

    Science.gov (United States)

    McLaren, Lindsay; McNeil, Deborah A; Potestio, Melissa; Patterson, Steve; Thawer, Salima; Faris, Peter; Shi, Congshi; Shwart, Luke

    2016-02-11

    One of the main arguments made in favor of community water fluoridation is that it is equitable in its impact on dental caries (i.e., helps to offset inequities in dental caries). Although an equitable effect of fluoridation has been demonstrated in cross-sectional studies, it has not been studied in the context of cessation of community water fluoridation (CWF). The objective of this study was to compare the socio-economic patterns of children's dental caries (tooth decay) in Calgary, Canada, in 2009/10 when CWF was in place, and in 2013/14, after it had been discontinued. We analyzed data from population-based samples of schoolchildren (grade 2) in 2009/10 and 2013/14. Data on dental caries (decayed, missing, and filled primary and permanent teeth) were gathered via open mouth exams conducted in schools by registered dental hygienists. We examined the association between dental caries and 1) presence/absence of dental insurance and 2) small area index of material deprivation, using Poisson (zero-inflated) and logistic regression, for both time points separately. For small-area material deprivation at each time point, we also computed the concentration index of inequality for each outcome variable. Statistically significant inequities by dental insurance status and by small area material deprivation were more apparent in 2013/14 than in 2009/10. Results are consistent with increasing inequities in dental caries following cessation of CWF. However, further research is needed to 1) confirm the effects in a study that includes a comparison community, and 2) explore possible alternative reasons for the findings, including changes in treatment and preventive programming.

  15. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    Science.gov (United States)

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  16. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  17. Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus.

    Science.gov (United States)

    Radini, Anita; Nikita, Efthymia; Buckley, Stephen; Copeland, Les; Hardy, Karen

    2017-01-01

    Dental calculus (mineralized dental plaque) was first recognised as a potentially useful archaeological deposit in the 1970s, though interest in human dental calculus as a resource material has increased sharply in the past few years. The majority of recent research has focused on the retrieval of plant microfossils embedded in its matrix and interpretation of these finds as largely the result of deliberate consumption of plant-derived food. However, while most of the material described in published works does represent food, dental calculus is in fact a "depositional environment" as material can enter the mouth from a range of sources. In this respect, it therefore represents an archaeological deposit that can also contain extensive non-dietary debris. This can comprise a wide variety of cultural and environmental material which reaches the mouth and can become embedded in dental calculus through alternative pathways. Here, we explore the human behaviors and activities besides eating that can generate a flux of particles into the human mouth, the broad range of additional cultural and environmental information that can be obtained through the analysis and contextualisation of this material, and the implications of the additional pathways by which material can become embedded in dental calculus. © 2017 American Association of Physical Anthropologists.

  18. Applicability of existing magnesium alloys as biomedical implant materials

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.; Mannens, R.G.T.M.; Werkhoven, R.J.

    2009-01-01

    Being biocompatible and biodegradable, magnesium alloys are considered as the new generation biomedical implant materials, such as for stents, bone fixtures, plates and screws. A major drawback is the poor chemical stability of metallic magnesium; it corrodes at a pace that is too high for most

  19. Nigerian Journal of Health and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    Biomedical Engineering Biotechnology in relation to Medicine Clinical Sciences Dental Sciences Environment and Health Health Economics and Management Health Information Management Hygiene and Health Education Legal Aspects of Healthcare Medical Education Nursing Sciences Pharmaceutical Sciences

  20. Presence and leaching of bisphenol a (BPA) from dental materials

    Science.gov (United States)

    Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig

    2018-01-01

    Abstract BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow® and the fissure sealant DELTON® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure. PMID:29868625

  1. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    Science.gov (United States)

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  2. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  3. The presence of antimony in various dental filling materials

    International Nuclear Information System (INIS)

    Molokhia, Anat; Combe, E.C.; Lilley, J.D.

    1985-01-01

    Antimony was determined in a number of non-metallic dental materials currently used for tooth restoration. The method applied was instrumental neutron activation analysis. The concentration of antimony in some of the brands tested was found to be as high as 900 fold that in the normal hard dental tissues. (author)

  4. Artifacts by dental materials on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Choi, Deuk Lin; Kim, Ki Jung; Suh, Won Hyuck

    1992-01-01

    Magnetic resonance imaging (MRI) has proved to be a valuable method for evaluation of the head and neck. Unfortunately, metallic devices associated with certain dental fillings and appliances often cause variable artifacts that can obscure normal or pathologic conditions on MR and computed tomography. In this work, we assessed the MR appearance of dental prosthetic materials in vitro and in vivo including precious alloys, nonprecions alloys, resin, amalgam and titanium alloy. For in vivo studies, these materials were placed in healthy volunteer's mouths and then images were assessed. Analysis of the appearance of shape and extent of artifact, and observed influence of these artifacts on the image interpretation at 0.2 Tesla permanent type MR scanner were valuated. Material used as temporary or permanent filling of crowns such as amalgam, precious alloy and, microfilled resin did not cause artifact on the image. The size of the artifact produced by the nonprecious alloys was influenced by the ferromagnetism of the object and the volume prosthesis, and was related to the scanning sequence. Nonprecious alloys produced minimal local signal distortion, where precious alloys, and dental resin had no effect on the MR images in vivo. These results were mainly from a low field strength MR scanner used in this study

  5. The Relative Patient Costs and Availability of Dental Services, Materials and Equipment in Public Oral Care Facilities in Tanzania.

    OpenAIRE

    Nyamuryekung'e, Kasusu K; Lahti, Satu M; Tuominen, Risto J

    2015-01-01

    Background Patient charges and availability of dental services influence utilization of dental services. There is little available information on the cost of dental services and availability of materials and equipment in public dental facilities in Africa. This study aimed to determine the relative cost and availability of dental services, materials and equipment in public oral care facilities in Tanzania. The local factors affecting availability were also studied. Methods A survey of all dis...

  6. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  7. Endocrine disruptors and dental materials: health implications associated with their use in Brazil

    Directory of Open Access Journals (Sweden)

    Coelho Antonio Jorge Molinário

    2002-01-01

    Full Text Available This study analyzes international historical trends in the use of different types of materials in dental practice. The author describes the chemical properties of their ingredients and the potential and observed adverse effects in patients and dental technicians resulting from clinical or occupational exposure to various metals like beryllium, used to produce metal alloys. The growing use of various products (resin cements, ionomer cements, aesthetic restorative materials, resins, endodontal cements, and others based on the compound bisphenol-A, whose chemical structure is similar to that of estrogen. Considering the demographic and contemporary work force characteristics of those involved in dental practice in the Brazil, the study highlights the possible effect of the use of these materials in both male and female patients and all age strata, as well as in health professionals with occupational exposure to products containing bisphenol-A.

  8. SU-E-T-89: Characterization of Dental Restoration Material for Cs-137 Radiation Dosimetry.

    Science.gov (United States)

    Ratliff, S; Gustafson, B; Barry, K

    2012-06-01

    The purpose of this work is to characterize the radiation-induced thermoluminescence properties of a dental restoration material and to see if the material might be feasible for use in retrospective radiation dosimetry. Retrospective, or accidental, dosimetry is the study of using nearby materials to measure radiation received by individuals. In this project we obtained samples of Ivoclar Vivadent e.max CAD material, a glass-ceramic used for making dental restorations such as full or partial crowns. The samples were machined into square chips .32 cm × .32 cm × .089 cm and annealed in the same furnace used by the dentist. The samples were exposed to a Cs-137 source using a PMMA source holder and then read in a Harshaw 3500 TLD reader. The samples were read without nitrogen gas flux using heating rates of 5 degrees C/s or 10 degrees C/s up to a maximum temperature of 400 degrees Celsius. The glow curves were analyzed using Systat PeakFIT peak-fitting software and Microsoft Excel spreadsheets. The authors gratefully thank Dr. Aaron Imdieke and the staff of River City Dental, St. Cloud, MN for the dental restoration materials and the use of their dental furnace. A sample subjected to a radiation exposure of .04 C/kg exhibits a glow curve with a prominent peak at approximately 140 degrees Celsius, which is well-modeled by the first order glow curve deconvolution formula developed by Kitis, Gomez-Ros, and Tuyn. The activation energy corresponding to this peak is approximately 1 eV. The thermoluminescent signal fades with time after exposure. Ivoclar Vivadent e.max CAD dental restoration material has the potential to be used as a material for retrospective Cs-137 radiation dosimetry. Future work could look at its thermoluminescent dosimetry properties in more detail and also at other dental restoration materials. The authors would like to thank Dr. Aaron Imdieke and the staff of River City Dental, St. Cloud, MN, for the donation of scrap dental restoration materials and

  9. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    Science.gov (United States)

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications.

    Science.gov (United States)

    De Sanctis, A; Russo, S; Craciun, M F; Alexeev, A; Barnes, M D; Nagareddy, V K; Wright, C D

    2018-06-06

    Graphene-based materials are being widely explored for a range of biomedical applications, from targeted drug delivery to biosensing, bioimaging and use for antibacterial treatments, to name but a few. In many such applications, it is not graphene itself that is used as the active agent, but one of its chemically functionalized forms. The type of chemical species used for functionalization will play a key role in determining the utility of any graphene-based device in any particular biomedical application, because this determines to a large part its physical, chemical, electrical and optical interactions. However, other factors will also be important in determining the eventual uptake of graphene-based biomedical technologies, in particular the ease and cost of manufacture of proposed device and system designs. In this work, we describe three novel routes for the chemical functionalization of graphene using oxygen, iron chloride and fluorine. We also introduce novel in situ methods for controlling and patterning such functionalization on the micro- and nanoscales. Our approaches are readily transferable to large-scale manufacturing, potentially paving the way for the eventual cost-effective production of functionalized graphene-based materials, devices and systems for a range of important biomedical applications.

  11. Interpenetrating network ceramic-resin composite dental restorative materials.

    Science.gov (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Legal analysis of information displayed on dental material packages: An exploratory research

    Directory of Open Access Journals (Sweden)

    Bhumika Rathore

    2016-01-01

    Full Text Available Introduction: Some of the dental materials possess occupational hazards, preprocedural errors, and patient allergies as suggested by evidence. With due consideration to safety of the patients and dental professionals, it is essential that the trade of these materials is in conformity with the law. Aim: To perform the legal analysis of the information displayed on the packaging of dental materials. Materials and Methods: The Bureau of Indian Standards sets guidelines for packaging and marketing of dental products in India. An exploratory cross-sectional study was performed using various search engines and websites to access the laws and regulations existing pertaining to dental materials packaging. Based on the data obtained, a unique packaging standardization checklist was developed. Dental laboratory and impression plasters, alginates, and endodontic instruments were surveyed for all the available brands. This study considered 16 brands of plasters and alginates and 42 brands of endodontic instruments for legal analysis. Legal analysis was performed using the direct observation checklist. Descriptive statistics were obtained using SPSS version 19. Results: The guidelines set by the Bureau of Indian Standards do exist but are not updated and stand as oblivious guards for marketing standards. Overall compliance to the guidelines was reported to be 18.5% by brands of alginates, 4.1% by plaster of Paris, and 11.11% by endodontic instruments. Wave One™ File reported maximum adherence with the guidelines as 66.7%. Conclusion: This study found lower rate of adherence to the guidelines, thus indicating insufficient information being disclosed to the consumers.

  13. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  14. FULERENIC MATERIALS WITH BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Radu Claudiu FIERASCU

    2010-05-01

    Full Text Available Soluble fullerenic derivates are essential for numerous biomedical techniques that exploit the unique structural chemical and physical properties of carbon nanospheres. Their toxicity, demonstrated in vitro and in vivo is important for the characterization and limitation of those applications. The phototoxicity of some fullerene molecules was identified as a future therapeutical instrument. Other studies focused on the decrease of the phototoxicity of hydrosoluble fullerenes follow the use of those compounds as drug delivery systems or their use in environment protection. Starting from the characteristics of those compounds, which can be by themeselves cytotoxic, or could become during irradiation (photosensitizers we have tried to obtain new materials based on fullerenes and diads/triads fullerene/porphyrines or fullerenes/calixarenes.The obtained complexes were characterized by UV Vis and IR spectroscopy.

  15. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis.

    Science.gov (United States)

    Rudolph, Heike; Graf, Michael R S; Kuhn, Katharina; Rupf-Köhler, Stephanie; Eirich, Alfred; Edelmann, Cornelia; Quaas, Sebastian; Luthardt, Ralph G

    2015-01-01

    Among other factors, the precision of dental impressions is an important and determining factor for the fit of dental restorations. The aim of this study was to examine the three-dimensional (3D) precision of gypsum dies made using a range of impression techniques and materials. Ten impressions of a steel canine were fabricated for each of the 24 material-method-combinations and poured with type 4 die stone. The dies were optically digitized, aligned to the CAD model of the steel canine, and 3D differences were calculated. The results were statistically analyzed using one-way analysis of variance. Depending on material and impression technique, the mean values had a range between +10.9/-10.0 µm (SD 2.8/2.3) and +16.5/-23.5 µm (SD 11.8/18.8). Qualitative analysis using colorcoded graphs showed a characteristic location of deviations for different impression techniques. Three-dimensional analysis provided a comprehensive picture of the achievable precision. Processing aspects and impression technique were of significant influence.

  16. Developing a flexible core Dental Public Health curriculum for predoctoral dental and dental hygiene schools.

    Science.gov (United States)

    Atchison, Kathryn; Mascarenhas, Ana Karina; Bhoopathi, Vinodh

    2015-01-01

    The curriculum for graduating dental and dental hygiene students must prepare them to contribute to the improvement or maintenance of health for individual patient's and the public's health. The objective is to describe the background for and the process used to develop a core Dental Public Health Curriculum for such students. The process used was to solicit and review existing dental public health curriculum in dental and dental hygiene schools; review curriculum for other health professionals; identify the themes needed to frame the curriculum; select usable materials and identify gaps in existing curricular materials; and develop appropriate curriculum materials that would embody the competencies developed for undergraduate dental and dental hygiene education. Twenty-three topics were identified as embodying the eight competencies. Based on these topics, six courses, Principles of Dental Public Health, Evidence-Based Dentistry, Ethics and Dental Public Health, Dental Public Health Policy and Advocacy, Oral Health Promotion and Disease Prevention, and Oral Health Literacy and Dental Public Health, were prepared. Each course includes syllabus, PowerPoint presentations, student assignments and activities, instructor guide, and classroom discussion points. Depending on the hours available in the existing curriculum at the dental or hygiene school, lecture presentations and take home assignments/discussions may be used independently or in combination with presentations from other courses. In addition, individual discussions and activities may be used to integrate dental public health materials into other courses. A flexible curriculum is available at the AAPHD website to enable the incorporation of DPH topics into the curriculum. © 2015 American Association of Public Health Dentistry.

  17. Measurement of absorbed doses near metal and dental material interfaces irradiated by x- and gamma-ray therapy beams

    International Nuclear Information System (INIS)

    Farahani, M.; Eichmiller, F.C.; McLaughlin, W.L.

    1990-01-01

    Soft-tissue damage adjacent to dental restorations is a deleterious side effect of radiation therapy associated with low-energy electron scatter from dental materials of high electron density. This study was designed to investigate the enhancement of dose to soft tissue (or water) close to high electron-density materials and to measure the detailed lateral and depth-dose profiles in soft-tissue-simulating polymer adjacent to planar interfaces of several higher atomic-number materials: 18-carat gold dental casting alloy; Ag-Hg dental amalgam alloy; Ni-Cr dental casting alloy; and natural human tooth structure. Results indicate that the dose-enhancement in 'tissue' is as great as a factor of 2 on the backscatter side adjacent to gold and a factor of 1.2 adjacent to tooth tissue, but is insignificant on the forward-scatter side because of the predominant effect of attenuation by the high-density, high atomic-number absorbing material. (author)

  18. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.

    Science.gov (United States)

    Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath

    2018-01-30

    Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be

  19. [Clinical and microbiological study regarding surface antibacterial properties of bioactive dental materials].

    Science.gov (United States)

    Târcă, T; Bădescu, Aida; Topoliceanu, C; Lăcătuşu, St

    2010-01-01

    In the new era of dentistry the coronal restoration materials must possess "bio-active" features represented by fluor ions release, chemical adhesion and antibacterial agents. Our study aims to determine the surface antibacterial properties of glassionomer cements and compomers. The study group included 64 patients with high cariogenic risk with 80 teeth with acute and chronic dental caries affecting proximal and occlusal dental surfaces. The teeth with cariogenic lesions were restored with zinc-oxide-eugenol (n=20), glassionomer cement GC Fuji Triage (n=20), glassionomer cement modified with resins Fuji II LC (n=20), compomer Dyract (n=20). DENTOCULT SM test (Orion Diagnostica, Finland) was used for bacterial analyses. The samples from bacterial biofilm were collected from the restorated dental surfaces (study group) and intact enamel surfaces (control group). The recorded data were processed using non-parametrical statistical tests. The lowest mean value of bacterial indices was recorded for glassionomer cement Fuji Triage (0.4), and Fuji II LC (1.2), material with highest surface antibacterial properties. The highest value (1.5) was recorded for compomer Dyract. The Kruskal-Wallis test proves the significant statistical differences between the three bioactive materials. The materials with bioactive features have the ability to inhibate the growth of Streptococcus mutans in bacterial biofilm to the surfaces of coronal restoration.

  20. IN VITRO TESTING – AN ESENTIAL METHOD FOR EVALUATING THE PERFORMANCE OF DENTAL MATERIALS AND DEVICES

    Directory of Open Access Journals (Sweden)

    Anca VIŢALARIU

    2015-06-01

    Full Text Available Dentistry is unique among biomaterials specialties as to the large variety of materials used, and nature of the challenges they must resist. Intra-oral service demands materials adapted to a warm and moist environment, resisting the attack of digestive acids and enzymes. The materials subjected to mechanical forces should preserve their strength, fatigue and wear characteristics, for accomplishing their function. The wide range of materials available for restorative dentistry demands knowledge of their relative strengths and trade-offs, and offers the opportunity for many interesting lines of research. The spectrum extensively ranges from elastic impression materials to extremely stiff metal and ceramic appliances, so that familiarity with a variety of mechanical testing situations is required from a well-rounded dental materials laboratory. Evaluating the mechanical and wear characteristics of dental restorative materials and analyzing the durability of adhesives is critical to the development of improved dental devices

  1. Knowledge, Attitude and Perception Regarding Biostatistics Among Postgraduate Students in Dental Institutions of Andhra Pradesh

    OpenAIRE

    Gautami S Penmetsa; Kavyamala Dubba; Zabirunnisa Mohammad

    2017-01-01

    Introduction: Biostatistics is a discipline concerned with how we ought to make decisions when analysing biomedical data. As statistics is desirable at every stage of research to obtain scientifically important information and reliable results, the importance of biostatistics should definitely be informed to the researchers in health sciences. Aim: To evaluate the knowledge, attitude and perception of dental professionals towards biostatistics. Materials and Methods: A cross-sectional study w...

  2. 1.4 Research and the dental student

    DEFF Research Database (Denmark)

    DePaola, Dominick; Howell, Howard; Baker, Charles G

    2002-01-01

    complications of cancer treatment; the treatments of HIV/AIDS diseases and hepatitis; the use of dental and dental hygiene staff on health-care teams to deal with issues such as birth defects, orofacial trauma, head and neck cancer, chronic pain management and so on. There seems to be an excessive emphasis......There has been significant concern that the dental curriculum and system of clinical education, in particular, is not designed to take advantage of the explosion in knowledge in biomedical science and its application to the health of the public. Although there are some examples of innovations...

  3. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  4. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  5. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  6. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  7. Construction of Multimedia Courseware and Web-based E-Learning Courses of "Biomedical Materials".

    Science.gov (United States)

    Xiaoying, Lu; Jian, He; Tian, Qin; Dongxu, Jiang; Wei, Chen

    2005-01-01

    In order to reform the traditional teaching methodology and to improve the teaching effect, we developed new teaching system for course "Biomedical Materials" in our university by the support of the computer technique and Internet. The new teaching system includes the construction of the multimedia courseware and web-based e-learning courses. More than 2000 PowerPoint slides have been designed and optimized and flash movies for several capitals are included. On the basis of this multimedia courseware, a web-based educational environment has been established further, which includes course contents, introduction of the teacher, courseware download, study forum, sitemap of the web, and relative link. The multimedia courseware has been introduced in the class teaching for "Biomedical Materials" for 6 years and a good teaching effect has been obtained. The web-based e-learning courses have been constructed for two years and proved that they are helpful for the students by their preparing and reviewing the teaching contents before and after the class teaching.

  8. Clinical characteristics of an allergic reaction to a polyether dental impression material.

    Science.gov (United States)

    Rafael, Caroline Freitas; Liebermann, Anja

    2017-04-01

    Allergic and hypersensitivity reactions to dental impression materials may occur throughout dental treatment, with diverse manifestations from slight redness to severe pain and a burning mouth with total stomatitis. Patients are often unaware of these allergic reactions, which makes early identification of the cause almost impossible. In addition, symptoms usually begin after 24 hours and mostly in patients with a preexisting history of allergic responses. This report describes a patient with a suspected allergic reaction to a polyether dental impression material during prosthetic rehabilitation associated with a mandibular telescopic denture. Although instances of such occurrence are rare, clinicians need to be aware of these symptoms and select materials carefully for patients with a history of allergy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Advances in dental veneers: materials, applications, and techniques.

    Science.gov (United States)

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  10. PIXE analysis of trace and other mineral elements in Romanian dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E. A.; Iordan, Andreea; Harangus, Livia; Ciortea, C.; Moldovan, Maria

    2002-01-01

    Dental composites made of silicates and oxides particles embedded in an organic polymer, show a dynamic evolution but are rather expensive. Recently, the Romanian biomaterial 'Restacril' offered a low-cost alternative. Because the durability of the composite dental fillings depends both on the main chemical composition and on the impurities that may influence the inorganic particles' properties and thus modifying the bio material clinical behaviour, the elemental analysis of the material is necessary for improving its quality. Particle-induced X-ray emission (PIXE), a sensitive method for multielemental trace detection widely used in biomedical applications, allowed us to evidence 21 mineral elements with Z > 14 in some commercial dental composites. Here we evaluate the performances of PIXE for the control of dental composites by carrying out qualitative analysis of three Romanian biomaterials. PIXE measurements on thick composite samples with a flat surface were done with 3 MeV protons at the NIPNE-HH (Horia Hulubei National Institute for Physics and Nuclear Engineering) tandem accelerator, using a hyper-pure Ge detector, 30 mm thick Al absorber foil and integration of beam current. Up to 21 elements with Z > 19 were detected: K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Ga, Sr, Zr, Nb, Ru, Ag, Ba, Yb, Nd, Hf, Au, As and Pb. The orders of magnitude of relative concentrations were evaluated using X-ray yields obtained for another light element thick composite target. The Romanian composites have specific and diverse compositions, containing a great number of minor and trace elements, many of whom are impurities. Use of higher purity raw materials is suggested to reduce the latter and improve the materials' quality. Refinement of X-ray yields by better matching matrixes calculations and use of concentration standards are proposed for quantitative PIXE analysis of the dental composites. (authors)

  11. Backscattering from dental restorations and splint materials during therapeutic radiation

    International Nuclear Information System (INIS)

    Farman, A.G.; Sharma, S.; George, D.I.; Wilson, D.; Dodd, D.; Figa, R.; Haskell, B.

    1985-01-01

    Models were constructed to simulate as closely as possible the human oral cavity. Radiation absorbed doses were determined for controls and various test situations involving the presence of dental restorative and splint materials during cobalt-60 irradiation of the models. Adjacent gold full crowns and adjacent solid dental silver amalgam cores both increased the dose to the interproximal gingivae by 20%. Use of orthodontic full bands for splinting the jaws increased the dose to the buccal tissues by an average of 10%. Augmentation of dose through backscatter radiation was determined to be only slight for intracoronal amalgam fillings and stainless steel or plastic bracket splints

  12. Investigation on adhering properties of dental materials by means of radioactively labelled bacteria

    International Nuclear Information System (INIS)

    Pfister, W.; Kleinert, P.; Sandig, H.C.; Wutzler, P.; Ruschitschka, A.; Schaefer, U.

    1987-01-01

    Bacteria of the species Streptococcus mutans were radioactively labelled with 113 In-oxinate. Different dental materials were incubated with the labelled bacteria. Counts per minute of the dental materials could be determined as proportion of the quantity of adhering microorganisms. Silver-palladium-alloy had a lower adherence than silver-tin-alloy. Finest polished alloys had lower adhering properties than unpolished surfaces of materials. (author)

  13. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  14. Effect of Dental Restorative Material Type and Shade on Characteristics of Two-Layer Dental Composite Systems

    Directory of Open Access Journals (Sweden)

    Atefeh Karimzadeh

    Full Text Available Abstract The purpose of this study was to investigate the effects of shade and material type and shape in dental polymer composites on the hardness and shrinkage stress of bulk and two-layered restoration systems. For this purpose, some bulk and layered specimens from three different shades of dental materials were prepared and light-cured. The experiments were carried out on three types of materials: conventional restorative composite, nanohybrid composite and nanocomposite. Micro-indentation experiment was performed on the bulk and also on each layer of layered restoration specimens using a Vicker's indenter. The interface between the two layers was studied by scanning electron microscopy (SEM. The results revealed significant differences between the values of hardness for different shades in the conventional composite and also in the nanohybrid composite. However, no statistically significant difference was observed between the hardness values for different shades in the nanocomposite samples. The layered restoration specimens of different restorative materials exhibited lower hardness values with respect to their bulk specimens. The reduction in the hardness value of the layered conventional composite samples was higher than those of the nanocomposite and nanohybrid composite specimens indicating more shrinkage stresses generated in the conventional composite restorations. According to the SEM images, a gap was observed between the two layers in the layered restorations.

  15. The relative patient costs and availability of dental services, materials and equipment in public oral care facilities in Tanzania.

    Science.gov (United States)

    Nyamuryekung'e, Kasusu K; Lahti, Satu M; Tuominen, Risto J

    2015-07-01

    Patient charges and availability of dental services influence utilization of dental services. There is little available information on the cost of dental services and availability of materials and equipment in public dental facilities in Africa. This study aimed to determine the relative cost and availability of dental services, materials and equipment in public oral care facilities in Tanzania. The local factors affecting availability were also studied. A survey of all district and regional dental clinics in selected regions was conducted in 2014. A total of 28/30 facilities participated in the study. A structured interview was undertaken amongst practitioners and clinic managers within the facilities. Daily resources for consumption (DRC) were used for estimation of patients' relative cost. DRC are the quantified average financial resources required for an adult Tanzanian's overall consumption per day. Tooth extractions were found to cost four times the DRC whereas restorations were 9-10 times the DRC. Studied facilities provided tooth extractions (100%), scaling (86%), fillings (79%), root canal treatment (46%) and fabrication of removable partial dentures (32%). The ratio of tooth fillings to extractions in the facilities was 1:16. Less than 50% of the facilities had any of the investigated dental materials consistently available throughout the year, and just three facilities had all the investigated equipment functional and in use. Dental materials and equipment availability, skills of the practitioners and the cost of services all play major roles in provision and utilization of comprehensive oral care. These factors are likely to be interlinked and should be taken into consideration when studying any of the factors individually.

  16. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  17. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    OpenAIRE

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zaj?c, Ma?gorzata; Czajczy?ska-Waszkiewicz, Agnieszka; Piesiak-Pa?czyszyn, Dagmara; Kosior, Piotr; Dobrzy?ski, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved fo...

  18. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  19. A survey of U.S. prosthodontists and dental schools on the current materials and methods for final impressions for complete denture prosthodontics.

    Science.gov (United States)

    Petrie, Cynthia S; Walker, Mary P; Williams, Karen

    2005-12-01

    The purpose of this study was to survey members of The American College of Prosthodontists (ACP) to evaluate current materials and methods for final impressions for complete denture prosthodontics in the United States. In addition, those methods were compared with methods and materials taught in U.S. dental schools via a second survey sent to the chairpersons of prosthodontic/restorative departments. An anonymous questionnaire was mailed to all 1762 active ACP members in the United States in 2003. A slightly modified questionnaire was also distributed to chairpersons of prosthodontic/restorative departments in the 54 U.S. dental schools. Data analysis was performed via frequency distribution and chi-square statistics. Nine hundred and forty-five questionnaires were returned by members of the ACP (54% return rate) and 42 questionnaires were returned by the U.S. dental schools (78% return rate). The majority of the reporting prosthodontists (88%) and dental schools (98%) use a border-molded custom tray for final impressions for complete denture prosthodontics. The most popular material for border molding was plastic modeling compound (67% of reporting ACP members, and 95% of the responding dental schools). Variability of the materials used for final impressions was observed, with the most popular materials being polyvinylsiloxane for the ACP members (36%) and polysulfide for the dental schools (64%). Statistically significant differences were found in the materials used for border molding by prosthodontists based on the time elapsed since completion of prosthodontic training. No differences were found in the materials used for impression of edentulous arches based on years of experience. Geographic location did not influence the materials and methods used by prosthodontists for complete denture final impressions. There was variability of the materials and techniques used for final impressions by ACP members and dental schools; however, overall there was an agreement

  20. Matching the optical properties of direct esthetic dental restorative materials to those of human enamel and dentin

    Science.gov (United States)

    Ragain, James Carlton, Jr.

