WorldWideScience

Sample records for biomechanical tongue model

  1. Use of a biomechanical tongue model to predict the impact of tongue surgery on speech production

    CERN Document Server

    Buchaillard, Stéphanie; Perrier, Pascal; Payan, Yohan

    2008-01-01

    This paper presents predictions of the consequences of tongue surgery on speech production. For this purpose, a 3D finite element model of the tongue is used that represents this articulator as a deformable structure in which tongue muscles anatomy is realistically described. Two examples of tongue surgery, which are common in the treatment of cancers of the oral cavity, are modelled, namely a hemiglossectomy and a large resection of the mouth floor. In both cases, three kinds of possible reconstruction are simulated, assuming flaps with different stiffness. Predictions are computed for the cardinal vowels /i, a, u/ in the absence of any compensatory strategy, i.e. with the same motor commands as the one associated with the production of these vowels in non-pathological conditions. The estimated vocal tract area functions and the corresponding formants are compared to the ones obtained under normal conditions

  2. A 3D dynamical biomechanical tongue model to study speech motor control

    CERN Document Server

    Gérard, J M; Perrier, P; Payan, Y; Gerard, Jean-Michel; Wilhelms-Tricarico, Reiner; Perrier, Pascal; Payan, Yohan

    2003-01-01

    A 3D biomechanical dynamical model of human tongue is presented, that is elaborated in the aim to test hypotheses about speech motor control. Tissue elastic properties are accounted for in Finite Element Modeling (FEM). The FEM mesh was designed in order to facilitate the implementation of muscle arrangement within the tongue. Therefore, its structure was determined on the basis of accurate anatomical data about the tongue. Mechanically, the hypothesis of hyperelasticity was adopted with the Mooney-Rivlin formulation of the strain energy function. Muscles are modeled as general force generators that act on anatomically specified sets of nodes of the FEM structure. The 8 muscles that are known to be largely involved in the production of basic speech movements are modeled. The model and the solving of the Lagrangian equations of movement are implemented using the ANSYSTM software. Simulations of the influence of muscle activations onto the tongue shape are presented and analyzed.

  3. Influences of tongue biomechanics on speech movements during the production of velar stop consonants: a modeling study

    CERN Document Server

    Perrier, P; Zandipour, M; Perkell, J; Perrier, Pascal; Payan, Yohan; Zandipour, Majid; Perkell, Joseph

    2003-01-01

    This study explores the following hypothesis: forward looping movements of the tongue that are observed in VCV sequences are due partly to the anatomical arrangement of the tongue muscles and how they are used to produce a velar closure. The study uses an anatomically based 2D biomechanical tongue model. Tissue elastic properties are accounted for in finite-element modeling, and movement is controlled by constant-rate control parameter shifts. Tongue raising and lowering movements are produced by the model with the combined actions of the genioglossus, styloglossus and hyoglossus. Simulations of V1CV2 movements were made, where C is a velar consonant and V is [a], [i] or [u]. If V1 is one of the vowels [a] and [u], the resulting trajectories describe movements that begin to loop forward before consonant closure and continue to slide along the palate during the closure. This prediction is in agreement with classical data published in the literature. If V1 is vowel [i], we observe a small backward movement. Thi...

  4. Modeling the consequences of tongue surgery on tongue mobility

    CERN Document Server

    Buchaillard, Stéphanie; Perrier, Pascal; Payan, Yohan

    2007-01-01

    This paper presents the current achievements of a long term project aiming at predicting and assessing the impact of tongue and mouth floor surgery on tongue mobility. The ultimate objective of this project is the design of a software with which surgeons should be able (1) to design a 3D biomechanical model of the tongue and of the mouth floor that matches the anatomical characteristics of each patient specific oral cavity, (2) to simulate the anatomical changes induced by the surgery and the possible reconstruction, and (3) to quantitatively predict and assess the consequences of these anatomical changes on tongue mobility and speech production after surgery.

  5. Degrees of freedom of tongue movements in speech may be constrained by biomechanics

    CERN Document Server

    Perrier, Pascal; Payan, Yohan; Zandipour, Majid; Guenther, Franck; Khalighi, Ali

    2007-01-01

    A number of studies carried out on different languages have found that tongue movements in speech are made along two primary degrees of freedom (d.f.s): the high-front to low-back axis and the high-back to low-front axis. We explore the hypothesis that these two main d.f.s could find their origins in the physical properties of the vocal tract. A large set of tongue shapes was generated with a biomechanical tongue model using a Monte-Carlo method to thoroughly sample the muscle control space. The resulting shapes were analyzed with PCA. The first two factors explain 84% of the variance, and they are similar to the two experimentally observed d.f.s. This finding suggests that the d.f.s. are not speech-specific, and that speech takes advantage of biomechanically based tongue properties to form different sounds.

  6. Degrees of freedom of tongue movements in speech may be constrained by biomechanics

    OpenAIRE

    Perrier, Pascal; Perkell, Joseph; Payan, Yohan; Zandipour, Majid; Guenther, Franck; Khalighi, Ali

    2007-01-01

    International audience A number of studies carried out on different languages have found that tongue movements in speech are made along two primary degrees of freedom (d.f.s): the high-front to low-back axis and the high-back to low-front axis. We explore the hypothesis that these two main d.f.s could find their origins in the physical properties of the vocal tract. A large set of tongue shapes was generated with a biomechanical tongue model using a Monte-Carlo method to thoroughly sample ...

  7. Towards Speech Articulation Simulation with a Dynamic Coupled Face-Jaw-Tongue Model

    OpenAIRE

    Stavness, Ian; Lloyd, John; Payan, Yohan; Fels, Sidney

    2011-01-01

    International audience This paper introduces a biomechanics simulation toolkit ArtiSynth (www.artisynth.org) in order to simulate coupled hard and soft tissue structures. Here we present the first biomechanical model that dynamically couples the face and lips with a jaw-tongue-hyoid model.

  8. Computational modeling in biomechanics

    CERN Document Server

    Mofrad, Mohammad

    2010-01-01

    This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..

  9. A 3D biomechanical vocal tract model to study speech production control: How to take into account the gravity?

    CERN Document Server

    Buchaillard, S; Payan, Y; Buchaillard, St\\'{e}phanie; Perrier, Pascal; Payan, Yohan

    2007-01-01

    This paper presents a modeling study of the way speech motor control can deal with gravity to achieve steady-state tongue positions. It is based on simulations carried out with the 3D biomechanical tongue model developed at ICP, which is now controlled with the Lambda model (Equilibrium-Point Hypothesis). The influence of short-delay orosensory feedback on posture stability is assessed by testing different muscle force/muscle length relationships (Invariant Characteristics). Muscle activation patterns necessary to maintain the tongue in a schwa position are proposed, and the relations of head position, tongue shape and muscle activations are analyzed.

  10. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  11. A soft biomimetic tongue: model reconstruction and motion tracking

    Science.gov (United States)

    Lu, Xuanming; Xu, Weiliang; Li, Xiaoning

    2016-04-01

    A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.

  12. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  13. Physiology Based Tongue Modeling and Simulation%基于生理的舌头建模与仿真

    Institute of Scientific and Technical Information of China (English)

    江辰; 於俊; 罗常伟; 汪增福

    2015-01-01

    针对舌头的建模与仿真,提出一个基于解剖学和生物力学的精确的三维舌头模型。首先是解剖学建模,依据核磁共振影像数据构建了舌头的三维模型,其内部的肌肉和肌纤维由一种基于解剖学资料的交互式肌肉标记法标记得到;然后是生物力学建模,采用精细的生物力学建模技术来体现舌头的弹性特性,包括舌头肌肉的主动和被动收缩特性;最后基于有限元方法计算得到舌头模型的动态形变。实验结果表明,该模型具有很高的精确性,能够根据肌肉激励生成逼真的舌头运动,合成高真实感的舌头动画。%Simulation of the tongue has important applications in biomechanics, linguistics, medical science, and graphics. This paper presents a 3D anatomically and biomechanically accurate tongue model. To ensure anatomical accuracy, the tongue and its muscles are constructed based on accurate medical data. Due to their complexity, muscles geometry and fiber arrangement are specially specified by a proposed interactive mus-cle marking method. To ensure biomechanical accuracy, a nonlinear, quasi-incompressible, isotropic, hy-perelastic constitutive model is applied for describing the tongue tissues, and particularly, tongue muscles are additionally endowed with an anisotropic constitutive model, which reflects the active and passive me-chanical behavior of muscle fibers. The dynamic simulation results of tongue movements subjected to cer-tain muscle activations are presented and validated with experimental data, and experiments show that our tongue model can synthesize realistic tongue animation.

  14. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  15. Homogenization of biomechanical models for plant tissues

    OpenAIRE

    Piatnitski, Andrey; Ptashnyk, Mariya

    2015-01-01

    In this paper homogenization of a mathematical model for plant tissue biomechanics is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are coupled becau...

  16. Supplementing biomechanical modeling with EMG analysis

    Science.gov (United States)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  17. Simulations of the consequences of tongue surgery on tongue mobility: implications for speech production in post-surgery conditions

    CERN Document Server

    Buchaillard, Stéphanie; Perrier, Pascal; Payan, Yohan

    2007-01-01

    This paper presents simulations of the impact of tongue surgery on tongue movements and on speech articulation. For this, a 3D biomechanical Finite Element (FE) model of the tongue is used. Muscles are represented within the FE structure by specific subsets of elements. The tongue model is inserted in the upper airways including jaw, palate and pharyngeal walls. Two examples of tongue surgery, which are quite common in the treatment of cancers of the oral cavity are modelled: hemiglossectomy and large resection of the mouth floor. Three kinds of reconstruction are also modelled, assuming flaps with a low, medium or high stiffnesses. The impact of the surgery without any reconstruction and with the three different reconstructions is quantitatively measured and compared during simulated speech production sequences. More precisely, differences in global 3D tongue shape and in velocity patterns during tongue displacements are evaluated.

  18. Modeling the biomechanics of fetal movements.

    Science.gov (United States)

    Verbruggen, Stefaan W; Loo, Jessica H W; Hayat, Tayyib T A; Hajnal, Joseph V; Rutherford, Mary A; Phillips, Andrew T M; Nowlan, Niamh C

    2016-08-01

    Fetal movements in the uterus are a natural part of development and are known to play an important role in normal musculoskeletal development. However, very little is known about the biomechanical stimuli that arise during movements in utero, despite these stimuli being crucial to normal bone and joint formation. Therefore, the objective of this study was to create a series of computational steps by which the forces generated during a kick in utero could be predicted from clinically observed fetal movements using novel cine-MRI data of three fetuses, aged 20-22 weeks. A custom tracking software was designed to characterize the movements of joints in utero, and average uterus deflection of [Formula: see text] mm due to kicking was calculated. These observed displacements provided boundary conditions for a finite element model of the uterine environment, predicting an average reaction force of [Formula: see text] N generated by a kick against the uterine wall. Finally, these data were applied as inputs for a musculoskeletal model of a fetal kick, resulting in predicted maximum forces in the muscles surrounding the hip joint of approximately 8 N, while higher maximum forces of approximately 21 N were predicted for the muscles surrounding the knee joint. This study provides a novel insight into the closed mechanical environment of the uterus, with an innovative method allowing elucidation of the biomechanical interaction of the developing fetus with its surroundings. PMID:26534772

  19. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  20. Progress in animation of an EMA-controlled tongue model for acoustic-visual speech synthesis

    CERN Document Server

    Steiner, Ingmar

    2012-01-01

    We present a technique for the animation of a 3D kinematic tongue model, one component of the talking head of an acoustic-visual (AV) speech synthesizer. The skeletal animation approach is adapted to make use of a deformable rig controlled by tongue motion capture data obtained with electromagnetic articulography (EMA), while the tongue surface is extracted from volumetric magnetic resonance imaging (MRI) data. Initial results are shown and future work outlined.

  1. A biomechanical modeling study of the effects of the orbicularis oris muscle and jaw posture on lip shape

    CERN Document Server

    Stavness, Ian; Perrier, Pascal; Demolin, Didier; Payan, Yohan

    2013-01-01

    Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in lip gestures and (b) the constraints of coupled lip/jaw biomechanics on jaw posture in labial sounds. Method: The authors used a model coupling the jaw, tongue, and face. First, the influence of the orbicularis oris (OO) anatomical implementation was analyzed by assessing how changes in depth (from epidermis to the skull) and peripheralness (proximity to the lip horn center) affected lip shaping. Second, the capability of the lip/jaw system to generate protrusion and rounding, or labial closure, was evaluated for different jaw heights. Results: Results showed that a peripheral and moderately deep OO implementation is most appropriate for protrusion and rounding; a superf...

  2. Biomechanical risk factors of non-contact ACL injuries:A stochastic biomechanical modeling study

    Institute of Scientific and Technical Information of China (English)

    Cheng-Feng; Lin; Hui; Liu; Michael; T.Gros; Paul; Weinhold; William; E.Garrett; Bing; Yu

    2012-01-01

    <正>Background:Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL) injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs. Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns. Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF) during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes. Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF.greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment. and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries. Conclusion:Small knee flexion angle,large posterior GRF.and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.

  3. Tongue problems

    Science.gov (United States)

    ... for mouth ulcers, leukoplakia, oral cancer, and other mouth sores. Anti-inflammatory medicines may be prescribed for glossititis and geographic tongue. Alternative Names Dark tongue; Burning tongue syndrome - symptoms Images Black hairy tongue Black hairy tongue ...

  4. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    of biomechanical forces, was used to model a pedestrian for application in vertical human-structure interaction (HSI). Tests were undertaken in a gait laboratory, where a three-dimensional motion-capture system was used to record a pedestrian's walking motions at various frequencies. The motion-capture system...... to be scattered and not closely related to walking frequency. A generalized extreme value distribution was fit to each of the amplitudes. Phases in the model for biomechanical forces were not related to pacing frequency, and a mean value of the phases is proposed....

  5. Quantitative modelling of the biomechanics of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen P. H.; Larsen, Ole Næsbye; Hoffmann, Marc R.;

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts...

  6. Quantitative modelling of the biomechanics of the avian syrinx

    NARCIS (Netherlands)

    Elemans, C.P.H.; Larsen, O.N.; Hoffmann, M.R.; Leeuwen, van J.L.

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts

  7. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  8. Application of optimal control to a biomechanics model

    OpenAIRE

    Krasovskii, A.

    2015-01-01

    A model of sport biomechanics describing short-distance running (sprinting) is developed by applying methods of optimal control. In the considered model, the motion of a sportsman is described by a second-order ordinary differential equation. Two interconnected optimal control problems are formulated and solved: the minimum energy and time-optimal control problems. Based on the comparison with real data, it is shown that the proposed approach to sprint modeling provides realistic results.

  9. Blue tongue - A modelling examination of fundamentals - Seasonality and chaos.

    Science.gov (United States)

    Thornley, John H M; France, James

    2016-08-21

    A deterministic mathematical model is developed for the dynamics of bluetongue disease within a single farm. The purpose is to examine widely the possible behaviours which may occur. This is important because of the increasing impact of blue tongue due to global warming. The model incorporates a recently suggested modification of logistic growth for the vectors which can greatly affect early disease dynamics and employs a variable number of up to 10 sequential pools for incubating vectors and for incubating and infectious hosts. Ten sequential pools represent the possible loss of immunity of recovered hosts over a 3-year period. After formally describing the model, the impact of the two logistic growth scenarios considered is examined in Section 3.1. The scenarios are applied with parameters that give identical long-term consequences but the early dynamics can be greatly affected. In the two scenarios, the effect of varying the assumed constant birth rate (scenario 1) or constant mortality rates (scenario 2) is considered. If the recovered (and immune) hosts, are assumed to lose their immunity, then, given particular values of the host-vector coupling constants, the system can exhibit autonomous oscillations (Section 3.2). Seasonality is represented by air temperature, and it is assumed that air temperatures below a threshold can increase vector mortality (Section 3.3). Adding seasonal effects on mortality to the autonomous oscillations resulting from recovered and resistant hosts losing immunity can give rise to chaos (Section 3.4). This could help explain the unusual persistence and re-occurrence of the disease. Finally (Section 3.5), the roles of host birth and mortality rates in examined, particularly in relation to placental transmission of the virus to offspring. It is concluded that the latter does not make an appreciable contribution to disease dynamics. PMID:27155045

  10. Mother Tongue Use in Task-Based Language Teaching Model

    Science.gov (United States)

    Hung, Nguyen Viet

    2012-01-01

    Researches of English language teaching (ELT) have focused on using mother tongue (L1) for years. The proliferation of task-based language teaching (TBLT) has been also occurred. Considerable findings have been made in the existing literature of the two fields; however, no mentions have been made in the combination of these two ELT aspects, i.e.,…

  11. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  12. Derivation, simulation and validation of poroelastic models in dental biomechanics

    OpenAIRE

    Favino, Marco; Krause, Rolf

    2015-01-01

    Poroelasticity and mechanics of growth are playing an increasingly relevant role in biomechanics. This work is a self- contained and holistic presentation of the modeling and simulation of non-linear poroelasticity with and without growth inhomogeneities. Balance laws of poroelasticity are derived in Cartesian coordinates. These allow to write the governing equations in a form that is general but also readily implementable. Closure relations are formally derived from the study of dissipati...

  13. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  14. Implementation of reflex loops in a biomechanical finite element model.

    Science.gov (United States)

    Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel

    2016-11-01

    In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models. PMID:27108871

  15. Biomechanical Model of the Diabetic Foot

    OpenAIRE

    Agić, Ante; NIKOLIĆ, VASILIJE; Mijović, Budimir; Reischl, Uwe

    2008-01-01

    In this work, a two dimensional (2D) finite element foot model was established from magnetic resonance imaging (MRI) of a male subject. The model comprises first medial planar cross-section through the foot, representing the foot in standing posture. For specified external load, the stress and strain distribution field under foot structure are determined. The material characterization of foot structure components are stronger related to diabetic phenomena. The new material model f...

  16. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  17. Quantitative Diagnosis of Tongue Cancer from Histological Images in an Animal Model

    Science.gov (United States)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo Georgia; Fei, Baowei

    2016-01-01

    We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin (H&E) stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.

  18. Geographic tongue

    Science.gov (United States)

    Patches on the tongue; Tongue - patchy; Benign migratory glossitis; Glossitis - benign migratory ... The exact cause of geographic tongue is unknown. It may be caused by a lack of vitamin B. It also may be due to irritation from hot ...

  19. Tongue biopsy

    Science.gov (United States)

    Biopsy - tongue ... A tongue biopsy can be done using a needle. You will get numbing medicine at the place where the ... provider will gently stick the needle into the tongue and remove a tiny piece of tissue. Some ...

  20. Biomechanical models to simulate consequences of maxillofacial surgery

    CERN Document Server

    Payan, Y; Pelorson, X; Vilain, C; Levy, P; Luboz, V; Perrier, P; Payan, Yohan; Chabanas, Matthieu; Pelorson, Xavier; Vilain, Coriandre; Levy, Patrick; Luboz, Vincent; Perrier, Pascal

    2002-01-01

    This paper presents the biomechanical finite element models that have been developed in the framework of the computer-assisted maxillofacial surgery. After a brief overview of the continuous elastic modelling method, two models are introduced and their use for computer-assisted applications discussed. The first model deals with orthognathic surgery and aims at predicting the facial consequences of maxillary and mandibular osteotomies. For this, a generic three-dimensional model of the face is automatically adapted to the morphology of the patient by the mean of elastic registration. Qualitative simulations of the consequences of an osteotomy of the mandible can thus be provided. The second model addresses the Sleep Apnoea Syndrome. Its aim is to develop a complete modelling of the interaction between airflow and upper airways walls during respiration. Dynamical simulations of the interaction during a respiratory cycle are computed and compared with observed phenomena.

  1. Computer Models in Biomechanics From Nano to Macro

    CERN Document Server

    Kuhl, Ellen

    2013-01-01

    This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling followin...

  2. Longitudinal modeling in sports: young swimmers' performance and biomechanics profile.

    Science.gov (United States)

    Morais, Jorge E; Marques, Mário C; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2014-10-01

    New theories about dynamical systems highlight the multi-factorial interplay between determinant factors to achieve higher sports performances, including in swimming. Longitudinal research does provide useful information on the sportsmen's changes and how training help him to excel. These questions may be addressed in one single procedure such as latent growth modeling. The aim of the study was to model a latent growth curve of young swimmers' performance and biomechanics over a season. Fourteen boys (12.33 ± 0.65 years-old) and 16 girls (11.15 ± 0.55 years-old) were evaluated. Performance, stroke frequency, speed fluctuation, arm's propelling efficiency, active drag, active drag coefficient and power to overcome drag were collected in four different moments of the season. Latent growth curve modeling was computed to understand the longitudinal variation of performance (endogenous variables) over the season according to the biomechanics (exogenous variables). Latent growth curve modeling showed a high inter- and intra-subject variability in the performance growth. Gender had a significant effect at the baseline and during the performance growth. In each evaluation moment, different variables had a meaningful effect on performance (M1: Da, β = -0.62; M2: Da, β = -0.53; M3: η(p), β = 0.59; M4: SF, β = -0.57; all P performance over time. Different variables were the main responsible for the performance improvement. A gender gap, intra- and inter-subject variability was verified.

  3. Development of a finger biomechanical model and its considerations.

    Science.gov (United States)

    Fok, Kim Seng; Chou, Siaw Meng

    2010-03-01

    The development of a biomechanical model for a human finger is faced with many challenges, such as extensor mechanism complexity, statistical indeterminacy and suitability of computational processes. Motivation for this work was to develop a computer model that is able to predict the internal loading patterns of tendons and joint surfaces experienced by the human finger, while mitigating these challenges. Proposed methodology was based on a non-linear optimising mathematical technique with a criterion of boundary conditions and equality equations, maximised against unknown parameters to reduce statistical indeterminacy. Initial validation was performed via the simulation of one dynamic and two static postures case studies. Past models and experiments were used, based on published literature, to verify the proposed model's methodology and results. The feasibility of the proposed methodology was deemed satisfactory as the simulated results were concordant with in-vivo results for the extrinsic flexors. PMID:19962148

  4. Biomechanics of epithelial cell islands analyzed by modeling and experimentation

    CERN Document Server

    Coburn, Luke; Noppe, Adrian; Caldwell, Benjamin J; Moussa, Elliott; Yap, Chloe; Priya, Rashmi; Lobaskin, Vladimir; Roberts, Anthony P; Yap, Alpha S; Neufeld, Zoltan; Gomez, Guillermo A

    2016-01-01

    We generated a new computational approach to analyze the biomechanics of epithelial cell islands that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of protrusions (and traction forces) that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions (and monolayer stress) is not homogeneous across the island. Instead it is higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Moreover, our approach has the minimal elements necessary to reproduce mechanical crosstalk between both cell-cell and cell substrate adhesion systems. We found that an i...

  5. Experimental model for civilian ballistic brain injury biomechanics quantification.

    Science.gov (United States)

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Gennarelli, Thomas A

    2007-01-01

    Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.

  6. Uncertainty modeling of input data for a biomechanical system of systems.

    Science.gov (United States)

    Dao, Tien Tuan; Ho Ba Tho, Marie Christine

    2013-01-01

    Biomechanical models simulating pathologies need assumptions and often have to deal with data from different sources. We proposed a biomechanical system of systems (BSoS) including two modeling (biomechanics and knowledge-based) approaches to understand the impact of musculoskeletal pathologies leading to propose better diagnosis and appropriate treatment prescription. Moreover, uncertainty of input data was modeled leading to quantify their impact on the simulation results. The architecture of our BSoS including different constituent systems was presented and discussed. Novel knowledge-based fusion p-boxes were developed for uncertainty modeling purpose. Case study was performed on the musculoskeletal simulation. Discussion was addressed. PMID:24110754

  7. Which biomechanical models are currently used in standing posture analysis?

    Science.gov (United States)

    Crétual, A

    2015-11-01

    In 1995, David Winter concluded that postural analysis of upright stance was often restricted to studying the trajectory of the center of pressure (CoP). However, postural control means regulation of the center of mass (CoM) with respect to CoP. As CoM is only accessible by using a biomechanical model of the human body, the present article proposes to determine which models are actually used in postural analysis, twenty years after Winter's observation. To do so, a selection of 252 representative articles dealing with upright posture and published during the four last years has been checked. It appears that the CoP model largely remains the most common one (accounting for nearly two thirds of the selection). Other models, CoP/CoM and segmental models (with one, two or more segments) are much less used. The choice of the model does not appear to be guided by the population studied. Conversely, while some confusion remains between postural control and the associated concepts of stability or strategy, this choice is better justified for real methodological concerns when dealing with such high-level parameters. Finally, the computation of the CoM continues to be a limitation in achieving a more complete postural analysis. This unfortunately implies that the model is chosen for technological reasons in many cases (choice being a euphemism here). Some effort still has to be made so that bioengineering developments allow us to go beyond this limit. PMID:26388359

  8. Hairy Tongue

    Science.gov (United States)

    ... and appear black as a result of poor oral hygiene. Overview Hairy tongue, also known as black tongue, ... Rinse the mouth with plain water. Maintain good oral hygiene with regular tooth brushing. Minimize mouthwash use and ...

  9. Tongue (image)

    Science.gov (United States)

    The tongue is mainly composed of muscles. It is covered with a mucous membrane. Small nodules of tissue (papillae) cover the upper surface of the tongue. Between the papillae are the taste buds, which ...

  10. Tongue Disorders

    Science.gov (United States)

    Your tongue helps you taste, swallow, and chew. You also use it to speak. Your tongue is made up of many muscles. The upper surface contains your taste buds. Problems with the tongue include Pain Swelling Changes in color or texture ...

  11. A selection of biomechanical research problems: From modeling to experimentation

    Science.gov (United States)

    Abbasi, Cyrus Omid

    The research undertakings within this manuscript illustrate the importance of biomechanics in today's science. Without doubt, biomechanics can be utilized to obtain a better understanding of many unsolved mysteries involved in the field of medicine. Moreover, biomechanics can be used to develop better prosthetic or surgical devices as well. Chapter 2 represents a medical problem, which has not been solved for more than a century. With the use of fundamental principles of biomechanics', a better insight of this problem and its possible causes were obtained. Chapter 3 investigates the mechanical interaction between the human teeth and some processed food products during mastication, which is a routine but crucial daily activity of a human being. Chapter 4 looks at a problem within the field of surgery. In this chapter the stability and reliability of two different Suturing-Techniques are explored. Chapters 5 and 6 represent new patent designs as a result of the investigations made in Chapter 4. Chapter 7 studies the impact and load transfer patterns during the collision between a child's head and the ground. All of the above mentioned chapters show the significance of biomechanics in solving a range of different medical problems that involve physical and or mechanical characters.

  12. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2013-01-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a pa...

  13. Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation

    OpenAIRE

    Palko, Joel R.; Morris, Hugh J.; Pan, Xueliang; Harman, Christine D.; Koehl, Kristin L.; Gelatt, Kirk N.; Plummer, Caryn E.; Komáromy, András M.; Liu, Jun

    2016-01-01

    Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with ADAMTS10 mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from ADAMTS10-mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole glob...

  14. Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling.

    OpenAIRE

    Ohayon, Jacques; Finet, Gérard; Le Floc’h, Simon; Cloutier, Guy; Gharib, Ahmed M.; Heroux, Julie; Pettigrew, Roderic I.

    2014-01-01

    International audience Coronary atheroma develop in local sites that are widely variable among patients and are considerably variable in their vulnerability for rupture. This article summarizes studies conducted by our collaborative laboratories on predictive biomechanical modeling of coronary plaques. It aims to give insights into the role of biomechanics in the development and localization of atherosclerosis, the morphologic features that determine vulnerable plaque stability, and emergi...

  15. Computational Analysis of Scroll Tongue Shapes to Compressor Performance by Using Different Turbulence Models

    Science.gov (United States)

    Xu, C.; Amano, R. S.

    2010-03-01

    A scroll is used to collect and transport swirling fluid produced by impeller and diffuser. Scroll or volute is one of the key components of centrifugal compressors. Design of the scroll not only impacts compressor efficiency but also influences operating range of the compressor. In this study, Navier-Stokes equations with both the zero-equation turbulence model and the k-ɛ turbulence model were used to simulate flows inside a single stage compressor. Detailed flow simulations for a large cut back tongue scroll are presented and discussed. Studies showed that a large cut back rounded tongue scroll provided good operating range without dropping compressor peak efficiency dramatically. The turbulence model influences to the calculation were discussed and some suggestions for scroll flow modeling are made. The numerical results obtained using two turbulence models were compared and showed agreement reasonably well with experiments in overall compressor performance. Although the k-ɛ model behaves well inside the boundary layer, it was not decisively better than the Zero-equation model for compressor stage performance predictions.

  16. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.

    Science.gov (United States)

    Cos, Ignasi; Khamassi, Mehdi; Girard, Benoît

    2013-11-01

    Recent experiments showed that the bio-mechanical ease and end-point stability associated to reaching movements are predicted prior to movement onset, and that these factors exert a significant influence on the choice of movement. As an extension of these results, here we investigate whether the knowledge about biomechanical costs and their influence on decision-making are the result of an adaptation process taking place during each experimental session or whether this knowledge was learned at an earlier stage of development. Specifically, we analysed both the pattern of decision-making and its fluctuations during each session, of several human subjects making free choices between two reaching movements that varied in path distance (target relative distance), biomechanical cost, aiming accuracy and stopping requirement. Our main result shows that the effect of biomechanics is well established at the start of the session, and that, consequently, the learning of biomechanical costs in decision-making occurred at an earlier stage of development. As a means to characterise the dynamics of this learning process, we also developed a model-based reinforcement learning model, which generates a possible account of how biomechanics may be incorporated into the motor plan to select between reaching movements. Results obtained in simulation showed that, after some pre-training corresponding to a motor babbling phase, the model can reproduce the subjects' overall movement preferences. Although preliminary, this supports that the knowledge about biomechanical costs may have been learned in this manner, and supports the hypothesis that the fluctuations observed in the subjects' behaviour may adapt in a similar fashion.

  17. Modeling of the condyle elements within a biomechanical knee model

    OpenAIRE

    Ribeiro, Ana Barros; Rasmussen, John; Flores, Paulo; Silva, Luís F.

    2012-01-01

    The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the condyle contact in the knee will lead to reproduction of the complex combination of flexion/extension, abduction/adduction and tibial rotation ob-served in the real knee? The model is composed by two...

  18. Fluid-structure interaction-based biomechanical perception model for tactile sensing.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

  19. A survey on stochastic multi-scale modeling in biomechanics: computational challenges

    CERN Document Server

    Favino, Marco; Pivkin, Igor

    2016-01-01

    During the last decade, multi-scale models in mechanics, bio-mechanics and life sciences have gained increasing attention. Using multi-scale approaches, effects on different time and length scales, such as, e.g., cellular and organ scale, can be coupled and their interaction can be studied. Clearly, this requires the development of new mathematical models and numerical methods for multi-scale problems, in order to provide reliable and efficient tools for the investigation of multi-scale effects. Here, we give an overview on existing numerical approaches for multi-scale simulations in bio-mechanics with particular emphasis on stochastic effects.

  20. Pilot biomechanical design of biomaterials for artificial nucleus prosthesis using 3D finite-element modeling

    Institute of Scientific and Technical Information of China (English)

    Qijin Huang; Guoquan Liu; Yong Li; Jin Gao; Zhengqiu Gu; Yuanzheng Ma; Haibin Xue

    2004-01-01

    Pilot biomechanical design of biomaterials for artificial nucleus prosthesis was carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral disc respectively with a real human nucleus and with the nucleus removed were developed and validated using published experimental and clinical data. Then the models with a stainless steel nucleus prosthesis implanted and with polymer nucleus prostheses of various properties implanted were used for the 3D finite-element biomechanical analysis. All the above simulation and analysis were carried out for the L4/L5 disc under a human worst-daily compression load of 2000 N. The results show that the polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanical consideration.

  1. Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.

    Science.gov (United States)

    Girardi, Brandon L; Attia, Tarik; Backstein, David; Safir, Oleg; Willett, Thomas L; Kuzyk, Paul R T

    2016-02-29

    The use of cadavers for orthopaedic biomechanics research is well established, but presents difficulties to researchers in terms of cost, biosafety, availability, and ease of use. High fidelity composite models of human bone have been developed for use in biomechanical studies. While several studies have utilized composite models of the human pelvis for testing orthopaedic reconstruction techniques, few biomechanical comparisons of the properties of cadaveric and composite pelves exist. The aim of this study was to compare the mechanical properties of cadaveric pelves to those of the 4th generation composite model. An Instron ElectroPuls E10000 mechanical testing machine was used to load specimens with orientation, boundary conditions and degrees of freedom that approximated those occurring during the single legged phase of walking, including hip abductor force. Each specimen was instrumented with strain gauge rosettes. Overall specimen stiffness and principal strains were calculated from the test data. Composite specimens showed significantly higher overall stiffness and slightly less overall variability between specimens (composite K=1448±54N/m, cadaver K=832±62N/m; pcomposite models and cadavers were similar (but did differ) only when the applied load was scaled to overall construct stiffness. This finding regarding strain distribution and the difference in overall stiffness must be accounted for when using these composite models for biomechanics research. Altering the cortical wall thickness or tuning the elastic moduli of the composite material may improve future generations of the composite model.

  2. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  3. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Directory of Open Access Journals (Sweden)

    Zhijie Jack Tseng

    Full Text Available Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.

  4. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Science.gov (United States)

    Tseng, Zhijie Jack; Flynn, John J

    2015-01-01

    Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences. PMID:25923776

  5. On the inference of function from structure using biomechanical modelling and simulation of extinct organisms.

    Science.gov (United States)

    Hutchinson, John R

    2012-02-23

    Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences. PMID:21666064

  6. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    Science.gov (United States)

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.

  7. A novel finite element method based biomechanical model for HIT-robot assisted orthopedic surgery system.

    Science.gov (United States)

    Jia, Zhiheng; Du, Zhijiang; Wang, Monan

    2006-01-01

    To build a biomechanical human model can make much sense for surgical training and surgical rehearse. Especially, it will be more meaningful to develop a biomechanical model to guide the control strategy for the medical robots in HIT-Robot Assisted Orthopedic Surgery System (HIT-RAOS). In this paper, based the successful work of others, a novel reliable finite element method based biomechanical model for HIT-RAOS was developed to simulate the force needed in reposition procedure. Geometrical model was obtained from 3D reconstruction from CT images of a just died man. Using this boundary information, the finite element model of the leg including part of femur, broken upper tibia, broken lower tibia, talus, calcaneus, Kirschner nail, muscles and other soft tissues was created in ANSYS. Furthermore, as it was too difficult to reconstruct the accurate geometry model from CT images, a new simplified muscle model was presented. The bony structures and tendons were defined as linearly elastic, while soft tissues and muscle fibers were assumed to be hyper elastic. To validate this model, the same dead man was involved to simulate the patient, and a set of data of the force needed to separate the two broken bones and the distance between them in reposition procedure was recorded. Then, another set of data was acquired from the finite element analysis. After comparison, the two sets of data matched well. The Finite Element model was proved to be acceptable. PMID:17959437

  8. A Preliminary Study For A Biomechanical Model Of The Respiratory System

    OpenAIRE

    Saadé, Jacques; Didier, Anne-Laure; Villard, Pierre-Frédéric; Buttin, Romain; Moreau, Jean-Michel; Beuve, Michael; Shariat, Behzad

    2010-01-01

    Tumour motion is an essential source of error for treatment planning in radiation therapy. This motion is mostly due to patient respiration. To account for tumour motion, we propose a solution that is based on the biomechanical modelling of the respiratory system. To compute deformations and displacements, we use continuous mechanics laws solved with the finite element method. In this paper, we propose a preliminary study of a complete model of the respiratory system including lungs, chest wa...

  9. Bridging the gap between cadaveric and in vivo experiments: A biomechanical model evaluating thumb-tip endpoint forces

    OpenAIRE

    Wohlman, Sarah J.; Wendy M Murray

    2013-01-01

    The thumb is required for a majority of tasks of daily living. Biomechanical modeling is a valuable tool, with the potential to help us bridge the gap between our understanding of the mechanical actions of individual thumb muscles, derived from anatomical cadaveric experiments, and our understanding of how force is produced by the coordination of all of the thumb muscles, derived from studies involving human subjects. However, current biomechanical models do not replicate muscle force product...

  10. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2014-01-01

    In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall's constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the stro...

  11. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.

    Science.gov (United States)

    Han, Lianghao; Hipwell, John H; Eiben, Björn; Barratt, Dean; Modat, Marc; Ourselin, Sebastien; Hawkes, David J

    2014-03-01

    Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration

  12. The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model.

    Directory of Open Access Journals (Sweden)

    Charles F Bellows

    Full Text Available BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM and porcine small intestine submucosa (SIS were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5, 10(9 colony-forming units] or saline (control prior to wound closure (n = 6 per group. After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p0.05. After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment.