    One of the goals of the restorative dentist is to restore the appearance of the natural dentition. Clinical matching of teeth and restorative materials are seldom accurate and shade selection techniques are subjective. The first specific aim of this research was to characterize the optical absorption and scattering that occurs within enamel, dentin, and composite resin and compomer restorative materials and to relate those phenomena to translucency and color. The second aim was to evaluate small color differences among composite restorative materials which would be detectable by humans. The last aim was to lay the foundation for developing an improved model of specifying layers of dental restorative materials in order to match the translucency and color to those of human enamel. The Kubelka-Munk theory was validated for enamel, dentin, and the restorative materials. These tissues and materials were then characterized in terms of their color parameters. Tooth cores were also characterized in terms of color space parameters. Human subjects were evaluated for their abilities to discriminate small color differences in the dental composite resin materials. The following conclusions were derived from this study: (1) Kubelka-Munk theory accurately predicts the diffuse reflectance spectra of enamel, dentin, and the direct esthetic dental restorative materials studied. (2) Scattering and absorption coefficients of the dental tissues and esthetic restorative materials can be directly calculated from diffuse reflectance measurements of a uniformly thick slab of tissue/material using black and white backings and the appropriate refractive index. (3) For tooth cores, there is a positive correlation between L* and b* and a negative correlation between L* and a*. (4) The range of translucency parameters for the restorative materials studied does not match those of enamel and dentin. (5) None of the shades of the dental composite resin restorative materials studied fit into the

  1. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  2. Chemical Differentiation of Osseous, Dental, and Non-skeletal Materials in Forensic Anthropology using Elemental Analysis.

    Science.gov (United States)

    Zimmerman, Heather A; Meizel-Lambert, Cayli J; Schultz, John J; Sigman, Michael E

    2015-03-01

    Forensic anthropologists are generally able to identify skeletal materials (bone and tooth) using gross anatomical features; however, highly fragmented or taphonomically altered materials may be problematic to identify. Several chemical analysis techniques have been shown to be reliable laboratory methods that can be used to determine if questionable fragments are osseous, dental, or non-skeletal in nature. The purpose of this review is to provide a detailed background of chemical analysis techniques focusing on elemental compositions that have been assessed for use in differentiating osseous, dental, and non-skeletal materials. More recently, chemical analysis studies have also focused on using the elemental composition of osseous/dental materials to evaluate species and provide individual discrimination, but have generally been successful only in small, closed groups, limiting their use forensically. Despite significant advances incorporating a variety of instruments, including handheld devices, further research is necessary to address issues in standardization, error rates, and sample size/diversity. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  4. Occupational exposure to contaminated biological material: perceptions and feelings experienced among dental students

    Directory of Open Access Journals (Sweden)

    Camila PINELLI

    Full Text Available INTRODUCTION: Dental students may be a particularly vulnerable group exposed to the risk of acquiring infections through occupational injuries.OBJECTIVE: To investigate the perceptions with regard to their occupational exposure to potentially infectious biologic materials.MATERIAL AND METHOD: Interviews were conducted by means of a script with open questions. The speeches were recorded, transcribed and qualitative analysis was performed with the aid of QUALIQUANTISOFT® software. The Collective Subject Discourse (CSD was obtained.RESULT: The feeling most frequently experienced was related to the fear of contagion. Most accidents occurred during the handling of sharp dental instruments. Respondents attributed the occurrence of accidents especially the lack of attention, carelessness while handling sharp instruments, and lack of use of Personal Protective Equipment. As regards the measures taken right after the exposure, they "washed the local area". Other respondents reported they "continued the dental treatment". They complained mostly about the fear of having been infected, and because they had to leave the faculty to take blood exams for HIV screening. As part of the learning experience the injured reported they paid more attention when handling sharp instruments. The students informed that any type of injury due to contact with contaminated material must be notified. However, they were neglectful about reporting their own injury.CONCLUSION: Education strategies for preventive measures related to occupational exposure must be restructured, because the knowledge and the fear of contagion among dental students were not always sufficient for a complete adherence to treatment protocols and notification.

  5. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  6. Wear measurement of dental tissues and materials in clinical studies: A systematic review.

    Science.gov (United States)

    Wulfman, C; Koenig, V; Mainjot, A K

    2018-06-01

    This study aims to systematically review the different methods used for wear measurement of dental tissues and materials in clinical studies, their relevance and reliability in terms of accuracy and precision, and the performance of the different steps of the workflow taken independently. An exhaustive search of clinical studies related to wear of dental tissues and materials reporting a quantitative measurement method was conducted. MedLine, Embase, Scopus, Cochrane Library and Web of Science databases were used. Prospective studies, pilot studies and case series (>10 patients), as long as they contained a description of wear measurement methodology. Only studies published after 1995 were considered. After duplicates' removal, 495 studies were identified, and 41 remained for quantitative analysis. Thirty-four described wear-measurement protocols, using digital profilometry and superimposition, whereas 7 used alternative protocols. A specific form was designed to analyze the risk of bias. The methods were described in terms of material analyzed; study design; device used for surface acquisition; matching software details and settings; type of analysis (vertical height-loss measurement vs volume loss measurement); type of area investigated (entire occlusal area or selective areas); and results. There is a need of standardization of clinical wear measurement. Current methods exhibit accuracy, which is not sufficient to monitor wear of restorative materials and tooth tissues. Their performance could be improved, notably limiting the use of replicas, using standardized calibration procedures and positive controls, optimizing the settings of scanners and matching softwares, and taking into account unusable data. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  7. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  8. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  9. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials

    DEFF Research Database (Denmark)

    Ajlan, S. A.; Ashri, N. Y.; Aldahmash, Abdullah M.

    2015-01-01

    Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materi......Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples...

  10. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  11. Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials

    International Nuclear Information System (INIS)

    Wanna, Dwi; Alam, Parvez; Alam, Catharina; Toivola, Diana M

    2013-01-01

    This short communication provides preliminary experimental details on the structure–property relationships of novel biomedical kaolin–bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin–cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials. (paper)

  12. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  13. Determination of dose rates from natural radionuclides in dental materials

    International Nuclear Information System (INIS)

    Veronese, I.; Guzzi, G.; Giussani, A.; Cantone, M.C.; Ripamonti, D.

    2006-01-01

    Different types of materials used for dental prosthetics restoration, including feldspathic ceramics, glass ceramics, zirconia-based ceramics, alumina-based ceramics, and resin-based materials, were investigated with regard to content of natural radionuclides by means of thermoluminescence beta dosimetry and gamma spectrometry. The gross beta dose rate from feldspathic and glass ceramics was about ten times higher than the background measurement, whereas resin-based materials generated negligible beta dose rate, similarly to natural tooth samples. The specific activity of uranium and thorium was significantly below the levels found in the period when addition of uranium to dental porcelain materials was still permitted. The high-beta dose levels observed in feldspathic porcelains and glass ceramics are thus mainly ascribable to 4 K, naturally present in these specimens. Although the measured values are below the recommended limits, results indicate that patients with prostheses are subject to higher dose levels than other members of the population. Alumina- and zirconia-based ceramics might be a promising alternative, as they have generally lower beta dose rates than the conventional porcelain materials. However, the dosimetry results, which imply the presence of inhomogeneously distributed clusters of radionuclides in the sample matrix, and the still unsuitable structural properties call for further optimization of these materials

  14. Infection Control Practices in Dental Settings - A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Mukhit Kazi

    2012-01-01

    Full Text Available In the era of HIV/ AIDS it is essential to follow the infection prevention protocols in all health care settings including dental settings. The present review article highlighted the various preventive protocols to be followed in dental settings. It includes right from the simple hand hygiene to biomedical waste segregation.

  15. Dimensional changes of alginate dental impression materials.

    Science.gov (United States)

    Nallamuthu, N; Braden, M; Patel, M P

    2006-12-01

    The weight loss and corresponding dimensional changes of two dental alginate impression materials have been studied. The weight loss kinetics indicate this to be a diffusion controlled process, but with a boundary condition at the surface of the concentration decreasing exponentially with time. This is in marked contrast to most desorption processes, where the surface concentration becomes instantaneously zero. The appropriate theory has been developed for an exponential boundary condition, and its predictions compared with experimental data; the agreement was satisfactory. The diffusion coefficients for two thicknesses of the same material were not identical as predicted by theory; the possible reasons for this are discussed.

  16. Dental Amalgam

    Science.gov (United States)

    ... Products and Medical Procedures Dental Devices Dental Amalgam Dental Amalgam Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Dental amalgam is a dental filling material which is ...

  17. 75 FR 16511 - Pentron Clinical Technologies, a Wholly-Owned Subsidiary of Kerr Dental/Sybron Dental...

    Science.gov (United States)

    2010-04-01

    ... produce dental materials such as dental prosthetics, dental composites, dental impressions, dental... materials such as dental prosthetics, dental composites, dental impressions, dental adhesives, and other... Technologies, a Wholly-Owned Subsidiary of Kerr Dental/Sybron Dental Specialities, Formally Known as Customedix...

  18. Moldable setting time evaluation between sodium alginate and bovine gelatine of glutinous rice mixture as dental putty materials

    Science.gov (United States)

    Takarini, V.; Hasratiningsih, Z.; Karlina, E.; Febrida, R.; Asri, L. A. T. W.; Purwasasmita, BS

    2017-02-01

    Putty elastomeric material is a viscous, moldable material that can be used as a dental impression to record and duplicate the tooth structure. Commercially available putty materials are hardly found in the Indonesian market. The aim of this work is to develop an alternative putty dental material from glutinous rice with two different gelling agents; sodium alginate and bovine gelatine. A commercially putty material was used as a control. The length of time required for the putty materials to set (setting time) was evaluated with compression set test. The result showed that sodium alginate and bovine gelatine gelling agents resulted in moldable putty materials that comparable to the commercial product. Glutinous rice mixed with sodium alginate gelling agent demonstrated longer setting time (more than 1 hours) compared to bovine gelatine (6 minutes). These may occur due to heat treatment applied to the bovine gelatine, while sodium alginate mixture has a chemical reaction since CaCl2 crosslink agent had been added to the mixture. Glutinous rice with bovine gelatine mixture is a promising candidate to be used as a dental putty material.

  19. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials

    Directory of Open Access Journals (Sweden)

    Liliana Argueta-Figueroa

    2014-08-01

    Full Text Available The antibacterial effect is a desirable property in dental materials. Development of simple methods for the preparation of nanosized metal particles has attracted significant attention because of their future applications due to unusual size-dependent antibacterial properties. Copper (Cu, Nickel (Ni and bimetallic Cu–Ni nanoparticles were prepared by a simple chemical method and their antibacterial activity was tested against the widely used standard human pathogens Staphylococcus aureus (gram-negative and Escherichia coli (gram-positive. Additionally, these nanoparticles were tested against the dental pathogen Streptococcus mutans. Our results are promising for potential use in dental materials science.

  20. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  1. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  2. Evaluation of simulation learning materials use to fill the gap in Japanese dental English education.

    Science.gov (United States)

    Seki, Naoko; Moross, Janelle; Sunaga, Masayo; Hobo, Koki; Miyoshi, Tomoe; Nitta, Hiroshi; Kinoshita, Atsuhiro; Morio, Ikuko

    2016-01-01

    Even though English is most frequently the common language when the patient's native language differs from that of a dentist, the opportunities for Japanese undergraduate dental students to learn dental English are now quite limited. The purposes of our study were to investigate: the effectiveness and feasibility of the computer-assisted simulation materials as one solution strategy for dental English education in Japan, and the needs and demands for dental English from the learners' side. Interactive simulation materials for medical interviews in English and clinical cases which were translated to English, were delivered via Learning Management System (LMS) to nineteen trainee residents of dentistry (residents). Evaluation for the materials, learners' knowledge and interests in the contents, and ease of operation were obtained by post-questionnaire (response rates were 100% and 95%, respectively). Both questionnaire-surveys received positive feedback toward the materials, yet 47% answered that they lacked the level of knowledge about contents of the medical interview in English. Results were sufficient to suggest that the residents would like to have the opportunity to study or practice medical interview in English, or English related to dentistry, and that the simulation materials could be one of the solution strategies for opportunity provision.

  3. Contribution of environmental conditions in dental offices of Antioquia to the risk of mercury contamination

    Directory of Open Access Journals (Sweden)

    Jairo A. Ruiz C

    2008-06-01

    Full Text Available This article is a product from the project “Environmental Management of Dental Amalgam in the State of Antioquia” which was carried out by the following research groups belonging to the University of Antioquia: Science and Biomedical Technology, Precious Materials, and Pirometallurgical and Materials Researches, as well as the private company New Stetic S. A., between February 2005 and February 2007. Objective: to describe the environmental conditions in 30 big dental offices of the State of Antioquia, Colombia. Those dental offices having more than five dental chairs in the same work place were defined as “big” for the purpose of this project. Due to the fact that these dental offices represents 85% of the population of reference, the results described in this article can be consequently considered as is they were derived from a census. The description is made bearing in mind the people who are exposed to the risk of mercury contamination due to their occupation. Materials and method: an observation tool was designed in order to be applied in each dental office. It contained aspects as floor and wall characteristics, ventilation, room temperature, storing place for mercury, elements for handling amalgam scraps, and those activities which deviate from the regular dental service in the same site. Each dental office was visited by a research engineer and an advanced engineering student on a previously defined date. The researchers were trained in advance to collect the information. Results: it was found that some big dental offices have inadequate conditions in their premises for offering their services, and do not have a good handling of the environmental conditions. That’s why immediate actions are mandatory to minimize the risk of mercury contamination.

  4. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  5. Surface Characteristics and Biofilm Development on Selected Dental Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Kyoung H. Kim

    2017-01-01

    Full Text Available Background. Intraoral adjustment and polishing of dental ceramics often affect their surface characteristics, promoting increased roughness and consequent biofilm growth. This study correlated surface roughness to biofilm development with four commercially available ceramic materials. Methods. Four ceramic materials (Vita Enamic®, Lava™ Ultimate, Vitablocs Mark II, and Wieland Reflex® were prepared as per manufacturer instructions. Seventeen specimens of each material were adjusted and polished to simulate clinical intraoral procedures and another seventeen remained unaltered. Specimens were analysed by SEM imaging, confocal microscopy, and crystal violet assay. Results. SEM images showed more irregular surface topography in adjusted specimens than their respective controls. Surface roughness (Ra values were greater in all materials following adjustments. All adjusted materials with the exception of Vitablocs Mark II promoted significantly greater biofilm growth relative to controls. Conclusion. Simulated intraoral polishing methods resulted in greater surface roughness and increased biofilm accumulation.

  6. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  7. Students' perceptions of materials and techniques used at European dental schools in the education of fixed prosthodontics

    NARCIS (Netherlands)

    Brand, H.S.; Kamell, H.; Kharbanda, A.; Dozic, A.

    2013-01-01

    The aim of this study was to explore the materials and procedures used by students in dental schools across Europe for teaching fixed prosthodontics. An online questionnaire, containing twenty-eight dichotomous, multiple-choice, and Likert scale rating questions, was sent to students in forty dental

  8. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    Science.gov (United States)

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  9. Synthesis and Characterization of Calcium Phosphate Powders for Biomedical Applications by Plasma Spray Coating

    OpenAIRE

    Sasidharan Pillai, Rahul

    2015-01-01

    This PhD work mainly focus on the synthesis and characterization of calcium phosphate powders for plasma spray coating. The preparation of high temperature phase stabilized βTCP and HA/βTCP powders for plasma spray coating applications has been the topic of investigation. Nowadays plasma sprayed coatings are widely used for biomedical applications especially in the dental and orthopaedic implantation field. Previously Ti based alloys were widely used for the orthopaedic and dental implant ap...

  10. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  11. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A. [CICATA-IPN, 11500 Mexico D.F. (Mexico)

    2007-07-01

    Full text: We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  12. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A. [CICATA-IPN, Legaria 694, 11500 Mexico D.F. (Mexico)

    2006-07-01

    We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  13. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    International Nuclear Information System (INIS)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A.

    2006-01-01

    We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  14. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  15. Syllabus of Dental Materials

    Science.gov (United States)

    1984-07-01

    Rubberloid Van R Dental Prod. Surgident Lactona Corp. Alginates Coe Alginate Coe Labs o Jeltrate L.D. Caulk Kerr Alginate Kerr/Sybron Alginate S.S. White Co...Surgident- Alginate Lactona Corp. Unijel II Unitek Corp. O Combination Agar/a ig inate Colloid 80 U.S. Shiza Corp. Dentloid Denterials, Ltd...66061 (215) 277-3800 (913) 782-2200 Shofu Dental Corp. Lactona Corp. (subsidary of 4025 Bohannon Dr. Warner-Lambert Co.) Menlo Park, CA 94025 . Academy

  16. Effect of dental restorative materials on total antioxidant capacity and calcium concentration of unstimulated saliva.

    Science.gov (United States)

    Ramezani, Gholam H; Moghadam, Mona-Momeni; Saghiri, Mohammad-Ali; Garcia-Godoy, Franklin; Asatourian, Armen; Aminsobhani, Mohsen; Scarbecz, Mark; Sheibani, Nader

    2017-01-01

    To evaluate the effect of dental amalgam and composite restorations on total antioxidant capacity (TAC) and calcium (Ca) ion concentration of unstimulated saliva. Forty-eight children aged 6-10 years selected and divided into three groups of sixteen (8 males, 8 females). In group A and B, samples consisted of two class II dental composite or amalgam restorations, while in group C samples were caries-free (control group). Unstimulated saliva from all samples was collected and TAC was measured by spectrophotometry using an adaptation of 2, 2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay. The Ca ion level was estimated by an auto- analyzer. Data were analyzed with one- and two-way ANOVA test, at a p difference between groups ( p differences within and between groups ( p Gender is an effective factor in changes induced in oral cavity as females showed more emphatic reaction to dental filling materials than males. Patients who have dental restorations, especially dental composites, should pay more attention to their dental hygiene, because dental restorations can increase oxidative stress and decrease Ca ion level in saliva, which might jeopardize remineralization process of tooth structures after demineralization. Key words: Amalgam, caries, composite, saliva, total antioxidant capacity.

  17. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    International Nuclear Information System (INIS)

    Hurwitz, M; Margalit, D; Williams, C; Tso, T; Lee, S; Rosen, E

    2016-01-01

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li 2 Si 2 O 5 ), zirconium dioxide (ZrO 2 ), and gold alloy. Small thin squares (2×2×0.15 cm 3 ) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO 2 , and 9% for Li 2 Si 2 O 5 . This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  18. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Margalit, D; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Tso, T; Lee, S; Rosen, E [Harvard School of Dental Medicine, Boston, MA (United States)

    2016-06-15

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  19. A Study of Hybrid Composite Hydroxyapatite (HA-Geopolymers as a Material for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Saleha

    2017-01-01

    Full Text Available The main purpose of this research is to study the physical properties and microstructure characters of hybrid composites HA-geopolymers as a material for biomedical application. Hybrid composite HA–geopolymers were produced through alkaline activation method of metakaolin as a matrix and HA as the filler. HA was synthesized from eggshell particles by using a precipitation method. The addition of HA in metakaolin paste was varied from 0.5%, 1.0%, 1.5%, and 2.0% relative the weight of metakaolin. FTIR was used to examine the absorption bands the composites. X-ray diffraction (XRD was used to study the crystal structure of the starting and the resulting materials. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS was used to investigate the surface morphology of the composites. The thermal properties of the samples was examined by means of Differential Scanning Calorimetry (DSC. Capacitance measurement was conducted to investigate the bioactive properties of HA. The study results suggest that hybrid composite HA-geopolymers has a potential to be applied as a biomedical such as biosensor material.

  20. Improving the Medical Curriculum in Predoctoral Dental Education: Recommendations From the American Association of Oral and Maxillofacial Surgeons Committee on Predoctoral Education and Training.

    Science.gov (United States)

    Dennis, Matthew J; Bennett, Jeffrey D; DeLuke, Dean M; Evans, Erik W; Hudson, John W; Nattestad, Anders; Ness, Gregory M; Yeung, Allison

    2017-02-01

    Dental procedures are often performed on patients who present with some level of medical fragility. In many dental schools, the exercise of taking a medical history is all too often a transcription of information to the dental chart, with little emphasis on the presurgical risk assessment and the development of a treatment plan appropriate to the medical status of the dental patient. Changes in dentistry, driven by an increasingly medically complex population of dental patients, combined with treatment advances rooted in the biomedical sciences necessitate the adaptation of our dental education to include a stronger background in systemic health. Many predoctoral educators in the American Association of Oral and Maxillofacial Surgeons (AAOMS) have expressed concern about the medical preparedness of our dental students; therefore, the AAOMS and its Committee on Predoctoral Education and Training have provided recommendations for improving the medical curriculum in predoctoral dental education, including a strengthening of training in clinical medicine and biomedical sciences, with specific recommendations for improved training of our dental students and dental faculty. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  2. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  3. An in vitro study of dental enamel wear by restorative materials using radiometric method

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa

    2000-01-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  4. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  5. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  6. Hydroxyapatites enriched in silicon–Bioceramic materials for biomedical and pharmaceutical applications

    Institute of Scientific and Technical Information of China (English)

    Katarzyna Szurkowska; Joanna Kolmas

    2017-01-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, abbreviated as HA) plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin), it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physico-chemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA). Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  7. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    Science.gov (United States)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  8. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  9. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery.

    Science.gov (United States)

    Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M

    2008-02-19

    Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time

  10. The effect of mothers past dental experience on the behaviour of ...

    African Journals Online (AJOL)

    African Journal of Biomedical Research ... The objective of this study was to assess the effect of the mother's past dental experience on the behaviour of some Nigerian children during dental treatment. ... This will help reassure the parents as the mothers cooperation will be needed in order to provide the children with

  11. Study of filling material of dental composites. An analytical approach using radio-activation

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Canel [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Div. of Physics Education; Er, Kursat [Akdeniz Univ., Antalya (Turkey). Dept. of Endodontics; Segebade, Christian [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Boztosun, Ismail [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Dept. of Physics

    2018-04-01

    The aim of this study is to carry out elemental analyses of dental composites acquired from different producers using photoactivation analysis (PAA). High energy electrons produced by an electron linear accelerator are absorbed by a tungsten disk (Bremsstrahlung converter) thereby producing high energy X-rays (bremsstrahlung). The dental composite materials under study were exposed to the bremsstrahlung radiation whereby radionuclides were produced through photonuclear reactions. Their radioactivities were measured using high resolution semiconductor spectrometers equipped with high purity germanium detectors (HPGe). The spectra were analysed using appropriate computer software. As a result, photonuclear reactions of 12 stable elements were detected in different dental composite species, and the elemental concentrations were calculated. For comparison, the dental composites were also investigated using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectrometry (EDXRF). Various sizes and shapes of dental composites were observed using SEM. However, contents of dental composites, e.g. Mg, Ni, Ba and Sr were obtained by PAA whilst C, O, Al, S, Ba and Sr were detected by EDXRF spectrometry. The results for Ba and Sr obtained using the two techniques show considerable difference.

  12. Readability of pediatric health materials for preventive dental care

    Directory of Open Access Journals (Sweden)

    Riedy Christine A

    2006-11-01

    Full Text Available Abstract Background This study examined the content and general readability of pediatric oral health education materials for parents of young children. Methods Twenty-seven pediatric oral health pamphlets or brochures from commercial, government, industry, and private nonprofit sources were analyzed for general readability ("usability" according to several parameters: readability, (Flesch-Kincaid grade level, Flesch Reading Ease, and SMOG grade level; thoroughness, (inclusion of topics important to young childrens' oral health; textual framework (frequency of complex phrases, use of pictures, diagrams, and bulleted text within materials; and terminology (frequency of difficult words and dental jargon. Results Readability of the written texts ranged from 2nd to 9th grade. The average Flesch-Kincaid grade level for government publications was equivalent to a grade 4 reading level (4.73, range, 2.4 – 6.6; F-K grade levels for commercial publications averaged 8.1 (range, 6.9 – 8.9; and industry published materials read at an average Flesch-Kincaid grade level of 7.4 (range, 4.7 – 9.3. SMOG readability analysis, based on a count of polysyllabic words, consistently rated materials 2 to 3 grade levels higher than did the Flesch-Kincaid analysis. Government sources were significantly lower compared to commercial and industry sources for Flesch-Kincaid grade level and SMOG readability analysis. Content analysis found materials from commercial and industry sources more complex than government-sponsored publications, whereas commercial sources were more thorough in coverage of pediatric oral health topics. Different materials frequently contained conflicting information. Conclusion Pediatric oral health care materials are readily available, yet their quality and readability vary widely. In general, government publications are more readable than their commercial and industry counterparts. The criteria for usability and results of the analyses

  13. Bacterial spores as possible contaminants of biomedical materials and devices. [Bacillus anthracis, clostridium botulinum, C. perfringens, C. tetani

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N; Kang, T

    1973-01-01

    Destruction of spores on biomedical devices in drugs, and biologicals is essential for prevention of infection of patients with pathogenic sporeformers. Of particular concern are Clostridium tetani, C. perfringens, C. botulinum, Bacillus anthracis and other sporeforming pathogens. Spores are ubiquitous in nature and contamination of biomedical devices varies depending on manufacturing process, handling, raw materials and other variables. In the last 20 years the number of cases per year of specific notifiable diseases in the United States was as follows: tetanus, 120 to 500 cases, botulism, 7 to 47 cases, and anthrax, 2 to 10 cases. Gas gangrene is caused by a mixed flora consisting predominantly of sporeformers. C botulinum, which usually acts as saprophytic agent of food poisoning, may also initiate pathogenic processes; there are nine cases on record in the United States of botulism wound infections almost half of which ended in death. The spores of these organisms are distinguished by high radiation resistance and their erradication often requires severe radiation treatments. Representative bacterial spores in various suspending media show D/sub 10/ values (dose necessary to destroy 90 percent of a given population) ranging from approximately 0.1 to 0.4 Mrad. Some viruses show D/sub 10/ values up to greater than 1 Mrad. The D/sub 10/-values of spores vary depending on physical, chemical and biological factors. This variability is important in evaluation and selection of biological indicator organisms. Radiation sterilization of biomedical devices and biomedical materials must provide safety from infectious microorganisms including radiation resistant spores and viruses.

  14. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    Science.gov (United States)

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  15. Does 6 Hours of Contact With Alginate Impression Material Affect Dental Cast Properties?

    Science.gov (United States)

    Ibrahim, Amna Adam; Alhajj, Mohammed Nasser; Khalifa, Nadia; Gilada, Magdi Wadie

    2017-06-01

    Alginate impression (irreversible hydrocolloid) material is commonly used in dental practice because it is easy to mix, low in cost, and well tolerated by patients. The material is not dimensionally stable, however; thus, it is necessary to pour the impression immediately after the molding is accomplished, or within 60 minutes if the impression is kept in 100% humidity. Excessive contact of the alginate impression with the cast model over time may affect the model's properties. In this study, the authors tested the effect of contact time between an alginate impression and type III dental stone on cast model properties. Sixty-seven cast models were obtained from a stainless steel cylinder by using irreversible hydrocolloid impression material and type III dental stone. Thirty-seven cast models were separated from the impression after 1 hour (control group) and 30 cast models were separated after 6 hours (study group). The samples were evaluated under light microscope for surface details and measured by digital caliper for dimensional stability. An indentation on the cast was made and the depth of the indentation was then measured with a digital caliper to measure hardness. The dimensional stability of the cast models was not affected when contact time was increased from 1 hour to 6 hours (P = .507). Surface details did not deteriorate when contact time was increased, as all of the samples could reproduce all details after the 1-hour and 6-hour interval periods. However, hardness was greater after 1 hour of contact time (P = .001) than after 6 hours of contact time. In conclusion, contact between alginate impression material and type III dental stone up to 6 hours did not affect the dimensional stability and richness of the surface; hardness, though, was significantly affected.

  16. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  17. Mechanical characterization of materials for dental applications

    International Nuclear Information System (INIS)

    Pajares, A.; Miranda, P.; Guiberteau, F.; Cumbrera, F. I.

    2001-01-01

    An study of the damage induced in dental materials and model multilayer systems by masticatory contact stresses, simulated by hertz ian indentation test, have been performed. In particular, the nature of induced damage has been identified, and quantified from stress-strain curves and critical loads for yielding or crack initiation. For multilayer systems, test have been numerically simulated using finite element techniques (FEM). FEM simulations complement indentation test, allowing to justify the observed fracture modes from calculated stress fields. Practical implications can be derived from our results, relevant to the design of multilayer structures tolerant to contact damage. (Author) 34 refs

  18. Study of the luminescence properties of dental materials for their use in accidental dosimetry

    International Nuclear Information System (INIS)

    Veronese, Ivan; Cantone, Marie C.; Guzzi, Gianpaolo

    2008-01-01

    Full text: The current social and political situation in many world areas and the increasing hostilities between countries and cultures have accentuated the risk of a malicious use of ionising radiations. Terrorist attacks with the intentional disseminations of radioactive materials in urban settlements may involve a large number of persons, and a rapid estimation of the severity of the exposure is required for undertaking suitable protective actions and supporting decision making. Promising methodologies for a prompt dose evaluation, are those exploiting the luminescence and dosimetric properties of objects and materials which can be easily found in the contaminated area. Among these objects, dental materials have the advantage to be on contact with human body and they could therefore represent individual dosimeters in case of accidental exposure to ionising radiation. The interest in the use of dental ceramics for dosimetric purposes dates back to late 1970, however, it is only through the use of high-sensitive experimental techniques and instrumentation today available, that the potentiality of such materials as accidental dosimeters can be exploited. Moreover, innovative materials are being continuously introduced into the market, containing new additives and pigments with peculiar optical properties. In this study, Thermally Stimulated Luminescence (TSL) and Optically Stimulated Luminescence (OSL) techniques are applied to investigate the luminescence and dosimetric properties of several dental materials, including resins, glass and feldspatic ceramics, and also zirconia and alumina based ceramics, being their use widely increased in the recent years in substitution of metal cores. (author)

  19. Dental Anomalies and Dental Age Assessment in Treated Children with Acute Lymphoblastic Leukemia

    OpenAIRE

    Khojastepour, L; Zareifar, S; Ebrahimi, M

    2014-01-01

    Background This cross sectional study was performed to evaluate dental ages and incidence of dental anomalies in children treated for acute lymphoblastic leukemia (ALL). Methods and materials A total of 25 ALL patient who passed at least 2 years of chemotherapy and 25 healthy sex and age matched children were evaluated. Dental age as well as dental anomalies in shape, size, number, and structure was recorded based on their panoramic radiographies which were taken for dental purposes. Results ...