  13. A biomechanical model of the face including muscles for the prediction of deformations during speech production

    CERN Document Server

    Groleau, Julie; Marecaux, Christophe; Payrard, Natacha; Segaud, Brice; Rochette, Michel; Perrier, Pascal; Payan, Yohan

    2008-01-01

    A 3D biomechanical finite element model of the face is presented. Muscles are represented by piece-wise uniaxial tension cable elements linking the insertion points. Such insertion points are specific entities differing from nodes of the finite element mesh, which makes possible to change either the mesh or the muscle implementation totally independently of each other. Lip/teeth and upper lip/lower lip contacts are also modeled. Simulations of smiling and of an Orbicularis Oris activation are presented and interpreted. The importance of a proper account of contacts and of an accurate anatomical description is shown

  14. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  15. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression

    Science.gov (United States)

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  16. Biomechanical Stability of Juvidur and Bone Models on Osteosyntesic Materials

    Science.gov (United States)

    Grubor, Predrag; Mitković, Milorad; Grubor, Milan; Mitković, Milan; Meccariello, Luigi; Falzarano, Gabriele

    2016-01-01

    Introduction: Artificial models can be useful at approximate and qualitative research, which should give the preliminary results. Artificial models are usually made of photo-elastic plastic e.g.. juvidur, araldite in the three-dimensional contour shape of the bone. Anatomical preparations consist of the same heterogeneous, structural materials with extremely anisotropic and unequal highly elastic characteristics, which are embedded in a complex organic structure. The aim of the study: Examine the budget voltage and deformation of: dynamic compression plate (DCP), locking compression plate (LCP), Mitkovic internal fixator (MIF), Locked intramedullary nailing (LIN) on the compressive and bending forces on juvidur and veal bone models and compared the results of these two methods (juvidur, veal bone). Material and Methods: For the experimental study were used geometrically identical, anatomically shaped models of Juvidur and veal bones diameter of 30 mm and a length of 100 mm. Static tests were performed with SHIMADZU AGS-X testing machine, where the force of pressure (compression) increased from 0 N to 500 N, and then conducted relief. Bending forces grew from 0 N to 250 N, after which came into sharp relief. Results: On models of juvidur and veal bones studies have confirmed that uniform stability at the site of the fracture MIF with a coefficient ranking KMIF=0,1971, KLIN=0,2704, KDCP=0,2727 i KLCP=0,5821. Conclusion: On models of juvidur and veal bones working with Shimadzu AGS-X testing machine is best demonstrated MIF with a coefficient of 0.1971. PMID:27708489

  17. Multiscale models in the biomechanics of plant growth

    OpenAIRE

    Jensen, O.E. & Fozard, J.A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development.

  18. An integrated biomechanical modeling approach to the ergonomic evaluation of drywall installation.

    Science.gov (United States)

    Yuan, Lu; Buchholz, Bryan; Punnett, Laura; Kriebel, David

    2016-03-01

    Three different methodologies: work sampling, computer simulation and biomechanical modeling, were integrated to study the physical demands of drywall installation. PATH (Posture, Activity, Tools, and Handling), a work-sampling based method, was used to quantify the percent of time that the drywall installers were conducting different activities with different body segment (trunk, arm, and leg) postures. Utilizing Monte-Carlo simulation to convert the categorical PATH data into continuous variables as inputs for the biomechanical models, the required muscle contraction forces and joint reaction forces at the low back (L4/L5) and shoulder (glenohumeral and sternoclavicular joints) were estimated for a typical eight-hour workday. To demonstrate the robustness of this modeling approach, a sensitivity analysis was conducted to examine the impact of some quantitative assumptions that have been made to facilitate the modeling approach. The results indicated that the modeling approach seemed to be the most sensitive to both the distribution of work cycles for a typical eight-hour workday and the distribution and values of Euler angles that are used to determine the "shoulder rhythm." Other assumptions including the distribution of trunk postures did not appear to have a significant impact on the model outputs. It was concluded that the integrated approach might provide an applicable examination of physical loads during the non-routine construction work, especially for those operations/tasks that have certain patterns/sequences for the workers to follow.

  19. An integrated biomechanical modeling approach to the ergonomic evaluation of drywall installation.

    Science.gov (United States)

    Yuan, Lu; Buchholz, Bryan; Punnett, Laura; Kriebel, David

    2016-03-01

    Three different methodologies: work sampling, computer simulation and biomechanical modeling, were integrated to study the physical demands of drywall installation. PATH (Posture, Activity, Tools, and Handling), a work-sampling based method, was used to quantify the percent of time that the drywall installers were conducting different activities with different body segment (trunk, arm, and leg) postures. Utilizing Monte-Carlo simulation to convert the categorical PATH data into continuous variables as inputs for the biomechanical models, the required muscle contraction forces and joint reaction forces at the low back (L4/L5) and shoulder (glenohumeral and sternoclavicular joints) were estimated for a typical eight-hour workday. To demonstrate the robustness of this modeling approach, a sensitivity analysis was conducted to examine the impact of some quantitative assumptions that have been made to facilitate the modeling approach. The results indicated that the modeling approach seemed to be the most sensitive to both the distribution of work cycles for a typical eight-hour workday and the distribution and values of Euler angles that are used to determine the "shoulder rhythm." Other assumptions including the distribution of trunk postures did not appear to have a significant impact on the model outputs. It was concluded that the integrated approach might provide an applicable examination of physical loads during the non-routine construction work, especially for those operations/tasks that have certain patterns/sequences for the workers to follow. PMID:26674404

  20. Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model.

    Science.gov (United States)

    Saad, S; Hewett, K; Greenman, J

    2012-03-01

    An in vitro matrix biofilm perfusion model of tongue-derived microcosms for studying volatile sulfur compound (VSC) biogenesis has been previously described. The model was modified in order to monitor H(2)S in situ by use of a specialized electrode assembly based on microbial fuel cell technology. This system was designed to give real-time measurements expressed as electrode power output, which were proportional to H(2)S levels, measured by other means. In addition to the model modifications, the aim of this study was to demonstrate the biofilm responses following single or multiple exposure to biocidal, biostatic or VSC-inhibiting active compounds used in products. Tongue-derived biofilms (n = 6 per experiment) were perfused with one-fifth strength BHI at 20 ml h(-1) pH 7.2 and pulsed with putative treatment agent, placebo and controls including Zn(2+) ions and chlorhexidine (CHX). Compared with their pre-treatment conditions, all biofilms responded to the treatments in terms of reductions in hydrogen sulfide generation (as detected by the biofilm-electrode response) and other microbial volatile organic compounds (VOCs) as detected using a selected ion flow tube mass spectrometry analyser. The microbiological analysis of the treated and control biofilms show that test products (formulations with active agents) all gave reduced cell populations compared to the control biofilm. An order of effects (magnitude and duration) suggests that both the test agent and CHX produced the strongest reductions, distinct from the responses obtained for the placebo and water controls, which were largely similar. It is concluded that the in vitro perfusion model may be used to replicate many of the activities and reactions believed to be occurring by the tongue biofilm microflora within a real mouth, including H(2)S and VOC biogenesis and their inhibition by exposure to active agents.

  1. Homogenization of a viscoelastic model for plant cell wall biomechanics

    OpenAIRE

    Ptashnyk, Mariya; Seguin, Brian

    2015-01-01

    The microscopic structure of a plant cell wall is given by cellulose microfibrils embedded in a cell wall matrix. In this paper we consider a microscopic model for interactions between viscoelastic deformations of a plant cell wall and chemical processes in the cell wall matrix. We consider elastic deformations of the cell wall microfibrils and viscoelastic Kelvin--Voigt type deformations of the cell wall matrix. Using homogenization techniques (two-scale convergence and periodic unfolding me...

  2. Probabilistic Modeling Of Ocular Biomechanics In VIIP: Risk Stratification

    Science.gov (United States)

    Feola, A.; Myers, J. G.; Raykin, J.; Nelson, E. S.; Mulugeta, L.; Samuels, B.; Ethier, C. R.

    2016-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP. To simulate the effects of different pressures on tissues in the posterior eye, we developed a geometric model of the posterior eye and optic nerve sheath and used a Latin hypercubepartial rank correlation coef-ficient (LHSPRCC) approach to assess the influence of uncertainty in our input parameters (i.e. pressures and material properties) on the peak strains within the retina, lamina cribrosa and optic nerve. The LHSPRCC approach was repeated for three relevant ICP ranges, corresponding to upright and supine posture on earth, and microgravity [1]. At each ICP condition we used intraocular pressure (IOP) and mean arterial pressure (MAP) measurements of in-flight astronauts provided by Lifetime Surveillance of Astronaut Health Program, NASA Johnson Space Center. The lamina cribrosa, optic nerve, retinal vessel and retina were modeled as linear-elastic materials, while other tissues were modeled as a Mooney-Rivlin solid (representing ground substance, stiffness parameter c1) with embedded collagen fibers (stiffness parameters c3, c4 and c5). Geometry creationmesh generation was done in Gmsh [2], while FEBio was used for all FE simulations [3]. The LHSPRCC approach resulted in correlation coefficients in the range of 1. To assess the relative influence of the uncertainty in an input parameter on

  3. Biomechanics of cells and tissues experiments, models and simulations

    CERN Document Server

    2013-01-01

    The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation.   Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and philosophical approaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimicking the function of living systems. The contributions presented in this book are current research highlights of six challenging an...

  4. Biomechanics of Growing Trees: Mathematical Model, Numerical Resolution and Perspectives

    Science.gov (United States)

    Fourcaud, Thierry; Guillon, Thomas; Dumont, Yves

    2011-09-01

    The growth of trees is characterized by the elongation and thickening of its axes. New cells are formed at the periphery of the existing body, the properties of the older inner material being unchanged. The calculation of the progressive deflection of a growing stem is not a classical problem in mechanics for three main reasons: 1- the hypothesis of mass conservation is not valid; 2- the new material added at the periphery of the existing and deformed structure does not participate retroactively to the total equilibrium and tends to "fix" the actual shape; 3- an initial reference configuration corresponding to the unloaded structure cannot be classically defined to formulate the equilibrium equations. This paper proposes a theoretical framework that allows bypassing these difficulties. Equations adapted from the beam theory and considering the strong dependencies between space and time are given. A numerical scheme based on the finite element method is proposed to solve these equations. The model opens new research perspectives both in mathematics and plant biology.

  5. Mathematical Modelling of Biomechanical Interactions between Backpack and Bearer during Load Carriage

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2013-01-01

    Full Text Available This paper proposes a three-dimensional mathematical model of the biomechanical interactions between backpack and bearer during load carriage. The model considers both the coupled pack motions, which follow the torso, and also the longitudinal compliance and damping in the backpack suspension. The pack interaction forces and moments, acting on the bearer, are determined from kinematic relationships, equations of motion, and a dynamic pack suspension model. The parameters of the pack suspension model were identified from test data obtained using a load carriage test rig. Output from the load carriage mathematical model has been compared with measurement data during human gait and conclusions drawn with regard to the validity of the proposed approach.

  6. Biomechanical properties of bone in a mouse model of Rett syndrome.

    Science.gov (United States)

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R

    2015-02-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.

  7. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction.

    Science.gov (United States)

    Li, Changsheng; Wang, Tianmiao; Hu, Lei; Zhang, Lihai; Zhao, Yanpeng; Du, Hailong; Wang, Lifeng; Tang, Peifu

    2015-01-01

    A number of issues that exist in common fracture reduction surgeries can be mitigated by robot-assisted fracture reduction. However, the safety of patients and the performance of the robot, which are closely related to the muscle forces, are important indexes that restrict the development of robots. Though researchers have done a great deal of work on the biomechanics of the musculoskeletal system, the dynamics of the musculoskeletal system, particularly the aspects related to the function of the robot, is not well understood. For this reason, we represent the complex biological system by establishing a dynamic biomechanical model based on the Hill muscle model and the Kane method for the robot that we have developed and the musculoskeletal system. We analyzed the relationship between the motion and force of the bone fragments and the robot during a simulation of a robot-assisted fracture reduction. The influence of the muscle force on the robot system was predicted and managed. The simulation results provide a basis for a fracture reduction path plan that ensures patient safety and a useful reference for the mechanical design of the robot.

  8. Left Ventricular Endocardium Tracking by Fusion of Biomechanical and Deformable Models

    Directory of Open Access Journals (Sweden)

    Hussin Ketout

    2014-01-01

    Full Text Available This paper presents a framework for tracking left ventricular (LV endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing themto a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle.

  9. Left ventricular endocardium tracking by fusion of biomechanical and deformable models.

    Science.gov (United States)

    Ketout, Hussin; Gu, Jason

    2014-01-01

    This paper presents a framework for tracking left ventricular (LV) endocardium through 2D echocardiography image sequence. The framework is based on fusion of biomechanical (BM) model of the heart with the parametric deformable model. The BM model constitutive equation consists of passive and active strain energy functions. The deformations of the LV are obtained by solving the constitutive equations using ABAQUS FEM in each frame in the cardiac cycle. The strain energy functions are defined in two user subroutines for active and passive phases. Average fusion technique is used to fuse the BM and deformable model contours. Experimental results are conducted to verify the detected contours and the results are evaluated by comparing them to a created gold standard. The results and the evaluation proved that the framework has the tremendous potential to track and segment the LV through the whole cardiac cycle. PMID:24587814

  10. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.

    Science.gov (United States)

    Daegling, D J; Hylander, W L

    2000-08-01

    Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified

  11. Quantification of Subjective Scaling of Friction Using a Fingertip Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolvahab

    2012-01-01

    Full Text Available Subjective scaling of friction is important in many applications in haptic technology. A nonhomogeneous biomechanical finite element model of fingertip is proposed in order to predict neural response of sensitive mechanoreceptors to frictional stimuli (Slowly Adapting SAII receptors under the glabrous skin. In a guided psychophysical experiment, ten human subjects were asked to scale several standard surfaces based on the perception of their frictional properties. Contact forces deployed during the exploratory time of one of the participants were captured in order to estimate required parameters for the model of contact in the simulation procedure. Consequently, the strain energy density at the location of a selective mechanoreceptor in the finite element model as a measure of discharge rate of the neural unit was compared to the subject’s perceptual evaluation of the relevant stimuli. It was observed that the subject’s scores correlate with the discharge rate of the given receptor.

  12. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    Science.gov (United States)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  13. Biomechanical analyses of prosthetic mesh repair in a hiatal hernia model.

    Science.gov (United States)

    Alizai, Patrick Hamid; Schmid, Sofie; Otto, Jens; Klink, Christian Daniel; Roeth, Anjali; Nolting, Jochen; Neumann, Ulf Peter; Klinge, Uwe

    2014-10-01

    Recurrence rate of hiatal hernia can be reduced with prosthetic mesh repair; however, type and shape of the mesh are still a matter of controversy. The purpose of this study was to investigate the biomechanical properties of four conventional meshes: pure polypropylene mesh (PP-P), polypropylene/poliglecaprone mesh (PP-U), polyvinylidenefluoride/polypropylene mesh (PVDF-I), and pure polyvinylidenefluoride mesh (PVDF-S). Meshes were tested either in warp direction (parallel to production direction) or perpendicular to the warp direction. A Zwick testing machine was used to measure elasticity and effective porosity of the textile probes. Stretching of the meshes in warp direction required forces that were up to 85-fold higher than the same elongation in perpendicular direction. Stretch stress led to loss of effective porosity in most meshes, except for PVDF-S. Biomechanical impact of the mesh was additionally evaluated in a hiatal hernia model. The different meshes were used either as rectangular patches or as circular meshes. Circular meshes led to a significant reinforcement of the hiatus, largely unaffected by the orientation of the warp fibers. In contrast, rectangular meshes provided a significant reinforcement only when warp fibers ran perpendicular to the crura. Anisotropic elasticity of prosthetic meshes should therefore be considered in hiatal closure with rectangular patches.

  14. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  15. A Biomechanical Modeling Study of the Effects of the Orbicularis Oris Muscle and Jaw Posture on Lip Shape

    Science.gov (United States)

    Stavness, Ian; Nazari, Mohammad Ali; Perrier, Pascal; Demolin, Didier; Payan, Yohan

    2013-01-01

    Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in…

  16. Design of a Passive Exoskeleton for the Upper Extremity through Co-simulation with a Biomechanical Human Arm Model

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Rasmussen, John

    2013-01-01

    , which allows designers to analyze and evaluate an exoskeleton for its functioning, effectively. A simulation platform is developed by integrating a biomechanical model of human body and the exoskeleton. With the proposed approach, two types of exoskeletons with gravity compensating capability...

  17. Biomechanical performance of an ovine model of intradural spinal cord stimulation.

    Science.gov (United States)

    Safayi, S; Jeffery, N D; Fredericks, D C; Viljoen, S; Dalm, B D; Reddy, C G; Wilson, S; Gillies, G T; Howard, M A

    2014-07-01

    The authors are developing a novel type of spinal cord stimulator, designed to be placed directly on the pial surface of the spinal cord, for more selective activation of target tissues within the dorsal columns. For pre-clinical testing of the device components, an ovine model has been implemented which utilizes the agility and flexibility of a sheep's cervical and upper thoracic regions, thus providing an optimal environment of accelerated stress-cycling on small gauge lead wires implanted along the dorsal spinal columns. The results are presented of representative biomechanical measurements of the angles of rotation and the angular velocities and accelerations associated with the relevant head, neck and upper back motions, and these findings are interpreted in terms of their impact on assessing the robustness of the stimulator implant systems. PMID:24841845

  18. Modelling the relationship between biomechanics and performance of young sprinting swimmers.

    Science.gov (United States)

    Morais, Jorge E; Silva, António J; Marinho, Daniel A; Marques, Mário C; Batalha, Nuno; Barbosa, Tiago M

    2016-09-01

    The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3 ± 0.74 years; 49 boys: 12.5 ± 0.76 years; 51 girls: 12.2 ± 0.71 years; both genders in Tanner stages 1-2 by self-report) participating on a regular basis in regional and national-level events. The 100 m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity-power output. The final model was explained by 69% presenting a reasonable adjustment (model's goodness-of-fit; x(2)/df = 3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers' performance. PMID:26923746

  19. Micro-to-nano biomechanical modeling for assisted biological cell injection.

    Science.gov (United States)

    Ladjal, Hamid; Hanus, Jean-Luc; Ferreira, Antoine

    2013-09-01

    To facilitate training of biological cell injection operations, we are developing an interactive virtual environment to simulate needle insertion into biological cells. This paper presents methodologies for dynamic modeling, visual/haptic display, and model validation of cell injection. We first investigate the challenging issues in the modeling of the biomechanical properties of living cells. We propose two dynamic models to simulate cell deformation and puncture. The first approach is based on the assumptions that the mechanical response of living cells is mainly determined by the cytoskeleton and that the cytoskeleton is organized as a tensegrity structure including microfilaments, microtubules, and intermediate filaments. Equivalent microtubules struts are represented with a linear mass-tensor finite-element model and equivalent microfilaments and intermediate filaments with viscoelastic Kelvin-Voigt elements. The second modeling method assumes the overall cell as an homogeneous hyperelastic model (St, Venant-Kirchhoff). Both graphic and haptic rendering are provided in real time to the operator through a 3-D virtual environment. Simulated responses are compared to experimental data to show the effectiveness of the proposed physically based model. PMID:23613019

  20. BRAIN INJURY BIOMECHANICS IN REAL WORLD VEHICLE ACCIDENT USING MATHEMATICAL MODELS

    Institute of Scientific and Technical Information of China (English)

    YANG Jikuang; XU Wei; OTTE Dietmar

    2008-01-01

    This paper aims at investigating brain injury mechanisms and predicting head injuries in real world accidents. For this purpose, a 3D human head finite element model (HBM-head) was developed based on head-brain anatomy. The HBM head model was validated with two experimental tests. Then the head finite element(FE) model and a multi-body system (MBS) model were used to carry out reconstructions of real world vehicle-pedestrian accidents and brain injuries. The MBS models were used for calculating the head impact conditions in vehicle impacts. The HBM-head model was used for calculating the injury related physical parameters, such as intracranial pressure, stress, and strain. The calculated intracranial pressure and strain distribution were correlated with the injury outcomes observed from accidents. It is shown that this model can predict the intracranial biomechanical response and calculate the injury related physical parameters. The head FE model has good biofidelity and will be a valuable tool for the study of injury mechanisms and the tolerance level of the brain.

  1. A joint computational respiratory neural network-biomechanical model for breathing and airway defensive behaviors

    Directory of Open Access Journals (Sweden)

    Russell eO'Connor

    2012-07-01

    Full Text Available Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects. Here we describe the model and some aspects of its behavior when linked to a computational brainstem respiratory network model for breathing and airway defensive behavior composed of discrete integrate and fire populations. The network incorporated multiple circuit paths and operations for tuning inspiratory drive suggested by prior work. Results from neuromechanical system simulations included generation of a eupneic-like breathing pattern and the observation that increased respiratory drive and operating volume result in higher peak flow rates during cough, even when the expiratory drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential elimination of the model’s sources of inspiratory drive during cough also suggested a role for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently supported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies with experimental results, and some model limitations are noted.

  2. Radiation combined injury models to study the effects of interventions and wound biomechanics.

    Science.gov (United States)

    Zawaski, Janice A; Yates, Charles R; Miller, Duane D; Kaffes, Caterina C; Sabek, Omaima M; Afshar, Solmaz F; Young, Daniel A; Yang, Yunzhi; Gaber, M Waleed

    2014-12-01

    In the event of a nuclear detonation, a considerable number of projected casualties will suffer from combined radiation exposure and burn and/or wound injury. Countermeasure assessment in the setting of radiation exposure combined with dermal injury is hampered by a lack of animal models in which the effects of interventions have been characterized. To address this need, we used two separate models to characterize wound closure. The first was an open wound model in mice to study the effect of wound size in combination with whole-body 6 Gy irradiation on the rate of wound closure, animal weight and survival (morbidity). In this model the addition of interventions, wound closure, subcutaneous vehicle injection, topical antiseptic and topical antibiotics were studied to measure their effect on healing and survival. The second was a rat closed wound model to study the biomechanical properties of a healed wound at 10 days postirradiation (irradiated with 6 or 7.5 Gy). In addition, complete blood counts were performed and wound pathology by staining with hematoxylin and eosin, trichrome, CD68 and Ki67. In the mouse open wound model, we found that wound size and morbidity were positively correlated, while wound size and survival were negatively correlated. Regardless of the wound size, the addition of radiation exposure delayed the healing of the wound by approximately 5-6 days. The addition of interventions caused, at a minimum, a 30% increase in survival and improved mean survival by ∼9 days. In the rat closed wound model we found that radiation exposure significantly decreased all wound biomechanical measurements as well as white blood cell, platelet and red blood cell counts at 10 days post wounding. Also, pathological changes showed a loss of dermal structure, thickening of dermis, loss of collagen/epithelial hyperplasia and an increased density of macrophages. In conclusion, we have characterized the effect of a changing wound size in combination with radiation

  3. A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat straw.

    Science.gov (United States)

    Chen, Longjian; Li, Aiwei; He, Xueqin; Han, Lujia

    2015-11-20

    Biomechanical behavior is a fundamental property for the efficient utilization of wheat straw in such applications as fuel and renewable materials. Tensile experiments and lignocellulose analyses were performed on three types of wheat straw. A multi-scale finite element model composed of the microscopic model of the microfibril equivalent volume element and the macroscopic model of straw tissue was proposed based on the physiological structure and lignocellulose components of wheat straw. The tensile properties of wheat straw were simulated by ANSYS software. The predicted stress-strain data were compared with the observed data, and good correspondence was achieved for all three types of wheat straw. The validated multi-scale finite-element (FE) model was then used to investigate the effect of the lignocellulose components on the biomechanical properties of wheat straw. More than 80% of stress is carried by the cellulose fiber, whereas the strain is mainly carried by the amorphous cellulose. PMID:26344265

  4. The Butcher's Tongue Illusion.

    Science.gov (United States)

    Michel, Charles; Velasco, Carlos; Salgado-Montejo, Alejandro; Spence, Charles

    2014-01-01

    We report two experiments, based on a novel variant of the Rubber Hand Illusion (RHI), in which tactile stimulation is referred to an artificial (out-of-body) tongue. In the experiments reported here the participant's tongue was stimulated while they looked at a mirrored dummy tongue. On average, the participants agreed with the statement that they felt as if they had been touched in the location where they saw the rubber tongue being touched (experiment 1), thus demonstrating visual capture. When the external tongue was illuminated with a laser pointer (experiment 2), a significant proportion of the participants reported feeling either tactile or thermal stimulation on their own tongue. These results therefore demonstrate that the multisensory integration of visual, tactile, and proprioceptive information that gives rise to the RHI can be extended to the tongue (a body part that is rarely seen directly). PMID:25549512

  5. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    Science.gov (United States)

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  6. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.

    Science.gov (United States)

    Schnorenberg, Alyssa J; Slavens, Brooke A; Wang, Mei; Vogel, Lawrence C; Smith, Peter A; Harris, Gerald F

    2014-01-01

    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood.

  7. Histological, Biomechanical and Radiological Evaluation of Bone Repair with Human Platelet Rich Plasma in Rabbit Model

    Directory of Open Access Journals (Sweden)

    Zahra Shafiei-Sarvestani

    2015-02-01

    Full Text Available Background: This study was carried out to evaluation the effect of human platelet rich plasma (hPRP on the bone repair process in rabbit model which could be used in many procedures of orthopedic or maxillofacial bone and implant reconstructive surgery. Materials and Methods: This study is a prospective experimental study on animal model. A critical size defect (10 mm was created in the radial diaphysis of 24 rabbit and then supplied with human PRP (treatment group or the defect left empty (control group. Radiographs of each forelimb was taken postoperatively on 1st day and at the 2nd, 4th, 6th and 8th weeks post injury to evaluate bone formation, union and remodeling of the defect. The operated radii were removed on 56th postoperative day and were evaluated for biomechanical properties and histopathological criteria. Results: The results indicate that human PRP (as a xenogenic PRP in treatment group significantly promote bone regeneration in critical size defects compared with control group (p<0.05. Conclusion: This study showed that hPRP has a high regenerative capacity in critical size bone defects in rabbit model after 8 weeks.

  8. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests

    Directory of Open Access Journals (Sweden)

    Mariane Miyashiro

    2011-06-01

    Full Text Available OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5. RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20 for PU-1, 347.90 MPa (SD=109.54 for PU-2 and 304.64 MPa (SD=25.48 for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.

  9. Modelling biomechanical requirements of a rider for different horse-riding techniques at trot.

    Science.gov (United States)

    de Cocq, Patricia; Muller, Mees; Clayton, Hilary M; van Leeuwen, Johan L

    2013-05-15

    The simplest model possible for bouncing systems consists of a point mass bouncing passively on a mass-less spring without viscous losses. This type of spring-mass model has been used to describe the stance period of symmetric running gaits. In this study, we investigated the interaction between horse and rider at trot using three models of force-driven spring (-damper)-mass systems. The first system consisted of a spring and a mass representing the horse that interact with another spring and mass representing the rider. In the second spring-damper-mass model, dampers, a free-fall and a forcing function for the rider were incorporated. In the third spring-damper-mass model, an active spring system for the leg of the rider was introduced with a variable spring stiffness and resting length in addition to a saddle spring with fixed material properties. The output of the models was compared with experimental data of sitting and rising trot and with the modern riding technique used by jockeys in racing. The models show which combinations of rider mass, spring stiffness and damping coefficient will result in a particular riding technique or other behaviours. Minimization of the peak force of the rider and the work of the horse resulted in an 'extreme' modern jockey technique. The incorporation of an active spring system for the leg of the rider was needed to simulate rising trot. Thus, the models provide insight into the biomechanical requirements a rider has to comply with to respond effectively to the movements of a horse. PMID:23785107

  10. Corneal biomechanics: a review.

    Science.gov (United States)

    Piñero, David P; Alcón, Natividad

    2015-03-01

    Biomechanics is often defined as 'mechanics applied to biology'. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling. PMID:25470213

  11. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Science.gov (United States)

    Tsaira, Aikaterini; Karagiannidis, Panagiotis; Sidira, Margarita; Kassavetis, Spyros; Kugiumtzis, Dimitris; Logothetidis, Stergios; Naka, Olga; Pissiotis, Argirios; Michalakis, Konstantinos

    2016-01-01

    Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum, and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed toward the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based). The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  12. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Directory of Open Access Journals (Sweden)

    Aikaterini Tsaira

    2016-08-01

    Full Text Available Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed towards the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based. The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  13. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa.

    Science.gov (United States)

    Tsaira, Aikaterini; Karagiannidis, Panagiotis; Sidira, Margarita; Kassavetis, Spyros; Kugiumtzis, Dimitris; Logothetidis, Stergios; Naka, Olga; Pissiotis, Argirios; Michalakis, Konstantinos

    2016-01-01

    Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum, and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed toward the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based). The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties. PMID:27621708

  14. Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble

    Science.gov (United States)

    Li, Gen; Xie, Shang-Ping; Du, Yan; Luo, Yiyong

    2016-02-01

    The excessive cold tongue error in the equatorial Pacific has persisted in several generations of climate models. Based on the historical simulations and Representative Concentration Pathway (RCP) 8.5 experiments in the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble (MME), this study finds that models with an excessive westward extension of cold tongue and insufficient equatorial western Pacific precipitation tend to project a weaker east-minus-west gradient of sea surface temperature (SST) warming along the equatorial Pacific under increased greenhouse gas (GHG) forcing. This La Niña-like error of tropical Pacific SST warming is consistent with our understanding of negative SST-convective feedback over the western Pacific warm pool. Based on this relationship between the present simulations and future projections, the present study applies an "observational constraint" of equatorial western Pacific precipitation to calibrate the projections of tropical Pacific climate change. After the corrections, CMIP5 models robustly project an El Niño-like warming pattern, with a MME mean increase by a factor of 2.3 in east-minus-west gradient of equatorial Pacific SST warming and reduced inter-model uncertainty. Corrections in projected changes in tropical precipitation and atmospheric circulation are physically consistent. This study suggests that a realistic cold tongue simulation would lead to a more reliable tropical Pacific climate projection.

  15. Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures

    Science.gov (United States)

    Bocian, M.; Macdonald, J. H. G.; Burn, J. F.

    2012-07-01

    Despite considerable interest among engineers and scientists, bi-directional interaction between walking pedestrians and lively bridges has still not been well understood. In an attempt to bridge this gap a biomechanically inspired model of the human response to lateral bridge motion is presented and explored. The simple inverted pendulum model captures the key features of pedestrian lateral balance and the resulting forces on the structure. The forces include self-excited components that can be effectively modelled as frequency-dependent added damping and mass to the structure. The results of numerical simulations are in reasonable agreement with recent experimental measurements of humans walking on a laterally oscillating treadmill, and in very good agreement with measurements on full-scale bridges. In contrast to many other models of lateral pedestrian loading, synchronisation with the bridge motion is not involved. A parametric study of the model is conducted, revealing that as pedestrians slow down as a crowd becomes more dense, their resulting lower pacing rates generate larger self-excited forces. For typical pedestrian parameters, the potential to generate negative damping arises for any lateral bridge vibration frequency above 0.43 Hz, depending on the walking frequency. Stability boundaries of the combined pedestrian-structure system are presented in terms of the structural damping ratio and pedestrian-to-bridge mass ratio, revealing complex relations between damping demand and bridge and pedestrian frequencies, due to the added mass effect. Finally it is demonstrated that the model can produce simultaneous self-excited forces on multiple structural modes, and a realistic full simulation of a large number of pedestrians, walking randomly and interacting with a bridge, produces structural behaviour in very good agreement with site observations.

  16. Fatigue behavior of Ilizarov frame versus tibial interlocking nail in a comminuted tibial fracture model: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Stahel Philip F

    2006-12-01

    Full Text Available Abstract Background Treatment options for comminuted tibial shaft fractures include plating, intramedullary nailing, and external fixation. No biomechanical comparison between an interlocking tibia nail with external fixation by an Ilizarov frame has been reported to date. In the present study, we compared the fatigue behaviour of Ilizarov frames to interlocking intramedullary nails in a comminuted tibial fracture model under a combined loading of axial compression, bending and torsion. Our goal was to determine the biomechanical characteristics, stability and durability for each device over a clinically relevant three month testing period. The study hypothesis was that differences in the mechanical properties may account for differing clinical results and provide information applicable to clinical decision making for comminuted tibia shaft fractures. Methods In this biomechanical study, 12 composite tibial bone models with a comminuted fracture and a 25 mm diaphyseal gap were investigated. Of these, six models were stabilized with a 180-mm four-ring Ilizarov frame, and six models were minimally reamed and stabilized with a 10 mm statically locked Russell-Taylor Delta™ tibial nail. After measuring the pre-fatigue axial compression bending and torsion stiffness, each model was loaded under a sinusoidal cyclic combined loading of axial compression (2.8/28 lbf; 12.46/124.6 N and torque (1.7/17 lbf-in; 0.19/1.92 Nm at a frequency of 3 Hz. The test was performed until failure (implant breakage or ≥ 5° angulations and/or 2 cm shortening occurred or until 252,000 cycles were completed, which corresponds to approximately three months testing period. Results In all 12 models, both the Ilizarov frame and the interlocking tibia nail were able to maintain fracture stability of the tibial defect and to complete the full 252,000 cycles during the entire study period of three months. A significantly higher stiffness to axial compression and torsion was

  17. SU-E-J-163: A Biomechanical Lung Model for Respiratory Motion Study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Belcher, AH; Grelewicz, Z; Wiersma, RD [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: This work presents a biomechanical model to investigate the complex respiratory motion for the lung tumor tracking in radiosurgery by computer simulation. Methods: The models include networked massspring-dampers to describe the tumor motion, different types of surrogate signals, and the force generated by the diaphragm. Each mass-springdamper has the same mechanical structure and each model can have different numbers of mass-spring-dampers. Both linear and nonlinear stiffness parameters were considered, and the damping ratio was tuned in a range so that the tumor motion was over-damped (no natural tumor oscillation occurs without force from the diaphragm). The simulation was run by using ODE45 (ordinary differential equations by Runge-Kutta method) in MATLAB, and all time courses of motions and inputs (force) were generated and compared. Results: The curvature of the motion time courses around their peaks was sensitive to the damping ratio. Therefore, the damping ratio can be determined based on the clinical data of a high sampling rate. The peak values of different signals and the time the peaks occurred were compared, and it was found that the diaphragm force had a time lead over the tumor motion, and the lead time (0.1–0.4 seconds) depended on the distance between the tumor and the diaphragm. Conclusion: We reported a model based analysis approach for the spatial and temporal relation between the motion of the lung tumor and the surrogate signals. Due to the phase lead of the diaphragm in comparing with the lung tumor motion, the measurement of diaphragm motion (or its electromyography signal) can be used as a beam gating signal in radiosurgery, and it can also be an additional surrogate signal for better tumor motion tracking. The research is funded by the American Cancer Society (ACS) grant. The grant name is: Frameless SRS Based on Robotic Head Motion Cancellation. The grant number is: RSG-13-313-01-CCE.

  18. Radiographic, densitometric, and biomechanical effects of recombinant canine somatotropin in an unstable ostectomy gap model of bone healing in dogs

    International Nuclear Information System (INIS)

    Objective: To determine the effect of recombinant canine somatotropin (STH) on radiographic, densitometric, and biomechanical aspects of bone healing using an unstable ostectomy gap model. Study Design: After an ostectomy of the midshaft radius, bone healing was evaluated over an 8-week period in control dogs (n = 4) and dogs receiving recombinant canine STH (n = 4). Animals Or Sample Population: Eight sexually intact female Beagle dogs, 4 to 5 years old. Methods: Bone healing was evaluated by qualitative and quantitative evaluation of serial radiographs every 2 weeks. Terminal dual-energy x-ray absorptiometry and three-point bending biomechanical testing were also performed. Results: Dogs receiving STH had more advanced radiographic healing of ostectomy sites. Bone area, bone mineral content, and bone density were two to five times greater at the ostectomy sites of treated dogs. Ultimate load at failure and stiffness were three and five times greater in dogs receiving STH. Conclusions: Using the ostectomy gap model, recombinant canine STH enhanced the radiographic, densitometric, and biomechanical aspects of bone healing in dogs. Clinical Relevance: Dogs at risk for delayed healing of fractures may benefit from treatment with recombinant canine STH

  19. Correlation between angle of incidence and sliding patterns of the tongue along the palate in Korean velar stops

    Science.gov (United States)

    Brunner, Jana; Fuchs, Susanne; Perrier, Pascal; Kim, Hyeon-Zoo

    2001-05-01

    In former studies, it has been hypothesized that the articulatory production of oral stops could result from the interaction between the tongue moving towards a virtual target located above the palate, and the palate. Velar stops, where the tongue slides along the palate during the occlusion phase, offer a nice experimental framework for further experimental assessments. Indeed, in the framework of the ``virtual target'' hypothesis, the sliding movement should be seen as the continuation of the movement before the occlusion, but constrained by the palate. Hence, relations should exist between the movement characteristics before contact and during the occlusion phase. To test this hypothesis three Korean speakers were recorded via EMA producing /aCV/ sequences with C=/g/, /k'/ and /kh/, V=/a/, /i/ or /u/. The angle between tongue trajectory just before the impact and palatal contour was estimated, and the amplitude of the sliding movement was measured. Preliminary results for two speakers show that these two variables correlate: The greater the angle, the larger the sliding movement. These findings are interpreted as supporting the ``virtual target'' hypothesis. This interpretation will be verified by simulations using a 2D biomechanical tongue model [Payan and Perrier, Speech Commun. 22 (1997)].

  20. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    Science.gov (United States)

    Cougnon, E. A.; Galton-Fenzi, B. K.; Meijers, A. J. S.; Legrésy, B.

    2013-10-01

    Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr-1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW.

  1. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  2. Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery.

    Science.gov (United States)

    Plantefève, Rosalie; Peterlik, Igor; Haouchine, Nazim; Cotin, Stéphane

    2016-01-01

    During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data.