  20. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  1. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    International Nuclear Information System (INIS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-01-01

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  2. Some aspects of the formulation of alginate dental impression materials--setting characteristics and mechanical properties.

    Science.gov (United States)

    Nallamuthu, Navina A; Braden, Michael; Patel, Mangala P

    2012-07-01

    To study the role of the various components of alginate dental impression materials. Experimental materials were formulated and their physical properties characterized and compared to commercially available counterparts (Neocolloid, Palgat Plus and Blueprint Cremix). Properties examined were: dimensional stability and weight change in water and artificial saliva; setting behavior; Shore A hardness and tear energy. The role of magnesium oxide was also investigated. Weight changes in water and artificial saliva can be attributed to an initial thermodynamic potential owing to the ionic content of the alginate, causing water to diffuse into the material. Water is then driven back out following a reversal of this potential. Hardness results for experimental materials were within the range obtained from the commercial materials. The hardness value for an experimental formulation that did not contain magnesium oxide was lower than values from the other experimental materials that did. Tear energies for all three experimental materials were greater than those of the commercial products. There were statistically significant differences between the two experimental materials that contained magnesium oxide and one that did not. With regard to setting time, statistically significant differences were seen between commercial materials and two of the experimental materials. The experimental material that did not contain magnesium oxide had a considerably longer setting time than all of the other materials tested. The key role of magnesium oxide in the setting reaction and the effect on hardness have been demonstrated and discussed. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  4. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    Directory of Open Access Journals (Sweden)

    Maciej Janeczek

    2016-01-01

    Full Text Available Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  5. Hydroxyapatites enriched in silicon – Bioceramic materials for biomedical and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Katarzyna Szurkowska

    2017-08-01

    Full Text Available Hydroxyapatite (Ca10(PO46(OH2, abbreviated as HA plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin, it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physicochemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA. Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  6. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  7. A survey of collection development for United States Medical Licensing Examination (USMLE) and National Board Dental Examination (NBDE) preparation material.

    Science.gov (United States)

    Hendrix, Dean; Hasman, Linda

    2008-07-01

    The research sought to ascertain medical and dental libraries' collection development policies, evaluation methods, purchase decisions, and issues that relate to print and electronic United States Medical Licensing Examination (USMLE) and National Board Dental Examination (NBDE) preparation materials. The investigators surveyed librarians supporting American Association of Medical Colleges (AAMC)-accredited medical schools (n = 58/125) on the USMLE and librarians supporting American Dental Association (ADA)-accredited dental schools (n = 23/56) on the NBDE. The investigators analyzed the data by cross-tabulating and filtering the results using EFM Continuum web survey software. Investigators also surveyed print and electronic USMLE and NBDE preparation materials from 2004-2007 to determine the number of publications and existence of reviews. A majority of responding AAMC libraries (62%, n = 58) provide at least 1 electronic or online USMLE preparation resource and buy an average of 11.6 print USMLE titles annually. Due to a paucity of NBDE print and electronic resources, ADA libraries bought significantly fewer print resources, and only 1 subscribed to an electronic resource. The most often reported evaluation methods for both populations were feedback from medical or dental students, feedback from medical or dental faculty, and online trials. Some AAMC (10%, n = 58) and ADA libraries (39%, n = 23) libraries reported that no evaluation of these materials occured at their libraries. From 2004-2007, publishers produced 45 USMLE preparation resources (total n = 546) to every 1 NBDE preparation resource (total n = 12). Users' needs, institutional missions and goals, financial status, and official collection policies most often underlie decisions to collect or not collect examination preparation materials. Evaluating the quality of examination preparation materials can be problematic due to lack of published reviews, lack of usability testing by libraries, and

  8. A Deep Morphological Characterization and Comparison of Different Dental Restorative Materials

    Directory of Open Access Journals (Sweden)

    R. Condò

    2017-01-01

    Full Text Available Giomer is a relatively new class of restorative material with aesthetics, handling and physical properties of composite resins, and benefits of glass ionomers: high radiopacity, antiplaque effect, fluoride release, and recharge. To verify the superior properties of Giomers, in this study, a deep morphological characterization has been performed with an in vitro comparative study among a Giomer (Beautifil® II by Shofu Dental Corporation, Osaka, Japan, a Compomer (Dyract Extra by Dentsply, Caulk, Germany, glass ionomer cement (Ketac fil plus by 3M ESPE, and a composite resin (Tetric Evoceram by Ivoclar. In particular, mechanical and optical properties and ageing effects have been compared to investigate materials similarities and differences. Indentation tests, UV-Visible spectroscopy, Raman spectroscopy, and weight loss after storage in saliva or sugary drink have been carried out to analyze materials behavior in real conditions. The results confirm the high quality of Giomer material and indicate possible improvements in their usage.

  9. Nordic dentists' opinions on the safety of amalgam and other dental restorative materials.

    Science.gov (United States)

    Widström, E; Haugejorden, O; Sundberg, H; Birn, H

    1993-08-01

    The safety of amalgam and other restorative materials has caused concern among dental patients in recent years. The aim of this study was to obtain information on dentists' perceived competence in handling different filling materials and their opinions on the safety of these. A random sample of practising dentists in Denmark, Finland, Norway, and Sweden received a mail questionnaire in spring 1990. Answers were received from 1732 dentists (65%). The study showed that the respondents believed that their theoretic knowledge and clinical skills were generally at a high level regarding restorative materials. The risks of the side-effects of gold, ceramic materials, and glass ionomer were considered to be low by about 90% of the respondents. Amalgam was considered to be significantly more hazardous by the Swedish respondents than the others. Interestingly, composite was considered to be associated with a high risk of side-effects by about half of the dentists in all Nordic countries. The dentists' opinions were not found to be greatly influenced by their sex, age, or place of residence but rather by their country and service sector. Against the background of the present lack of scientific evidence on the hazardousness of amalgam or other restorative materials for patients' general health, these findings indicate that dentists are influenced by discussions in the mass media about dental treatment and materials and, of course, by the guidelines given by the health authorities in their own countries. Few dentists were shown to be concerned about occupational risks associated with the use of amalgam, and they had not had their own amalgam fillings replaced.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  11. Effects of hydrogen peroxide bleaching strip gels on dental restorative materials in vitro: surface microhardness and surface morphology.

    Science.gov (United States)

    Duschner, Heinz; Götz, Hermann; White, Donald J; Kozak, Kathleen M; Zoladz, James R

    2004-01-01

    This study examined the effects of peroxide tooth bleaching, including Crest Whitestrips hydrogen peroxide gel treatments, on the surface hardness and morphology of common dental restorative treatments. American Dental Association (ADA) recommended dental restorative materials, including amalgam, dental gold, porcelain, glass ionomer, and composites, were prepared according to manufacturers' instructions. A cycling treatment methodology was employed which alternated ex vivo human salivary exposures with bleaching treatments under conditions of controlled temperature and durations of treatment. Bleaching treatments included commercial Crest Whitestrips bleaching gels, which utilize hydrogen peroxide as the in situ bleaching source, and several commercial carbamide peroxide bleaching gels. Control treatments included placebo gels and an untreated group. Crest Whitestrips bleaching included treatment exposures simulating recommended clinical exposures (14 hours), along with excess bleaching simulating exposure to five times suggested Crest Whitestrips use. At the conclusion of treatments, surface microhardness measures and surface morphological assessments with standard and variable pressure (VP-) SEMs were conducted to assess the effects of bleaching exposure on the surface morphology and structural integrity of the restoratives. Surface microhardness and SEM measures revealed no significant deleterious effects on the restoration surfaces from Whitestrips gels. These results confirm that tooth bleaching from the selected commercial hydrogen peroxide or carbamide peroxide bleaching systems does not produce changes in surface morphology or microhardness of common dental restorative materials. These results support the clinical safety of the selected commercial bleaching systems to the oral environment, matching results obtained from long-term use of these ingredients applied in dental offices and available in commercial formulations.

  12. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  13. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  14. [Research Progress and Development Prospect of Biomedical Plate].

    Science.gov (United States)

    Li, Xiao; Liu, Jing; Wu, Qiang; Wang, Yanjie; Xiao, Tao; Liu, Lihong; Yu, Shu

    2016-12-01

    Different generations of biomedical materials are analyzed in this paper.The current clinical uses of plates made of metals,polymers or composite materials are evaluated,and nano hydroxyapatite/polylactic acid composites and carbon/carbon composite plates are introduced as emphasis.It is pointed out that the carbon/carbon composites are of great feasibility and advantage as a new generation of biomedical materials,especially in the field of bone plate.Compared to other biomaterials,carbon/carbon composites have a good biocompatibility and mechanical compatibility because they have similar elastic modulus,porosity and density to that of human bones.With the development of the technology in knitting and material preparation,carbon/carbon composite plates have a good application prospect.

  15. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    International Nuclear Information System (INIS)

    Xie, Kelvin Y.; Wang, Yanbo; Zhao, Yonghao; Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang; Liao, Xiaozhou; Lavernia, Enrique J.; Valiev, Ruslan Z.; Sarrafpour, Babak; Zoellner, Hans; Ringer, Simon P.

    2013-01-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated

  16. Dental Calculus Arrest of Dental Caries

    Science.gov (United States)

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  17. The gross anatomy laboratory: a novel venue for critical thinking and interdisciplinary teaching in dental education.

    Science.gov (United States)

    Rowland, Kevin C; Joy, Anita

    2015-03-01

    Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.

  18. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    Directory of Open Access Journals (Sweden)

    Stewart Tanis

    2008-02-01

    Full Text Available Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding

  19. Competitive light absorbers in photoactive dental resin-based materials.

    Science.gov (United States)

    Hadis, Mohammed A; Shortall, Adrian C; Palin, William M

    2012-08-01

    The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. GLM three-way analysis of variance revealed significant differences (pphotoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (presins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. Although some photoinitiators such as TPO may be a more esthetic alternative to CQ, they may actually cause significant color contamination when

  20. Child dental anxiety, parental rearing style and dental history reported by parents

    NARCIS (Netherlands)

    Krikken, J.B.; van Wijk, A.J.; ten Cate, J.M.; Veerkamp, J.S.

    2013-01-01

    AIM: To examine the relationship between self-reported parental rearing style, parent's assessment of their child's dental anxiety and the dental history of children. MATERIALS AND METHODS: Parents of primary school children were asked to complete questionnaires about their parenting style, using

  1. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.

    Science.gov (United States)

    Xue, Yan; Mou, Zihao; Xiao, Huining

    2017-10-12

    Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.

  2. Hand hygiene amongst dental professionals in a tertiary dental clinic ...

    African Journals Online (AJOL)

    Objective: To evaluate hand washing attitude and practices among Dentists and Dental Students treating patients in a Nigerian Tertiary Dental Clinic. Materials and Methods: A cross-sectional survey of Dentists and Dental Students treating patients in University of Benin Teaching Hospital was conducted between February ...

  3. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  4. Dental Sealants: Knowledge, Value, Opinion, and Practice among Dental Professionals of Bathinda City, India

    OpenAIRE

    Asawa, Kailash; Gupta, Vivek V.; Tak, Mridula; Nagarajappa, Ramesh; Chaturvedi, Pulkit; Bapat, Salil; Mishra, Prashant; Roy, Santanu Sen

    2014-01-01

    Objective. The purpose of the study was to assess the knowledge, value, opinion, and practice regarding use of dental sealants among private dental practitioners in Bathinda City, Punjab, India. Materials and Methods. A cross-sectional survey was conducted among all private dental practitioners in Bathinda City, Punjab. A self-administered structured questionnaire consisting of 28 items was used to assess their knowledge, value, opinion, and practice regarding dental sealants. One-way analysi...

  5. Association between BMI and Dental Caries among School Children and Adolescents in Jiangsu Province, China.

    Science.gov (United States)

    Li, Wei; Hussein Musa, Taha; Gao, Rong; Li, Xiao Shan; Wang, Wei Xiang; Hong, Lei; Wei, Ping Min

    2017-10-01

    Obesity and dental caries are increasing epidemics, especially among children and adolescents. This epidemiological observational cross-sectional study was conducted to assess the possible association between body mass index (BMI) and dental caries among 111,792 school children and adolescents in Jiangsu Province. We found that 13.14% participants of the study sample were overweight, and 7.37% were obese. The prevalence of dental caries was 12.95% in overweight and 7.89% in obese students. There were significant differences in caries prevalence by sex, region, age group, and BMI. Overweight and obesity statuses were associated with dental caries among the study population. BMI and dental caries present a continuous health problem. Thus, we recommend that oral health promotion be used for caries prevention and control. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Influence of dental filling material type on the concentration of interleukin 9 in the samples of gingival crevicular fluid

    Directory of Open Access Journals (Sweden)

    Stefanović Vladimir

    2016-01-01

    Full Text Available Background/Aim. Several cytokines and lymphokines (IL1β, ENA78, IL6, TNFα, IL8 and S100A8 are expressed during dental pulp inflammation. Analysis of gingival crevicu-lar fluid (GCF offers a non-invasive means of studying gen-eral host response in oral cavity. Although GCF levels of various mediators could reflect the state of inflammation both in dental pulp and gingiva adjacent to a tooth, GCF samples of those without significant gingivitis could be inter-preted as reflection of pulpal process. The aim of this study was to investigate IL9 GCF values in patients with dental car-ies and to assess possible influence of various dental fillings materials on local IL9 production. Methods. The study group included 90 patients, aged 18–70, with inclusion and exclusion criteria in the prospective clinical study. Of the 6 types of material used for the restoration of prepared cavities, 3 were intended for temporary and 3 for definitive restora-tion. According to dental fillings weight, all the participants were divided into 3 groups: those with fillings lighter than 0.50 g, those with 0.50–1.00 g, and those with fillings heavier than 1.00 g. Samples were taken from gingival sulcus using the filter paper technique. Clinical parameters were deter-mined by bleeding index, plaque index (Silness-Lou, 0–3, gingival index (0–3, and gingival sulcus depth. Cytokine con-centrations were assessed using commercially available cy-tomix. Results. According to the weight of dental fillings, there was a clear decreament trend of IL9 values meaning that dental defects greater than 1.00 g of dental filling were associated with lower GCF IL9 concentration. The IL9 val-ues correlated with the degree of gingival index and depth of gingival sulcus, being higher with more advanced gingivitis and more pronounced anatomical changes in the tooth edge. Different filling materials exerted various local IL9 responses. Zink polycarbonate cement and amalgam fillings induced

  7. Unilateral and bilateral dental transpositions in the maxilla

    DEFF Research Database (Denmark)

    Danielsen, Jakob Christian; Karimian, K; Ciarlantini, R

    2015-01-01

    and lateral incisor (Type 2). The dentitions were analysed regarding agenesis and dental morphological anomalies on panoramic radiographs, and craniofacial aspects were cephalometrically analysed on profile images The results were statistically evaluated. RESULTS: All groups demonstrated increased occurrences......AIM: This was to elucidate dental and skeletal findings in individuals with unilateral and bilateral maxillary dental transpositions. MATERIAL AND METHODS: The sample comprised of radiographic materials from 63 individuals with maxillary dental transpositions from the Departments of Odontology...... retrognathia (more pronounced in Type 1B). Type 2 showed a significant posterior inclination of the maxilla. CONCLUSION: Transpositions of maxillary canines involve dental and skeletal deviations. Dental deviations were predominantly taurodontic root morphology and agenesis. Regarding skeletal deviations...

  8. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  9. An in vitro study of dental enamel wear by restorative materials using radiometric method; Estudo in vitro do desgaste do esmalte dental pelos materiais restauradores utilizando metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa

    2000-07-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  10. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.

  11. Biological evaluation of dental materials, in vitro and in vivo

    International Nuclear Information System (INIS)

    Kawahara, H.

    1982-01-01

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  12. Knowledge, Attitude and Perception Regarding Biostatistics Among Postgraduate Students in Dental Institutions of Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Gautami S Penmetsa

    2017-01-01

    Full Text Available Introduction: Biostatistics is a discipline concerned with how we ought to make decisions when analysing biomedical data. As statistics is desirable at every stage of research to obtain scientifically important information and reliable results, the importance of biostatistics should definitely be informed to the researchers in health sciences. Aim: To evaluate the knowledge, attitude and perception of dental professionals towards biostatistics. Materials and Methods: A cross-sectional study was conducted to assess the knowledge, attitude and perception regarding biostatistics among 721 postgraduate students in dental institutions of Andhra Pradesh. All the participants were provided with a pre-structured questionnaire comprising 21 questions, and answering was completely self-paced. Results: Among the respondents, 86% were aware of the importance of biostatistics in research. Forty-five percent of the respondents attempted to perform statistical analysis on their own. Of all the students, 53% were unable to identify the commonly used parametric tests in clinical trials. Conclusion: Majority of the participants were aware of the importance of biostatistics, but only a few of them attempted to perform statistical analysis. Therefore, dental institutions should take initiatives in organising workshops and training programmes for learning and application of biostatistics, concomitantly encourage research activity to conduct valuable research and add up evidence to literature.

  13. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.

    Science.gov (United States)

    Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C

    2013-09-01

    Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. A novel laser-based method for controlled crystallization in dental prosthesis materials

    Science.gov (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  15. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  16. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    Science.gov (United States)

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  17. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  18. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    Science.gov (United States)

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  19. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  20. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kelvin Y. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wang, Yanbo, E-mail: yanbo.wang@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Zhao, Yonghao [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chang, Li; Wang, Guocheng; Chen, Zibin; Cao, Yang [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, Xiaozhou, E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, K. Marksa 12, Ufa 450000 (Russian Federation); Sarrafpour, Babak; Zoellner, Hans [The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, NSW 2145 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronics Engineering, The University of Sydney, Sydney, NSW 2006 (Australia)

    2013-08-01

    High strength, low Young's modulus and good biocompatibility are desirable but difficult to simultaneously achieve in metallic implant materials for load bearing applications, and these impose significant challenges in material design. Here we report that a nano-grained β-Ti alloy prepared by high-pressure torsion exhibits remarkable mechanical and biological properties. The hardness and modulus of the nano-grained Ti alloy were respectively 23% higher and 34% lower than those of its coarse-grained counterpart. Fibroblast cell attachment and proliferation were enhanced, demonstrating good in vitro biocompatibility of the nano-grained Ti alloy, consistent with demonstrated increased nano-roughness on the nano-grained Ti alloy. Results suggest that the nano-grained β-Ti alloy may have significant application as an implant material in dental and orthopedic applications. - Highlights: • A bulk nanocrystalline β-Ti alloy was produced by high-pressure torsion processing. • Excellent mechanical properties for biomedical implants were obtained. • Enhanced in vitro biocompatibility was also demonstrated.

  1. An interview study of persons who attribute health problems to dental filling materials--part two in a triangulation study on 65 and 75 years old Swedes.

    Science.gov (United States)

    Ståhlnacke, Katri; Söderfeldt, Björn

    2013-01-01

    Dental materials are perceived as a health problem by some people, although scientists do not agree about possible causes of such problems. The aim of this paper was to gain a deeper knowledge and understanding of experiences from living with health problems attributed to dental materials. Addressed topics were the type of problem, both as to general and oral health, perceived causes of the problems,their experienced effect on life, and reception by health professionals. Persons, who in a previous large questionnaire study had answered that they had experienced troubles from dental materials and also agreed to answer follow-up questions, were contacted with a request to take part in an interview study. Eleven individual interviews were held.The interviews were transcribed verbatim and the material was analysed according to the Qualitative Content Analysis method. Meaning units were extracted and condensed into a number of codes, which were combined into subcategories, categories, and themes. Four themes were identified: 1) Long-term oral, mental, and somatic difficulties of varying character, caused by dental amalgam. 2) Problems treated mainly by replacement of dental material in fillings. 3) Powerful effects on life, mostly negative. 4) The reception by health professionals was generally good, but with elements of encounters where they felt treated with nonchalance and lack of respect. In conclusion, people who attributed their health difficulties to dental materials had a complex range of problems and the perception was that amalgam/mercury was the cause of the troubles. The reception from health professionals was perceived as generally good, although with occasional negative experiences.

  2. Dental restorative materials from a work environmental perspective

    OpenAIRE

    Lönnroth, Emma-Christin

    1999-01-01

    The main occupational health hazard for dental personnel is muscle-skeletal problem, followed by symptoms caused by exposure to chemicals. Clinical dental work includes exposure to a number of products like soap, detergents, disinfectants, amalgam, mono- and oligomers, catalysts, inhibitors, solvents and adhesives. Some are chemically very active. The aims of this thesis have been to survey the occurrence of symptoms from skin, eyes and respiratory tract among dental personnel working in gene...

  3. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  4. Evaluation of effects of ionizing radiation on materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio

    2009-01-01

    This work consisted of quantitative studies of the effects caused by ionizing radiation on materials used in dental restorations (Titanium, Amalgam, Resin Composite and Glass Ionomer) aiming the deleterious effects of radiotherapy when patients with tumors in head and neck, arising when the teeth are restored within in the field of radiation. Samples were submitted to X-ray beams of 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. The sample were submitted to Geiger-Mueller detectors and the ionization chambers in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a Germanium detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  5. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  6. Textural Properties of Hybrid Biomedical Materials Made from Extracts of Tournefortia hirsutissima L. Imbibed and Deposited on Mesoporous and Microporous Materials

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández

    2016-01-01

    Full Text Available Our research group has developed a group of hybrid biomedical materials potentially useful in the healing of diabetic foot ulcerations. The organic part of this type of hybrid materials consists of nanometric deposits, proceeding from the Mexican medicinal plant Tournefortia hirsutissima L., while the inorganic part is composed of a zeolite mixture that includes LTA, ZSM-5, clinoptilolite, and montmorillonite (PZX as well as a composite material, made of CaCO3 and montmorillonite (NABE. The organic part has been analyzed by GC-MS to detect the most abundant components present therein. In turn, the inorganic supports were characterized by XRD, SEM, and High Resolution Adsorption (HRADS of N2 at 76 K. Through this latter methodology, the external surface area of the hybrid materials was evaluated; besides, the most representative textural properties of each substrate such as total pore volume, pore size distribution, and, in some cases, the volume of micropores were calculated. The formation and stabilization of nanodeposits on the inorganic segments of the hybrid supports led to a partial blockage of the microporosity of the LTA and ZSM5 zeolites; this same effect occurred with the NABE and PZX substrates.

  7. Hydrogen peroxide bleaching induces changes in the physical properties of dental restorative materials: Effects of study protocols.

    Science.gov (United States)

    Yu, Hao; Zhang, Chang-Yuan; Wang, Yi-Ning; Cheng, Hui

    2018-03-01

    The purpose of this study was to evaluate the influence of study protocols on the effects of bleaching on the surface roughness, substance loss, flexural strength (FS), flexural modulus (FM), Weibull parameters, and color of 7 restorative materials. The test materials included 4 composite resins, 1 glass-ionomer cement, 1 dental ceramic, and 1 polyacid-modified composite. The specimens were randomly divided into 4 groups (n = 20) according to different study protocols: a bleaching group at 25°C (group 25B), a bleaching group at 37°C (group 37B), a control group at 25°C (group 25C), and a control group at 37°C (group 37C). The specimens in the bleaching group were treated with 40% hydrogen peroxide for 80 min at the respective environmental temperatures. The surface roughness, substance loss, FS, FM, and color of the specimens were measured before and after treatment. FS data were also subjected to Weibull analysis, which was used to estimate of the Weibull modulus (m) and the characteristic strength (σ 0 ). Surface roughness increased and significant color changes were observed for all tested specimens after bleaching treatment, except for the ceramic. After bleaching at 37°C, the polyacid-modified composite showed significantly reduced FS, FM, m, and σ 0 values in comparison to the control specimens stored at 37°C in whole saliva. Significant differences were also found between the 37B and 25B polyacid-modified composite groups in terms of surface roughness, FS, m, σ 0 , and color changes. Varying effects of bleaching on the physical properties of dental restorative materials were observed, and the influences of the study protocols on bleaching effects were found to be material-dependent. The influence of study protocols on the effects of bleaching on the surface roughness, flexural properties, and color of dental restorative materials are material-dependent and should be considered when evaluating the effects of bleaching on dental restorative

  8. The effect of orthodontic bonding materials on dental plaque accumulation and composition in vitro.

    Science.gov (United States)

    Badawi, H; Evans, R D; Wilson, M; Ready, D; Noar, J H; Pratten, J

    2003-08-01

    The aim of this study was to investigate the accumulation and composition of microcosm dental plaque on different orthodontic bonding materials using an in vitro model. Microcosm plaques were grown on discs of a range of bonding materials in a constant depth film fermentor. The biofilms were derived from human saliva and supplied with artificial saliva as a source of nutrients. The number of viable bacteria in the biofilms was determined and the streptococci present were identified to species level. The results showed that there was no significant difference in bacterial accumulation between different bonding materials, however, biofilms grown on materials which were fluoride releasing, did not contain Streptococcus mutans. This in vitro study has shown that the use of fluoride-releasing bonding materials may support the growth of supragingival plaque, which does not contain S. mutans.

  9. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is

  10. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  11. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  12. [The effects of topical fluoridation of Ketac Molar Aplicap glass-ionomer material on the growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Zarzycka, Beata; Bołtacz-Rzepkowska, Elzbieta

    2013-01-01

    Dental caries is a bacterial disease. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. Modern fluoride-containing restorative materials are capable of releasing fluoride to the environment. Fluoride can be also accumulated in glass-ionomer cements, thus an attempt was made to saturate these materials with fluoride. The aim of the study was to evaluate the effect of topical fluoridation of Ketac Molar Aplicap glass-ionomer cement on the growth of Lactobacillus spp. in the dental plaque. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings with conventional glass-ionomer material, Ketac Molar Aplicap, were performed. After 6 months, three-day dental plaque from these fillings was examined. Next, fluoride was rubbed on the glass-ionomer surface and the examination of three-day dental plaque was repeated. No statistically significant differences (p = 0.143) in the amounts of Lactobacillus spp. in the plaque collected prior to and after topical fluoridation were revealed. Fluoride rubbed in the conventional glass-ionomer cement, Ketac Molar Aplicap, did not affect the amount of Lactobacillus spp. in the dental plaque growing on this material.

  13. The importance of dental aesthetics among dental students assessment of knowledge

    OpenAIRE

    Manipal, Sunayana; Mohan, C. S. Anand; Kumar, D. Lokesh; Cholan, Priyanka K.; Ahmed, Adil; Adusumilli, Preethi

    2014-01-01

    Objective: The aim of this study is to assess the dental esthetics awareness among dental students in a private university in Chennai as none is available in Chennai, Tamil Nadu. Materials and Methods: The dental esthetics awareness questionnaire consisting of a battery of 19 questions under five aspects that is, physical, functional, social, knowledge, and psychological aspects was administered to a sample of 100 dental college students aged between 18 and 27 years in a private college in Ch...

  14. Reduction of metal artifact in three-dimensional computed tomography (3D CT) with dental impression materials.

    Science.gov (United States)

    Park, W S; Kim, K D; Shin, H K; Lee, S H

    2007-01-01

    Metal Artifact still remains one of the main drawbacks in craniofacial Three-Dimensional Computed Tomography (3D CT). In this study, we tried to test the efficacy of additional silicone dental impression materials as a "tooth shield" for the reduction of metal artifact caused by metal restorations and orthodontic appliances. 6 phantoms with 4 teeth were prepared for this in vitro study. Orthodontic bracket, bands and amalgam restorations were placed in each tooth to reproduce various intraoral conditions. Standardized silicone shields were fabricated and placed around the teeth. CT image acquisition was performed with and without silicone shields. Maximum value, mean, and standard deviation of Hounsfield Units (HU) were compared with the presence of silicone shields. In every situation, metal artifacts were reduced in quality and quantity when silicone shields are used. Amalgam restoration made most serious metal artifact. Silicone shields made by dental impression material might be effective way to reduce the metal artifact caused by dental restoration and orthodontic appliances. This will help more excellent 3D image from 3D CT in craniofacial area.

  15. Education About Dental Hygienists' Roles in Public Dental Prevention Programs: Dental and Dental Hygiene Students' and Faculty Members' and Dental Hygienists' Perspectives.

    Science.gov (United States)

    Pervez, Anushey; Kinney, Janet S; Gwozdek, Anne; Farrell, Christine M; Inglehart, Marita R

    2016-09-01

    In 2005, Public Act No. 161 (PA 161) was passed in Michigan, allowing dental hygienists to practice in approved public dental prevention programs to provide services for underserved populations while utilizing a collaborative agreement with a supervising dentist. The aims of this study were to assess how well dental and dental hygiene students and faculty members and practicing dental hygienists have been educated about PA 161, what attitudes and knowledge about the act they have, and how interested they are in additional education about it. University of Michigan dental and dental hygiene students and faculty members, students in other Michigan dental hygiene programs, and dental hygienists in the state were surveyed. Respondents (response rate) were 160 dental students (50%), 63 dental hygiene students (82%), 30 dental faculty members (26%), and 12 dental hygiene faculty members (52%) at the University of Michigan; 143 dental hygiene students in other programs (20%); and 95 members of the Michigan Dental Hygienists' Association (10%). The results showed that the dental students were less educated about PA 161 than the dental hygiene students, and the dental faculty members were less informed than the dental hygiene faculty members and dental hygienists. Responding dental hygiene faculty members and dental hygienists had more positive attitudes about PA 161 than did the students and dental faculty members. Most of the dental hygiene faculty members and dental hygienists knew a person providing services in a PA 161 program. Most dental hygiene students, faculty members, and dental hygienists wanted more education about PA 161. Overall, the better educated about the program the respondents were, the more positive their attitudes, and the more interested they were in learning more.

  16. Surface deterioration of dental materials after simulated toothbrushing in relation to brushing time and load.

    Science.gov (United States)

    Heintze, S D; Forjanic, M; Ohmiti, K; Rousson, V

    2010-04-01

    (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. There was a significant interaction between material and load as well as between load and brushing time (pgloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be

  17. Longevity of dental amalgam in comparison to composite materials

    Directory of Open Access Journals (Sweden)

    Windisch, Friederike

    2008-11-01

    fillings in posterior teeth is difficult. Apart from the difficulties in conducting a randomized, controlled long-term study comparing the longevity of direct fillings, the fact that composites and adhesives used in a study have often already been replaced by the next generation of the product at the time of study publication presents an additional problem. Not only the filling material, but also patient parameters and local, intraoral factors (e. g. localisation of the filling as well as the treating dentist have an impact on the longevity of dental fillings. In evaluating economic studies, one has to refer to the heterogeneity of data on longevity in the medical evaluation. The only effect parameter used in the studies is longevity, other aspects (e. g. long-term functionality are only referred to in discussions. Extensive counselling of patients regarding the selection of the appropriate filling material is important. Conclusions: Amalgam fillings show a longer longevity than composite fillings. Two out of six systematic reviews conclude that the expected survival time of composite fillings can be comparable to amalgam fillings. However, these conclusions are based on the results of short-term studies which usually overestimate the longevity of filling materials. From an economic standpoint, amalgam is the more economic filling material compared to direct composite fillings in posterior teeth when considering longevity as the only result parameter. Other aspects than longevity need to be considered in individually choosing the appropriate dental filling material. For future studies aiming to compare the longevity of amalgam and composite fillings, a sufficient sample size and study period, preferably in the setting of a private dental practice, should be aimed for. An evaluation of the cost-effectiveness of amalgam and composite fillings should take the functionality of teeth over a longer time period into account, as well as patients’ preferences. The rapid

  18. A rare allergy to a polyether dental impression material.

    Science.gov (United States)

    Mittermüller, Pauline; Szeimies, Rolf-Markus; Landthaler, Michael; Schmalz, Gottfried

    2012-08-01

    Polyether impression materials have been used in dentistry for more than 40 years. Allergic reactions to these materials such as reported in the 1970s ceased after replacement of a catalyst. Very recently, however, patients have started to report symptoms that suggest a new allergic reaction from polyether impression materials. Here, we report on the results of allergy testing with polyether impression materials as well as with its components. Eight patients with clinical symptoms of a contact allergy (swelling, redness or blisters) after exposure to a polyether impression material were subjected to patch tests, two of them additionally to a prick test. A further patient with atypical symptoms of an allergy (nausea and vomiting after contact with a polyether impression material in the oral cavity) but with a history of other allergic reaction was also patch tested. The prick tests showed no immediate reactions in the two patients tested. In the patch tests, all eight patients with typical clinical symptoms showed positive reactions to the mixed polyether impression materials, to the base paste or to a base paste component. The patient with the atypical clinical symptoms did not show any positive patch test reactions. Polyether impression materials may evoke type IV allergic reactions. The causative agent was a component of the base paste. In consideration of the widespread use of this impression material (millions of applications per year) and in comparison to the number of adverse reactions from other dental materials, the number of such allergic reactions is very low. In very scarce cases, positive allergic reactions to polyether impression materials are possible.

  19. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  20. Combinatorial nanodiamond in pharmaceutical and biomedical applications.

    Science.gov (United States)

    Lim, Dae Gon; Prim, Racelly Ena; Kim, Ki Hyun; Kang, Eunah; Park, Kinam; Jeong, Seong Hoon

    2016-11-30

    One of the newly emerging carbon materials, nanodiamond (ND), has been exploited for use in traditional electric materials and this has extended into biomedical and pharmaceutical applications. Recently, NDs have attained significant interests as a multifunctional and combinational drug delivery system. ND studies have provided insights into granting new potentials with their wide ranging surface chemistry, complex formation with biopolymers, and combination with biomolecules. The studies that have proved ND inertness, biocompatibility, and low toxicity have made NDs much more feasible for use in real in vivo applications. This review gives an understanding of NDs in biomedical engineering and pharmaceuticals, focusing on the classified introduction of ND/drug complexes. In addition, the diverse potential applications that can be obtained with chemical modification are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials

    Directory of Open Access Journals (Sweden)

    Alejandro Victoria-Escandell

    2017-01-01

    Full Text Available Human dental pulp stem cells (HDPSCs are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white, an epoxy resin sealant (AH-Plus cement, and an MTA-based cement sealer (MTA-Fillapex. Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed.

  2. Synthesis of partial stabilized cement-gypsum as new dental retrograde filling material

    Energy Technology Data Exchange (ETDEWEB)

    Sadhasivam, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan (China); Chen, Jung-Chih [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan,Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Hsu, Ming-Xiang; Hsu, Chung-King [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Lin, Chun-Pin [School of Dentistry and Graduate Institute of Clinical Dentistry, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan (China)

    2012-10-01

    The study describes the sol-gel synthesis of a new dental retrograde filling material partial stabilized cement (PSC)-gypsum by adding different weight percentage of gypsum (25% PSC + 75% gypsum, 50% PSC + 50% gypsum and 75% PSC + 25% gypsum) to the PSC. The crystalline phase and hydration products of PSC-gypsum were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The handling properties such as setting time, viscosity, tensile strength, porosity and pH, were also studied. The XRD and microstructure analysis demonstrated the formation of hydroxyapatite and removal of calcium dihydrate during its immersion in simulated body fluid (SBF) on day 10 for 75% PSC + 25% gypsum. The developed PSC-gypsum not only improved the setting time but also greatly reduced the viscosity, which is very essential for endodontic surgery. The cytotoxic and cell proliferation studies indicated that the synthesized material is highly biocompatible. The increased alkaline pH of the PSC-gypsum also had a remarkable antibacterial activity. - Highlights: Black-Right-Pointing-Pointer A new dental retrograde filling material PSC-gypsum was developed. Black-Right-Pointing-Pointer PSC-gypsum cement has shown excellent initial and final setting time as 15-35 min. Black-Right-Pointing-Pointer It not only improved the setting time but also retain the viscosity, 2 Pa{center_dot}s. Black-Right-Pointing-Pointer High alkaline pH of the cement had a remarkable antibacterial activity. Black-Right-Pointing-Pointer Cytotoxicity studies revealed that the synthesized material is highly biocompatible.

  3. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  4. Dental amalgam and mercury vapor release.

    Science.gov (United States)

    Osborne, J W

    1992-09-01

    Dental diseases are among the most common ailments, and dentists in the United States spend over 50% of their time in dental practice rebuilding carious, malformed, and traumatically injured teeth. It is logical, therefore, that the majority of the dental school curriculum is devoted to the diagnosis, prevention, and treatment of teeth with anomalies. Dentists have several choices of materials they can use to accomplish the task of rebuilding teeth. Besides amalgam, they have ceramic materials, resin composites, base-metal and noble casting alloys, and glass-ionomer cements to use to restore the posterior dentition. Each of these restorative materials has advantages and disadvantages, and the clinical judgment as to when a particular material should be used is given a high priority in dental education. Amalgam is the most widely used of these restorative materials, with 92% of dentists listing it as the material of choice in the posterior of the mouth (Clinical Research Associates, 1990). Dentists have been placing amalgams for over 150 years in the US. They placed 150 million last year, which represents over 75 tons of amalgam alloy. The reasons that dentists use this restorative material so frequently are its durability, ease of manipulation, and low cost. Numerous clinical studies have been conducted on the serviceability of amalgam. Most of these have been on the old, low-copper alloys, and results indicate that they last from 8 to 15 years (Bailit et al., 1979; Osborne et al., 1980; Qvist et al., 1986). In the past 20 years, vast improvements have been made in amalgams with the development of the high-copper systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  6. 21 CFR 872.3240 - Dental bur.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental bur. 872.3240 Section 872.3240 Food and... DENTAL DEVICES Prosthetic Devices § 872.3240 Dental bur. (a) Identification. A dental bur is a rotary... materials intended for use in the fabrication of dental devices. (b) Classification. Class I (general...

  7. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dental perspective on biomedical waste and mercury management: A knowledge, attitude, and practice survey

    Directory of Open Access Journals (Sweden)

    Ashima Garg Sood

    2011-01-01

    Conclusions: There is need for education regarding hazards associated with improper waste disposal at all levels of dental personnel. It is imperative that waste should be segregated and disposed off in a safe manner to protect the environment as well as human health.

  9. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  10. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  11. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  12. Characterization of Powder Metallurgy Processed Pure Magnesium Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Matěj Březina

    2017-10-01

    Full Text Available Magnesium with its mechanical properties and nontoxicity is predetermined as a material for biomedical applications; however, its high reactivity is a limiting factor for its usage. Powder metallurgy is one of the promising methods for the enhancement of material mechanical properties and, due to the introduced plastic deformation, can also have a positive influence on corrosion resistance. Pure magnesium samples were prepared via powder metallurgy. Compacting pressures from 100 MPa to 500 MPa were used for samples’ preparation at room temperature and elevated temperatures. The microstructure of the obtained compacts was analyzed in terms of microscopy. The three-point bendisng test and microhardness testing were adopted to define the compacts’ mechanical properties, discussing the results with respect to fractographic analysis. Electrochemical corrosion properties analyzed with electrochemical impedance spectroscopy carried out in HBSS (Hank’s Balanced Salt Solution and enriched HBSS were correlated with the metallographic analysis of the corrosion process. Cold compacted materials were very brittle with low strength (up to 50 MPa and microhardness (up to 50 HV (load: 0.025 kg and degraded rapidly in both solutions. Hot pressed materials yielded much higher strength (up to 250 MPa and microhardness (up to 65 HV (load: 0.025 kg, and the electrochemical characteristics were significantly better when compared to the cold compacted samples. Temperatures of 300 °C and 400 °C and high compacting pressures from 300 MPa to 500 MPa had a positive influence on material bonding, mechanical and electrochemical properties. A compacting temperature of 500 °C had a detrimental effect on material compaction when using pressure above 200 MPa.

  13. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    Science.gov (United States)

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The Management of Dental Waste in Dental Offices and Clinics in Shiraz, Southern Iran

    Directory of Open Access Journals (Sweden)

    M Danaei

    2014-01-01

    Full Text Available Background: Dental waste can be hazardous to humans and the environment. Objective: To determine the current status of dental waste management in private and public dental clinics and private dental offices in Shiraz, southern Iran. Methods: This cross-sectional study was conducted at the Shiraz University of Medical Sciences from February through June 2013. A stratified random sampling method was used to study 86 private offices, 14 private clinics and 10 public clinics. Types of waste studied included mercury and amalgam, lead foil packets, sharps, infectious tissues and fluids, pharmaceuticals and domestic waste materials. Compliance with established standards by the monitored dental offices and clinics and public clinics were compared. Results: 89.1% of dental offices and clinics disposed their infectious waste with domestic waste. Only 60% of centers used standard method for sharps disposal. None of the dental centers disposed their pharmaceutical waste and x-ray fixer waste by standard methods. Less than 10% of centers recycled the amalgam and lead foil pockets waste to the manufacture. Conclusion: Government agencies should establish monitoring programs for all dental offices and clinics to identify noncompliant activity and enforce recommended regulations.

  15. [Development and application of electroanalytical methods in biomedical fields].

    Science.gov (United States)

    Kusu, Fumiyo

    2015-01-01

    To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements.

  16. Evaluation of cast Ti-Fe-O-N alloys for dental applications

    International Nuclear Information System (INIS)

    Koike, Marie; Ohkubo, Chikahiro; Sato, Hideki; Fujii, Hideki; Okabe, Toru

    2005-01-01

    Good mechanical properties, biocompatibility and corrosion resistance make titanium an excellent material for biomedical applications. However, when better mechanical properties than those offered by commercially pure titanium (CPTi) are needed, Ti-6Al-4V is sometimes a good alternative. Some new titanium alloys, developed as industrial structural materials, aim at an intermediate range of strength between that of CP Ti and Ti-6Al-4V. Two of these alloys are Super-TIX800TM (Ti-1% Fe-0.35% O-0.01% N) and Super-TIX800NTM (Ti-1% Fe-0.3% O-0.04% N) (both produced by Nippon Steel Corp., Japan). Besides being stronger than CP Ti, the cost of manufacturing these alloys is reportedly lower than for Ti-6Al-4V since they do not contain any expensive elements. In addition, they are not composed of elements such as aluminum or vanadium, which have caused biocompatibility concerns in medical and dental appliances. To evaluate these alloys as candidates for dental use, it is helpful to compare them to CP Ti (ASTM Grade 2) and Ti-6Al-4V (ASTM Grade 5), which have already been employed in dentistry. We evaluated the tensile properties, mold filling capacity, corrosion characteristics and grindability of these industrial alloys prepared by investment casting. Compared to the strengths of cast CPTi, the yield strength and tensile strength of these cast alloys were more than 20% and approximately 30% higher, respectively. On the other hand, both of these properties were 30% lower than for Ti-6Al-4V. Better grindability and wear resistance were additional benefits of these new alloys for dental applications

  17. The performance of human dental pulp stem cells on different three-dimensional scaffold materials.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.; Bian, Z.; Jansen, J.A.

    2006-01-01

    The aim of this study was to investigate the in vitro and in vivo behavior of human dental pulp stem cells (DPSCs) isolated from impacted third molars, when seeded onto different 3-dimensional (3-D) scaffold materials: i.e. a spongeous collagen, a porous ceramic, and a fibrous titanium mesh.

  18. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  19. Cytocompatibility, cytotoxicity and genotoxicity analysis of dental implants

    International Nuclear Information System (INIS)

    M, Reigosa; V, Labarta; G, Molinari; D, Bernales

    2007-01-01

    Several types of materials are frequently used for dental prostheses in dental medicine. Different treatments with titanium are the most used. The aim of the present study was to analyze by means of cytotoxicity and cytocompatibility techniques the capacity of dental implants to integrate to the bone tissue. Cultures of UMR 106 cell line derived from an osteosarcoma were used for bioassays mainly because they show many of the properties of osteoblasts. Dental implant samples provided by B and W company were compared with others of recognized trademarks. The first ones contain ASTM titanium (8348 GR2) with acid printing. Cytotoxicity was analyzed by means of lysosome activity, using the neutral red technique and alkaline phosphatase enzyme activity. Cell variability was determined by means of the acridine ethidium-orange bromide technique. One-way ANOVA and Bonferroni and Duncan post-ANOVA tests were used for the statistical analysis. The assays did not show significant differences among the dental implants analyzed. Our findings show that the dental prostheses studied present high biocompatibility, quantified by the bioassays performed. The techniques employed revealed that they can be a useful tool for the analysis of other materials for dental medicine use

  20. Cytocompatibility, cytotoxicity and genotoxicity analysis of dental implants

    Science.gov (United States)

    Reigosa, M.; Labarta, V.; Molinari, G.; Bernales, D.

    2007-11-01

    Several types of materials are frequently used for dental prostheses in dental medicine. Different treatments with titanium are the most used. The aim of the present study was to analyze by means of cytotoxicity and cytocompatibility techniques the capacity of dental implants to integrate to the bone tissue. Cultures of UMR 106 cell line derived from an osteosarcoma were used for bioassays mainly because they show many of the properties of osteoblasts. Dental implant samples provided by B&W company were compared with others of recognized trademarks. The first ones contain ASTM titanium (8348 GR2) with acid printing. Cytotoxicity was analyzed by means of lysosome activity, using the neutral red technique and alkaline phosphatase enzyme activity. Cell variability was determined by means of the acridine ethidium-orange bromide technique. One-way ANOVA and Bonferroni and Duncan post-ANOVA tests were used for the statistical analysis. The assays did not show significant differences among the dental implants analyzed. Our findings show that the dental prostheses studied present high biocompatibility, quantified by the bioassays performed. The techniques employed revealed that they can be a useful tool for the analysis of other materials for dental medicine use.

  1. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    New, P.F.J.; Rosen, B.R.; Brady, T.J.

    1983-01-01

    The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region

  2. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  3. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Mobile and Portable Dental Services Catering to the Basic Oral Health Needs of the Underserved Population in Developing Countries: A Proposed Model

    Science.gov (United States)

    Ganavadiya, R; Chandrashekar, BR; Goel, P; Hongal, SG; Jain, M

    2014-01-01

    India is the second most populous country in the world with an extensive rural population (68.8%). Children less than 18 years constitute about 40% of the population. Approximately, 23.5% of the urban population resides in urban slums. The extensive rural population, school children and the urban slum dwellers are denied of even the basic dental services though there is continuous advancement in the field of dentistry. The dentist to population ratio has dramatically improved in the last one to two decades with no significant improvement in the oral health status of the general population. The various studies have revealed an increasing trend in oral diseases in the recent times especially among this underserved population. Alternate strategies have to be thought about rather than the traditional oral health-care delivery through private dentists on fee for service basis. Mobile and portable dental services are a viable option to take the sophisticated oral health services to the doorsteps of the underserved population. The databases were searched for publications from 1900 to the present (2013) using terms such as Mobile dental services, Portable dental services and Mobile and portable dental services with key articles obtained primarily from MEDLINE. This paper reviews the published and unpublished literature from different sources on the various mobile dental service programs successfully implemented in some developed and developing countries. Though the mobile and portable systems have some practical difficulties like financial considerations, they still seem to be the only way to reach every section of the community in the absence of national oral health policy and organized school dental health programs in India. The material for the present review was obtained mainly by searching the biomedical databases for primary research material using the search engine with key words such as mobile and/or portable dental services in developed and developing countries

  5. Mobile and portable dental services catering to the basic oral health needs of the underserved population in developing countries: a proposed model.

    Science.gov (United States)

    Ganavadiya, R; Chandrashekar, Br; Goel, P; Hongal, Sg; Jain, M

    2014-05-01

    India is the second most populous country in the world with an extensive rural population (68.8%). Children less than 18 years constitute about 40% of the population. Approximately, 23.5% of the urban population resides in urban slums. The extensive rural population, school children and the urban slum dwellers are denied of even the basic dental services though there is continuous advancement in the field of dentistry. The dentist to population ratio has dramatically improved in the last one to two decades with no significant improvement in the oral health status of the general population. The various studies have revealed an increasing trend in oral diseases in the recent times especially among this underserved population. Alternate strategies have to be thought about rather than the traditional oral health-care delivery through private dentists on fee for service basis. Mobile and portable dental services are a viable option to take the sophisticated oral health services to the doorsteps of the underserved population. The databases were searched for publications from 1900 to the present (2013) using terms such as Mobile dental services, Portable dental services and Mobile and portable dental services with key articles obtained primarily from MEDLINE. This paper reviews the published and unpublished literature from different sources on the various mobile dental service programs successfully implemented in some developed and developing countries. Though the mobile and portable systems have some practical difficulties like financial considerations, they still seem to be the only way to reach every section of the community in the absence of national oral health policy and organized school dental health programs in India. The material for the present review was obtained mainly by searching the biomedical databases for primary research material using the search engine with key words such as mobile and/or portable dental services in developed and developing countries

  6. Smartphones and dental trauma: the current availability of apps for managing traumatic dental injuries.

    Science.gov (United States)

    Djemal, Serpil; Singh, Parmjit

    2016-02-01

    There is a general consensus regarding the lack of awareness regarding the emergency management of traumatic dental injuries amongst laypersons and dental professionals. This article aims to provide an overview of the apps available for traumatic dental injuries using smartphones. These apps may serve as a gateway for raising awareness of traumatic dental injuries. Three smartphone devices were used to access their respective app stores (Nokia Lumia 635 with Windows Phone OS 8.1; iPhone 5 with iOS 8.1; Samsung Galaxy Ace II with Android OS v2.3.6 Gingerbread). Nine phrases were searched: broken tooth/teeth; chipped tooth/teeth; dental emergency; dental injury; dental trauma; fractured tooth/teeth; knocked-out tooth/teeth; tooth/teeth injury; and tooth/teeth trauma. Seven apps for the Android and one app for the Apple operating system were relevant. The only Apple iOS app retrieved (Dental Trauma) was also found for the Android OS (Dental Trauma First Aid) and had the endorsement of the International Association of Dental Traumatology. AcciDent was the only app dedicated to traumatic dental injuries targeted solely towards dental professionals. Five other apps (Chipped Tooth Solution, Dental Crown Repair, Fixing Cracked Tooth, Repairing the Front Tooth and Solution to Broken Tooth) appeared to come from the same source (KBES). No traumatic dental injury apps were found for the Windows Phone OS. There are apps available for both patients and dentists that range in quality and on the whole lack real-life photographs. Future apps should continue to provide good quality, evidence-based and validated material. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Lin, Mu-Han; Li Jinsheng; Price, Robert A Jr; Wang Lu; Ma, C-M; Lee, Chung-Chi

    2013-01-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm 3 insert. The per cent depth dose distributions of a 3 × 3 cm 2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose–volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm 3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm 2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose

  8. Surface texture measurement for dental wear applications

    Science.gov (United States)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  9. Emerging scientific advances: how do they enter dental curricula and the profession?

    Science.gov (United States)

    Shuler, Charles F

    2005-10-01

    What is meant by emerging scientific advances? In brief, this terminology is equivalent to new research findings, however, the term "research" is often associated with scientific investigations that have very limited direct clinical relevance. Unfortunately, basic dental research and dental clinical practice have, in many instances, been considered to have nonoverlapping spheres of existence. The existence of mutually exclusive domains is rapidly changing with considerable translational activities between basic research investigation and clinical application developing. There is a growing emphasis at a national level for the importance of moving basic biomedical research laboratory findings into clinical patient-related applications to realize improvements in health based on the research findings. Ultimately, new approaches to diagnose, treat, and prevent disease will be available and represent the translation of the best scientific evidence into clinical applications. It is critical at this time to prepare our dental graduates to be members of the dental profession who will understand the implications that new scientific advances will have on their approach to patient care. The patterns and practices of oral health care delivery will undergo major changes during the careers of our new dental graduates. They need to be prepared to respond to these changes to the benefit of their patients.

  10. Entrepreneurship in continuing dental education: a dental school perspective.

    Science.gov (United States)

    Liberto, Vincent N

    2005-01-01

    The definition of continuing dental education is presented, along with its benefits to the profession. The preeminence of dental schools in providing lifelong learning opportunities and freedom from commercial involvement that existed even twenty years ago has changed. Less than a quarter of CE takes place in school, and the focus there is increasingly on material with deep scientific background and hands-on learning. The newest innovations and those with the greatest commercial potential are taught elsewhere. Proposed changes in the ADA CERP standards would take on a "purist" approach that could place dental schools at a severe disadvantage while allowing "for profit" institutes to flourish and thus further undermine the role dental schools can play in providing quality professional development experiences.

  11. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  12. Synthesis and characterization of dental composites

    Science.gov (United States)

    Djustiana, Nina; Greviana, Nadia; Faza, Yanwar; Sunarso

    2018-02-01

    During the last few decades, the increasing demands in esthetic dentistry have led to the development of dental composites material that provide similar appearance to the natural teeth. Recently, esthetic trend was an issue which increase the demand for teeth restorations that is similar with the origin. The esthetics of dental composite are more superior compared to amalgam, since its color look similar with natural teeth. Various dental composites have been developed using many type of fillers such as amorphous silica, quartz), borosilicate, Li-Sr-Ba-Al glass and oxide: zirconia and alumina. Researchers in Faculty of Dentistry University of Padjadjaran have prepared dental composites using zirconia-alumina-silica (ZAS) system as the filler. The aim is to improve the mechanical properties and the esthetic of the dental composites. The ZAS was obtained from chemical grade purity chemicals and Indonesia's natural sand as precursors its characterization were also presented. This novel method covers the procedure to synthesis and characterize dental composites in Padjadjaran University and some review about dental composites in global research.

  13. Knowledge and attitude towards preventive dental care among dental faculties in Bangalore city

    Directory of Open Access Journals (Sweden)

    Nikhil Ahuja

    2014-01-01

    Full Text Available Background and Objectives: Preventive approach in dental practice has been cited as a reason for the decline in oral diseases and as a predominant part of the service-mix of dental practices in the future. Dental faculty′s knowledge and attitude toward prevention are important, since they have exceptionally important direct and indirect roles in shaping student′s preventive orientation and also potentially influencing their patient′s ability to take care of their teeth. Thus, this study was conducted to assess knowledge and attitudes toward preventive dental care among dental faculties and their relation to demographic and professional characteristics. Materials and Methods: A cross-sectional study was conducted among dental faculties in Bangalore city. Of 17 dental colleges, 4 were selected by simple random sampling. A total of 218 dental faculties was individually asked to complete a pretested questionnaire. The questionnaire requested information on dental faculty′s demographic and professional characteristics and their knowledge and attitudes toward preventive dental care. Descriptive, Chi-square tests, and ANOVA were used to analyze the data. Results: The highest knowledge was seen among dental faculties regarding prevention of malocclusion (3.51 ± 1.02 followed by oral cancer (2.95 ± 1.09 and periodontal diseases (2.86 ± 1.02. The least knowledge was seen for the prevention of caries (2.63 ± 1.35. The most positive attitudes regarding preventive dentistry was characterized as being essential (6.34 ± 1.05, useful (6.32 ± 1.07 and valuable (6.27 ± 1.00. Statistically significant differences were found in relation to knowledge and attitudes for all demographic and professional characteristics except for gender and Department of Teaching. Conclusion: Dental faculty seems to have differing levels of knowledge regarding oral diseases with positive attitudes seen regarding preventive dentistry. Continuing education activities and

  14. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  15. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  16. OBTAINING HYSTERESIS LOOPS AT LOW FREQUENCY FOR CHARACTERIZATION OF MATERIALS TO BE USED IN BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2015-05-01

    Full Text Available The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired

  17. Dental students' motivation and the context of learning

    DEFF Research Database (Denmark)

    Kristensen, Bettina Tjagvad; Netterstrom, Ingeborg; Kayser, Lars

    2009-01-01

    This qualitative study shows dental students' motives for choosing the dental education and how the motives influence their motivation at the first semester of study. Further the study demonstrates the relevance of the context of learning. This issue is of importance when planning a curriculum...... for the dental education. The material consists of interviews with eight dental students. The results show that dental students were focused on their future professional role, its practical dimensions and their future working conditions. Their motivation for choosing the dental education was found to influence...... their motivation for studying and their experience of the relevance of the first semester. The dental students who had co-education with the medical students at the first year of study missed a dental context and courses with clinically relevant contents. In conclusion, our data signify the importance...

  18. Dental Charting. Learning Activities, Unit Tests, Progress Chart, and Work Sheet.

    Science.gov (United States)

    Texas Univ., Austin. Center for Occupational Curriculum Development.

    These materials are part of a series dealing with skills and information needed by students in dental assisting. The individualized student materials are suitable for classroom, laboratory, or cooperative training programs. These student materials, designed to be used with the Dental Charting Student Manual, consist of learning activities, unit…

  19. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  20. A Review on Dental Amalgam Corrosion and Its Consequences

    Directory of Open Access Journals (Sweden)

    M Fathi

    2004-02-01

    Full Text Available Dental amalgam is still the most useful restorative material for posterior teeth and has been successfully used for over a century. Dental amalgam has been widely used as a direct filling material due to its favorable mechanical properties as well as low cost and easy placement. However, the mercury it contains raises concerns about its biological toxicity and environmental hazard. Although in use for more than 150 years, dental amalgam has always been suspected more or less vigorously due to its alleged health hazard. Amalgam restorations often tarnish and corrode in oral environment. Corrosion of dental amalgam can cause galvanic action. Ion release as a result of corrosion is most important. Humans are exposed to mercury and other main dental metals via vapor or corrosion products in swallowed saliva and also direct absorption into blood from oral mucosa. During recent decades the use of dental amalgam has been discussed with respect to potential toxic effects of mercury components. In this article, the mechanisms of dental amalgam corrosion are described and results of researches are reviewed. It finally covers the corrosion of amalgams since this is the means by which metals, including mercury, can be released within oral cavity. Keywords: Dental amalgam, Amalgam corrosion, Biocompatibility, Mercury release, Amalgam restoration

  1. Accuracy of a new elastomeric impression material for complete-arch dental implant impressions.

    Science.gov (United States)

    Baig, Mirza R; Buzayan, Muaiyed M; Yunus, Norsiah

    2018-05-01

    The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts. Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05. The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05). The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions. © 2018 John Wiley & Sons Australia, Ltd.