  3. Modeling the Biomechanical Influence of Epilaryngeal Stricture on the Vocal Folds: A Low-Dimensional Model of Vocal-Ventricular Fold Coupling

    Science.gov (United States)

    Moisik, Scott R.; Esling, John H.

    2014-01-01

    Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…

  4. Image Analysis for Tongue Characterization

    Institute of Scientific and Technical Information of China (English)

    SHENLansun; WEIBaoguo; CAIYiheng; ZHANGXinfeng; WANGYanqing; CHENJing; KONGLingbiao

    2003-01-01

    Tongue diagnosis is one of the essential methods in traditional Chinese medical diagnosis. The ac-curacy of tongue diagnosis can be improved by tongue char-acterization. This paper investigates the use of image anal-ysis techniques for tongue characterization by evaluating visual features obtained from images. A tongue imaging and analysis instrument (TIAI) was developed to acquire digital color tongue images. Several novel approaches are presented for color calibration, tongue area segmentation,quantitative analysis and qualitative description for the colors of tongue and its coating, the thickness and moisture of coating and quantification of the cracks of the toilgue.The overall accuracy of the automatic analysis of the colors of tongue and the thickness of tongue coating exceeds 85%.This work shows the promising future of tongue character-ization.

  5. Sound speed based patient-specific biomechanical modeling for registration of USCT volumes with X-ray mammograms

    Science.gov (United States)

    Hopp, T.; Stromboni, A.; Duric, N.; Zapf, M.; Gemmeke, H.; Ruiter, N. V.

    2013-03-01

    Ultrasound Computer Tomography is an upcoming imaging modality for early breast cancer detection. For evaluation of the method, comparison with the standard method X-ray mammography is of strongest interest. To overcome the significant differences in dimensionality and compression state of the breast, in earlier work a registration method based on biomechanical modeling of the breast was proposed. However only homogeneous models could be applied, i.e. inner structures of the breast were neglected. In this work we extend the biomechanical modeling of the breast by estimating patient-specific tissue parameters automatically from the speed of sound volume. Two heterogeneous models are proposed modeling a quadratic and an exponential relationship between speed of sound and tissue stiffness. The models were evaluated using phantom images and clinical data. The size of all lesions is better preserved using heterogeneous models, especially using an exponential relationship. The presented approach yields promising results and gives a physical justification to our registration method. It can be considered as a first step towards a realistic modeling of the breast.

  6. Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model.

    Science.gov (United States)

    Blackburne, William B; Waddell, J Neil; Swain, Michael V; Alves de Sousa, Ricardo J; Kieser, Jules A

    2016-09-01

    This study investigated the structural, biomechanical and fractographic features of rib fractures in a piglet model, to test the hypothesis that fist impact, apart from thoracic squeezing, may result in lateral costal fractures as observed in abused infants. A mechanical fist with an accelerometer was constructed and fixed to a custom jig. Twenty stillborn piglets in the supine position were impacted on the thoracic cage. The resultant force versus time curves from the accelerometer data showed a number of steps indicative of rib fracture. The correlation between impact force and number of fractures was statistically significant (Pearson׳s r=0.528). Of the fractures visualized, 15 completely pierced the parietal pleura of the thoracic wall, and 5 had butterfly fracture patterning. Scanning electron microscopy showed complete bone fractures, at the zone of impact, were normal to the axis of the ribs. Incomplete vertical fractures, with bifurcation, occurred on the periphery of the contact zone. This work suggests the mechanism of rib failure during a fist impact is typical of the transverse fracture pattern in the anterolateral region associated with cases of non-accidental rib injury. The impact events investigated have a velocity of ~2-3m/s, approximately 2×10(4) times faster than previous quasi-static axial and bending tests. While squeezing the infantile may induce buckle fractures in the anterior as well as posterior region of the highly flexible bones, a fist punch impact event may result in anterolateral transverse fractures. Hence, these findings suggest that the presence of anterolateral rib fractures may result from impact rather than manual compression. PMID:27310573

  7. Bridging the gap between cadaveric and in vivo experiments: a biomechanical model evaluating thumb-tip endpoint forces.

    Science.gov (United States)

    Wohlman, Sarah J; Murray, Wendy M

    2013-03-15

    The thumb is required for a majority of tasks of daily living. Biomechanical modeling is a valuable tool, with the potential to help us bridge the gap between our understanding of the mechanical actions of individual thumb muscles, derived from anatomical cadaveric experiments, and our understanding of how force is produced by the coordination of all of the thumb muscles, derived from studies involving human subjects. However, current biomechanical models do not replicate muscle force production at the thumb-tip. We hypothesized that accurate representations of the axes of rotation of the thumb joints were necessary to simulate the magnitude of endpoint forces produced by human subjects. We augmented a musculoskeletal model with axes of rotation derived from experimental measurements (Holzbaur et al., 2005) by defining muscle-tendon paths and maximum isometric force-generating capacity for the five intrinsic muscles. We then evaluated if this augmented model replicated a broad range of experimental data from the literature and identified which parameters most influenced model performance. The simulated endpoint forces generated by the combined action of all thumb muscles in our model yielded comparable forces in magnitude to those produced by nonimpaired subjects. A series of 8 sets of Monte Carlo simulations demonstrated that the difference in the axes of rotation of the thumb joints between studies best explains the improved performance of our model relative to previous work. In addition, we demonstrate that the endpoint forces produced by individual muscles cannot be replicated with existing experimental data describing muscle moment arms. PMID:23332233

  8. Influence of Orthotropy on Biomechanics of Peri-Implant Bone in Complete Mandible Model with Full Dentition

    Directory of Open Access Journals (Sweden)

    Xi Ding

    2014-01-01

    Full Text Available Objective. The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity. Materials and Methods. Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model. Results. The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin. Conclusion. The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.

  9. Bridging the gap between cadaveric and in vivo experiments: a biomechanical model evaluating thumb-tip endpoint forces.

    Science.gov (United States)

    Wohlman, Sarah J; Murray, Wendy M

    2013-03-15

    The thumb is required for a majority of tasks of daily living. Biomechanical modeling is a valuable tool, with the potential to help us bridge the gap between our understanding of the mechanical actions of individual thumb muscles, derived from anatomical cadaveric experiments, and our understanding of how force is produced by the coordination of all of the thumb muscles, derived from studies involving human subjects. However, current biomechanical models do not replicate muscle force production at the thumb-tip. We hypothesized that accurate representations of the axes of rotation of the thumb joints were necessary to simulate the magnitude of endpoint forces produced by human subjects. We augmented a musculoskeletal model with axes of rotation derived from experimental measurements (Holzbaur et al., 2005) by defining muscle-tendon paths and maximum isometric force-generating capacity for the five intrinsic muscles. We then evaluated if this augmented model replicated a broad range of experimental data from the literature and identified which parameters most influenced model performance. The simulated endpoint forces generated by the combined action of all thumb muscles in our model yielded comparable forces in magnitude to those produced by nonimpaired subjects. A series of 8 sets of Monte Carlo simulations demonstrated that the difference in the axes of rotation of the thumb joints between studies best explains the improved performance of our model relative to previous work. In addition, we demonstrate that the endpoint forces produced by individual muscles cannot be replicated with existing experimental data describing muscle moment arms.

  10. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation.

    Science.gov (United States)

    Raabe, Margaret E; Chaudhari, Ajit M W

    2016-05-01

    The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the full-body lumbar spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model׳s trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. PMID:26947033

  11. Tongue pressure modulation for initial gel consistency in a different oral strategy.

    Directory of Open Access Journals (Sweden)

    Sumiko Yokoyama

    Full Text Available BACKGROUND: In the recent hyper-aged societies of developed countries, the market for soft diets for patients with dysphagia has been growing and numerous jelly-type foods have become available. However, interrelationships between the biomechanics of oral strategies and jelly texture remain unclear. The present study investigated the influence of the initial consistency of jelly on tongue motor kinetics in different oral strategies by measuring tongue pressure against the hard palate. METHODS: Jellies created as a mixture of deacylated gellan gum and psyllium seed gum with different initial consistencies (hard, medium or soft were prepared as test foods. Tongue pressure production while ingesting 5 ml of jelly using different oral strategies (Squeezing or Mastication was recorded in eight healthy volunteers using an ultra-thin sensor sheet system. Maximal magnitude, duration and total integrated values (tongue work of tongue pressure for size reduction and swallowing in each strategy were compared among initial consistencies of jelly, and between Squeezing and Mastication. RESULTS: In Squeezing, the tongue performed more work for size reduction with increasing initial consistency of jelly by modulating both the magnitude and duration of tongue pressure over a wide area of hard palate, but tongue work for swallowing increased at the posterior-median and circumferential parts by modulating only the magnitude of tongue pressure. Conversely, in Mastication, the tongue performed more work for size reduction with increasing initial consistency of jelly by modulating both magnitude and duration of tongue pressure mainly at the posterior part of the hard palate, but tongue work as well as other tongue pressure parameters for swallowing showed no differences by type of jelly. CONCLUSIONS: These results reveal fine modulations in tongue-palate contact according to the initial consistency of jelly and oral strategies.

  12. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  13. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  14. Framework and Bio-Mechanical Model for a Per-Operative Image-Guided Neuronavigator Including 'Brain-Shift' Compensation

    CERN Document Server

    Bucki, M; Bucki, Marek; Payan, Yohan

    2006-01-01

    In this paper we present a methodology to adress the problem of brain tissue deformation referred to as "brainshift". This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on preoperative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intraoperative image-guided system, we propose a biomechanical model of the brain which can take into account interactively such deformations as well as surgical procedures that modify the brain structure, like tumour or tissue resection.

  15. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Staton, R.; Pukala, J.; Manon, R. [Department of Radiation Oncology, M.D. Anderson Cancer Center, Orlando, 1440 South Orange Avenue, Orlando, Florida 32808 (United States)

    2015-01-15

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  16. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    International Nuclear Information System (INIS)

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  17. Tongue diagnosis:relationship between sublingual tongue morphology in three tongue protrusion angles and menstrual clinical symptoms

    Institute of Scientific and Technical Information of China (English)

    Tim Hideaki Tanaka

    2015-01-01

    OBJECTIVE:The morphological and color characteristics of the tongue sublingual veins (SLVs) can manifest differently within the subjects, depending on the way their tongue is curled upward. This study was conducted in order to investigate the clinical relevancy of tongue SLV diagnosis in relation to menstrual clinical symptoms (pain, clots, heavy, and scanty), using three different inspection procedures (IP1, IP2, and IP3). METHODS: Three-hundred and seventy-seven female patients were asked to stick out their tongues in three speciifc ways which were intended to create different tongue protrusion angles. The SLV parameters for thickness (TK), length (LE), color (CL), shape (SP), and nodules (ND) were then evaluated. RESULTS: According to the results of the Waldχ2 test, IP1 provides the best model for pain (R2 = 0.155), IP3 for clots (R2 = 0.437), IP2 for heavy (R2 = 0.268), and scanty (R2 = 0.192). Abnormal SLV diagnostic parameters were most strongly associated with the clinical symptom of clots (R2= 0.492). CONCLUSION: While the study showed the relations between tongue SLV features and menstrual clinical symptoms, as wel it showed that IP2 was the best overal predictor for the symptomatic indexes used in this study, and using one particular SLV inspection procedure may not be sufifcient. The application of a particular inspection method alone may cause under- or over-estimation of SLV abnormalities.

  18. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery. PMID:26577253

  19. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  20. Longitudinal Study in Male Swimmers: A Hierachical Modeling of Energetics and Biomechanical Contributions for Performance

    Science.gov (United States)

    Costa, Mário J.; Bragada, José A.; Marinho, Daniel A.; Lopes, Vitor P.; Silva, António J.; Barbosa, Tiago M.

    2013-01-01

    The aim of this study was to assess the pooled and individual response of male swimmers over two consecutive years of training and identify the energetic and biomechanical factors that most contributed for the final performance. Nine competitive swimmers (20.0 ± 3.54 years old; 10.1 ± 3.41 years of training experience; 1.79 ± 0.07 m of height; 71.34 ± 8.78 kg of body mass; 22.35 ± 2.02 kg·m-2 of body mass index; 1.86 ± 0.07 m of arm span; 116.22 ± 4.99 s of personal record in the 200 m long course freestyle event) performed an incremental test in six occasions to obtain the velocity at 4 mmol of blood lactate (V4) and the peak blood lactate concentrations (Lapeak) as energetics, and the stroke frequency (SF), stroke length (SL), stroke index and swim efficiency as biomechanical variables. Performance was determined based on official time’s lists of 200 m freestyle event. Slight non-significant improvements in performance were determined throughout the two season period. All energetic and biomechanical factors also presented slight non-significant variations with training. Swimmers demonstrat-ed high inter-individual differences in the annual adaptations. The best performance predictors were the V4, SF and SL. Each unit of change V4, SF and SL represented an enhancement of 0.11 s, 1.21 s and 0.36 s in performance, respectively. The results show that: (i) competitive male swimmers need at least two consecutive seasons to have slight improvements in performance, energetics and biomechanical profiles; (ii) major improvements in competition performance can be accomplished by improving the V4, SF and SL based on the individual background. Key Points Elite swimmers are able to demonstrate slight changes in performance, energetic and biomechanical characteristics at least during two seasons of training; Additional improvements in competition performance can be accomplished by manipulating the V4, SF and SL based on the individual background. Each unit of change V

  1. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    Science.gov (United States)

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny. PMID:26647882

  2. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    Science.gov (United States)

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny.

  3. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    Science.gov (United States)

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-01-01

     Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measure-ment also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single ele-ment point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  4. Influence of visual observational conditions on tongue motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Liu, Xuimei; Baad-Hansen, Lene;

    2016-01-01

    To investigate the impact of visual observational conditions on performance during a standardized tongue-protrusion training (TPT) task and to evaluate subject-based reports of helpfulness, disturbance, pain, and fatigue due to the observational conditions on 0-10 numerical rating scales. Forty...... regarding the level of disturbance, pain or fatigue. Self-observation of tongue-training facilitated behavioral aspects of tongue motor learning compared with model-observation but not compared with control....

  5. Biomechanics of Rowing

    Science.gov (United States)

    Hase, Kazunori; Andrews, Brian J.; Zavatsky, Amy B.; Halliday, Suzanne E.

    A new control model for the study of biomechanical simulation of human movement was investigated using rowing as an example. The objectives were to explore biological and mechanical alternatives to optimal control methods. The simulation methods included simple control mechanisms based on proportional and derivative (PD) control, consideration of a simple neural model, introduction of an inverse dynamics system for feedback, and computational adjustment of control parameters by using an evaluative criterion and optimization method. By using simulation, appropriate rowing motions were synthesized. The generated rowing motion was periodic, continuous, and adaptable so that the pattern was stable against the mechanical force and independent of the initial condition. We believe that the simulation model is not only practical as a computational research tool from a biomechanical-engineering viewpoint but also significant from the point of view of fundamental biological theories of movement.

  6. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  7. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease.

    Science.gov (United States)

    Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna

    2016-01-01

    Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice. PMID:26680019

  8. Biomechanical analysis of a synthetic femoral spiral fracture model: Do end caps improve retrograde flexible intramedullary nail fixation?

    Directory of Open Access Journals (Sweden)

    Wessel Lucas M

    2011-09-01

    Full Text Available Abstract Background Elastic Stable intramedullary Nailing (ESIN of dislocated diaphyseal femur fractures has become an accepted method for the treatment in children and adolescents with open physis. Studies focused on complications of this technique showed problems regarding stability, usually in complex fracture types such as spiral fractures and in older children weighing > 40 kg. Biomechanical in vitro testing was performed to evaluate the stability of simulated spiral femoral fractures after retrograde flexible titanium intramedullary nail fixation with and without End caps. Methods Eight synthetic adolescent-size femoral bone models (Sawbones® with a medullar canal of 10 mm and a spiral fracture of 100 mm length identically sawn by the manufacturer were used for each group. Both groups underwent retrograde fixation with two 3.5 mm Titanium C-shaped nails inserted from medial and lateral entry portals. In the End Cap group the ends of the nails of the eight specimens were covered with End Caps (Synthes Company, Oberdorf, Switzerland at the distal entry. Results Beside posterior-anterior stress (4.11 Nm/mm vs. 1.78 Nm/mm, p Conclusion In this biomechanical study the use of End Caps did not improve the stability of the intramedullary flexible nail osteosynthesis.

  9. Exoskeleton-Based Robotic Platform Applied in Biomechanical Modelling of the Human Upper Limb

    Directory of Open Access Journals (Sweden)

    Andres F. Ruiz

    2009-01-01

    Full Text Available One of the approaches to study the human motor system, and specifically the motor strategies implied during postural tasks of the upper limbs, is to manipulate the mechanical conditions of each joint of the upper limbs independently. At the same time, it is essential to pick up biomechanical signals and bio-potentials generated while the human motor system adapts to the new condition. The aim of this paper is two-fold: first, to describe the design, development and validation of an experimental platform designed to modify or perturb the mechanics of human movement, and simultaneously acquire, process, display and quantify bioelectric and biomechanical signals; second, to characterise the dynamics of the elbow joint during postural control. A main goal of the study was to determine the feasibility of estimating human elbow joint dynamics using EMG-data during maintained posture. In particular, the experimental robotic platform provides data to correlate electromyographic (EMG activity, kinetics and kinematics information from the upper limb motion. The platform aims consists of an upper limb powered exoskeleton, an EMG acquisition module, a control unit and a software system. Important concerns of the platform such as dependability and safety were addressed in the development. The platform was evaluated with 4 subjects to identify, using system identification methods, the human joint dynamics, i.e. visco-elasticity. Results obtained in simulations and experimental phase are introduced.

  10. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  11. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling.

    Science.gov (United States)

    Nasiri, Masoud; Luo, Yunhua

    2016-09-01

    There is controversy about whether or not body parameters affect hip fracture in men and women in the same way. In addition, although bone mineral density (BMD) is currently the most important single discriminator of hip fracture, it is unclear if BMD alone is equally effective for men and women. The objective of this study was to quantify and compare the associations of hip fracture risk with BMD and body parameters in men and women using our recently developed two-level biomechanical model that combines a whole-body dynamics model with a proximal-femur finite element model. Sideways fall induced impact force of 130 Chinese clinical cases, including 50 males and 80 females, were determined by subject-specific dynamics modeling. Then, a DXA-based finite element model was used to simulate the femur bone under the fall-induced loading conditions and calculate the hip fracture risk. Body weight, body height, body mass index, trochanteric soft tissue thickness, and hip bone mineral density were determined for each subject and their associations with impact force and hip fracture risk were quantified. Results showed that the association between impact force and hip fracture risk was not strong enough in both men (r=-0.31,p0.05), but it can be considered as a protective factor among women (r=-0.28,p<0.05). In contrast to men, trochanteric soft tissue thickness can be considered as a protective factor against hip fracture in women (r=-0.50,p<0.001). This study suggested that the biomechanical risk/protective factors for hip fracture are sex-specific. Therefore, the effect of body parameters should be considered differently for men and women in hip fracture risk assessment tools. These findings support further exploration of sex-specific preventive and protective measurements to reduce the incidence of hip fractures. PMID:27292653

  12. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Science.gov (United States)

    Lambert, Laura J.; Challa, Anil K.; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S.; Nagy, Tim R.; Eberhardt, Alan W.; Estep, Patrick N.; Kesterson, Robert A.