  2. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Soares, Ana Lúcia Silva; De Oliveira, Rodrigo; Nahórny, Sidnei

    2016-07-01

    FT-Raman spectroscopy and scanning electron microscopy (SEM) were employed to test the hypothesis that the beverage consumption or mouthwash utilization would change the chemistry of dental materials and enamel inorganic content. Bovine enamel samples (n = 36) each received two cavity preparations (n = 72), each pair filled with one of three dental materials (R: nanofilled composite resin, GIC: glass-ionomer cement, RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: artificial saliva, E: erosion/Pepsi Twist or EM: erosion + mouthwash/Colgate Plax). Reduction of carbonate content of enamel was greater in RE than RS (P erosion. Material degradation was greater after E and EM than S. GIC and RMGIC materials had a positive effect against acid erosion in the adjacent enamel after remineralization with mouthwash. The beverage and mouthwash utilization would change R and GIC chemical properties. A professional should periodically monitor the glass-ionomer and resin restorations, as they degrade over time under erosive challenges and mouthwash utilization. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc. Microsc. Res. Tech. 79:646-656, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Pneumoconiosis and respiratory problems in dental laboratory technicians: Analysis of 893 dental technicians

    Directory of Open Access Journals (Sweden)

    Dilek Ergün

    2014-10-01

    Full Text Available Objectives: To explore the rate of pneumoconiosis in dental technicians (DTP and to evaluate the risk factors. Material and Methods: Data of 893 dental technicians, who were admitted to our hospital in the period January 2007–May 2012, from 170 dental laboratories were retrospectively examined. Demographic data, respiratory symptoms, smoking status, work duration, working fields, exposure to sandblasting, physical examination findings, chest radiographs, pulmonary function tests and high-resolution computed tomography results were evaluated. Results: Dental technicians’ pneumoconiosis rate was 10.1% among 893 cases. The disease was more common among males and in those exposed to sandblasting who had 77-fold higher risk of DTP. The highest profusion subcategory was 3/+ (according to the International Labour Organization (ILO 2011 standards and the large opacity rate was 13.3%. Conclusions: To the best of our knowledge, it was the largest DTP case series (N = 893/90 in the literature in English. Health screenings should be performed regularly for the early diagnosis of pneumoconiosis, which is an important occupational disease for dental technicians.

  4. Dental Caries (Tooth Decay)

    Science.gov (United States)

    ... Materials Contact Us Home Research Data & Statistics Dental Caries (Tooth Decay) Dental caries (tooth decay) remains the most prevalent chronic disease ... adults, even though it is largely preventable. Although caries has significantly decreased for most Americans over the ...

  5. Cyclotrons for clinical and biomedical research with PET

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use

  6. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  7. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    OpenAIRE

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin; Hwang, Hyeon-Shik

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions wer...

  8. How does duration of curing affect the radiopacity of dental materials?

    Energy Technology Data Exchange (ETDEWEB)

    Bejeh Mir, Arash Poorsattar [School of Dentistry, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal (Canada)

    2012-06-15

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm{sup 2} irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  9. How does duration of curing affect the radiopacity of dental materials?

    International Nuclear Information System (INIS)

    Bejeh Mir, Arash Poorsattar; Bejeh Mir, Morvarid Poorsattar

    2012-01-01

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm 2 irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  10. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  11. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  12. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Science.gov (United States)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  13. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  14. 21 CFR 872.3640 - Endosseous dental implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  15. Dental Implants and General Dental Practitioners of Nepal: A study of existing knowledge and need for further education

    Directory of Open Access Journals (Sweden)

    Bhageshwar Dhami

    2017-03-01

    Full Text Available Background & Objectives: The use of dental implants in partially or completely edentulous patients has proved effective and an accepted treatment modality with predictable long-term success. Dental implants are becoming a popular choice for replacing the missing teeth because of increased awareness about implants both in dentists and patients. The objective of the study was to assess the basic knowledge and education about dental implants among general dental practitioners (GDPs of Nepal.Materials & Methods:  A cross sectional questionnaire was carried out among 110 GDPs which consist of twenty questions that were divided into three categories; first with some basic knowledge in implant dentistry, second with clinical knowledge of dental implants and third with dental implant education and training.Results: Out of 110 GDPs, 72.7% had basic knowledge about implant dentistry and 65.5% were not aware about advance surgical procedures like sinus lift and guided bone regeneration. All the GDPs were positive regarding more training and education in dental implants and 95.5% of them would like to incorporate dental implant treatment in their practice in future. Conclusion: GDPs should have adequate knowledge and training of dental implants which can be incorporated at undergraduate or post doctoral level so that they are skilled to provide quality dental implant therapy to their patients confidently.

  16. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  17. Occupational contact dermatitis amongst dentists and dental technicians

    OpenAIRE

    Lugović-Mihić, Liborija; Ferček, Iva; Duvančić, Tomislav; Bulat, Vedrana; Ježovita, Josip; Novak-Bilić, Gaby; Šitum, Mirna

    2016-01-01

    Since the working medical personnel including dentists and dental technicians mainly use their hands, it is understandable that the most common occupational disease amongst medical personnel is contact dermatitis (CD) (80%-90% of cases). Development of occupational CD is caused by contact of the skin with various substances in occupational environment. Occupational etiologic factors for dental personnel are foremost reactions to gloves containing latex, followed by various dental materials...

  18. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  19. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished

    International Nuclear Information System (INIS)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto

    2005-01-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of 32 P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 μg of enamel /mm 2 weared surface. There was no statistical difference (α=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  20. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kyoung-Nam

    2013-05-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials.

  1. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Kwon, Jae-Sung; Kim, Kyoung-Nam; Kim, Yong Hee; Choi, Eun Ha

    2013-01-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials. (paper)

  2. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  3. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  4. The biomedical disciplines and the structure of biomedical and clinical knowledge.

    Science.gov (United States)

    Nederbragt, H

    2000-11-01

    The relation between biomedical knowledge and clinical knowledge is discussed by comparing their respective structures. The knowledge of a disease as a biological phenomenon is constructed by the interaction of facts and theories from the main biomedical disciplines: epidemiology, diagnostics, clinical trial, therapy development and pathogenesis. Although these facts and theories are based on probabilities and extrapolations, the interaction provides a reliable and coherent structure, comparable to a Kuhnian paradigma. In the structure of clinical knowledge, i.e. knowledge of the patient with the disease, not only biomedical knowledge contributes to the structure but also economic and social relations, ethics and personal experience. However, the interaction between each of the participating "knowledges" in clinical knowledge is not based on mutual dependency and accumulation of different arguments from each, as in biomedical knowledge, but on competition and partial exclusion. Therefore, the structure of biomedical knowledge is different from that of clinical knowledge. This difference is used as the basis for a discussion in which the place of technology, evidence-based medicine and the gap between scientific and clinical knowledge are evaluated.

  5. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices.

  6. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  7. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression.

    Science.gov (United States)

    Kang, S-H; Lee, J-W; Lim, S-H; Kim, Y-H; Kim, M-K

    2014-10-01

    The goal of the present study was to compare the accuracy of dental image replacement on a cone beam computed tomography (CBCT) image using digital image data from three-dimensional (3D) optical scanning of a dental cast, occlusal bite, and bite tray impression. A Bracket Typodont dental model was used. CBCT of the dental model was performed and the data were converted to stereolithography (STL) format. Three experimental materials, a dental cast, occlusal bite, and bite tray impression, were optically scanned in 3D. STL files converted from the CBCT of the Typodont model and the 3D optical-scanned STL files of the study materials were image-registered. The error range of each methodology was measured and compared with a 3D optical scan of the Typodont. For the three materials, the smallest error observed was 0.099±0.114mm (mean error±standard deviation) for registering the 3D optical scan image of the dental cast onto the CBCT dental image. Although producing a dental cast can be laborious, the study results indicate that it is the preferred method. In addition, an occlusal bite is recommended when bite impression materials are used. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Considerations for services from dental technicians in fabrication of fixed prostheses: A survey of commercial dental laboratories in Thessaloniki, Greece.

    Science.gov (United States)

    Hatzikyriakos, Andreas; Petridis, Haralampos P; Tsiggos, Nikolaos; Sakelariou, Sotirios

    2006-11-01

    Effective communication and cooperation between dentists and dental technicians are essential in providing quality services. There has been a lack of information regarding dentist-dental technician communications and current methods and materials used for the fabrication of fixed partial dentures (FPDs). This cross-sectional study identified the materials and techniques used for fabrication of FPDs, as well as the status of communication between dentists and dental technicians in Thessaloniki, Greece. A questionnaire was developed with 7 sections pertaining to procedures and materials used for the fabrication of fixed prostheses: general questions, infection control, impressions/interocclusal records, die technique/mounting, information from final casts, prostheses design/materials, and communication/shade selection. The questionnaire was anonymous and distributed by the Association of Dental Technicians of Thessaloniki to all member laboratories (228) in the wider province of Thessaloniki, Greece. Due to the absence of normal distribution of the results, frequencies and medians were reported. Ninety-six of 228 dental laboratories responded (42.1% response rate). Twenty-six percent of dental laboratories did not routinely disinfect incoming items. The dental technicians considered 30% of incoming final impressions and 20% of interocclusal registrations as inadequate. Half of the time (55%) final casts were mounted by technicians on simple hinge articulators. Only 20% of tooth preparations had adequate finish lines. The majority (70%) of fixed restorations were metal-ceramic. Fifty-seven percent of dental technicians considered the delivery time requested by dentists as insufficient. The information provided in this study indicates areas of weakness in communication between dentists and dental technicians, along with areas where both parties should use greater care during clinical and laboratory procedures.

  9. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Behjat-Al-Molook Ajami

    2013-01-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration

  10. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Taraneh Movahhed

    2012-09-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration.

  11. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.

    Science.gov (United States)

    Wu, Chengtie

    2009-05-01

    CaSiO3 ceramics and porous scaffolds are regarded as potential materials for bone tissue regeneration owing to their excellent bioactivity. However, their low mechanical strength and high dissolution limit their further biomedical application. In this report, we introduce three methods to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds. Positive ions and polymer modification are two promising ways to improve the mechanical and biomedical properties of CaSiO3 ceramics and scaffolds for bone tissue regeneration.

  12. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview.

    Science.gov (United States)

    Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H

    2017-07-01

    To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.

  13. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  14. Bridging the gap in 1(st) year dental material curriculum: A 3 year randomized cross over trial.

    Science.gov (United States)

    Gali, Sivaranjani; Shetty, Vibha; Murthy, N S; Marimuthu, P

    2015-01-01

    Case-oriented small group discussions (COSGDs) can help students to correlate and integrate the basic science of dental materials into clinical application. We used COSGDs along with didactic lectures in dental material curriculum and hypothesized that case-oriented group discussions would be more effective than traditional lecture alone in terms of performance of students, student perception on the above two teaching methodologies and the feasibility in classes of 2010, 2011 and 2012. A total of 170 students were taught using both COSGD and didactic lecture in a randomized controlled crossover trial design. Their performance was assessed through multiple-choice questions (MCQs) as part of the formative assessment, and their perception was assessed through Likert scale questionnaire. The mean difference in the scores between case-oriented group discussions with lecture and didactic lecture showed significant difference only in few topics. Around 94-96% of students perceived COSGD with didactic lecture help them understand theory better; 76-92% of students feel more comfortable asking questions in a group discussion; 89-98% of students feel such discussions motivate them and 91-100% of students agree that discussions make the subject interesting in the respective years of 2010, 2011 and 2012. Effectiveness of COSGD in terms of scores through MCQs is comparable to traditional lecture. However, most of the students perceive COSGD help them understand the theory better; co-relate clinically; more motivating and interesting than a traditional lecture. Feasibility in institution needs more time and resources to conduct COSGD within the dental material curriculum.

  15. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Adrian Martinez-Rivas

    2017-11-01

    Full Text Available Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS, point-of-care (POC devices, or organs-on-chips (OOC, which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.

  16. LGBT Coverage in U.S. Dental Schools and Dental Hygiene Programs: Results of a National Survey.

    Science.gov (United States)

    Hillenburg, Kenneth L; Murdoch-Kinch, Carol A; Kinney, Janet S; Temple, Henry; Inglehart, Marita R

    2016-12-01

    The aims of this study were to assess curricular coverage of lesbian, gay, bisexual, and transgender (LGBT) content in U.S. and Canadian dental schools and U.S. dental hygiene programs, including hours of LGBT content, pedagogy used, and assessment methods, and to determine whether respondents perceived their institution's coverage as adequate. Data were collected from academic deans at 32 U.S. and two Canadian dental schools and from program directors at 71 U.S. dental hygiene programs (response rates 49%, 20%, 23%, respectively). The results showed that 29% of responding dental schools and 48% of responding dental hygiene programs did not cover LGBT content. Among the respondents, dental schools dedicated on average 3.68 hours and dental hygiene programs 1.25 hours in required settings to LGBT content. Lectures (dental schools 68%, dental hygiene programs 45%) and small group instruction (43%, 25%) were reported as the most common methodology used in teaching this content. Most of the responding dental schools and dental hygiene programs covered HIV (85%, 53%), oral disease risk (63%, 54%), and barriers to accessing health care for LGBT people (58%, 38%). Up to a third reported no need for coverage of topics such as sexual orientation (21%, 32%), coming out (29%, 37%), transitioning (29%, 38%), and sex reassignment surgery (32%, 35%). Assessment was through written examinations (41%, 30%) and faculty-observed patient interactions (21%, 23%); some respondents (20%, 33%) reported no assessment of learning outcomes. The most frequently endorsed strategies for increasing LGBT content were receiving curricular material focusing on LGBT-related health issues and health disparities and having trained faculty to teach LGBT content.

  17. Biological Effects of Provisional Resin Materials on Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Jun, S-K; Mahapatra, C; Lee, H-H; Kim, H-W; Lee, J-H

    This study investigated the in vitro cytotoxicity as well as the proinflammatory cytokine expression of provisional resin materials on primary cultured human dental pulp stem cells (hDPSCs). Five commercially available provisional resin materials were chosen (SNAP [SN], Luxatemp [LT], Jet [JE], Revotek LC [RL], and Vipi block [VB]). Eluates that were either polymerizing or already set were added to hDPSCs under serially diluted conditions divided into three different setting times (25% set, 50% set, and 100% set) and incubated for 24 hours with 2× concentrated culture media. Cell cytotoxicity tests were performed by LDH assay and live and dead confocal microscope images. The expression of proinflammatory cytokines in SN and VB was measured using cytokine antibody arrays. Data were analyzed using repeated measures analysis of variance (ANOVA) or ANOVA followed by the Tukey post hoc test at a significance level of pprovisional resin materials during polymerization (SN, LT, and JE) were cytotoxic to hDPSCs and may adversely affect pulp tissue.

  18. An overview of development and status of fiber-reinforced composites as dental and medical biomaterials.

    Science.gov (United States)

    Vallittu, Pekka K

    2018-01-01

    Fibr-reinforced composites (FRC) have been used successfully for decades in many fields of science and engineering applications. Benefits of FRCs relate to physical properties of FRCs and versatile production methods, which can be utilized. Conventional hand lamination of prefabricated FRC prepregs is utilized still most commonly in fabrication of dental FRC devices but CAD-CAM systems are to be come for use in certain production steps of dental constructions and medical FRC implants. Although metals, ceramics and particulate filler resin composites have successfully been used as dental and medical biomaterials for decades, devices made out of these materials do not meet all clinical requirements. Only little attention has been paid to FRCs as dental materials and majority of the research in dental field has been focusing on particulate filler resin composites and in medical biomaterial research to biodegradable polymers. This is paradoxical because FRCs can potentially resolve many of the problems related to traditional isotropic dental and medical materials. This overview reviews the rationale and status of using biostable glass FRC in applications from restorative and prosthetic dentistry to cranial surgery. The overview highlights also the critical material based factors and clinical requirement for the succesfull use of FRCs in dental reconstructions.

  19. Biological effects of radiation from dental radiography. Council on Dental Materials, Instruments, and Equipment

    International Nuclear Information System (INIS)

    Gibbs, S.J.

    1982-01-01

    Clearly, there is ample evidence of adverse effects of radiation in sufficient doses. There is at present no proof of such effects from doses commonly employed in dental practice; however, it has not been possible to prove the absence of such effects. Most experts now agree that there may be a small, difficult to quantify risk of cancer or genetic mutation from diagnostic exposure in patients and in personnel exposed during work. Prudence dictates acceptance of this position until proof to the contrary is available. This report has presented recent attempts to quantify the risk to patients based on speculative calculations and extrapolations. Indices of population risks indicate that medical radiology is the largest source of human-made genetic and leukemogenic radiation burden to the American public. Dental radiology contributes a small-but not necessarily insignificant-portion. Of major concern is the increasing use of radiation for diagnostic purposes in both medicine and dentistry. Technological advances have reduced exposure per examination; presumably this trend will continue so that total exposure of populations to radiation in the healing arts will not increase. Recent analyses suggest that the cancer risk to a patient from a dental radiographic examination is of the order of one in a million; the genetic risk is substantially less, about one in a billion. The risks appear to be essentially equal for full-mouth intraoral and for panoramic examinations. These estimates are numerically quite small, but the effects are severe. Thus, these risks cannot be ignored. However, we currently accept risks of similar magnitude in our daily lives [Table 9]50,51 In addition, the risk of failure to make an accurate diagnosis may be greater than the risk from exposure to the radiation from a justified and properly conducted radiographic examination

  20. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    Science.gov (United States)

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  1. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  2. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials.

    Science.gov (United States)

    Türker, S B; Biskin, T

    2002-07-01

    This study investigated the effects of three home bleaching agents on the microhardness of various dental aesthetic restorative materials. The restorative materials were: feldspatic porcelain, microfilled composite resin and light-cured modified glass-ionomer cement and the bleaching agents Nite-White (16% carbamide peroxide), Opalescence (10% carbamide peroxide and carbapol jel) and Rembrandt (10% carbamide peroxide jel). A total of 90 restorative material samples were prepared 1 cm diameter and 6 mm thick and kept in distilled water for 24 h before commencing bleaching which was carried out for 8 h day-1 for 4 weeks. Microhardness measurements were then made using a Tukon tester. Statistically significant differences with respect to unbleached controls were found only for the feldspatic porcelain and microfilled composite resins (P light cured modified glass-ionomer cement. For the composite resin, whereas Nite-White increased its microhardness, the other bleaching agents decreased it. There were no significant differences between the bleaching agents for any of the restorative materials.

  3. Research in dental practice: a 'SWOT' analysis.

    Science.gov (United States)

    Burke, F J T; Crisp, R J; McCord, J F

    2002-03-01

    Most dental treatment, in most countries, is carried out in general dental practice. There is therefore a potential wealth of research material, although clinical evaluations have generally been carried out on hospital-based patients. Many types of research, such as clinical evaluations and assessments of new materials, may be appropriate to dental practice. Principal problems are that dental practices are established to treat patients efficiently and to provide an income for the staff of the practice. Time spent on research therefore cannot be used for patient treatment, so there are cost implications. Critics of practice-based research have commented on the lack of calibration of operative diagnoses and other variables; however, this variability is the stuff of dental practice, the real-world situation. Many of the difficulties in carrying out research in dental practice may be overcome. For the enlightened, it may be possible to turn observations based on the volume of treatment carried out in practice into robust, clinically related and relevant research projects based in the real world of dental practice.

  4. Dental students' motivation and the context of learning.

    Science.gov (United States)

    Kristensen, Bettina Tjagvad; Netterstrom, Ingeborg; Kayser, Lars

    2009-02-01

    This qualitative study shows dental students' motives for choosing the dental education and how the motives influence their motivation at the first semester of study. Further the study demonstrates the relevance of the context of learning. This issue is of importance when planning a curriculum for the dental education. The material consists of interviews with eight dental students. The results show that dental students were focused on their future professional role, its practical dimensions and their future working conditions. Their motivation for choosing the dental education was found to influence their motivation for studying and their experience of the relevance of the first semester. The dental students who had co-education with the medical students at the first year of study missed a dental context and courses with clinically relevant contents. In conclusion, our data signify the importance of the context of learning. It is recommended that a future curriculum for the dental school should be designed in a way where basic science subjects are taught with both theoretically as well as practically oriented subjects and in a context which is meaningful for the students.

  5. ICNBME-2011: International Conference on Nanotechnologies and Biomedical Engineering; German-Moldovan Workshop on Novel Nanomaterials for Electronic, Photonic and Biomedical Applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2011-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  6. Dental Care for a Child with Cleft Lip and Palate

    Science.gov (United States)

    ... Donor Spotlight Fundraising Ideas Vehicle Donation Volunteer Efforts Dental Care for a Child with Cleft Lip and ... submenu What We Do Cleft & Craniofacial Educational Materials Dental Care for a Child with Cleft Lip and ...

  7. Novel diamond-coated tools for dental drilling applications.

    Science.gov (United States)

    Jackson, M J; Sein, H; Ahmed, W; Woodwards, R

    2007-01-01

    The application of diamond coatings on cemented tungsten carbide (WC-Co) tools has been the subject of much attention in recent years in order to improve cutting performance and tool life in orthodontic applications. WC-Co tools containing 6% Co metal and 94% WC substrate with an average grain size of 1 - 3 microm were used in this study. In order to improve the adhesion between diamond and WC substrates it is necessary to etch cobalt from the surface and prepare it for subsequent diamond growth. Alternatively, a titanium nitride (TiN) interlayer can be used prior to diamond deposition. Hot filament chemical vapour deposition (HFCVD) with a modified vertical filament arrangement has been employed for the deposition of diamond films to TiN and etched WC substrates. Diamond film quality and purity has been characterized using scanning electron microscopy (SEM) and micro Raman spectroscopy. The performances of diamond-coated WC-Co tools, uncoated WC-Co tools, and diamond embedded (sintered) tools have been compared by drilling a series of holes into various materials such as human tooth, borosilicate glass, and acrylic tooth materials. Flank wear has been used to assess the wear rates of the tools when machining biomedical materials such as those described above. It is shown that using an interlayer such as TiN prior to diamond deposition provides the best surface preparation for producing dental tools.

  8. Health promotion and dental caries.

    Science.gov (United States)

    Maltz, Marisa; Jardim, Juliana Jobim; Alves, Luana Severo

    2010-01-01

    The central idea of the Brazilian health system is to prevent the establishment of disease or detect it as early as possible. Prevention and treatment of dental caries are related to behavioral factors, including dietary and oral hygiene habits, which are related to many chronic diseases. Dental health promotion therefore should be fully integrated into broadly based health-promoting strategies and actions such as food and health policies, and general hygiene (including oral hygiene), among others. For decades, a linear relationship between sugar consumption and caries has been observed. Recent data has indicated that this relationship is not as strong as it used to be before the widespread use of fluoride. However, diet is still a key factor acting in the carious process. Oral hygiene is a major aspect when it comes to caries, since dental biofilm is its etiological factor. Oral hygiene procedures are effective in controlling dental caries, especially if plaque removal is performed adequately and associated with fluoride. An alternative to a more efficient biofilm control in occlusal areas is the use of dental sealants, which are only indicated for caries-active individuals. If a cavity is formed as a consequence of the metabolic activity of the biofilm, a restorative material or a sealant can be placed to block access of the biofilm to the oral environment in order to prevent caries progress. The prevention of dental caries based on common risk-factor strategies (diet and hygiene) should be supplemented by more disease-specific policies such as rational use of fluoride, and evidence-based dental health care.

  9. Health promotion and dental caries

    Directory of Open Access Journals (Sweden)

    Marisa Maltz

    2010-01-01

    Full Text Available The central idea of the Brazilian health system is to prevent the establishment of disease or detect it as early as possible. Prevention and treatment of dental caries are related to behavioral factors, including dietary and oral hygiene habits, which are related to many chronic diseases. Dental health promotion therefore should be fully integrated into broadly based health-promoting strategies and actions such as food and health policies, and general hygiene (including oral hygiene, among others. For decades, a linear relationship between sugar consumption and caries has been observed. Recent data has indicated that this relationship is not as strong as it used to be before the widespread use of fluoride. However, diet is still a key factor acting in the carious process. Oral hygiene is a major aspect when it comes to caries, since dental biofilm is its etiological factor. Oral hygiene procedures are effective in controlling dental caries, especially if plaque removal is performed adequately and associated with fluoride. An alternative to a more efficient biofilm control in occlusal areas is the use of dental sealants, which are only indicated for caries-active individuals. If a cavity is formed as a consequence of the metabolic activity of the biofilm, a restorative material or a sealant can be placed to block access of the biofilm to the oral environment in order to prevent caries progress. The prevention of dental caries based on common risk-factor strategies (diet and hygiene should be supplemented by more disease-specific policies such as rational use of fluoride, and evidence-based dental health care.

  10. Urea dimethacrylates functionalized with bisphosphonate/bisphosphonic acid for improved dental materials

    OpenAIRE

    Güven, Melek Naz; Guven, Melek Naz; Akyol, Ece; Duman, Fatma Demir; Acar, Havva Yağcı; Acar, Havva Yagci; Karahan, Özlem; Karahan, Ozlem; Avcı, Duygu; Avci, Duygu

    2017-01-01

    Incorporation of bisphosphonate/bisphosphonic acid groups in dental monomer structures should increase interaction of these monomers with dental tissue as these groups have strong affinity for hydroxyapatite. Therefore, new urea dimethacrylates functionalized with bisphosphonate (1a, 1b) and bisphosphonic acid (2a, 2b) groups are synthesized and evaluated for dental applications. Monomers 1a and 1b are synthesized from 2isocyanatoethyl methacrylate (IEM) and two bisphosphonated amines (BPA1 a...

  11. Radiation-induced dental caries, prevention and treatment - A systematic review.

    Science.gov (United States)

    Gupta, Nishtha; Pal, Manoj; Rawat, Sheh; Grewal, Mandeep S; Garg, Himani; Chauhan, Deepika; Ahlawat, Parveen; Tandon, Sarthak; Khurana, Ruparna; Pahuja, Anjali K; Mayank, Mayur; Devnani, Bharti

    2015-01-01

    Treatment of head and neck cancers (HNCs) involves radiotherapy. Patients undergoing radiotherapy for HNCs are prone to dental complications. Radiotherapy to the head and neck region causes xerostomia and salivary gland dysfunction which dramatically increases the risk of dental caries and its sequelae. Radiation therapy (RT) also affects the dental hard tissues increasing their susceptibility to demineralization following RT. Postradiation caries is a rapidly progressing and highly destructive type of dental caries. Radiation-related caries and other dental hard tissue changes can appear within the first 3 months following RT. Hence, every effort should be focused on prevention to manage patients with severe caries. This can be accomplished through good preoperative dental treatment, frequent dental evaluation and treatment after RT (with the exception of extractions), and consistent home care that includes self-applied fluoride. Restorative management of radiation caries can be challenging. The restorative dentist must consider the altered dental substrate and a hostile oral environment when selecting restorative materials. Radiation-induced changes in enamel and dentine may compromise bonding of adhesive materials. Consequently, glass ionomer cements have proved to be a better alternative to composite resins in irradiated patients. Counseling of patients before and after radiotherapy can be done to make them aware of the complications of radiotherapy and thus can help in preventing them.

  12. A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Abdul’Azeez Abdu Aliyu

    2017-01-01

    Full Text Available Surface treatment remained a key solution to numerous problems of synthetic hard tissues. The basic methods of implant surface modification include various physical and chemical deposition techniques. However, most of these techniques have several drawbacks such as excessive cost and surface cracks and require very high sintering temperature. Additive mixed-electric discharge machining (AM-EDM is an emerging technology which simultaneously acts as a machining and surface modification technique. Aside from the mere molds, dies, and tool fabrication, AM-EDM is materializing to finishing of automobiles and aerospace, nuclear, and biomedical components, through the concept of material migrations. The mechanism of material transfer by AM-EDM resembles electrophoretic deposition, whereby the additives in the AM-EDM dielectric fluids are melted and migrate to the machined surface, forming a mirror-like finishing characterized by extremely hard, nanostructured, and nanoporous layers. These layers promote the bone in-growth and strengthen the cell adhesion. Implant shaping and surface treatment through AM-EDM are becoming a key research focus in recent years. This paper reports and summarizes the current advancement of AM-EDM as a potential tool for orthopedic and dental implant fabrication. Towards the end of this paper, the current challenges and future research trends are highlighted.

  13. Concentration Levels of Particulate Matter of Common Dental Lab Materials in a Military Dental Lab

    Science.gov (United States)

    2016-05-01

    technician.” British Dental Journal 1999, 186:380-381 22 Suvarna SR. “Allergy to methyl methacrylate: a review.” Clinical Dentistry Vol 6, Issue 9...Health Organization , Geneva, Web, 1998. 24 Marquardt W, Seiss M, Hickel R, Reichl FX. “Volatile methacrylates in dental practices” Journal of... International Journal for Quality Research 5 th IQC, May 20 2011:595-602 35 Cimrin A, Nuray K, Canan K, Tertemiz KC. “Pneumoconiosis

  14. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  15. A review of the strength properties of dental ceramics.

    Science.gov (United States)

    Hondrum, S O

    1992-06-01

    New ceramic materials for restorative dentistry have been developed and introduced in recent years. This article reviews advantages and disadvantages of dental ceramics, concentrating on strength properties. Included are factors affecting the strength of dental ceramic materials and the most common mechanisms for increasing the strength of dental ceramics. The properties of presently available materials such as dispersion-strengthened ceramics, cast ceramics, and foil-reinforced materials are discussed. Current research efforts to improve the fracture resistance of ceramic restorative materials are reviewed. A description of methods to evaluate the strength of ceramics is included, as a caution concerning the interpretation of strength data reported in the literature.

  16. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  17. Personality and psychological factors: Effects on dental beliefs

    Directory of Open Access Journals (Sweden)

    Siddhi Hathiwala

    2015-01-01

    Full Text Available Background: Dental treatment can be highly unpleasant for anxious patients. Despite all advancements, dental anxiety continues to upset the dentist-patient relationship. The psychological factors like individual personality and familial and peer influence may alter the dental beliefs of a patient. Aim: A cross-sectional questionnaire study was conducted among young adolescents to investigate the relationship among various psychological factors and the dental beliefs of an individual. Materials and Methods: A self-administered questionnaire was distributed among higher secondary school children, aged 15−17 years in Udupi district. The dental anxiety of the participants was measured using Modified Dental Beliefs scale and the personality traits were assessed using the Ten-Item Personality Inventory. Pearson′s correlation and chi-square analysis were performed among these scales. Independent t-test was performed to compare dental anxiety scores with different socio-demographic and psychological characteristics. Results: In all 198 students, with a mean age of 16.6 years, completed the questionnaire. A majority of the participants had lower MDBS scores. The personality traits like Emotional Stability and Openness to New Experiences showed a negative correlation with the Dental Belief scores. Apart from these, the experience at first dental visit and peer support also affected the dental beliefs of the adolescents. Conclusion: Various psychological traits of adolescents influence their dental anxiety.