    2016-01-01

    ABSTRACT Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. PMID:27483347

  13. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    Science.gov (United States)

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  14. Dysphagia in Tongue Cancer Patients

    OpenAIRE

    Son, Yu Ri; Choi, Kyoung Hyo; Kim, Tae Gyun

    2015-01-01

    Objective To identify risk factors for dysphagia in tongue cancer patients. Dysphagia is a common complication of surgery, radiotherapy, and chemotherapy in tongue cancer patients. Previous studies have attempted to identify risk factors for dysphagia in patients with head and neck cancer, but no studies have focused specifically on tongue cancer patients. Methods This study was conducted on 133 patients who were diagnosed with tongue cancer and who underwent a videofluoroscopy swallowing stu...

  15. A finite element modeling of posterior atlantoaxial fixation and biomechanical analysis of C2 intralaminar screw fixation

    Institute of Scientific and Technical Information of China (English)

    Ma Xuexiao; Peng Xianbo; Xiang Hongfei; Zhang Yan; Zhang Guoqing; Chen Bohua

    2014-01-01

    Background The objective of this study was to use three-dimensional finite element (FE) models to analyze the stability and the biomechanics of two upper cervical fixation methods:the C2 intralaminar screw method and the C2 pedicle screw method.Methods From computed tomography images,a nonlinear three-dimensional FE model from C0 (occiput) to C3 was developed with anatomic detail.The C2 intralaminar screw and the C2 pedicle screw systems were added to the model,in parallel to establish the interlaminar model and the pedicle model.The two models were operated with all possible states of motion and physiological loads to simulate normal movement.Results Both the C2 intralaminar screw method and the C2 pedicle screw method significantly reduced motion compared with the intact model.There were no statistically significant differences between the two methods.The Von Mises stresses of the internal and external laminar walls were similar between the two methods.Stability was also similar.Conclusions The C2 intralaminar screw method can complement but cannot completely replace the C2 pedicle screw method.Clinicians would need to assess and decide which approach to adopt for the best therapeutic effect.

  16. Phonological Encoding in Mandarin Chinese: Evidence from Tongue Twisters.

    Science.gov (United States)

    Kember, Heather; Croot, Karen; Patrick, Ellis

    2015-12-01

    Models of connected speech production in Mandarin Chinese must specify how lexical tone, speech segments, and phrase-level prosody are integrated in speech production. This study used tongue twisters to test predictions of the two different models of word form encoding. Tongue twisters were constructed from 5 sets of characters that rotated pairs of initial segments or pairs of tones, or both, across format (ABAB, ABBA), and across position of the characters in four-character tongue twister strings. Fifty two native Mandarin Chinese speakers read aloud 120 tongue twisters, repeating each one six times in a row. They made a total of 3503 (2.34%) segment errors and 1372 (.92%) tone errors. Segment errors occurred on the onsets of the first and third characters in the ABBA but not ABAB segment-alternating tongue twisters, and on the onsets of the second and fourth characters of the tone-alternating tongue twisters. Tone errors were highest on the third and fourth characters in the tone-alternating tongue twisters. The pattern of tone errors is consistent with the claim that tone is associated to a metrical frame prior to segment encoding, while the format by position interaction found for the segment-alternating tongue twisters suggest articulatory gestures oscillate in segment production as proposed by gestural phonology.

  17. Phonological Encoding in Mandarin Chinese: Evidence from Tongue Twisters.

    Science.gov (United States)

    Kember, Heather; Croot, Karen; Patrick, Ellis

    2015-12-01

    Models of connected speech production in Mandarin Chinese must specify how lexical tone, speech segments, and phrase-level prosody are integrated in speech production. This study used tongue twisters to test predictions of the two different models of word form encoding. Tongue twisters were constructed from 5 sets of characters that rotated pairs of initial segments or pairs of tones, or both, across format (ABAB, ABBA), and across position of the characters in four-character tongue twister strings. Fifty two native Mandarin Chinese speakers read aloud 120 tongue twisters, repeating each one six times in a row. They made a total of 3503 (2.34%) segment errors and 1372 (.92%) tone errors. Segment errors occurred on the onsets of the first and third characters in the ABBA but not ABAB segment-alternating tongue twisters, and on the onsets of the second and fourth characters of the tone-alternating tongue twisters. Tone errors were highest on the third and fourth characters in the tone-alternating tongue twisters. The pattern of tone errors is consistent with the claim that tone is associated to a metrical frame prior to segment encoding, while the format by position interaction found for the segment-alternating tongue twisters suggest articulatory gestures oscillate in segment production as proposed by gestural phonology. PMID:27483738

  18. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-01-01

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  19. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  20. Artificial cervical vertebra and intervertebral complex replacement through the anterior approach in animal model: a biomechanical and in vivo evaluation of a successful goat model.

    Directory of Open Access Journals (Sweden)

    Jie Qin

    Full Text Available This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM or neural zone (NZ between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine.

  1. A biomechanical model to assess the contribution of pelvic musculature weakness to the development of stress urinary incontinence.

    Science.gov (United States)

    Yip, Clare; Kwok, Ezra; Sassani, Farrokh; Jackson, Roy; Cundiff, Geoffrey

    2014-01-01

    A biomechanical model of the female pelvic support system was developed to explore the contribution of pelvic floor muscle defect to the development of stress urinary incontinence (SUI). From a pool of 135 patients, clinical data of 26 patients with pelvic muscular defect were used in modelling. The model was employed to estimate the parameters that describe the stiffness properties of the vaginal wall and ligament tissues for individual patients. The parameters were then implemented into the model to evaluate for each patient the impact of pelvic muscular defect on the vaginal apex support and the bladder neck support, a factor that relates to the onset of SUI. For the modelling analysis, the compromise of pelvic muscular support was demonstrated to contribute to vaginal apex prolapse and bladder neck prolapse, a condition commonly seen in SUI patients, while simulated conditions of restored muscular support were shown to help re-establish both vaginal apex and bladder neck supports. The findings illustrate the significance of pelvic muscle strength to vaginal support and urinary continence; therefore, the clinical recommendation of pelvic muscle strengthening, such as Kegel exercises, has been shown to be an effective treatment for patients with SUI symptoms. PMID:22494663

  2. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  3. Biomechanics in Schools.

    Science.gov (United States)

    Vincent, J. F. V.

    1980-01-01

    Examines current usage of the term "biomechanics" and emphasizes the importance of differentiating between structure and material. Describes current prolects in biomechanics and lists four points about the educational significance of the field. (GS)

  4. Research Techniques in Biomechanics.

    Science.gov (United States)

    Ward, Terry

    Biomechanics involves the biological human beings interacting with his/her mechanical environment. Biomechanics research is being done in connection with sport, physical education, and general motor behavior, and concerns mechanics independent of implements. Biomechanics research falls in the following two general categories: (1) that specific…

  5. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    International Nuclear Information System (INIS)

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R2 > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  6. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J; Qi, S; Sheng, K; Kupelian, P; Santhanam, A [UCLA School of Medicine, Los Angeles, CA (United States)

    2014-06-15

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R{sup 2} > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate

  7. "Hidden" tongue jewellery.

    LENUS (Irish Health Repository)

    McNamara, C M

    2001-06-01

    Tongue piercing has many associated risks. This is a case report of a patient who, to avoid parental disapproval, hid the dorsal aspect of a lingual stud device. Subsequently, the dorsum repaired. The device could no longer be removed manually and warranted surgical removal. Despite being in situ for over two years, no further complications arose, but all efforts to obtain patient agreement for removal of the device failed.

  8. Black hairy tongue syndrome.

    Science.gov (United States)

    Gurvits, Grigoriy E; Tan, Amy

    2014-08-21

    Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patient's re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment.

  9. The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion.

    Science.gov (United States)

    Eskandari, A H; Sedaghat-Nejad, E; Rashedi, E; Sedighi, A; Arjmand, N; Parnianpour, M

    2016-04-11

    A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that satisfied equilibrium conditions at L4/5, with different cost functions. The solutions of several 2-D and 3-D tasks were arranged in a data matrix and the synergies were computed by using non-negative matrix factorization (NMF) algorithms. Variance accounted for (VAF) was used to evaluate the number of synergies that emerged by the analysis, which were used to reconstruct the original muscle activations. It was showed that four and six muscle synergies were adequate to reconstruct the input data of 2-D and 3-D torque space analysis. The synergies were different by choosing alternative cost functions as expected. The constraints affected the extracted muscle synergies, particularly muscles that participated in more than one functional tasks were influenced substantially. The compositions of extracted muscle synergies were in agreement with experimental studies on healthy participants. The following computational methods show that the synergies can reduce the complexity of load distributions and allow reduced dimensional space to be used in clinical settings.

  10. Contact hypersensitivity after tongue piercing

    Directory of Open Access Journals (Sweden)

    Ananta Herachakri P

    2010-09-01

    Full Text Available Background: Recently tongue piercing has become increasingly popular in the society. Several case reports have presented various complications of tongue piercing. However, there is no scientific evidence about contact hypersensitivity to tongue piercing. Purpose: The aim of this study was to investigate the contact hypersensitivity after using tongue piercing. Methods: Nineteen male Rattus norvegicus were divided into three groups: group A treated with vaseline on the back and dorsum tongue (control group, group B (I treated with HgCl2 10% cream on the tongue dorsum, group B (II treated with tongue piercing for 10 days and group C with HgCl 2 10% cream on the back, ear lobe, and tongue, then re-exposure with same materials on ear, back and tongue for 24 and 48 hours. Before and after 24 and 48 hours applications, ear width was measured with sliding caliper. At the end of treatments, the rats were sacrificed. All tissue specimens were made for Hematoylin Eosine (H&E staining examination. The number of mononuclear cells was counted under light microscope Data was analyzed with One-Way ANOVA followed by LSD (p<0.05. Results: The result of this study showed that there were a significant difference of the thickness of ear lobe and the number of mononuclear cells (lymphocyte and monocyte among all groups. Conclusion: It is concluded that tongue piercing induce contact hypersensitivity.Latar belakang: Saat ini pemakaian tongue piercing sangat popular di masyarakat. Beberapa laporan kasus menunjukkan bahwa tongue piercing menimbulkan beberapa komplikasi. Namun, belum ada bukti ilmiah mengenai reaksi hipesensitivitas tongue piercing. Tujuan: Untuk mengetahui reaksi hipersensitivitas setelah menggunakan tongue piercing. Metode: Sembilan belas tikus jantan Rattus novergicus yang dibagi dalam tiga kemlompok yaitu: grup A diberi perlakuan dengan vaselin pada punggung dan dorsum lidah, grup B (I diberi perlakuan dengan krim HgCl2 10% pada dorsum lidah dan B

  11. Fruit biomechanics based on anatomy: a review

    Science.gov (United States)

    Li, Zhiguo; Yang, Hongling; Li, Pingping; Liu, Jizhan; Wang, Jizhang; Xu, Yunfeng

    2013-01-01

    Fruit biomechanics is needed for quality determination, multiscale modelling and engineering design of fruit processes and equipments. However, these determined fruit biomechanics data often have obvious differences for the same fruit or tissue. In order to investigate it, the fruit biomechanics based on anatomy was reviewed in this paper. First, the anatomical characteristics of fruit biomaterials were described at the macroscopic `tissue' level and microscopic `cellular' level. Subsequently, the factors affecting fruit biomechanics based on anatomy and the relationships between fruit biomechanics, texture and mechanical damage were summarised according to the published literature. Fruit biomechanics is mainly affected by size, number and arrangement of cells, quantity and volume of intracellular spaces, structure, thickness, chemical composition and permeability of cell walls, and pectin degradation level and turgor pressure within cells based on microanatomy. Four test methods and partial determined results of fruit biomechanics were listed and reviewed. The determined mechanical properties data of fruit are only approximate values by using the existing four test methods, owing to the fruit biomaterials being non-homogeneous and living. Lastly, further aspects for research on fruit biomechanics were proposed for the future.

  12. Biological and Biomechanical Evaluation of the Ligament Advanced Reinforcement System (LARS AC) in a Sheep Model of Anterior Cruciate Ligament Replacement: A 3-Month and 12-Month Study

    OpenAIRE

    Viateau, Véronique; MANASSERO, Mathieu; ANAGOSTOU, Fani; GUERARD, Sandra; Mitton, David; Migonney, Véronique

    2013-01-01

    PurposeThe purposes of this study were to assess tissue ingrowth within the Ligament Advanced Reinforcement System (LARS) artificial ligament (LARS AC; LARS, Arc sur Tille, France) and to study the biomechanical characteristics of the reconstructed knees in a sheep model of anterior cruciate ligament (ACL) replacement.MethodsTwenty-five female sheep underwent excision of the proximal third of the left ACL and intra-articular joint stabilization with a 44-strand polyethylene terephthalate liga...

  13. Technological Improvement and Clinical Application of Cattle-tongue Model%牛舌模型技术改良及临床教学应用

    Institute of Scientific and Technical Information of China (English)

    应红华; 余丽华; 费小阳; 杨晓东

    2011-01-01

    Objective To improve and make a cattle-tongue model of multiple perineum laceration wounds and and to explore the feasibility and effectiveness of its clinical application in teaching for midwifery.Methods Based on cattle-tongue model, a simulated model with multiple perineum laceration wounds (vagina wall tonguelike bifidum,perineal operation and direct bifidum, Ⅰ-Ⅳ perineum laceration, vagina wall hematoma,seams penetrate rectal wall,etc) and simulate rectum and sphincter with tension for anus checking was improved and made. Seventy-eight midwifery students in delivery room were randomly divided into the control group to undergo clinical training using cattle-tongue model with simple perineum opened wounds and the experimental group to undergo the clinical training using cattle-tongue model with multiple perineum opened wounds. In the 8th week in delivery room,a self-designed evaluation form of perineal laceration repair skills was employed to evaluate the perineal laceration repair synthesis skills of the midwifery students. Results There were significant differences on each index of perineum laceration repair skills evaluation form in the two groups(P<0.05 or P<0.01). Conclusion The improved cattle-tongue model with multiple perineum laceration wounds can effectively solve a variety of difficulties in identification,demonstration teaching, repair training and operation and operation checking of perineum laceration wounds for midwifery students. On the basis of proper ethical,it significantly improves the clinical teaching quality in midwifery students as an ideal clinical teaching model.%目的 改良制作具备多种会阴裂伤伤口的牛舌模型,并探讨其用于助产专业临床教学的可行性和有效性.方法 在原有牛舌模型基础上,改良制作具备多种会阴裂伤伤口(包括阴道壁舌状裂、会阴侧切加直裂、Ⅰ~Ⅳ度会阴裂伤、阴道壁血肿、缝合线穿透直肠壁等)和能进行肛门检查的

  14. Biomechanical evaluation of an injectable radiopaque polypropylene fumarate cement for kyphoplasty in a cadaveric osteoporotic vertebral compression fracture model.

    Science.gov (United States)

    Kim, Choll; Mahar, Andrew; Perry, Andrew; Massie, Jennifer; Lu, Lichun; Currier, Brad; Yaszemski, Michael J

    2007-12-01

    Vertebral compression fractures cause pain, deformity, and disability. Polypropylene fumarate (PPF) has shown promise as an injectable cement for bone defects but little is known about its performance for kyphoplasty. The purpose of this study was to evaluate the biomechanical performance of PPF for kyphoplasty in simulated anterior compression fractures in cadaveric vertebral bodies. Thirty-one vertebral bodies (T9 to L4) from osteoporotic cadaveric spines were disarticulated, stripped of soft tissue and compressed on a materials testing machine to determine pretreatment strength and stiffness. All fractures were repaired with inflatable balloon tamps and either polymethylmethacrylate or PPF-30 (containing 30% barium sulfate by dry weight) cement and then retested. Strength restoration with PMMA and PPF-30 were 120% and 104%, respectively, of the pretreatment strengths. For stiffness, PMMA and PPF-30 restored vertebral bodies to 69% and 53%, respectively, of the initial values. There was no significant difference in treatment with either PMMA or PPF-30. The biopolymer PPF-30 exhibits mechanical properties similar to PMMA in a cadaveric kyphoplasty model. PPF biopolymer may be a suitable alternative for kyphoplasty. PMID:18046174

  15. Biomechanics Analysis of Pressure Ulcer Using Damaged Interface Model between Bone and Muscle in the Human Buttock

    Science.gov (United States)

    Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa

    This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.

  16. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model.

    Science.gov (United States)

    Wu, Zi-xiang; Lei, Wei; Hu, Yun-yu; Wang, Hai-qiang; Wan, Shi-yong; Ma, Zhen-sheng; Sang, Hong-xun; Fu, Suo-chao; Han, Yi-sheng

    2008-11-01

    Osteoporotic/osteopenia fractures occur most frequently in trabeculae-rich skeletal sites. The purpose of this study was to use a high-resolution micro-computed tomography (micro-CT) and dual energy X-ray absorptionmeter (DEXA) to investigate the changes in micro-architecture and bone mineral density (BMD) in a sheep model resulted from ovariectomy (OVX). Biomechanical tests were performed to evaluate the strength of the trabecular bone. Twenty adult sheeps were randomly divided into three groups: sham group (n=8), group 1 (n=4) and group 2 (n=8). In groups 1 and 2, all sheep were ovariectomized (OVX); in the sham group, the ovaries were located and the oviducts were ligated. In all animals, BMD for lumbar spine was obtained during the surgical procedure. BMD at the spine, femoral neck and femoral condyle was determined 6 months (group 1) and 12 months (group 2) post-OVX. Lumbar spines and femora were obtained and underwent BMD scan, micro-CT analysis. Compressive mechanical properties were determined from biopsies of vertebral bodies and femoral condyles. BMD, micro-architectural parameters and mechanical properties of cancellous bone did not decrease significantly at 6 months post-OVX. Twelve months after OVX, BMD, micro-architectural parameters and mechanical properties decreased significantly. The results of linear regression analyses showed that trabecular thickness (Tb.Th) (r=0.945, R2=0.886) and bone volume fraction (BV/TV) (r=0.783, R2=0.586) had strong (R2>0.5) correlation to compression stress. In OVX sheep, changes in the structural parameters of trabecular bone are comparable to the human situation during osteoporosis was induced. The sheep model presented seems to meet the criteria for an osteopenia model for fracture treatment with respect to morphometric and mechanical properties. But the duration of OVX must be longer than 12 months to ensure the animal model can be established successfully.