  18. Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.

    Science.gov (United States)

    Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo

    2011-01-01

    The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.

  19. Few-Layered Black Phosphorus: From Fabrication and Customization to Biomedical Applications.

    Science.gov (United States)

    Wang, Huaiyu; Yu, Xue-Feng

    2018-02-01

    As a new kind of 2D material, black phosphorus has gained increased attention in the past three years. Although few-layered black phosphorus nanosheets (BPs) degrade quickly under ambient conditions to phosphate anions, which greatly hampers their optical and electronic applications, this property also makes BPs highly biocompatible and biodegradable, and is regarded as an advantage for various biomedical applications. This Concept summarizes the state-of-art progresses of BPs, from fabrication and surface modification to biomedical applications. It is expected that BPs with such fascinating properties will encourage more scientists to engage in expanding its biomedical applications by tackling the scientific challenges involved in their development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels

    Directory of Open Access Journals (Sweden)

    Umile Gianfranco Spizzirri

    2015-10-01

    Full Text Available Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour, it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.

  1. Perception and understanding of dental practitioners in provision of dental treatment to pregnant women in Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Aisha Wali

    2016-01-01

    Full Text Available Aim: The aim of the study was to that assess the perceptions and understanding of dental practitioners in the provision of dental treatment to pregnant women. Materials and Methods: The study was a quantitative, cross-sectional type. A sample size of 200 dental practitioners were included in the study between the period of 6 months, i.e. June–December. A cluster sampling technique was employed covering four different dental institutes. A structured questionnaire was designed to assess the perception and understanding of dental practitioners in providing treatment to the pregnant women. Statistical Analysis: Statistical analysis was performed using SPSS version 19. Chi-square test was done to analyze the association of perception of dental practitioners in treating pregnant women in relation to gender. Results: A total of 200 dental practitioners filled the questionnaire out of which 43% (86 were males and 57% (114 were females. Eighty-two percent of the total participants said that it is safe to provide dental treatment during pregnancy, almost 90.4% of the total dentist interviewed was aware of the special position in which to place a pregnant woman on a dental chair. 85.5% of the study population do not prefer taking radiographs of a pregnant woman, 63% of the entire dentist surveyed prefers to use local anesthesia before any dental procedure on a pregnant patient. 96.5% care to educate their pregnant patient about improving dental health care. 59.5% of the dental practitioners said that they would consult the patient's gynecologist as a mandatory requirement before treating the patient. 57% of the dental practitioners answered with gingivitis. 70.5% agreed on scaling. The majority of the dentists prescribed paracetamol 85.5%. Conclusion: Little is known about the perception and utilization of dental practitioners in providing dental treatment to pregnant women in Pakistan. The present survey concluded that dental practitioners lack

  2. Systemic Assessment of Patients Undergoing Dental Implant ...

    African Journals Online (AJOL)

    Background: Procedure‑related and patient‑related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Materials and Methods: Fifty‑one patients were included in the study, in which a total of 110 dental ...

  3. Biomedical journals in Republic of Macedonia: the current state.

    Science.gov (United States)

    Polenakovic, Momir; Danevska, Lenche

    2014-01-01

    Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.

  4. Fluoride-releasing restorative materials and secondary caries.

    Science.gov (United States)

    Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine

    2003-03-01

    Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.

  5. A Review of Abstracting and Indexing Services for Biomedical Journals

    Directory of Open Access Journals (Sweden)

    Sarita Bhardwaj

    2017-10-01

    Full Text Available The days are gone when the researchers used to go to library to look for the articles of their choice. With the introduction of electronic era, searching an article online has become easier. This has been possible due to the availability of various Abstracting and Indexing (A & I services in the world. Of more than 400 online A & I services available, only a few like Google and Thomson Reuters cover all disciplines. Most A & I services cover just one discipline allowing them to cover their area in more depth. There are many databases and indexing services for biomedical journals, most important ones being PubMed/Medline, Scopus, and Web of Science (ISI. This article gives a review of various databases and indexes available for dental journals in the world.

  6. ICNBME-2013: 2. international conference on nanotechnologies and biomedical engineering; German-Moldovan workshop on novel nanomaterials for electronic, photonic and biomedical applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2013-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  7. Current status and installation of dental PACS

    International Nuclear Information System (INIS)

    Park, Chang Seo; Kim, Kee Deog; Park, Hyok; Jeong, Ho Gul

    2004-01-01

    Picture Archiving and Communication System (PACS) is difficult to implement in the best of situations, but evidence is growing that the benefits are significant. The aims of this study are to analyze the current status of full PACS and establish successful installation standard of dental PACS. Materials and Methods were based on the investigation of current working status and installation standard of PACS, and observation of variable issues to installation of dental PACS. By September 30, 2004, full PACS implementations in their facilities were 88.1% in specialized general hospitals (37 installations out of total 42 hospitals), 59.8% in general hospitals (144 installations out of total 241 hospitals), 12.3% in medical hospitals (116 installations out of total 941 hospitals) and 3.6% in dental hospitals (4 installations out of total 110 hospitals). Only 4 university dental hospitals currently have installed and are operating full PACS. Major obstacle to wide spread of dental PACS is initial high investments. Clinical environments of dental PACS differed from medical situation. Because of characteristic dental practice, the initial investments for dental PACS are generally much greater than those of medical PACS. Also new economic crisis makes users scruple. The best way to overcome these limitations is to establish an economic installation standard for dental PACS. Also the clear technical communication between the customer and the supplier before both sides are committed to the obstacles are critical to its success.

  8. Dental Chairside Technique. Student's Manual.

    Science.gov (United States)

    Apfel, Maura; Weaver, Trudy Karlene

    This manual is part of a series dealing with skills and information needed by students in dental assisting. The individualized student materials are suitable for classroom, laboratory, or cooperative training programs. This student manual contains four units covering the following topics: local anesthesia; dental office emergencies; oral hygiene;…

  9. Recent advances in syntheses and biomedical applications of nano-rare earth metal-organic framework materials

    Directory of Open Access Journals (Sweden)

    Xin Pengyan

    2017-12-01

    Full Text Available In recent years,the syntheses of nano-rare earth metal-organic framework (MOF materials and their applications in biomedicine,especially in the diagnosis and treatment of cancer have attracted extensive attentions.On the one hand,nano-rare earth MOFs,which have unique optical and magnetic properties,are promising multimodal imaging contrast agents for biomedical imaging,such as fluorescence imaging and magnetic resonance imaging.On the other hand,nano-rare earth MOFs have various compositions and structures,and excellent intrinsic properties such as large specific surface area,high pore volume and tunable pore size,which enable them to perform as promising nanoplatforms for drug delivery.Therefore,nano-rare earth MOFs may provide a new platform for the development of diagnostic and therapeutic reagents.In this article,the recent advances in the syntheses of nano-rare earth MOFs and their applications in biomedicine are summarized.

  10. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, E.

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to

  11. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    International Nuclear Information System (INIS)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T; Padipatvuthikul, P

    2011-01-01

    Silicon nitride (Si 3 N 4 ) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si 3 N 4 ceramic as a dental core material. The white Si 3 N 4 was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si 3 N 4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si 3 N 4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder ( 2 O 3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si 3 N 4 specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10 -6 deg. C -1 , rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  12. Characterization of Human Dental Pulp Tissue Under Oscillatory Shear and Compression.

    Science.gov (United States)

    Ozcan, Burak; Bayrak, Ece; Erisken, Cevat

    2016-06-01

    Availability of material as well as biological properties of native tissues is critical for biomaterial design and synthesis for regenerative engineering. Until recently, selection of biomaterials and biomolecule carriers for dental pulp regeneration has been done randomly or based on experience mainly due to the absence of benchmark data for dental pulp tissue. This study, for the first time, characterizes the linear viscoelastic material functions and compressive properties of human dental pulp tissue harvested from wisdom teeth, under oscillatory shear and compression. The results revealed a gel-like behavior of the pulp tissue over the frequency range of 0.1-100 rps. Uniaxial compression tests generated peak normal stress and compressive modulus values of 39.1 ± 20.4 kPa and 5.5 ± 2.8 kPa, respectively. Taken collectively, the linear viscoelastic and uniaxial compressive properties of the human dental pulp tissue reported here should enable the better tailoring of biomaterials or biomolecule carriers to be employed in dental pulp regeneration.

  13. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina).

    Science.gov (United States)

    Milhem, Manar M; Al-Hiyasat, Ahmad S; Darmani, Homa

    2008-01-01

    This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (plarvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (pshrimp larvae followed by GICs and then composites.

  14. A retrospective comparison of dental treatment under general ...

    African Journals Online (AJOL)

    Purpose: The purpose of this study is to determine the properties of the dental procedures performed on children with dental problems under general anesthesia and compared between the patterns of dental treatment provided for intellectual disability and non.cooperate healthy child. Materials and Methods: In this ...

  15. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions.

    Science.gov (United States)

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin; Hwang, Hyeon-Shik

    2016-05-01

    To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken.

  16. Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions.

    Science.gov (United States)

    Pérez, M A

    2012-12-01

    Probabilistic analyses allow the effect of uncertainty in system parameters to be determined. In the literature, many researchers have investigated static loading effects on dental implants. However, the intrinsic variability and uncertainty of most of the main problem parameters are not accounted for. The objective of this research was to apply a probabilistic computational approach to predict the fatigue life of three different commercial dental implants considering the variability and uncertainty in their fatigue material properties and loading conditions. For one of the commercial dental implants, the influence of its diameter in the fatigue life performance was also studied. This stochastic technique was based on the combination of a probabilistic finite element method (PFEM) and a cumulative damage approach known as B-model. After 6 million of loading cycles, local failure probabilities of 0.3, 0.4 and 0.91 were predicted for the Lifecore, Avinent and GMI implants, respectively (diameter of 3.75mm). The influence of the diameter for the GMI implant was studied and the results predicted a local failure probability of 0.91 and 0.1 for the 3.75mm and 5mm, respectively. In all cases the highest failure probability was located at the upper screw-threads. Therefore, the probabilistic methodology proposed herein may be a useful tool for performing a qualitative comparison between different commercial dental implants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. A concise overview of dental implantology

    Directory of Open Access Journals (Sweden)

    Olanrewaju Abdurrazaq Taiwo

    2015-01-01

    Full Text Available Background: The emergence of osseointegrated dental implants has resulted in several applications in diverse clinical settings. Hence, has contributed to the suitable replacement of missing teeth and the realization of an optimal facial appearance. This paper describes the benefits, applications, contraindications, and complications of dental implants in contemporary dental practice. Materials and Methods: An electronic search was undertaken in PUBMED without time restriction for appropriate English papers on dental implants based on a series of keywords in different combinations. Results: Fifty-eight acceptable, relevant articles were selected for review. The review identified the various components of dental implants, classification, and brands. It also looked at osseointegration and factors promoting and inimical to it. It also explored primary and secondary stability; and patients' selection for a dental implant. Complications of dental implants were also highlighted. Conclusion: With over 95% success rate, dental implants remain the gold standard for achieving aesthetic and functional oral rehabilitation.

  18. Effectiveness of Disinfectants on Antimicrobial and Physical Properties of Dental Impression Materials.

    Science.gov (United States)

    Demajo, Jean Karl; Cassar, Valter; Farrugia, Cher; Millan-Sango, David; Sammut, Charles; Valdramidis, Vasilis; Camilleri, Josette

    2016-01-01

    The aim of this study was to assess the antimicrobial activity of chemical disinfectants on alginate and silicone impression materials. The effect of chemical disinfectants on the dimensional stability of the impression materials was also assessed. For the microbiologic assessment, impressions of the maxillary arch were taken from 14 participants, 7 using alginate and 7 using an addition silicone. The impressions were divided into three sections. Each section was subjected to spraying with MD 520 or Minuten or no disinfection (control), respectively. Antimicrobial action of the chemical disinfectants was assessed by measuring microbial counts in trypticase soy agar (TSA) media and expressing the results in colony-forming units/cm2. The surface area of the dental impressions was calculated by scanning a stone cast using computer-aided design/computer-assisted manufacture and analyzing the data using a custom computer program. The dimensional stability of the impression materials after immersion in disinfectants was assessed by measuring the linear displacement of horizontally restrained materials using a traveling microscope. The percent change in length over 3 hours was thus determined. Alginate exhibited a higher microbial count than silicone. MD 520 eliminated all microbes as opposed to Minuten. The bacterial growth after Minuten disinfection was almost twice as much for alginate than for addition silicone impressions. The chemical disinfectants affected the alginate dimensional stability. Minuten reduced the shrinkage sustained by alginate during the first hour of storage. Alginate harbors three times more microorganisms than silicone impression material. Chemical disinfection by glutaraldehyde-based disinfectant was effective in eliminating all microbial forms for both alginate and silicone without modifying the dimensional stability. Alcohol-based disinfectants, however, reduced the alginate shrinkage during the first 90 minutes of setting. The current studies

  19. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    Science.gov (United States)

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  20. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Farges

    2015-01-01

    Full Text Available Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  1. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  2. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  3. Fluorescence properties of human teeth and dental calculus for clinical applications

    Science.gov (United States)

    Lee, Yong-Keun

    2015-04-01

    Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.

  4. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  5. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  6. Bridging the gap in 1 st year dental material curriculum: A 3 year randomized cross over trial

    Directory of Open Access Journals (Sweden)

    Sivaranjani Gali

    2015-01-01

    Conclusion: Effectiveness of COSGD in terms of scores through MCQs is comparable to traditional lecture. However, most of the students perceive COSGD help them understand the theory better; co-relate clinically; more motivating and interesting than a traditional lecture. Feasibility in institution needs more time and resources to conduct COSGD within the dental material curriculum.

  7. [The effects of Ketac Molar Aplicap glass-ionomer material on growth of cariogenic bacteria contained in the dental plaque].

    Science.gov (United States)

    Płuciennik-Stronias, Małgorzata; Sakowska, Danuta; Paul-Stalmaszczyk, Małgorzata; Bołtacz-Rzepkowska, Elzbieta

    2012-01-01

    In the aging population, the prevalence of root caries has been observed, which is a characteristic feature of the elderly people. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. The aim of the study was to evaluate the effect of Ketac Molar Aplicap glass-ionomer on the growth of Lactobacillus sp. bacteria, one of the species most frequently found in the carietic focus of the tooth root. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings from Ketac Molar Aplicap conventional glass-ionomer material were performed. After 6 months, three-day dental plaque from these fillings and from the tooth enamel of the control group was examined. No statistically significant differences (p = 0.554) in the amounts of Lactobacillus sp. between the study and control group were revealed. Lack of inhibiting effect of glass-ionomer material on the growth of the dental plaque with Lactobacillus sp. after the time of observation is implied.

  8. CONCURRENT CONTACT SENSITIZATION TO METALS IN DENTAL EXPOSURES

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2018-03-01

    Full Text Available Purpose: Sensitization to metals is a significant problem for both dental patients treated with dental materials and for dental professionals in occupational exposures. The purpose of the present study was to evaluate the incidence of concurrent contact sensitization to relevant for dental practice metals among students of dental medicine, students from dental technician school, dental professionals and patients. Material and Methods: A total of 128 participants were included in the study. All of them were patch-tested with nickel, cobalt, copper, potassium dichromate, palladium, aluminium, gold and tin. The results were subject to statistical analysis (p < 0.05. Results: For the whole studied population, potassium dichromate exhibited concomitant reactivity most often; copper and tin also often manifested co-reactivity. For the groups, exposed in dental practice, potassium dichromate and tin were outlined as the most often co-reacting metal allergens, but statistical significance concerning the co-sensitization to copper and the other metals was established only for aluminium. An increased incidence and OR for concomitant sensitization to cobalt and nickel was established in the group of dental students; to copper and nickel - in the control group; to palladium and nickel - in the group of dental professionals, the group of students of dental medicine and in the control group; to potassium dichromate and cobalt - in the group of dental students; to copper and palladium - in the control group of dental patients; to potassium dichromate and copper - in the group of dental professionals; to copper and aluminum - in the groups of students from dental technician school and of dental professionals; to copper and gold - in the groups of dental professionals and in the group of dental patients; to potassium dichromate and aluminum - in the group of dental professionals; to potassium dichromate and gold - in the group of dental professionals, and to

  9. Dental, Dental Hygiene, and Advanced Dental Students' Use, Knowledge, and Beliefs Regarding Tobacco Products.

    Science.gov (United States)

    Shearston, Jenni A; Shah, Krina; Cheng, Eric; Moosvi, Rizvan; Park, Su Hyun; Patel, Naiya; Spielman, Andrew I; Weitzman, Michael L

    2017-11-01

    Using cigarettes and alternative tobacco products (ATPs) is associated with negative oral health outcomes, and dental health professionals are poised to help patients quit. The aim of this study was to determine dental, dental hygiene, and advanced dental students' use, knowledge, and beliefs about cigarettes and ATPs, including perceptions about their education in tobacco dependence treatment and counseling experience. All 1,783 students enrolled in the dental, dental hygiene, and postdoctoral dental programs at the New York University College of Dentistry were invited to participate in the survey in 2016. A total of 708 students at least partially completed the survey, for a response rate of 39.7%. In the results, 146 of the students (20.1%) reported ever using cigarettes, while 253 (35.7%) reported ever using any ATP. Regarding tobacco use intervention, the students reported they had not received enough training on ATPs, were neutral about cigarettes, and were somewhat confident and not so confident counseling a cigarette smoker or ATP user, respectively. By their fourth year, 77.8% of the dental students reported they had counseled someone to stop smoking cigarettes, but only 40.7% had counseled someone to stop using ATPs. Overall, all groups of students reported feeling more confident and had received more education on interventions for cigarettes than for ATPs (ptobacco and did not perceive they had received enough training on intervening with patients on use of cigarettes and ATPs. These findings call for a revised tobacco education curriculum for dental, dental hygiene, and advanced dental students, focused on building knowledge and confidence for promoting tobacco dependence treatment.

  10. The Dental Trauma Internet Calculator

    DEFF Research Database (Denmark)

    Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg

    2012-01-01

    Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide...... provides prognoses for teeth with traumatic injuries based on the Copenhagen trauma database: http://www.dentaltraumaguide.org The database includes 2191 traumatized permanent teeth from 1282 patients that were treated at the dental trauma unit at the University Hospital in Copenhagen (Denmark...

  11. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    Science.gov (United States)

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  13. New software developments for quality mesh generation and optimization from biomedical imaging data.

    Science.gov (United States)

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Dental Fear and Delayed Dental Care in Appalachia-West Virginia.

    Science.gov (United States)

    Wiener, R Constance

    2015-08-01

    The people of Appalachia-West Virginia are culturally unique and are known to have oral health disparities. The purpose of this study was to evaluate dental fear in relation to delayed dental care as a factor influencing oral health behaviors within this culture. A cross sectional study design was used. Participants were urgent care patients in a university dental clinic. The sample included 140 adults over age 18 years. The Dental Fear Survey was used to determine dental fear level. Self-report of delayed dental care was provided by the participants. The Dental Fear Survey was dichotomized at score 33, with higher scores indicating dental fear. The prevalence of dental fear was 47.1% (n=66). There was a significant association of dental fear and dental delay. The unadjusted odds ratio was 2.87 (95% CI: 1.17, 7.04; p=0.021). The adjusted odds ratio was 3.83 (95%CI: 1.14, 12.82; p=0.030), controlling for tobacco use, perceived oral health status, pain, and last dental visit. A difference in dental delay between men and women was not present in this sample. The only significant variable in delayed dental care was dental fear. In Appalachia-West Virginia, there remains a high level of dental fear, despite advances in dental care, techniques, and procedures. Copyright © 2015 The American Dental Hygienists’ Association.

  15. Dental Anxiety among Medical and Paramedical Undergraduate Students of Malaysia.

    Science.gov (United States)

    Gunjal, Shilpa; Pateel, Deepak Gowda Sadashivappa; Parkar, Sujal

    2017-01-01

    Aim . To assess the dental anxiety level among dental, medical, and pharmacy students of MAHSA University, Malaysia. Materials and Methods . A cross-sectional questionnaire study was conducted among 1500 undergraduate students of MAHSA University. The Modified Dental Anxiety Scale (MDAS) was used to measure dental anxiety among the study population. The responses were assessed by 5-point likert scale ranging from 1 to 5. The level of anxiety was categorized into lowly anxious (5-11), moderately anxious (12-18), and severely anxious ≥19. Out of 1500 students enrolled, 1024 students (342 males and 682 females) completed and returned the questionnaire having response rate of 68.26%. Results . There was a statistically significant difference ( P students had lowest mean score (11.95 ± 4.21). The fifth year (senior) dental students scored significantly ( P = 0.02) lower mean anxiety score as compared to the first dental students (junior). The students were anxious mostly about tooth drilling and local anesthetic injection. Conclusions . Dental students have a significantly low level of dental anxiety as compared with medical and pharmacy students. Incorporation of dental health education in preuniversity and other nondental university curriculums may reduce dental anxiety among the students.

  16. Relationship between Dental Anxiety and Health Locus of Control among Physiotherapy Students

    Directory of Open Access Journals (Sweden)

    Pooja Agarwal

    2013-01-01

    Materials & Method: A total of 152 students participated in the study. Dental anxiety was assessed using the 5 item Modified Dental Anxiety Scale (MDAS and Locus of Control was assessed using the 18 item Multidimensional Health Locus of Control (MHLC scale. Results: A Statistically significant positive correlation was found between the internal dimension of MHLC and dental anxiety. Conclusions: HLC was found to play an important role in predicting the dental anxiety among physiotherapy students.

  17. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  18. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  19. Biomedical applications of nanotechnology.

    Science.gov (United States)

    Ramos, Ana P; Cruz, Marcos A E; Tovani, Camila B; Ciancaglini, Pietro

    2017-04-01

    The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.

  20. Online directed journaling in dental hygiene clinical education.

    Science.gov (United States)

    Gwozdek, Anne E; Klausner, Christine P; Kerschbaum, Wendy E

    2009-01-01

    Reflecting upon and sharing of clinical experiences in dental hygiene education is a strategy used to support the application of didactic material to patient care. The promotion of interactive, clinically focused discussions creates opportunities for students to foster critical thinking and socialization skills in dental hygiene practice. Twenty-eight dental hygiene students in their first semester of patient care utilized online directed journaling via blogging software, as a reflection and sharing strategy. Journal entries found critical thinking and socialization themes including connection of didactic material to clinical experience, student-patient interaction, student-student collaboration, and a vision of the professional role of the dental hygienist. A 7 item evaluation instrument provided data that the online journaling strategy was perceived as effective and valuable by the students. Online directed journaling is a strategy that has the potential to enhance critical thinking and socialization skills in dental hygiene clinical education.

  1. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    Science.gov (United States)

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  2. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  3. Patient satisfaction after receiving dental treatment among patients ...

    African Journals Online (AJOL)

    Background: Patient satisfaction is one of the indicators of the quality of care. Therefore it is one of the tools for evaluating the quality of care. Aim: To determine patient satisfaction after receiving dental treatment among patients attending public dental clinics in Dar-Es-Salaam. Material and methods: Five public dental clinics ...

  4. Dental Care Utilization and Satisfaction of Residential University Students

    Directory of Open Access Journals (Sweden)

    Bamise CT

    2008-01-01

    Full Text Available Aim: The objective of this study was to provide information on the level of utilization and satisfaction of residential university students with the dental services provided by the dental clinic of a teaching hospital. Volunteers and Material: A stratified sampling technique was used to recruit volunteers from the outpatient clinic of the Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria. Information was collected by a self-administered questionnaire composed of questions that measure the level of utilization and satisfaction with the dental services provided. Questionnaires were provided to 650 randomly chosen students residing in the University hostels. There were 39 refusals, and 6 incomplete questionnaires were discarded. This left a sample size of 605 volunteers. Results: Forty seven students (7.8% indicated that they visited the dental hospital within the last 12 months. Males and females utilized the dental services equally, and utilization increased with age and the number of years spent on campus. Anticipation of painful dental treatment, high dental charges, long waiting times and being too busy for a dental visit were cited as the most important impediments to seeking dental treatment. Females expressed greater satisfaction with the services. Conclusion: Dental service utilization among the students was found to be low. Oral health awareness campaigns, improving the quality of the services, and shortening the waiting time are expected to increase service utilization and satisfaction.

  5. A survey of local anaesthesia education in European dental schools

    NARCIS (Netherlands)

    Brand, H.S.; Kuin, D.; Baart, J.A.

    2008-01-01

    Objective: A survey of European dental schools was conducted in 2006 to determine the curricular structure, techniques and materials used in local anaesthesia teaching to dental students. Materials and methods: A questionnaire was designed to collect information about local anaesthesia education.

  6. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2017-12-01

    Full Text Available Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigations were carried out on the materials before and after sintering to detect the presence of crystalline phases. Thermal analyses, mechanical characterizations (assessment of bending strength, Young’s modulus, Vickers hardness, fracture toughness, and in vitro bioactivity tests in simulated body fluid were performed. On the basis of the acquired results, different potential applications in the dental field were discussed for the proposed glass-ceramics. The use of such materials can be suggested for either restorative dentistry or dental implantology, mainly depending on their peculiar bioactive and mechanical properties. At the end of the work, the feasibility of a novel full-ceramic bilayered implant was explored and discussed. This implant, comprising a highly bioactive layer expected to promote osteointegration and another one mimicking the features of tooth enamel, can have an interesting potential for whole tooth substitution.

  7. Developing Customized Dental Miniscrew Surgical Template from Thermoplastic Polymer Material Using Image Superimposition, CAD System, and 3D Printing

    OpenAIRE

    Wang, Yu-Tzu; Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin; Lin, CHun-Li

    2017-01-01

    This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical ...

  8. Ex vivo and in vitro synchrotron-based micro-imaging of biocompatible materials applied in dental surgery

    Science.gov (United States)

    Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.

    2010-09-01

    Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.

  9. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications.

    Science.gov (United States)

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evaluation of accuracy of multiple dental implant impressions using various splinting materials.

    Science.gov (United States)

    Hariharan, Rasasubramanian; Shankar, Chitra; Rajan, Manoj; Baig, Mirza Rustum; Azhagarasan, N S

    2010-01-01

    The aim of the present study was to compare the accuracy of casts obtained from nonsplinted and splinted direct impression techniques employing various splinting materials for multiple dental implants. A reference model with four Nobel Replace Select implant replicas in the anterior mandible was fabricated with denture base heat-curing acrylic resin. Impressions of the reference model were made using polyether impression material by direct nonsplinted and splinted techniques. Impressions were divided into four groups: group A: nonsplinted technique; group B: acrylic resin-splinted technique; group C: bite registration addition silicone-splinted technique; and group D: bite registration polyether-splinted technique. Four impressions were made for each group and casts were poured in type IV dental stone. Linear differences in interimplant distances in the x-, y-, and z-axes and differences in interimplant angulations in the z-axis were measured on the casts using a coordinate measuring machine. The interimplant distance D1y showed significant variations in all four test groups (P = .043), while D3x values varied significantly between the acrylic resin-splinted and silicone-splinted groups. Casts obtained from the polyether-splinted group were the closest to the reference model in the x- and y-axes. In the z-axis, D2z values varied significantly among the three test groups (P = .009). Casts from the acrylic resin-splinted group were the closest to the reference model in the z-axis. Also, one of the three angles measured (angle 2) showed significant differences within three test groups (P = .009). Casts from the nonsplinted group exhibited the smallest angular differences. Casts obtained from all four impression techniques exhibited differences from the reference model. Casts obtained using the bite registration polyether-splinted technique were the most accurate versus the reference model, followed by those obtained via the acrylic resin-splinted, nonsplinted, and

  11. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    Science.gov (United States)

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  12. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  13. Decayed/missing/filled teeth and shortened dental arches in Tanzanian adults.

    NARCIS (Netherlands)

    Sarita, P.T.N.; Witter, D.J.; Kreulen, C.M.; Matee, M.I.N.; Hof, M.A. van 't; Creugers, N.H.J.

    2004-01-01

    PURPOSE: This study assessed decayed/missing/filled teeth (DMFT), presence of occlusal units, and prevalence of shortened dental arches in a Tanzanian adult population. MATERIALS AND METHODS: The dental state of samples of the Tanzanian population was studied. Oral examinations were conducted on

  14. Systemic assessment of patients undergoing dental implant surgeries: A trans- and post-operative analysis

    OpenAIRE

    Sanjay Byakodi; Sachin Kumar; Rajesh Kumar Reddy; Vipin Kumar; Shipra Sepolia; Shivangi Gupta; Harkanwal Preet Singh

    2017-01-01

    Background: Procedure-related and patient-related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Materials and Methods: Fifty-one patients were included in the study, in which a total of 110 dental implants were placed. Complete examination of the subjects was done before and after placement of dental implants. Implant surgery was planned, and osseointegrated dental i...