  17. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  18. Biomechanics principles and practices

    CERN Document Server

    Peterson, Donald R

    2014-01-01

    Presents Current Principles and ApplicationsBiomedical engineering is considered to be the most expansive of all the engineering sciences. Its function involves the direct combination of core engineering sciences as well as knowledge of nonengineering disciplines such as biology and medicine. Drawing on material from the biomechanics section of The Biomedical Engineering Handbook, Fourth Edition and utilizing the expert knowledge of respected published scientists in the application and research of biomechanics, Biomechanics: Principles and Practices discusses the latest principles and applicat

  19. Biomechanical behavior of bovine periodontal ligament: Experimental tests and constitutive model.

    Science.gov (United States)

    Oskui, Iman Z; Hashemi, Ata; Jafarzadeh, Hamid

    2016-09-01

    A viscohyperelastic constitutive model with the use of the internal variables approach was formulated to evaluate the nonlinear elastic and time dependent anisotropic mechanical behavior of the periodontal ligament (PDL). Since the relaxation response was found to depend on the applied stretch, the adoption of the nonlinear viscous behavior in the present model was necessary. In this paper, Helmholtz free energy function was assigned to the material as the sum of hyperelastic and viscous terms which is based on the physical concept of internal variables. The constitutive model parameters were evaluated from the comparison of the proposed model and experimental data. For this purpose, tensile response of the bovine PDL samples under different stretch rates was obtained. The good correspondence between the proposed model and the experimental results confirmed the capability of the model to interpret the stretch rate behavior of the PDL. Moreover, the validity of structural model parameters was checked according to the results of the stress relaxation tests. PMID:27315371

  20. Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model

    Science.gov (United States)

    Carroll, S. P.; Owen, J. S.; Hussein, M. F. M.

    2014-10-01

    simplicity of this biomechanical model, remarkable agreement was observed.

  1. The importance of craniofacial sutures in biomechanical finite element models of the domestic pig.

    Directory of Open Access Journals (Sweden)

    Jen A Bright

    Full Text Available Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results.

  2. Structural and biomechanical responses of osseous healing: a novel murine nonunion model

    OpenAIRE

    Chaubey, Aditya; Grawe, Brian; Jeffrey A Meganck; Dyment, Nathaniel; Inzana, Jason; Jiang, Xi; Connolley, Camille; Awad, Hani; Rowe, David; Kenter, Keith; Goldstein, Steven A.; Butler, David

    2013-01-01

    Background Understanding the biological mechanisms of why certain fractures are at risk for delayed healing or nonunion requires translational animal models that take advantage of transgenic and other genetic manipulation technologies. Reliable murine nonunion models can be an important tool to understand the biology of nonunion. In this study, we report the results of a recently established model for creating critical defects that lead to atrophic nonunions based on a unique fracture fixatio...

  3. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    OpenAIRE

    Seth, Ajay; Matias, Ricardo; António P Veloso; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic join...

  4. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    Directory of Open Access Journals (Sweden)

    Ajay Seth

    Full Text Available The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1 elevation and 2 abduction of the scapula on an ellipsoidal thoracic surface, 3 upward rotation of the scapula normal to the thoracic surface, and 4 internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  5. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    Science.gov (United States)

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  6. Modelling biomechanical requirements of a rider for different horse-riding techniques at trot

    NARCIS (Netherlands)

    Cocq, de P.; Muller, M.; Clayton, H.M.; Leeuwen, van J.L.

    2013-01-01

    The simplest model possible for bouncing systems consists of a point mass bouncing passively on a mass-less spring without viscous losses. This type of spring–mass model has been used to describe the stance period of symmetric running gaits. In this study, we investigated the interaction between hor

  7. A Functional Model of the Digital Extensor Mechanism: Demonstrating Biomechanics with Hair Bands

    Science.gov (United States)

    Cloud, Beth A.; Youdas, James W.; Hellyer, Nathan J.; Krause, David A.

    2010-01-01

    The action of muscles about joints can be explained through analysis of their spatial relationship. A functional model of these relationships can be valuable in learning and understanding the muscular action about a joint. A model can be particularly helpful when examining complex actions across multiple joints such as in the digital extensor…

  8. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Chee, C.Y. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore)], E-mail: cheecy@ihpc.a-star.edu.sg; Lee, H.P. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore); Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore); Lu, C. [Institute of High Performance Computing, 1 Science Park Road, Capricorn S117528 (Singapore)

    2008-02-25

    This Letter presents a newly developed three-dimensional fluid-structure interaction model of the red blood cell (RBC). The model consists of a deformable liquid capsule modelled as Newtonian fluid enclosed by a hyperelastic membrane with viscoelastic property. Numerical results show that viscosity in the cytoplasm affects the deformed shape of RBC under loading. This observation is contrary to the earlier belief that viscosity of the cytoplasm can be neglected. Numerical simulations carried out to investigate large deformation induced on the RBC model using direct tensile forces show significant improvement in terms of correlation with experimental results. The membrane shear modulus estimated from the model ranges between 3.7 to 9.0 {mu}Nm{sup -1} compares well with results obtained from micropipette aspiration experiments.

  9. Optical techniques as validation tools for finite element modeling of biomechanical structures, demonstrated in bird ear research

    Science.gov (United States)

    Muyshondt, Pieter; De Greef, Daniël; Soons, Joris; Dirckx, Joris J. J.

    2014-05-01

    In this paper we demonstrate the potential of stroboscopic digital holography and laser vibrometry as tools to gather vibration data and validate modelling results in complex biomechanical systems, in this case the avian middle ear. Whereas the middle ear of all mammal species contains three ossicles, birds only feature one ossicle, the columella. Despite this far simpler design, the hearing range of most birds is comparable to mammals, and is adapted to operate under very diverse atmospheric circumstances. This makes the investigation of the avian middle ear potentially very meaningful, since it could provide knowledge that can improve the design of prosthetic ossicle replacements in humans such as a TORP (Total Ossicle Replacement Prosthesis). In order to better understand the mechanics of the bird's hearing, we developed a finite element model that simulates the transmission of an incident acoustic wave on the eardrum via the middle ear structures to the fluid of the inner ear. The model is based on geometry extracted from stained μCT data and is validated using results from stroboscopic digital holography measurements on the eardrum and LDV measurements on the columella footplate. This technique uses very short high-power laser pulses that are synchronized to the membrane's vibration phase to measure the dynamic response of the bird's eardrum to an incident acoustic stimulus. Vibration magnitude as well as phase relative to the sound wave can be deduced from the results, the latter being of great importance in the elastic characterization of the tympanic membrane. In this work, the setup and results from the optical measurements, as well as the properties and optimization of the finite element model are presented. Observed phase variations across the eardrum's surface on the holography results strongly suggest the presence of internal energy losses in the membrane due to damping. Therefore, a viscoelastic characterisation of the model based on a complex

  10. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings.

    Directory of Open Access Journals (Sweden)

    Robert Toth

    Full Text Available Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells without the harmful side effects (due to its precise localization. MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a laser-induced shape-based changes, and (b changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1 patient alignment, (2 changes due to surrounding organs such as the bladder and rectum, and (3 changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1 and (2 are first modeled and removed using a finite element model (FEM. A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate

  11. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    Science.gov (United States)

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  12. Biomechanical analysis of a newly developed shape memory alloy hook in a transforaminal lumbar interbody fusion (TLIF in vitro model.

    Directory of Open Access Journals (Sweden)

    Xi Wang

    Full Text Available The objective of this biomechanical study was to evaluate the stability provided by a newly developed shape memory alloy hook (SMAH in a cadaveric transforaminal lumbar interbody fusion (TLIF model.Six human cadaveric spines (L1-S2 were tested in an in vitro flexibility experiment by applying pure moments of ±8 Nm in flexion/extension, left/right lateral bending, and left/right axial rotation. After intact testing, a TLIF was performed at L4-5. Each specimen was tested for the following constructs: unilateral SMAH (USMAH; bilateral SMAH (BSMAH; unilateral pedicle screws and rods (UPS; and bilateral pedicle screws and rods (BPS. The L3-L4, L4-L5, and L5-S1 range of motion (ROM were recorded by a Motion Analysis System.Compared to the other constructs, the BPS provided the most stability. The UPS significantly reduced the ROM in extension/flexion and lateral bending; the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and axial rotation; and the USMAH significantly reduced the ROM in flexion and left lateral bending compared with the intact spine (p0.05. Stability provided by the USMAH compared with the UPS was not significantly different. ROMs of adjacent segments increased in all fixed constructs (p>0.05.Bilateral SMAH fixation can achieve immediate stability after L4-5 TLIF in vitro. Further studies are required to determine whether the SMAH can achieve fusion in vivo and alleviate adjacent segment degeneration.

  13. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.

    Science.gov (United States)

    Scionti, Giuseppe; Moral, Monica; Toledano, Manuel; Osorio, Raquel; Durán, Juan D G; Alaminos, Miguel; Campos, Antonio; López-López, Modesto T

    2014-08-01

    The effect of hydration on the biomechanical properties of fibrin and fibrin-agarose (FA) tissue-like hydrogels is reported. Native hydrogels with approximately 99.5% of water content and hydrogels with water content reduced until 90% and 80% by means of plastic compression (nanostructuration) were generated. The biomechanical properties of the hydrogels were investigated by tensile, compressive, and shear tests. Experimental results indicate that nanostructuration enhances the biomechanical properties of the hydrogels. This improvement is due to the partial draining of the water that fills the porous network of fibers that the plastic compression generates, which produces a denser material, as confirmed by scanning electron microscopy. Results also indicate that the characteristic compressive and shear parameters increase with agarose concentration, very likely due to the high water holding capacity of agarose, which reduces the compressibility and gives consistency to the hydrogels. However, results of tensile tests indicate a weakening of the hydrogels as agarose concentration increases, which evidences the anisotropic nature of these biomaterials. Interestingly, we found that by adjusting the water and agarose contents it is possible to tune the biomechanical properties of FA hydrogels for a broad range, within which the properties of many native tissues fall. PMID:23963645

  14. 21 CFR 880.6230 - Tongue depressor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tongue depressor. 880.6230 Section 880.6230 Food... § 880.6230 Tongue depressor. (a) Identification. A tongue depressor is a device intended to displace the tongue to facilitate examination of the surrounding organs and tissues. (b) Classification. Class...

  15. Establishment of the biomechanical model of cochlea of guinea pig%豚鼠耳蜗生物数值模型的实验研究

    Institute of Scientific and Technical Information of China (English)

    苏英锋; 孙秀珍; 刘迎曦; 闫志勇; 沈双; 辛晓燕; 于申

    2015-01-01

    Objective To establish a macro-biomechanical model of the guinea pig's cochlea.Methods Both cochlea, abstracted from bilateral temporal bones of a healthy adult guinea pig, which was tested firstly including a series of examina-tion including electric otoscopy, acoustic immittance,brainstem auditory evoked potential, otoacoustic emissions, CT scan and so on.And then, a whole set of inner ear tissue slices images was obtained after a series of operations including embed-ding, slicing ( thickness 6μm) , immobilization, coloretur, photographing and so on.The images were processed by Photo-shop software, mimics software and Hypermesh software sequencely and a biomechanical model of the cochlea was obtained with ANSYS13.0 eventually.Based on the model, the modal analysis was done to test the accuracy of the model.Results Spatial structural feature of the reconstructed biomechanical model of the guinea pig's cochlea was displayed typically and the result of the model analysis proceeded on the macro-biomechanical model was the same as traveling wave theory.Con-clusion It is feasible technically to reconstruct biomechanical model of the cochlea with the tissue slices combining with the finite element soft wares.And the macro-biomechanical model could be applied to study the sensing process of cochlea.%目的:建立豚鼠耳蜗宏观生物数值模型。方法取成年豚鼠1只,进行电耳镜、声导抗、听性脑干反应、耳声发射及内耳薄层CT扫描,除外耳部疾患及内耳畸形,全麻断头后取耳蜗,经石蜡包埋、连续切片(6μm)、HE染色、摄像等步骤获得一整套豚鼠内耳组织切片的图像资料;利用Photoshop软件进行去色、调整灰度及对比度等处理,利用mimics软件识别边界并标定,获得边界点的三维坐标,将坐标导入Hypermesh软件建立网格化模型,利用ANASYS软件建立耳蜗膜迷路的三维生物数值模型,基于该模型进行基底膜的模态分析。结

  16. OSIRIS observations of a tongue of NOx in the lower stratosphere at the Antarctic vortex edge: comparison with a high-resolution simulation from the Global Environmental Multiscale (GEM) model

    Energy Technology Data Exchange (ETDEWEB)

    Sioris, C.E.; McLinden, C.A.; Rochon, Y.J.; McElroy, C.T. [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate; Chabrillat, S. [Belgian Inst. for Space Aeronomy, Brussels (Belgium); Haley, C.S. [York Univ., Toronto, ON (Canada); Menard, R.; Charron, M. [Environment Canada, Dorval, ON (Canada). Atmospheric Science and Technology Directorate

    2007-11-15

    An optical spectrograph and infrared imager system (OSIRIS) aboard the Odin satellite measures limb-scattered sunlight in the 280 to 810 nm range. This paper addressed the challenge of interpreting nitrogen dioxide (NO{sub 2}) profile observations in the polar lower stratosphere. Interpretations of these profile observations can be facilitated by first converting the measurements to NO{sub x} using a photochemical model in order to compare directly with simulated NO{sub x} from a 3-dimensional chemical transport model such as the Global Environmental Multiscale (GEM) model. In this study, GEM was used to simulate a tongue of NO{sub x} observed by OSIRIS as it circulated inside the Antarctic vortex edge. The objective was to clarify one of several OSIRIS observations of enhanced lower stratospheric NO{sub 2} in the Antarctic in early austral spring. Another objective was to demonstrate the variability in lower stratospheric NO{sub x} at polar latitudes due to dynamical processes. Selected NOx profiles of the Antarctic lower stratosphere inferred from OSIRIS NO{sub 2} observations were presented from the austral spring of 2003. A tongue of NOx at 100 hPa was observed, with a concentration typical of the middle stratosphere. GEM simulations revealed that this small-scale tongue of NOx-rich air descended into the lower stratosphere. The tongue was formed as a result of a Rossby wave breaking, transporting NOx from the pole, where larger concentrations had recently appeared, to the edge of the vortex. A detailed illustration of the 3-dimensional structure of the breaking wave was also presented. 17 refs., 1 tab., 10 figs.

  17. OSIRIS observations of a tongue of NOx in the lower stratosphere at the Antarctic vortex edge: comparison with a high-resolution simulation from the Global Environmental Multiscale (GEM) model

    International Nuclear Information System (INIS)

    An optical spectrograph and infrared imager system (OSIRIS) aboard the Odin satellite measures limb-scattered sunlight in the 280 to 810 nm range. This paper addressed the challenge of interpreting nitrogen dioxide (NO2) profile observations in the polar lower stratosphere. Interpretations of these profile observations can be facilitated by first converting the measurements to NOx using a photochemical model in order to compare directly with simulated NOx from a 3-dimensional chemical transport model such as the Global Environmental Multiscale (GEM) model. In this study, GEM was used to simulate a tongue of NOx observed by OSIRIS as it circulated inside the Antarctic vortex edge. The objective was to clarify one of several OSIRIS observations of enhanced lower stratospheric NO2 in the Antarctic in early austral spring. Another objective was to demonstrate the variability in lower stratospheric NOx at polar latitudes due to dynamical processes. Selected NOx profiles of the Antarctic lower stratosphere inferred from OSIRIS NO2 observations were presented from the austral spring of 2003. A tongue of NOx at 100 hPa was observed, with a concentration typical of the middle stratosphere. GEM simulations revealed that this small-scale tongue of NOx-rich air descended into the lower stratosphere. The tongue was formed as a result of a Rossby wave breaking, transporting NOx from the pole, where larger concentrations had recently appeared, to the edge of the vortex. A detailed illustration of the 3-dimensional structure of the breaking wave was also presented. 17 refs., 1 tab., 10 figs

  18. A novel progress of leg tissue properties modeling based on biomechanics

    Institute of Scientific and Technical Information of China (English)

    WANG Mo-nan

    2009-01-01

    To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3 D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentons structures were embedded in a volume of soft tissues.The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be Linearly elastic. The muhilayer FEM model conraining thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the muhilayer FEM model can represent tissue deformation more accurately.

  19. Research progress on the human lower limb biomechanical modeling%人体下肢生物力学建模研究进展

    Institute of Scientific and Technical Information of China (English)

    邵明旭; 王斐; 殷腾龙; 刘健

    2015-01-01

    The research on the biomechanical modeling and simulation of human lower limbs is an important content in the development of wearable exoskeleton robots.Theoretical and technical methods derived from this research can promote the process of biomechanics, rehabilitation medicine and prosthetic/orthotic devices.This work reviews the state-of-the-art techniques for modeling and simulating biomechanics of human lower limbs and makes analysis of popular methods, such as multi-body modeling , simulation software modeling, Hill three elements modeling and black box training modeling based on Lagrange equation and theorem of angular momentum.The future prospects in this research field are also provided in this paper.The biomechanical modeling and simulating methods discussed is of great significance to the design of naturally harmonious human-robot interaction of wearable exoskeleton robots.%人体下肢生物力学建模与仿真是穿戴式外骨骼机器人系统开发的一个重要内容。对其研究所获得相关的理论与技术方法对生物动力学、康复医学、假肢及运动康复器械设计等领域的发展具有促进作用。本文以人体下肢生物力系统为研究对象,概括和总结了国内外下肢建模与仿真技术的研究现状,就目前普遍采用的基于Lagrange 方程和角动量定理的多刚体模型法、仿真软件建模法、Hill三元素法、黑箱训练等方法进行了详细的分析,并对研究趋势进行了展望。本文所综述的动力学建模与仿真验证方法对实现穿戴式外骨骼机器人和谐自然人机交互设计具有重要的指导意义。

  20. Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat.

    Science.gov (United States)

    Maerz, Tristan; Kurdziel, Michael D; Davidson, Abigail A; Baker, Kevin C; Anderson, Kyle; Matthew, Howard W T

    2015-10-01

    The onset of post-traumatic osteoarthritis (PTOA) remains prevalent following traumatic joint injury such as anterior cruciate ligament (ACL) rupture, and animal models are important for studying the pathomechanisms of PTOA. Noninvasive ACL injury using the tibial compression model in the rat has not been characterized, and it may represent a more clinically relevant model than the common surgical ACL transection model. This study employed four loading profiles to induce ACL injury, in which motion capture analysis was performed, followed by quantitative joint laxity testing. High-speed, high-displacement loading repeatedly induces complete ACL injury, which causes significant increases in anterior-posterior and varus laxity. No loading protocol induced valgus laxity. Tibial internal rotation and anterior subluxation occurs up to the point of ACL failure, after which the tibia rotates externally as it subluxes over the femoral condyles. High displacement was more determinative of ACL injury compared to high speed. Low-speed protocols induced ACL avulsion from the femoral footprint whereas high-speed protocols caused either midsubstance rupture, avulsion, or a combination injury of avulsion and midsubstance rupture. This repeatable, noninvasive ACL injury protocol can be utilized in studies assessing PTOA or ACL reconstruction in the rat. PMID:25777293

  1. Modelling, stability and biomechanical implications of three DOF passive bipedal gait

    Directory of Open Access Journals (Sweden)

    Máximo Alejandro Roa Garzón

    2010-04-01

    Full Text Available Passive dynamic walkers can achieve a steady gait down an inclined plane simply by the influence of gravity. This article presents the modelling of a 3 DOF passive bipedal walker, searching for a relationship between gait characteristics, the robot’s physical properties and the slope of the plane. The proposed adimensional dynamical model’s equations are also given, implementing and modelling the dynamics is described and the main results are presented. Limits on robotic parameters leading to establishing stable limit cycles are also analysed as perio-dic doubling bifurcations appear to be natural in passive gait. Interesting results arose when comparing natural passive walking with human bipedal locomotion.