  15. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    Science.gov (United States)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  16. The stress of clinical dental training: A cross-sectional survey among dental students and dentists of a dental college in India

    Directory of Open Access Journals (Sweden)

    Meena Jain

    2016-01-01

    Full Text Available Introduction: Psychological disturbances in clinical dental students and teachers remain largely unknown. Aim: To describe the psychological health of clinical dental students and their trainers in an institution in India. Materials and Methods: A cross-sectional, questionnaire-based study was conducted among clinical dental students and faculty of an Indian dental college in November 2014. The questionnaire consisted of depression anxiety stress scales-21 (DASS 21, a short version of the original 42-item DASS. Data were compiled on SPSS version 21. Group comparisons were done and P values were obtained. All tests were two-tailed with significance set at P< 0.05. Results: Stress scores were found to be higher in students as compared to trainers (P = 0.040, with the highest scores for undergraduate students. Statistically, significant difference was seen in stress scores between graduate and postgraduate trainers (P = 0.015, undergraduates and postgraduate trainers (P = 0.005, and postgraduate trainers and students (P = 0.029. A significant difference was also observed between depression scores in graduate and postgraduate trainers (P = 0.006 as well as postgraduate trainers and students (P = 0.041. Females had significantly higher level of stress (P = 0.007 and anxiety (P = 0.003 scores as compared to males. Conclusion: Stress, anxiety, and depression scores in dental students are higher than trainers. Undergraduate students among all showed the highest scores for all three parameters. Different approaches to reduce them should be further investigated and utilized at the earliest.

  17. Developing Customized Dental Miniscrew Surgical Template from Thermoplastic Polymer Material Using Image Superimposition, CAD System, and 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wang

    2017-01-01

    Full Text Available This study integrates cone-beam computed tomography (CBCT/laser scan image superposition, computer-aided design (CAD, and 3D printing (3DP to develop a technology for producing customized dental (orthodontic miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews.

  18. Developing Customized Dental Miniscrew Surgical Template from Thermoplastic Polymer Material Using Image Superimposition, CAD System, and 3D Printing.

    Science.gov (United States)

    Wang, Yu-Tzu; Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin; Lin, CHun-Li

    2017-01-01

    This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews.

  19. Understanding dental CAD/CAM for restorations--dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.

  20. Agave Chewing and Dental Wear: Evidence from Quids.

    Directory of Open Access Journals (Sweden)

    Emily E Hammerl

    Full Text Available Agave quid chewing is examined as a potential contributing behavior to hunter-gatherer dental wear. It has previously been hypothesized that the contribution of Agave quid chewing to dental wear would be observed in communities wherever phytolith-rich desert succulents were part of subsistence. Previous analysis of coprolites from a prehistoric agricultural site, La Cueva de los Muertos Chiquitos in Durango, Mexico, showed that Agave was a consistent part of a diverse diet. Therefore, quids recovered at this site ought to be useful materials to test the hypothesis that dental wear was related to desert succulent consumption. The quids recovered from the site were found to be largely derived from chewing Agave. In this study, the quids were found to be especially rich in phytoliths, and analysis of dental casts made from impressions left in the quids revealed flat wear and dental attrition similar to that of Agave-reliant hunter-gatherers. Based on evidence obtained from the analysis of quids, taken in combination with results from previous studies, it is determined that Agave quid chewing was a likely contributing factor to dental wear in this population. As such, our method provides an additional avenue of dental research in areas where quids are present.

  1. Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery.

    Science.gov (United States)

    Rosenholm, Jessica M; Vlasov, Igor I; Burikov, Sergey A; Dolenko, Tatiana A; Shenderova, Olga A

    2015-02-01

    Nanodiamond particles are widely recognized candidates for biomedical applications due to their excellent biocompatibility, bright photoluminescence based on color centers and outstanding photostability. Recently, more complex architectures with a nanodiamond core and an external shell or nanostructure which provides synergistic benefits have been developed, and their feasibility for biomedical applications has been demonstrated. This review is aimed at summarizing recent achievements in the fabrication and functional demonstrations of nanodiamond-based composite structures, along with critical considerations that should be taken into account in the design of such structures from a biomedical point of view. A particular focus of the review is core/shell structures of nanodiamond surrounded by porous silica shells, which demonstrate a remarkable increase in drug loading efficiency; as well as nanodiamonds decorated with carbon dots, which have excellent potential as bioimaging probes. Other combinations are also considered, relying on the discussed inherent properties of the inorganic materials being integrated in a way to advance inorganic nanomedicine in the quest for better health-related nanotechnology.

  2. Biomedical applications of nanodiamond (Review)

    Science.gov (United States)

    Turcheniuk, K.; Mochalin, Vadym N.

    2017-06-01

    The interest in nanodiamond applications in biology and medicine is on the rise over recent years. This is due to the unique combination of properties that nanodiamond provides. Small size (∼5 nm), low cost, scalable production, negligible toxicity, chemical inertness of diamond core and rich chemistry of nanodiamond surface, as well as bright and robust fluorescence resistant to photobleaching are the distinct parameters that render nanodiamond superior to any other nanomaterial when it comes to biomedical applications. The most exciting recent results have been related to the use of nanodiamonds for drug delivery and diagnostics—two components of a quickly growing area of biomedical research dubbed theranostics. However, nanodiamond offers much more in addition: it can be used to produce biodegradable bone surgery devices, tissue engineering scaffolds, kill drug resistant microbes, help us to fight viruses, and deliver genetic material into cell nucleus. All these exciting opportunities require an in-depth understanding of nanodiamond. This review covers the recent progress as well as general trends in biomedical applications of nanodiamond, and underlines the importance of purification, characterization, and rational modification of this nanomaterial when designing nanodiamond based theranostic platforms.

  3. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  4. Dental Calculus Arrest of Dental Caries.

    Science.gov (United States)

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  5. Dental, Dental Hygiene, and Graduate Students' and Faculty Perspectives on Dental Hygienists' Professional Role and the Potential Contribution of a Peer Teaching Program.

    Science.gov (United States)

    McComas, Martha J; Inglehart, Marita R

    2016-09-01

    The changing role of dental hygienists deserves dental and dental hygiene educators' attention. The first aim of this survey study was to assess University of Michigan dental, dental hygiene, and graduate students' and faculty members' perceptions of dental hygienists' roles; their attitudes and behaviors related to clinical interactions between dental and dental hygiene students; and perceived benefits of engaging dental hygiene students as peer teachers for dental students. The second aim was to assess whether one group of dental students' experiences with dental hygiene student peer teaching affected their perceptions of the dental hygiene profession. Survey respondents were 57 dental hygiene students in all three years of the program (response rate 60% to 100%); 476 dental students in all four years (response rate 56% to 100%); 28 dental and dental hygiene graduate students (response rate 28%); and 67 dental and dental hygiene faculty members (response rate 56%). Compared to the other groups, dental students reported the lowest average number of services dental hygienists can provide (p≤0.001) and the lowest average number of patient groups for which dental hygienists can provide periodontal care (ppeer teaching (ppeer teaching. After experiencing dental hygiene student peer teaching, the dental students' perceptions of dental hygienists' roles, attitudes about clinical interactions with dental hygienists, and perceived benefits of dental hygiene student peer teachers improved and were more positive than the responses of their peers with no peer teaching experiences. These results suggest that dental hygiene student peer teaching may improve dental students' perceptions of dental hygienists' roles and attitudes about intraprofessional care.

  6. Biomedical applications using low temperature plasma technology

    International Nuclear Information System (INIS)

    Dai Xiujuan; Jiang Nan

    2006-01-01

    Low temperature plasma technology and biomedicine are two different subjects, but the combination of the two may play a critical role in modern science and technology. The 21 st century is believed to be a biotechnology century. Plasma technology is becoming a widely used platform for the fabrication of biomaterials and biomedical devices. In this paper some of the technologies used for material surface modification are briefly introduced. Some biomedical applications using plasma technology are described, followed by suggestions as to how a bridge between plasma technology and biomedicine can be built. A pulsed plasma technique that is used for surface functionalization is discussed in detail as an example of this kind of bridge or combination. Finally, it is pointed out that the combination of biomedical and plasma technology will be an important development for revolutionary 21st century technologies that requires different experts from different fields to work together. (authors)

  7. A survey of challenges and career aspirations of clinical dental ...

    African Journals Online (AJOL)

    Benin dental school had the highest number of students, 77 (39.1%). One hundred and ninety-four (98.47%) of these Nigerian students were from the southern geo-political zones of the country. Undefined curriculum (23.86%), lack of dental materials (20.3%) and faulty equipment (18.78%) were the commonest constraints ...

  8. Expanded function allied dental personnel and dental practice productivity and efficiency.

    Science.gov (United States)

    Beazoglou, Tryfon J; Chen, Lei; Lazar, Vickie F; Brown, L Jackson; Ray, Subhash C; Heffley, Dennis R; Berg, Rob; Bailit, Howard L

    2012-08-01

    This study examined the impact of expanded function allied dental personnel on the productivity and efficiency of general dental practices. Detailed practice financial and clinical data were obtained from a convenience sample of 154 general dental practices in Colorado. In this state, expanded function dental assistants can provide a wide range of reversible dental services/procedures, and dental hygienists can give local anesthesia. The survey identified practices that currently use expanded function allied dental personnel and the specific services/procedures delegated. Practice productivity was measured using patient visits, gross billings, and net income. Practice efficiency was assessed using a multivariate linear program, Data Envelopment Analysis. Sixty-four percent of the practices were found to use expanded function allied dental personnel, and on average they delegated 31.4 percent of delegatable services/procedures. Practices that used expanded function allied dental personnel treated more patients and had higher gross billings and net incomes than those practices that did not; the more services they delegated, the higher was the practice's productivity and efficiency. The effective use of expanded function allied dental personnel has the potential to substantially expand the capacity of general dental practices to treat more patients and to generate higher incomes for dental practices.

  9. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan-ling [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Jiuzhou College of Pharmacy, Yancheng Institute of Industry Technology, Yancheng 224005 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Li-min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-05-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  10. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization

    International Nuclear Information System (INIS)

    Wu, Huan-ling; Bremner, David H.; Li, He-yu; Shi, Qi-quan; Wu, Jun-zi; Xiao, Rui-qiu; Zhu, Li-min

    2016-01-01

    Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50–100 μm and width of 100–200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicity on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field. - Highlights: • Based on a wet spinning technique, a series of filaments which can be used as biomaterial

  11. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  12. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  13. Machinable glass-ceramics forming as a restorative dental material.

    Science.gov (United States)

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  14. An in vitro atomic force microscopic study of commercially available dental luting materials.

    Science.gov (United States)

    Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic

    2013-09-01

    The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.

  15. Laboratory tests for assessing adaptability and stickiness of dental composites.

    Science.gov (United States)

    Rosentritt, Martin; Buczovsky, Sebastian; Behr, Michael; Preis, Verena

    2014-09-01

    Handling (stickiness, adaptability) of a dental composite does strongly influence quality and success of a dental restoration. The purpose was to develop an in vitro test, which allows for evaluating adaptability and stickiness. 15 dentists were asked for providing individual assessment (school scores 1-6) of five dental composites addressing adaptability and stickiness. Composites were applied with a dental plugger (d=1.8 mm) in a class I cavity (human tooth 17). The tooth was fixed on a force gauge for simultaneous determination of application forces with varying storage (6/25°C) and application temperatures (6/25°C). On basis of these data tensile tests were performed with a dental plugger (application force 1N/2N; v=35 mm/min) on PMMA- or human tooth plates. Composite was dosed onto the tip of the plugger and applied. Application and unplugging was performed once and unplugging forces (UF) and length of the adhesive flags (LAF) were determined at different storage (6/25°C) and application temperatures (25/37°C). Unplugging work (UW) was calculated from area of UF and LAF data. The individual assessment revealed significantly different temperature-dependent application forces between 0.58 N and 2.23 N. Adaptability was assessed between 2.1 and 2.8 school scores. Stickiness varied significantly between the materials (scores: 2-3.2). UW differed significantly between the materials with values between 3.20 N mm and 37.83 N mm. Between PMMA substrate or tooth slides and between 1N or 2N application force only small UW differences were found. The presented in vitro unplugging work allows for an in vitro estimation of the handling parameters adaptability and stickiness. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Exposure to nickel and palladium from dental appliances

    NARCIS (Netherlands)

    Ventura Da Cruz Rodrigues Milheiro, A.M.

    2015-01-01

    The application of a dental material into the oral cavity is not free of biological implications, as deterioration of the material will undoubtedly occur. The adverse health effects of palladium and nickel are well known and their immunologic cross-reactivity is well established. The aim of this

  17. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  18. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair.

    Science.gov (United States)

    Yuan, Guo-Hua; Yang, Guo-Bin; Wu, Li-An; Chen, Zhi; Chen, Shuo

    2010-01-01

    INTRODUCTION: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models. THE HYPOTHESIS: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth. EVALUATION OF THE HYPOTHESIS: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  19. Awareness of Infection Control Protocols Among Dental Students in Babylon Dental Faculty

    Directory of Open Access Journals (Sweden)

    Khalil Ibraheem Zaidan

    2018-02-01

    Full Text Available Infection control and knowledge of common "infectious diseases" is essential for safe dental practice. Conveyance of infectious diseases is likely "from one individual to another during dental procedures", thorough" blood-borne" viruses and bacteria   "such as hepatitis" , human immunodeficiency virus (HIV. Thence in dental practice, the  sterilization and particular protection  is of most importance Process in  dental procedures,  and patient sponsor settings seek specific strategies guide to prevent the  transmission of diseases among dental students , oral verdure care staffs and their patients. Aim: Current study highlight  the methods and behavior  to evaluate  the  benefits of awareness, stance and pursuit of infection control between dental students in training dental clinic at Babylon  dental collage . Materials and Methods: A cross-sectional wipe using a rear ordered questionnaire was executed. The reconnaissance consisted of 38 closed-ended questions that included the key areas of infection control, including hand hygiene, personal preservation, sterilization and disinfection and ecological infection monitoring. There were also questions to elicit perceptions regarding the treatment of HBV and HIV/AIDS patients. Results: Survey study was done for dental students replied to the reconnaissance. Their situation and realization across infection control in college teaching  clinic .The results were assorted between 100% were orderly using gloves and 96% mask   with patient to 6% were orderly wore eye glasses. The type of sterilization of instrument was 90% autoclave and 10% oven and from analysis of data revealed most teaching clinics devoid of instruction post about control of infection control measures   Conclusion: "Improved compliance with recommended infection control procedures is required for all dentists" and graduated dental students  predestined in the existing project. Enduring instruction "programs and short

  20. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    Science.gov (United States)

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Attitudes and motivations regarding willingness to participate in dental clinical trials

    OpenAIRE

    Friesen, Lynn Roosa; Williams, Karen B.

    2016-01-01

    Background: This study examined attitudes about research, knowledge of the research process, reasons for and satisfaction with participation in a dental clinical trial as a function of demographic characteristics. Materials and methods: 180 adults were invited to complete a 47-item survey at the completion of a 10-week dental product study at a Midwestern academic dental center. Seven demographic items included gender, race/ethnicity, age, education, household income, location of usual den...

  2. Potential Use of Plant Fibres and their Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2014-05-01

    Full Text Available Plant-based fibers such as flax, jute, sisal, hemp, and kenaf have been frequently used in the manufacturing of biocomposites. Natural fibres possess a high strength to weight ratio, non-corrosive nature, high fracture toughness, renewability, and sustainability, which give them unique advantages over other materials. The development of biocomposites by reinforcing natural fibres has attracted attention of scientists and researchers due to environmental benefits and improved mechanical performance. Manufacturing of biocomposites from renewable sources is a challenging task, involving metals, polymers, and ceramics. Biocomposites are already utilized in biomedical applications such as drug/gene delivery, tissue engineering, orthopedics, and cosmetic orthodontics. The first essential requirement of materials to be used as biomaterial is its acceptability by the human body. A biomaterial should obtain some important common properties in order to be applied in the human body either for use alone or in combination. Biocomposites have potential to replace or serve as a framework allowing the regeneration of traumatized or degenerated tissues or organs, thus improving the patients’ quality of life. This review paper addresses the utilization of plant fibres and its composites in biomedical applications and considers potential future research directed at environment-friendly biodegradable composites for biomedical applications.

  3. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of dental solid waste in Hamedan

    Directory of Open Access Journals (Sweden)

    Nabizadeh R.

    2009-08-01

    Full Text Available "nBackground and Aim: Today, one of the most important environmental issues is dental solid wastes which are of great importance because of the presence of hazardous, toxic and pathogen agents. In this survey, solid waste produced in Hamedan general dental offices is evaluated. "nMaterials and Methods: In this descriptive study, from 104 general dental offices in Hamedan , 10 offices were selected in simple random way. From each offices, 3 sample at the end of successive working day (Sunday, Monday and Tuesday were analyzed. Samples were manually sorted into different 74 components and measured by means of laboratory scale. Then, measured components were classified in the basis of characteristic and hazardous potential as well as material type. "nResults: Total annual waste produced in general dental offices in Hamadan is 14662.67 Kg (9315.45>95.0% Confidence Interval>20009.88. Production percentages of infectious, domestic type, chemical and pharmaceutical and toxic wastes were 51.93, 38.16, 9.47, 0.44 respectively. Main components of produced dental waste were 14 components that consist of more than 80 percents of total dental solid waste. So, waste reduction, separation and recycling plans in the offices must be concentrated on these main components. "nConclusion: In order to dental waste proper management, it is suggested that in addition to educate dentists for waste reduction, separation and recycling in the offices, each section of dental waste(toxic,chemical and pharmaceutical, infectious and domestic type wastes separately and according to related criteria should be managed.

  5. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished; Utilizacao do metodo radiometrico na avaliacao in vitro do desgaste provocado ao esmalte dental humano por porcelanas dentais glazeadas e polidas

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese]. E-mail: katekawa@usp.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@curiango.ipen.br

    2005-07-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 {mu}g of enamel /mm{sup 2} weared surface. There was no statistical difference ({alpha}=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  6. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  7. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  8. Dental fluorosis and dental caries prevalence among 12 and 15 ...

    African Journals Online (AJOL)

    Background: Fluoride is a double edged sword. The assessment of dental caries and fluorosis in endemic fluoride areas will facilitate in assessing the relation between fluoride concentrations in water with dental caries, dental fluorosis simultaneously. Aim: The objective of the following study is to assess the dental caries ...

  9. Utilization of dental care: An Indian outlook

    Science.gov (United States)

    Gambhir, Ramandeep Singh; Brar, Prabhleen; Singh, Gurminder; Sofat, Anjali; Kakar, Heena

    2013-01-01

    Oral health has a significant impact on the quality of life, appearance, and self-esteem of the people. Preventive dental visits help in the early detection and treatment of oral diseases. Dental care utilization can be defined as the percentage of the population who access dental services over a specified period of time. There are reports that dental patients only visit the dentist when in pain and never bother to return for follow-up in most cases. To improve oral health outcomes an adequate knowledge of the way the individuals use health services and the factors predictive of this behavior is essential. The interest in developing models explaining the utilization of dental services has increased; issues like dental anxiety, price, income, the distance a person had to travel to get care, and preference for preservation of teeth are treated as barriers in regular dental care. Published materials which pertain to the use of dental services by Indian population have been reviewed and analyzed in depth in the present study. Dental surgeons and dental health workers have to play an adequate role in facilitating public enlightenment that people may appreciate the need for regular dental care and make adequate and proper use of the available dental care facilities. PMID:24082719

  10. Occupational Stress in Dental Practice amongst Government ...

    African Journals Online (AJOL)

    Objectives: The aim of this study is to compare the level of occupational stress amongst government-employed and private dental practitioners in eastern Nigeria. Materials and methods: A total of 62 questionnaires were randomly distributed among government-employed and private practicing dental surgeons with five ...

  11. The use of AMS to the biomedical sciences

    International Nuclear Information System (INIS)

    Vogel, J.S.

    1991-04-01

    The Center for Accelerator Mass Spectroscopy (AMS) began making AMS measurements in 1989. Biomedical experiments were originally limited by sample preparation techniques, but we expect the number of biomedical samples to increase five-fold. While many of the detailed techniques for making biomedical measurements resemble those used in other fields, biological tracer experiments differ substantially from the observational approaches of earth science investigators. The role of xenobiotius in initiating mutations in cells is of particular interest. One measure of the damage caused to the genetic material is obtained by counting the number of adducts formed by a chemical agent at a given dose. AMS allows direct measurement of the number of adducts through stoichiometric quantification of the 14 C label attached to the DNA after exposure to a labelled carcinogen. Other isotopes of interest include tritium, 36 Cl, 79 SE, 41 Ca, 26 Al and 129 I. Our experiments with low dose environmental carcinogens reflect the protocols which will become a common part of biomedical AMS. In biomedical experiments, the researcher defines the carbon to be analyzed through dissection and/or chemical purification; thus the sample is ''merely'' combusted and graphitized at the AMS facility. However, since biomedical samples can have a 14 C range of five orders of magnitude, preparation of graphite required construction of a special manifold to prevent cross-contamination. Additionally, a strain of 14 C-depleted C57BL/6 mice is being developed to further reduce background in biomedical experiments. AMS has a bright and diverse future in radioisotope tracing. Such work requires a dedicated amalgamation of AMS scientists and biomedical researchers who will redesign experimental protocols to maximize the AMS technique and minimize the danger of catastrophic contamination. 18 refs., 4 figs., 1 tab

  12. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules.

    Science.gov (United States)

    Solano, Francisco

    2017-07-18

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  13. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Science.gov (United States)

    2017-01-01

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications. PMID:28718807

  14. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Directory of Open Access Journals (Sweden)

    Francisco Solano

    2017-07-01

    Full Text Available The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA can easily polymerize to get polydopamine melanin (PDAM, that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  15. Does dental caries affect dental development in children and adolescents?

    Science.gov (United States)

    Dhamo, Brunilda; Elezi, Besiana; Kragt, Lea; Wolvius, Eppo B; Ongkosuwito, Edwin M

    2018-01-01

    Although a link between dietary changes, caries, and dental development has been observed, the literature provides little insight about this relationship. The aim of our study was to investigate the association between dental caries and dental development in a clinical sample of Albanian children and adolescents. In total, 118 children and adolescents, born between 1995 and 2004 and aged 6–15 years, were included. Dental caries in the deciduous dentition was assessed using the Decayed, Filled Teeth (dft) index and dental caries in the permanent dentition was assessed using the Decayed, Missing, Filled Teeth (DMFT) index. Dental development during the permanent dentition was determined using the Demirjian method. Linear and ordinal regression models were applied to analyze the associations of dental caries with dental age and developmental stages of each left mandibular tooth. Dental caries in the deciduous dentition, estimated as a median dft of 2.0 (90% range, 0.0–9.1), was significantly associated with lower dental age (β = -0.21; 90% CI: -0.29, -0.12) and with delayed development of the canine, both premolars, and the second molar. Untreated dental caries (dt) was associated with lower dental age (β = -0.19; 90% CI: -0.28, -0.10). Dental caries in the permanent dentition, estimated as a median DMFT of 1.0 (90% range, 0.0–8.0), was not significantly associated with dental age (β = 0.05; 90% CI: -0.04, 0.14). However, the DMFT was associated with the advanced stages of development of both premolars and the second molar. The untreated dental caries in the deciduous dentition delays the development of permanent teeth. PMID:29659350

  16. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Katunar, Maria R, E-mail: mkatunar@fi.mdp.edu.ar [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Gomez Sanchez, Andrea [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Santos Coquillat, Ana [Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, España (Spain); Civantos, Ana [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid (Spain); Martinez Campos, Enrique [Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, España (Spain); Ballarre, Josefina; Vico, Tamara [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina); Baca, Matias [Traumatologia y Ortopedia, Hospital Interzonal General de Agudos “Oscar Alende”, Mar del Plata (Argentina); Ramos, Viviana [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid (Spain); Cere, Silvia [INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata (Argentina)

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue–implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60 V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60 V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30 days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60 V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. - Highlights: • Surface modification by anodisation stimulates cell attachment and proliferation. • The anodising process on Zr as a substrate modification improves bone formation. • The mineral processes are accelerated in the Zr60V showing a faster cell response.

  17. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications

    International Nuclear Information System (INIS)

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-01-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue–implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60 V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60 V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30 days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60 V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. - Highlights: • Surface modification by anodisation stimulates cell attachment and proliferation. • The anodising process on Zr as a substrate modification improves bone formation. • The mineral processes are accelerated in the Zr60V showing a faster cell response.

  18. Burnout, depression and suicidal ideation in dental and dental hygiene students.

    Science.gov (United States)

    Deeb, George R; Braun, Sarah; Carrico, Caroline; Kinser, Patricia; Laskin, Daniel; Golob Deeb, Janina

    2018-02-01

    The aim of this study was to assess the relationship between burnout, depressive symptoms and suicidal ideation in dental and dental hygiene students and to evaluate the influence of gender, programme type and year of study. Third- and fourth-year dental (DS) and first- and second-year hygiene students (DHS) completed the Patient Health Questionnaire (PHQ-9) and an abbreviated Maslach Burnout Inventory online as measures of depressive symptoms/suicidality and burnout, respectively. The statistical analyses included summary statistics and tests for intergroup comparisons (chi-square) to evaluate the influence of gender, programme type (DHS or DS) and year of study. Correlations between depression, suicidality and burnout were also conducted. A total of 32 dental hygiene and 119 dental students participated. 40% of the dental and 38% of the hygiene students met criteria for burnout. No differences were found between years or between programmes. Nine per cent of both dental and hygiene students were above the cut-off for moderate depressive symptoms, but there were no statistical differences between the third- and fourth-year dental and the first- and second-year hygiene students. Six per cent of the dental and 9% of the dental hygiene students were above the cut-off for clinically significant suicidal ideation, but there were no statistical differences between dental and hygiene students. There were no differences noted in the dental students based on gender for any of the measures. Depression was significantly associated with all three subscales of burnout. Suicidal ideation was only significantly related to the lack of personal accomplishment subscale of burnout. These findings suggest the need for introducing preventive measures for such affective states in dental and dental hygiene training programmes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila

    2016-03-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  20. Evaluation of dental erosion prevalence and contributing factors in patients referring to yazd dental school in 2012-2013

    Directory of Open Access Journals (Sweden)

    Farnaz Farahat

    2016-03-01

    Full Text Available Background and Aims: Dental erosion refers to the loss of tooth structure by being scratched chemically without bacterial involvement which needs to care about due to its prevalence and treatment problems. This study was designed with the aim of evaluation of the frequency of dental erosion and its causing factors in patients referring to yazd dental school in 2012-2013. Materials and Methods: In this cross-sectional study, 400 patients referring to yazd dental school were randomly selected. All of their teeth were evaluated in three surfaces (buccal, lingual and occlusal. The BEWE score was used for classification the extent of damages. Also, patients were given a questionnaire that included patient demographic information and questions to investigate the causes of dental erosion. Data were analyzed using SPSS version 17 and Mann-Whiney, Fisher exact, and Chi-square tests. Results: In this study, 138 men and 261 women were participated with the mean age of 33.26±10.83. 84 persons (21.1% had erosion. There was a direct and significant relationship between the dental erosion and patient's age (P >0.001. Also, there was a direct relationship between the dental erosion and reflux and consumption of lemon and pickle, beverages, soft beer and juice (P>0.001. Conclusion: Consumption of lemon and pickle, beverages, soft beer and juice increases the risk of erosion. Considering the prevalence of dental erosion in about 21% of patients, it is necessary to pay more attention to the knowledge of the causes of erosion and reduction strategies of it.

  1. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  2. Study and structural and chemical characterization of human dental smalt by electron microscopy; Estudio y caracterizacion estructural y quimico del esmalte dental humano por microscopia electronica

    Energy Technology Data Exchange (ETDEWEB)

    Belio R, I A; Reyes G, J [Instituto de Fisica, UNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    1998-07-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca){sub 10} (PO{sub 4}){sub 6} (OH{sub 4}){sub 2}, inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  3. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  4. Description and Documentation of the Dental School Dental Delivery System.

    Science.gov (United States)

    Chase, Rosen and Wallace, Inc., Alexandria, VA.

    A study was undertaken to describe and document the dental school dental delivery system using an integrated systems approach. In late 1976 and early 1977, a team of systems analysts and dental consultants visited three dental schools to observe the delivery of dental services and patient flow and to interview administrative staff and faculty.…

  5. Correlation of chronological, skeletal, and dental age in North Indian population

    Directory of Open Access Journals (Sweden)

    Madhurima Nanda

    2017-01-01

    Full Text Available Aim and Objectives: The aim of the study was to find out the correlation between chronological, dental, and skeletal age. Materials and Methods: Lateral cephalograms and orthopantomograms of 100 subjects of age ranging 9–14 years were obtained for the estimation of skeletal and dental age. Dental age was assessed using Demirjian's method; skeletal age was assessed using the new improved version of the cervical vertebral maturation method given by Baccetti, Franchi, and McNamara. Statistical analysis was carried out. Student's t-test and Spearman's coefficient correlation were used to assess the relation between chronological, skeletal, and dental age. Results: The Spearman's correlation coefficient was 0.777 (P < 0.001 between chronological and dental age, 0.516 (P < 0.001 between chronological and skeletal age, and 0.563 (P < 0.001 between dental and skeletal age. Conclusion: There is a good correlation between chronological and dental age in North Indian population which was higher for males as compared to females. A moderate correlation was found between chronological and skeletal age as well as between dental and skeletal age.

  6. Dental anxiety and salivary cortisol levels before urgent dental care.

    Science.gov (United States)

    Kanegane, Kazue; Penha, Sibele S; Munhoz, Carolina D; Rocha, Rodney G

    2009-12-01

    Dental anxiety is still prevalent, despite advances in treatment, and affects the utilization of health care services. The purpose of this cross-sectional study was to determine if patients with different degrees of dental anxiety and pain undergoing emergency dental care have different stress reactions as measured by salivary cortisol. Seventy three patients completed the modified dental anxiety scale (MDAS), and described any previous dental traumatic experience. Their socio-demographic characteristics were also recorded. They also rated pain intensity on a 100 mm visual analogue scale (VAS). A saliva sample was collected before the procedure, and analyzed by enzyme immunoassay. Thirty patients were dentally anxious and forty one complained of pain. In this sample, dental anxiety was not related to gender, age, educational level and family income; however, a previous traumatic event was related to dental anxiety. There was no association between salivary cortisol concentrations and gender or dental anxiety. Patients with pain showed higher cortisol levels. When gathering patient information, the dentist should note patients' negative dental experiences in order to provide more effective, less traumatic treatment.

  7. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps.

    Science.gov (United States)

    Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona

    2018-03-20

    More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.

  8. An assessment of dental anxiety in nonclinical setting among Saudi Arabian children using Abeer Children Dental Anxiety Scale

    Directory of Open Access Journals (Sweden)

    Shabina Shafi

    2015-01-01

    Full Text Available Introduction: Dental anxiety is an abnormal fear or dread of visiting the dentist for preventive care or therapy and unwarranted anxiety over dental procedures. It is a common problem that affects people of all ages and appears to develop mostly in childhood and adolescence. The present study assesses dental anxiety among children in a nonclinical setting among Saudi Arabian children who underwent preventive treatment procedure using Abeer Children Dental Anxiety Scale (ACDAS. Materials and Methods: The children attending an oral health program were screened for oral health problems and preventive treatment such as topical fluoride applications. The dental anxiety among children was assessed using ACDAS. Results: A total of 51 children participated in the research. The results showed that maximum children were not scared of dentist in nonclinical setting and had low dental anxiety levels. Overall, 74% of the child subjects had ACDAS scores below 26. Conclusions: Knowing the degree of anxiety of dental children is important to guide them through their dental experience and carry on the preventive dental treatments at an early age in nonclinical setting. Their level of cooperation will improve, and anxiety will be reduced as well. Further research is required to compare dental anxiety levels in children between clinical and nonclinical setting.

  9. Oral rehabilitation with dental implants in oligodontia patients

    NARCIS (Netherlands)

    Finnema, KJ; Raghoebar, GM; Meijer, HJA; Vissink, A

    2005-01-01

    Purpose: The aim of this retrospective report was to evaluate the treatment outcome of oral rehabilitation with dental implants in oligodontia patients. Materials and Methods: Thirteen oligodontia patients treated with dental implants were examined clinically and radiographically (follow-up 3 +/- 2

  10. Perceived Dentist and Dental Hygienist Task Distribution After Dental and Dental Hygiene Students' Team Intervention

    NARCIS (Netherlands)

    Reinders, Jan J.; Krijnen, Wim P.; Stegenga, Boudewijn; van der Schans, Cees P.

    2017-01-01

    Attitudes of dental students regarding the provision of treatment tend to be dentist-centered; however, facilitating mixed student group formation could change such perceptions. The aim of this study was to investigate the perceived scope of practice of dental and dental hygiene students and whether

  11. Perceived dentist and dental hygienist task distribution after dental and dental hygiene students' team intervention

    NARCIS (Netherlands)

    Reinders, Jan J; Krijnen, Wim P; Stegenga, Boudewijn; van der Schans, Cees P

    Attitudes of dental students regarding the provision of treatment tend to be dentist-centered; however, facilitating mixed student group formation could change such perceptions. The aim of this study was to investigate the perceived scope of practice of dental and dental hygiene students and whether

  12. Bioinspired design of dental multilayers.

    Science.gov (United States)

    Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O

    2007-01-01

    This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.

  13. Research on giving antibacteria activity of tailored dental materials; Gin ion ni yoru shikayo zairyo no kokinsei fuyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The secondary dental caries easily occur by breeding of bacteria in cavities between living body and composite resin, false tooth or root of tailored tooth as tooth repairing materials. The antibacteria activity of tailored dental materials was thus studied by implanting Ag ion. The antibacteria effect with time after culture of caries bacteria was studied by implanting Ag ion into SiO2 powder, PMMA samples and Ti alloy samples at 20 and 200keV in energy of ion. In addition, the antibacteria activity of SiO2 powder as composite material was found at 25keV which was previously effective for the antibacteria activity. This SiO2 filler (Ag{sup +} filler) showed the antibacteria activity on every bacteria sample after 2h, and in particular, could kill all of 3 kinds of bacteria obtained from a composite resin surface after 12h. The number of living S. salivarius was reduced by half after 12h. The application of the composite resin filler implanted with Ag{sup +} is significant to prevent recurrence of caries. 5 refs., 27 figs., 7 tabs.

  14. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  15. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    Science.gov (United States)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  16. Polydopamine--a nature-inspired polymer coating for biomedical science.

    Science.gov (United States)

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  17. Basic principles of dental office logistics: organizing dental supplies and equipment for optimal accessibility.

    Science.gov (United States)

    Mamoun, John

    2012-01-01

    To maximize office production, dentists should continuously perform treatment-related tasks throughout the workday. To this end, the office should logically organize and store dental instruments, disposables, materials, handpieces, and small equipment to optimize accessibility of these items at the moment when the dentist needs them. The office needs multiple copies of these items to prevent their inaccessibility during the workday due to breakdown, inventory depletion, or lack of a sterilized copy of the item when needed. Staff should know where all items are located in the office at all times to minimize the time needed to search for them. This article describes how to organize dental items in an office for optimal accessibility to the dentist during procedures.

  18. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  19. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration

    Science.gov (United States)

    Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf

    2017-10-01

    For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.

  20. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia

    OpenAIRE

    Yassin, Syed M.

    2016-01-01

    Background Dental anomalies are not an unusual finding in routine dental examination. The effect of dental anomalies can lead to functional, esthetic and occlusal problems. The Purpose of the study was to determine the prevalence and distribution of selected developmental dental anomalies in Saudi children. Material and Methods The study was based on clinical examination and Panoramic radiographs of children who visited the Pediatric dentistry clinics at King Khalid University College of Dent...

  1. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use

    Czech Academy of Sciences Publication Activity Database

    Starčuk jr., Zenon; Bartušek, Karel; Hubálková, H.; Bachorec, T.; Starčuková, Jana; Krupa, P.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 24-27 ISSN 1335-8871 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic resonance imaging * artifacts * metallic implants * dental alloys * magnetic susceptibility Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. 42 CFR Appendix G to Part 75 - Standards for Licensing Dental Hygienists and Dental Assistants in Dental Radiography

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Licensing Dental Hygienists and Dental Assistants in Dental Radiography G Appendix G to Part 75 Public Health PUBLIC HEALTH SERVICE...—Standards for Licensing Dental Hygienists and Dental Assistants in Dental Radiography The following section...

  3. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  4. Fragile X syndrome: panoramic radiographic evaluation of dental anomalies, dental mineralization stage, and mandibular angle

    Directory of Open Access Journals (Sweden)

    Aida Sabbagh-Haddad

    Full Text Available ABSTRACT Fragile X syndrome (FXS is a disorder linked to the chromosome X long arm (Xq27.3, which is identified by a constriction named fragile site. It determines various changes, such as behavioral or emotional problems, learning difficulties, and intellectual disabilities. Craniofacial abnormalities such as elongated and narrow face, prominent forehead, broad nose, large and prominent ear pavilions, strabismus, and myopia are frequent characteristics. Regarding the oral aspects, deep and high-arched palate, mandibular prognathism, and malocclusion are also observed. Objective: The purpose of this study was to evaluate the dental radiographic characteristics as described in 40 records of patients with panoramic radiography. Material and Methods: The patients were in the range of 6–17 years old, and were divided into two groups (20 subjects who were compatible with the normality standard and 20 individuals diagnosed with the FXS, which were matched for gender and age. Analysis of the panoramic radiographic examination involved the evaluation of dental mineralization stage, mandibular angle size, and presence of dental anomalies in both deciduous and permanent dentitions. Results: The results of radiographic evaluation demonstrated that the chronology of tooth eruption of all third and second lower molars is anticipated in individuals with FXS (p<0.05. In this group, supernumerary deciduous teeth (2.83%, giroversion of permanent teeth (2.31%, and partial anodontia (1.82% were the most frequent dental anomalies. In addition, an increase was observed in the mandibular angle size in the FXS group (p<0.05. Conclusion: We conclude that knowledge of dental radiographic changes is of great importance for dental surgeons to plan the treatment of these individuals.

  5. Biomedical graphite and CaF2 preparation and measurement at PRIME Lab

    Science.gov (United States)

    Jackson, George S.; Einstein, Jane A.; Kubley, Tom; Martin, Berdine; Weaver, Connie M.; Caffee, Marc

    2015-10-01

    The biomedical program at PRIME Lab has prepared radiocarbon and 41Ca as tracers for a variety of applications. Over the last decade several hundred 14C samples and several thousand 41Ca samples have been measured per year. Biomedical samples pose challenges that are relatively rare in the AMS community. We will discuss how to prepare and compensate for samples that have isotope ratios above the dynamic range of AMS, high interference rates, and small samples sizes. In the case of 41Ca, the trade off in the chromatography between yield and sample cleanliness will be analyzed. Secondary standards that have isotope ratios commonly encountered in our applications are routinely prepared. We use material from the Joint Research Centre's Institute for Reference Materials and Measurement: IRMM-3701/4, 3701/5, and 3701/6 and a standard produced by PRIME Lab for 41Ca. We use International Atomic Energy Agency's IAEA C-3, IAEA C-7, IAEA C-8, and a ∼12.5× modern oxalic acid secondary standard supplied by Lawrence Livermore National Laboratory for 14C. We will discuss our precision, reproducibility, and the relative agreement between our measured and the reported values for these materials.

  6. Influence of different restorative materials on the stress distribution in dental implants.

    Science.gov (United States)

    Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto

    2018-05-01

    To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.

  7. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  8. Dental records of forensic odontological importance: Maintenance pattern among dental practitioners of Pune city

    Science.gov (United States)

    Sarode, Gargi S; Sarode, Sachin C; Choudhary, Shakira; Patil, Shankargouda; Anand, Rahul; Vyas, Himadri

    2017-01-01

    Context: Forensic odontology plays a pivotal role in the identification of victims in mass disasters with the help of “Preserved dental records” available with the general dental practitioners (GDPs). However, the status of such dental records of forensic importance has not been studied extensively. Aim: To study the current status of awareness and practice of dental record maintenance by GDPs of Pune. Materials and Methods: A cross-sectional study was conducted among 100 randomly selected GDPs from Pune. Data was collected in a personalized manner by means of a questionnaire. Results: Six percent of GDPs do not maintain any records of the patient, 11% of them do not record about developmental dental anomalies, and 22% GDPs do not retain radiographs. Sixty-seven percent GDPs mention about the use of abbreviations while recording history. Only 17% of GDPs record denture marking and 11% take conformity certificate for the denture. Thirty percent GDPs do not mention the serial number of an implant whereas 17% of them do not mention about the prescribed medication. Five percent GDPs handover original dental record to the patient and 91% said that they discard casts and models immediately after treatment. Conclusion: There was inadequate knowledge and lack of practice regarding proper record maintenance among GDPs. PMID:28584484

  9. Processing and Development of Nano-Scale HA Coatings for Biomedical Application

    National Research Council Canada - National Science Library

    Rabiei, Afsaneh; Thomas, Brent

    2005-01-01

    .... The present study aims to increase the service-life of an orthopedic/dental implant by creating materials that form a strong, long lasting, bond with the Ti substrate as well as juxtaposed bone...

  10. Dental enamel defects in children with coeliac disease

    NARCIS (Netherlands)

    Werink, Claar D.; van Diermen, Denise E.; Aartman, Irene H. A.; Heymans, Hugo S. A.

    2007-01-01

    OBJECTIVE: The aim of this study was to investigate whether Dutch children with proven coeliac disease show specific dental enamel defects, and to asses whether children with the same gastrointestinal complaints, but proved no-coeliac disease, lack these specific dental enamel defects. MATERIALS AND

  11. Dental Calculus Arrest of Dental Caries

    OpenAIRE

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human t...

  12. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Ghorbani, Mahdi; Akbari, Fatemah; Sabet, Leila S.; Mehrpouyan, Mohammad

    2016-01-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm 2 applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam’s energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  13. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials.

    Science.gov (United States)

    Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard

    2010-01-01

    To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact

  14. Dental Workforce Availability and Dental Services Utilization in Appalachia: A Geospatial Analysis

    Science.gov (United States)

    Feng, Xue; Sambamoorthi, Usha; Wiener, R. Constance

    2016-01-01

    Objectives There is considerable variation in dental services utilization across Appalachian counties, and a plausible explanation is that individuals in some geographical areas do not utilize dental care due to dental workforce shortage. We conducted an ecological study on dental workforce availability and dental services utilization in Appalachia. Methods We derived county-level (n = 364) data on demographic, socio-economic characteristics and dental services utilization in Appalachia from the 2010 Behavioral Risk Factor Surveillance System (BRFSS) using person-level data. We obtained county-level dental workforce availability and physician-to-population ratio estimates from Area Health Resource File, and linked them to the county-level BRFSS data. The dependent variable was the proportion using dental services within the last year in each county (ranging from 16.6% to 91.0%). We described the association between dental workforce availability and dental services utilization using ordinary least squares regression and spatial regression techniques. Spatial analyses consisted of bivariate Local Indicators of Spatial Association (LISA) and geographically weighted regression (GWR). Results Bivariate LISA showed that counties in the central and southern Appalachian regions had significant (p dental workforce availability, low percent dental services utilization). GWR revealed considerable local variations in the association between dental utilization and dental workforce availability. In the multivariate GWR models, 8.5% (t-statistics >1.96) and 13.45% (t-statistics >1.96) of counties showed positive and statistically significant relationships between the dental services utilization and workforce availability of dentists and dental hygienists, respectively. Conclusions Dental workforce availability was associated with dental services utilization in the Appalachian region; however, this association was not statistically significant in all counties. The findings suggest

  15. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.

    Science.gov (United States)

    Galler, Kerstin M; Brandl, Ferdinand P; Kirchhof, Susanne; Widbiller, Matthias; Eidt, Andreas; Buchalla, Wolfgang; Göpferich, Achim; Schmalz, Gottfried

    2018-02-01

    Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.

  16. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  17. Recent trends in dental visits and private dental insurance, 1989 and 1999.

    Science.gov (United States)

    Wall, Thomas P; Brown, L Jackson

    2003-05-01

    This article describes recent trends in dental visits and private dental insurance in the United States. This study is based on the analyses of data regarding dental visits and private dental insurance among the population 2 years of age or older from the 1989 and 1999 National Health Interview Surveys. Overall, the percentage of the population with a dental visit rose from 57.2 percent in 1989 to 64.1 percent in 1999, while the percentage with private dental insurance fell from 40.5 percent to 35.2 percent. Although a higher percentage of people with private dental insurance reported having a dental visit than did those without private dental insurance in both years, the increase from 1989 to 1999 in the percentage of those with a visit was larger among the uninsured. If this trend persists, a smaller portion of practicing dentist's clientele will be insured. This may affect demand for services, as well as front office operations.

  18. Magnetic resonance tomography and dental radiology (Dental-MRT)

    International Nuclear Information System (INIS)

    Gahleitner, A.; Wien Univ.; Solar, P.; Ertl, L.; Nasel, C.; Homolka, P.; Youssefzadeh, S.; Schick, S.

    1999-01-01

    Purpose: To demonstrate the usefulness of Dental-MRT for imaging of anatomic and pathologic conditions of the mandible and maxilla. Methods: Seven healthy volunteers, 5 patients with pulpitis, 9 patients with dentigerous cysts, 5 patients after tooth transplantation and 12 patients with atrophic mandibles were evaluated. Studies of the jaws using axial T1- and T2-weighted gradient echo and spin echo sequences in 2D and 3D technique have been to performed. The acquired images were reconstructed with a standard dental software package on a workstation as panoramic and cross sectional views of the mandible or maxilla. Results: The entire maxilla and mandibula, teeth, dental pulp and the content of the mandibular canal were well depicted. Patients with inflammatory disease of the pulp chamber demonstrate bone marrow edema in the periapical region. Dentigerous cysts and their relation to the surrounding structures are clearly shown. After contrast media application marked enhancement of the dental pulp can be found. Conclusion: Dental-MRT provides a valuable tool for visualization and detection of dental diseases. (orig.) [de

  19. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    Science.gov (United States)

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  20. Study and structural and chemical characterization of human dental smalt by electron microscopy

    International Nuclear Information System (INIS)

    Belio R, I.A.; Reyes G, J.

    1998-01-01

    The study of human dental smalt has been subject to investigation for this methods with electron microscopy, electron diffraction, X-ray diffraction and image simulation programs have been used with the purpose to determine its chemical and structural characteristics of the organic and inorganic materials. This work has been held mainly for the characterization of hydroxyapatite (Ca) 10 (PO 4 ) 6 (OH 4 ) 2 , inorganic material which conforms the dental smalt in 97%, so observing its structural unity which is composed by the prisms and these by crystals and atoms. It was subsequently initiated the study of the organic material, with is precursor of itself. (Author)

  1. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications.

    Science.gov (United States)

    Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong

    2017-12-01

    The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its

  2. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Smith, Anne-Louise

    2011-01-01

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  3. Prevalence of Traumatic Dental Injuries and Associated Factors ...

    African Journals Online (AJOL)

    traumatic injuries of the permanent incisors in public primary schoolchildren from. 8 to 12 years old in ... biting, difficulty in speaking clearly, and embarrassment ... education and socio-economic status with dental injuries. MATERIALS AND ...

  4. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    International Nuclear Information System (INIS)

    Li Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang Leo; Li Qing; Swain, Michael

    2010-01-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  5. The effect of disinfecting solutions on the dimensional stability of dental alginate impression materials.

    Science.gov (United States)

    Muzaffar, Danish; Braden, Michael; Parker, Sandra; Patel, Mangala P

    2012-07-01

    Dimensional changes occur in set dental alginate impression materials when immersed in disinfecting solutions. In this contribution the dimensional changes of two alginates in two disinfecting solutions, and for two specimen thicknesses, have been studied. The results were analyzed theoretically. The dimensional changes of two commercial alginates (Blueprint Cremix and Hydrogum), have been measured, in distilled water and two disinfecting solutions (Perform ID/sodium hypochlorite), using a traveling microscope, at 5 min intervals over a period of 1h. Samples of simple geometry have been studied, namely rectangular strips with thicknesses of 1.5 and 3mm, respectively. In all cases, both alginates continuously shrank with time, in the three immersion liquids, over the hour of measurement, indicating transfer of water from the alginate into the external water or disinfecting solution. The t(1/2) shrinkage plots were generally linear, but with an intercept on the t(1/2) axis, indicating the possibility of an initial expansion at very short times. In most cases, the ratios of slopes for both thicknesses were 1.33-1.54, in contrast to the theoretical value of 2. Perform ID however gave anomalous results for the 1.5mm thick samples. At 10 min their shrinkage was 1.34-1.72%, compared with -0.42% to 0.67% in the other two media. The effects of thickness observed were not in accord with simple Fickian theory because of the various ions diffusing into and out of the alginate. Moreover, the water content of the alginate decreased consequent on the cross-linking process. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Bisphenol A in dental sealants and its estrogen like effect

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2012-01-01

    Full Text Available Bisphenol A or BPA-based epoxy resins are widely used in the manufacture of commercial products, including dental resins, polycarbonate plastics, and the inner coating of food cans. BPA is a precursor to the resin monomer Bis-GMA. During the manufacturing process of Bis-GMA dental sealants, Bisphenol A (BPA might be present as an impurity or as a degradation product of Bis-DMA through esterases present in saliva. Leaching of these monomers from resins can occur during the initial setting period and in conjunction with fluid sorption and desorption over time and this chemical leach from dental sealants may be bioactive. Researchers found an estrogenic effect with BPA, Bis-DMA, and Bis-GMA because BPA lacks structural specificity as a natural ligand to the estrogen receptor. It generated considerable concern regarding the safety of dental resin materials. This review focuses on the BPA in dental sealants and its estrogen-like effect.

  7. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  8. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration

    Science.gov (United States)

    Colombo, John S.; Moore, Amanda N.; Hartgerink, Jeffrey D.; D’Souza, Rena N.

    2014-01-01

    In dentistry, the maintenance of a vital dental pulp is of paramount importance, as teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. While the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis due to their ability to switch to a pro-resolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a pro-resolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented. PMID:24698696

  9. Influence of Mothers’ Dental Anxiety and Perception of Child’s OHRQoL Towards Utilization of Dental Services − A Questionnaire Study

    Directory of Open Access Journals (Sweden)

    Kruthika Murali

    2017-01-01

    Full Text Available Introduction: Dental caries is one of the most common oral health problems in childhood. As a child depends entirely on the parents, its dental visit could be influenced by various psychosocial factors such as parental perceptions of the child’s oral health and maternal anxiety. Aim: To assess the influence of children’s clinical condition, mothers’ dental anxiety and their use of dental services, maternal perception of child’s oral health-related quality of life (OHRQoL on the child’s utilization of dental services. Materials and Methods: A cross-sectional survey was conducted among 600 mothers of children between 2 and 5 years of age. The questionnaire included the background characteristics, mothers and child’s dental visit, mothers’ dental anxiety using Corah’s Dental Anxiety Scale and maternal perceptions of the child’s OHRQoL using Early Childhood Oral Health Impact Scale. Clinical examination for assessing the dental caries among the children was performed. The data were analyzed using the Statistical Package for the Social Sciences version 17.1 software. Results: Using the final model of Poisson regression analysis with robust variance and forward stepwise procedure, it was found that the age of mother, the age of child, the income of the family, poor OHRQoL, the presence of caries and pain in child significantly influenced the visit of the child to dentist (P ≤ 0.05. No statistically significant association was found between the anxiety of mother and the child’s visit. Conclusion: Lack of maternal knowledge, low socio-economic reasons and maternal perception of child’s oral health could be the important reasons for a child’s less number of dental visits.

  10. Dental pain and dental treatment of young children attending the general dental service.

    Science.gov (United States)

    Milsom, K M; Tickle, M; Blinkhorn, A S

    2002-03-09

    The objective was to examine the relationship between dental pain (and its sequelae), and the extent of restorative care provided for primary molars, amongst children who regularly attend a general dental practitioner. A retrospective review of the clinical case notes of 677 children with caries who attended 50 general dental practitioners on a regular basis. Analyses were performed at the subject level. Logistic regression models were fitted for the dependent variables whether or not pain, a dental extraction for pain or sepsis and a course of antibiotics was recorded, after taking into account the proportion of carious teeth that were restored, the total number of carious teeth, the age caries was first recorded, gender and the clustering of the subjects within dental practices. Almost half of the children in the study (48%) were recorded as having at least one episode of pain. Total decay experience in the primary molars was a significant predictor of pain, extraction due to pain or sepsis and prescription of antibiotics. There was no significant association between the proportion of carious teeth restored and each of the three dependent variables. For those children who regularly attend their general dental practitioner and who have decay in their primary molars, dental pain is a common finding. Total decay experience in primary molars is the principal predictor of pain, extraction due to pain and the need for antibiotics, whilst the level of restorative care in the primary dentition is less important. In order to reduce the incidence of dental pain in young children, effective methods of preventing caries at the individual and public health levels need to be expanded.

  11. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  12. Bulimia and Anorexia Nervosa in Dental and Dental Hygiene Curricula.

    Science.gov (United States)

    Gross, Karen B. W.; And Others

    1990-01-01

    Dentists and dental hygienists are in a unique position to identify an eating disorder patient from observed oral manifestations and to refer the patient for psychological therapy. The inclusion of information on general and oral complications of bulimia and anorexia nervosa in dental and dental hygiene curriculum was examined. (MLW)

  13. Dental anxiety: a comparison of students of dentistry, biology, and psychology

    Directory of Open Access Journals (Sweden)

    Storjord HP

    2014-09-01

    Full Text Available Helene Persen Storjord,1 Mari Mjønes Teodorsen,1 Jan Bergdahl,1 Rolf Wynn,2,3 Jan-Are Kolset Johnsen1 1Department of Clinical Dentistry, 2Department of Clinical Medicine, UiT - The Arctic University of Norway, 3Division of Addictions and Specialized Psychiatric Services, University Hospital of North Norway, Tromsø, Norway Introduction: Dental anxiety is an important challenge for many patients and clinicians. It is thus of importance to know more about dental students' own experiences with dental anxiety and their understanding of dental anxiety. The aim was to investigate differences in dental anxiety levels between dental students, psychology students, and biology students at a Norwegian university. Materials and methods: A total of 510 students of dentistry, psychology, and biology at the University of Tromsø received a questionnaire consisting of the Modified Dental Anxiety Scale, demographic questions, and questions relating to their last visit to the dentist/dental hygienist; 169 students gave complete responses. Nonparametric tests were used to investigate differences between the student groups. Results: The respondents were 78% female and 22% male; their mean age was 24 years. The dental students showed a significantly lower degree of dental anxiety than the psychology (P<0.001 and biology students (P<0.001. A significant decrease in dental anxiety levels was found between novice and experienced dentistry students (P<0.001. Discussion: The dental students had less dental anxiety compared to psychology students and biology students. Experienced dental students also had less dental anxiety than novice dental students. This could indicate that the dentistry program structure at the university may influence dental anxiety levels. Conclusion: Dental anxiety seemed to be less frequent in dentistry students compared to students of biology or clinical psychology. The practice-oriented dentistry education at the university might contribute to

  14. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    International Nuclear Information System (INIS)

    Çelen, Serap; Özden, Hüseyin

    2012-01-01

    Highlights: ► It is time for that paradigm shift and for an exploration of novel surfaces. ► We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. ► We analyzed these smart surface morphologies using FEM. ► We estimated their internal stiffness values which play a great role on stress shielding effect. ► We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200–250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  15. Ceramics for Dental Applications: A Review

    Directory of Open Access Journals (Sweden)

    Julie A. Holloway

    2010-01-01

    Full Text Available Over the past forty years, the technological evolution of ceramics for dental applications has been remarkable, as new materials and processing techniques are steadily being introduced. The improvement in both strength and toughness has made it possible to expand the range of indications to long-span fixed partial prostheses, implant abutments and implants. The present review provides a state of the art of ceramics for dental applications.

  16. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions

    Directory of Open Access Journals (Sweden)

    Ahmad Ghahremanloo

    2017-02-01

    Full Text Available Objectives: The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS.Materials and Methods: Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body and direct and indirect techniques (six groups were used, and seven impressions were obtained from each group (n=42. To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy, in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey’s post-hoc test.Results: The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05. Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006.Conclusions: Viscosity of impression materials is of high significance for the accuracy of dental impressions.Keywords: Dental Materials; Dental Implants; Dental Impression Technique; Viscosity; Vinyl Polysiloxane; Dimensional Measurement Accuracy

  17. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina

    Directory of Open Access Journals (Sweden)

    Manar M. Milhem

    2008-08-01

    Full Text Available This study investigated the effect of extracts of different composites, glass ionomer cement (GICs and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy, a conventional GIC (Ketac-Fil, a resin-modified glass ionomer cement (Vitremer, two compomers (F2000; Dyract AP, and a flowable compomer (Dyract Flow were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively. One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001. Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (α =0.05 showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001. Follow-up comparison between the groups by Tukey's test (α = 0.05 showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.

  18. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    OpenAIRE

    Beloica Miloš; Vulićević Zoran R.; Mandinić Zoran; Radović Ivana; Jovičić Olivera; Carević Momir; Tekić Jasmina

    2014-01-01

    Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine) for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniqu...

  19. Effectiveness of school dental screening on stimulating dental attendance rates in Vikarabad town: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Gadde Praveen

    2014-01-01

    Full Text Available Background: The school dental screening program has been in existence from the beginning of 20 th century. Its value in encouraging attendance among school children is not fully established. Aim: The aim was to determine the effectiveness of school dental screening on stimulating dental attendance rates among school children in Vikarabad town. Objectives: (a To compare the dental attendance rates between 6-9 and 10-13 years old age groups, among male and female school children in Vikarabad town. (b To identify the type of dental treatment received by the school children. Materials and Methods: A randomized controlled trial was conducted among school children aged 6-13 years old from 16 schools that were randomly selected and divided into two groups. Eight schools had a dental screening program (study group = 300 children and had blanket referral cards and 8 schools that did not have the intervention (control group = 300. The dental attendance rates were determined after 3 months of follow-up period by evaluating the blanket referral cards for the study group and by an oral questionnaire for the control group. Results: The dental attendance rate was 27% for the study group and 18% for the control group which is statistically significant. The attendance rate was higher among 10-13 years of children both in test group and control groups. Among the children who visited the dentist, 53% in the control group and 69% from the test group got simple amalgam and glass ionomer cement restorations. Conclusion: The dental attendance rates were improved following school dental screening.

  20. OCCUPATIONAL CONTACT DERMATITIS AMONGST DENTISTS AND DENTAL TECHNICIANS.

    Science.gov (United States)

    Lugović-Mihić, Liborija; Ferček, Iva; Duvančić, Tomislav; Bulat, Vedrana; Ježovita, Josip; Novak-Bilić, Gaby; Šitum, Mirna

    2016-06-01

    Since the working medical personnel including dentists and dental technicians mainly use their hands, it is understandable that the most common occupational disease amongst medical personnel is contact dermatitis (CD) (80%-90% of cases). Development of occupational CD is caused by contact of the skin with various substances in occupational environment. Occupational etiologic factors for dental personnel are foremost reactions to gloves containing latex, followed by various dental materials (e.g., metals, acrylates), detergents, lubricants, solvents, chemicals, etc. Since occupational CD is relatively common in dental personnel, its timely recognition, treatment and taking preventive measures is needed. Achieving skin protection at exposed workplaces is of special importance, as well as implementing necessary measures consequently and sufficiently, which is sometimes difficult to achieve. Various studies have shown the benefit of applying preventive measures, such as numerous protocols for reducing and managing latex sensitivity and other forms of CD in dentistry. Active involvement of physicians within the health care system, primarily dermatologists, occupational medicine specialists and general medicine doctors is needed for establishing an accurate medical diagnosis and confirmation of occupational skin disease.