  2. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model

    OpenAIRE

    Vigotsky, Andrew D.; Contreras, Bret; Beardsley, Chris

    2015-01-01

    Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA) lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-secti...

  3. Biomechanical analysis of the anterior displacement of Tibial tuberosity (Maquet operation: A computer model study

    Directory of Open Access Journals (Sweden)

    Farahmand F

    2000-08-01

    Full Text Available Computer model of the patellofemoral joint was developed and the effects on the anterior displacement of the tibial tuberosity were investigated. The input geometrical and verification data for the model were obtained form an experimental study on a cadaver knee, mounted in an instron machine. The computer program found the configuration of the patellofemoral joint which satified both the geometrical and force equilibrium conditions, simultaneously, using a trial graphical approach.verification of the model was achieved by determining the patellar sagittal plane motion and patellofemoral contact locations and comparing the results with the experimental results of the same specimen and published data. Simulation of the anterior displacement of the tibial tuberosity by the model showed that the location of contact area migrates distally on the femur and proximally on the patella following operation. The contact force of the patellofemoral joint decreased significantly by 70% at full extension, 30% at 30 degrees flexion and around 15% at higher flexion angles for a 1 cm anterior displacement of the tibial tuberosity and nearly doubled for a 2cm anterior displacement. The change of the effective moment are of the quadriceps was not considerable. The results suggest that the major effect of the Maquet operation on the contact force appears in extension and mid-flexion rather than deep flexion amgles. Further displacement of the tuberosity enhances the reduction of the contact force, however, the total reduction is less than what was predicted by Maquet. The change of the contact location relieves pain in short term but causes hyperpressure in the proximal retropatellar surface which might be detrimental in long term

  4. Involvement of peripheral artemin signaling in tongue pain: possible mechanism in burning mouth syndrome.

    Science.gov (United States)

    Shinoda, Masamichi; Takeda, Mamoru; Honda, Kuniya; Maruno, Mitsuru; Katagiri, Ayano; Satoh-Kuriwada, Shizuko; Shoji, Noriaki; Tsuchiya, Masahiro; Iwata, Koichi

    2015-12-01

    Burning mouth syndrome is characterized by altered sensory qualities, namely tongue pain hypersensitivity. We found that the mRNA expression of Artemin (Artn) in the tongue mucosa of patients with burning mouth syndrome was significantly higher than that of control subjects, and we developed a mouse model of burning mouth syndrome by application of 2,4,6-trinitrobenzene sulfonic acid (TNBS) diluted with 50% ethanol to the dorsum of the tongue. TNBS treatment to the tongue induced persistent, week-long, noninflammatory tongue pain and a significant increase in Artn expression in the tongue mucosa and marked tongue heat hyperalgesia. Following TNBS treatment, the successive administration of the transient receptor potential vanilloid 1 (TRPV1) antagonist SB366791 or neutralizing anti-Artn antibody completely inhibited the heat hyperalgesia. The number of glial cell line-derived neurotrophic factor family receptor α3 (GFRα3)-positive and TRPV1-positive trigeminal ganglion (TG) neurons innervating the tongue significantly increased following TNBS treatment and was significantly reduced by successive administration of neutralizing anti-Artn antibody. The capsaicin-induced current in TG neurons innervating the tongue was enhanced following TNBS treatment and was inhibited by local administration of neutralizing anti-Artn antibody to the tongue. These results suggest that the overexpression of Artn in the TNBS-treated tongue increases the membrane excitability of TG neurons innervating the tongue by increasing TRPV1 sensitivity, which causes heat hyperalgesia. This model may be useful for the study of tongue pain hypersensitivity associated with burning mouth syndrome. PMID:26270588

  5. Involvement of peripheral artemin signaling in tongue pain: possible mechanism in burning mouth syndrome.

    Science.gov (United States)

    Shinoda, Masamichi; Takeda, Mamoru; Honda, Kuniya; Maruno, Mitsuru; Katagiri, Ayano; Satoh-Kuriwada, Shizuko; Shoji, Noriaki; Tsuchiya, Masahiro; Iwata, Koichi

    2015-12-01

    Burning mouth syndrome is characterized by altered sensory qualities, namely tongue pain hypersensitivity. We found that the mRNA expression of Artemin (Artn) in the tongue mucosa of patients with burning mouth syndrome was significantly higher than that of control subjects, and we developed a mouse model of burning mouth syndrome by application of 2,4,6-trinitrobenzene sulfonic acid (TNBS) diluted with 50% ethanol to the dorsum of the tongue. TNBS treatment to the tongue induced persistent, week-long, noninflammatory tongue pain and a significant increase in Artn expression in the tongue mucosa and marked tongue heat hyperalgesia. Following TNBS treatment, the successive administration of the transient receptor potential vanilloid 1 (TRPV1) antagonist SB366791 or neutralizing anti-Artn antibody completely inhibited the heat hyperalgesia. The number of glial cell line-derived neurotrophic factor family receptor α3 (GFRα3)-positive and TRPV1-positive trigeminal ganglion (TG) neurons innervating the tongue significantly increased following TNBS treatment and was significantly reduced by successive administration of neutralizing anti-Artn antibody. The capsaicin-induced current in TG neurons innervating the tongue was enhanced following TNBS treatment and was inhibited by local administration of neutralizing anti-Artn antibody to the tongue. These results suggest that the overexpression of Artn in the TNBS-treated tongue increases the membrane excitability of TG neurons innervating the tongue by increasing TRPV1 sensitivity, which causes heat hyperalgesia. This model may be useful for the study of tongue pain hypersensitivity associated with burning mouth syndrome.

  6. Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model

    OpenAIRE

    Clemente, Alessandra; Bergamin, Federica; Surace, Cecilia; Lepore, Emiliano; Pugno, Nicola M.

    2015-01-01

    Background: The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model.Materials and methods: Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following tech...

  7. Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model

    OpenAIRE

    Clemente, A.; Bergamin, F; Surace, C.; Lepore, E.; Pugno, N.

    2015-01-01

    Background The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model. Materials and methods Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following techn...

  8. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    Science.gov (United States)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  9. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model.

    Science.gov (United States)

    Vigotsky, Andrew D; Contreras, Bret; Beardsley, Chris

    2015-01-01

    Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA) lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA) of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

  10. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms.

    Science.gov (United States)

    Trabelsi, Olfa; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2016-01-01

    The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT. PMID:26178871

  11. A Biomechanical Model of the Inner Ear: Numerical Simulation of the Caloric Test

    Directory of Open Access Journals (Sweden)

    Shuang Shen

    2013-01-01

    Full Text Available Whether two vertical semicircular canals can receive thermal stimuli remains controversial. This study examined the caloric response in the three semicircular canals to the clinical hot caloric test using the finite element method. The results of the developed model showed the horizontal canal (HC cupula maximally deflected to the utricle side by approximately 3 μm during the hot supine test. The anterior canal cupula began to receive the caloric stimuli about 20 s after the HC cupula, and it maximally deflected to the canal side by 0.55 μm. The posterior canal cupula did not receive caloric stimuli until approximately 40 s after the HC cupula, and it maximally deflected to the canal side by 0.34 μm. Although the endolymph flow and the cupular deformation change with respect to the head position during the test, the supine test ensures the maximal caloric response in the HC, but no substantial improvement for the responses of the two vertical canals was observed. In conclusion, while the usual supine test is the optimum test for evaluating the functions of the inner ear, more irrigation time is needed in order to effectively clinically examine the vertical canals.

  12. A biomechanical model of the inner ear: numerical simulation of the caloric test.

    Science.gov (United States)

    Shen, Shuang; Liu, Yingxi; Sun, Xiuzhen; Zhao, Wei; Su, Yingfeng; Yu, Shen; Liu, Wenlong

    2013-01-01

    Whether two vertical semicircular canals can receive thermal stimuli remains controversial. This study examined the caloric response in the three semicircular canals to the clinical hot caloric test using the finite element method. The results of the developed model showed the horizontal canal (HC) cupula maximally deflected to the utricle side by approximately 3 μm during the hot supine test. The anterior canal cupula began to receive the caloric stimuli about 20 s after the HC cupula, and it maximally deflected to the canal side by 0.55 μm. The posterior canal cupula did not receive caloric stimuli until approximately 40 s after the HC cupula, and it maximally deflected to the canal side by 0.34 μm. Although the endolymph flow and the cupular deformation change with respect to the head position during the test, the supine test ensures the maximal caloric response in the HC, but no substantial improvement for the responses of the two vertical canals was observed. In conclusion, while the usual supine test is the optimum test for evaluating the functions of the inner ear, more irrigation time is needed in order to effectively clinically examine the vertical canals.

  13. Tongue contour extraction from ultrasound images based on deep neural network

    OpenAIRE

    Jaumard-Hakoun, Aurore; Xu, Kele; Roussel-Ragot, Pierre; Dreyfus, Gérard; Denby, Bruce

    2016-01-01

    Studying tongue motion during speech using ultrasound is a standard procedure, but automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contour from ultrasound images on a speech dataset. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able t...

  14. An introduction to biomechanics solids and fluids, analysis and design

    CERN Document Server

    Humphrey, Jay D

    2004-01-01

    Designed to meet the needs of undergraduate students, Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.

  15. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  16. Properties of Magnetic Tongues over a Solar Cycle

    Science.gov (United States)

    Poisson, Mariano; Démoulin, Pascal; López Fuentes, Marcelo; Mandrini, Cristina H.

    2016-08-01

    The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) present during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic-flux tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. ( Solar Phys. 290, 727, 2015a) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the emergence and to become weaker as the AR reaches its maximum magnetic flux. We compare this evolution with the emergence of a toroidal flux-rope model with non-uniform twist. The variety of evolution of the tongues in the analyzed ARs can only be reproduced when using a broad range of twist profiles, in particular having a large variety of twist gradients in the direction vertical to the photosphere. Although the analytical model used is a special case, selected to minimize the complexity of the problem, the results obtained set new observational constraints to theoretical models of flux-rope emergence that form bipolar ARs.

  17. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  18. Study of a bio-mechanical model of the movements and deformations of the pelvic organs and integration in the process of radiotherapy treatment for prostate cancer

    International Nuclear Information System (INIS)

    One of the goals of optimizing treatment planning of prostate cancer radiation therapy is to maintain the margins added to the clinical target volume (CTV) as small as possible to reduce the volumes of normal tissue irradiated. Several methods have been proposed to define these margins: 1) Methods based on the observation of movements obtained by different imaging systems, 2) The predictive methods of the movement of organs, from a model representing the motions of pelvis organs, a calculation of a margin can be made. We have developed and optimized a finite element bio-mechanical model of the prostate, bladder and rectum. This model describes the movement and deformation of the pelvic organs during the filling of certain organs such as the bladder and rectum. An evaluation of this model to predict the movement of the prostate during the various sessions of radiotherapy is shown using a series of CBCT images (Cone Beam Computerized Tomography). (author)

  19. Fast marching over the 2D Gabor magnitude domain for tongue body segmentation

    Science.gov (United States)

    Cui, Zhenchao; Zhang, Hongzhi; Zhang, David; Li, Naimin; Zuo, Wangmeng

    2013-12-01

    Tongue body segmentation is a prerequisite to tongue image analysis and has recently received considerable attention. The existing tongue body segmentation methods usually involve two key steps: edge detection and active contour model (ACM)-based segmentation. However, conventional edge detectors cannot faithfully detect the contour of the tongue body, and the initialization of ACM suffers from the edge discontinuity problem. To address these issues, we proposed a novel tongue body segmentation method, GaborFM, which initializes ACM by performing fast marching over the two-dimensional (2D) Gabor magnitude domain of the tongue images. For the enhancement of the contour of the tongue body, we used the 2D Gabor magnitude-based detector. To cope with the edge discontinuity problem, the fast marching method was utilized to connect the discontinuous contour segments, resulting in a closed and continuous tongue body contour for subsequent ACM-based segmentation. Qualitative and quantitative results showed that GaborFM is superior to the other methods for tongue body segmentation.

  20. Tongue pressure during swallowing is decreased in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamanaka-Kondoh, Sato; Kondoh, Jugo; Tamine, Ken-Ichi; Hori, Kazuhiro; Fujiwara, Shigehiro; Maeda, Yoshinobu; Matsumura, Tsuyoshi; Yasui, Kumiko; Fujimura, Harutoshi; Sakoda, Saburo; Ono, Takahiro

    2014-06-01

    Although dysphagia is a life-threatening problem in patients with Duchenne muscular dystrophy (DMD), the pathophysiology of oral stage dysphagia is yet to be understood. The present study investigated the tongue motor deficit during swallowing in patients with DMD and its relationship with disease-specific palatal morphology. Tongue pressure during swallowing water was recorded in 11 male patients with DMD and 11 age- and sex-matched healthy subjects using an intra-oral sensor with five measuring points, and the state of tongue pressure production was compared between the groups. Palatal morphology was assessed by a non-contact three-dimensional scanner on maxillary plaster models. In patients with DMD, the normal sequential order of tongue-palate contact was lost and the maximal magnitude and integrated value of tongue pressure on the mid-anterior part of palate were smaller than those in healthy subjects. The width of the palate in patients was greater than that in healthy subjects and the depth of the palate in patients had a negative correlation with tongue pressure magnitude on the median palate. Our results suggested that the deteriorated tongue motor kinetics prevented tongue movement during swallowing that was appropriate for the depth of the palate and affects the state of tongue pressure production during swallowing.

  1. Release of Tongue-Tie in Neonates

    OpenAIRE

    Raveenthiran, V

    2012-01-01

    Arguably, release of tongue tie is the oldest surgical procedure and it is perhaps older than circumcision. According to the Old Testament, the Lord released the tied tongue of Moses and made him speak well. Tongue-tie is pedantically known as ankyloglossia inferior minor. Simplicity of its treatment has earned this malady several etiological attributions such as difficulty of speech and breast feeding. All over the world, lactation consultants refer neonates for release of tongue tie as they...

  2. Tongue Image Feature Extraction in TCM

    Institute of Scientific and Technical Information of China (English)

    LI Dong; DU Lian-xiang; LU Fu-ping; DU Jun-ping

    2004-01-01

    In this paper, digital image processing and computer vision techniques are applied to study tongue images for feature extraction with VC++ and Matlab. Extraction and analysis of the tongue surface features are based on shape, color, edge, and texture. The developed software has various functions and good user interface and is easy to use. Feature data for tongue image pattern recognition is provided, which form a sound basis for the future tongue image recognition.

  3. Biomechanics of whiplash injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-bin; King H YANG; WANG Zheng-guo

    2009-01-01

    Despite a large number of rear-end collisions on the road and a high frequency of whiplash injuries reported, the mechanism of whiplash injuries is not completely understood. One of the reasons is that the injury is not necessarily accompanied by obvious tissue damage detectable by X-ray or MRI. An extensive series of biomechanics studies, including injury epidemiology, neck kinematics,facet capsule ligament mechanics, injury mechanisms and injury criteria, were undertaken to help elucidate these whiplash injury mechanisms and gain a better understanding of cervical facet pain. These studies provide the following evidences to help explain the mechanisms of the whiplash injury: (1) Whiplash injuries are generally considered to be a soft tissue injury of the neck with symptoms such as neck pain and stiffness, shoulder weakness, dizziness, headache and memory loss, etc. (2) Based on kinematical studies on the cadaver and volunteers, there are three distinct periods that have the potential to cause injury to the neck. In the first stage, flexural deformation of the neck is observed along with a loss of cervical lordosis; in the second stage, the cervical spine assumes an S-shaped curve as the lower vertebrae begin to extend and gradually cause the upper vertebrae to extend; during the final stage, the entire neck is extended due to the extension moments at both ends. (3)The in vivo environment afforded by rodent models of injury offers particular utility for linking mechanics, nociception and behavioral outcomes. Experimental findings have examined strains across the facet joint as a mechanism of whiplash injury, and suggested a capsular strain threshold or a vertebral distraction threshold for whiplash-related injury,potentially producing neck pain. (4) Injuries to the facet capsule region of the neck are a major source of post-crash pain. There are several hypotheses on how whiplash-associated injury may occur and three of these injuries are related to strains within

  4. Tongue as the Window to the Heart

    Institute of Scientific and Technical Information of China (English)

    Tsung O.Cheng

    2011-01-01

    @@ To the Editor: I read with great interest your masterful article on study of the tongue in patients with coronary heart disease. Tongue is, indeed, the window to the heart. Many cardiovascular diseases including coronary heart disease can be accurately diagnosed by the Chinese traditional physicians by careful inspection of the tongue (Figure 1).

  5. Interface Electronic Circuitry for an Electronic Tongue

    Science.gov (United States)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  6. Resource competition triggers the co-evolution of long tongues and deep corolla tubes.

    Directory of Open Access Journals (Sweden)

    Miguel A Rodríguez-Gironés

    Full Text Available BACKGROUND: It is normally thought that deep corolla tubes evolve when a plant's successful reproduction is contingent on having a corolla tube longer than the tongue of the flower's pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers. METHODOLOGY/PRINCIPAL FINDINGS: We have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues. CONCLUSIONS/SIGNIFICANCE: Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.

  7. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.

    Science.gov (United States)

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya

    2008-11-01

    Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions. PMID:19085174

  8. The development of a tongue assessment tool to assist with tongue-tie identification

    OpenAIRE

    Ingram, Jenny; Johnson, Debbie; Copeland, Marion; Churchill, Cathy; Taylor, Hazel; Emond, Alan

    2015-01-01

    Aim To produce a simple tool with good transferability to provide a consistent assessment of tongue appearance and function in infants with tongue-tie. Methods The Bristol Tongue Assessment Tool (BTAT) was developed based on clinical practice and with reference to the Hazelbaker Assessment Tool for Lingual Frenulum Function (ATLFF). This paper documents 224 tongue assessments using the BTAT. There were 126 tongue assessments recorded using the BTAT and ATLFF tools to facilitate comparisons be...

  9. Mother Tongue Tuition in Sweden--Curriculum Analysis and Classroom Experience

    Science.gov (United States)

    Reath Warren, Anne

    2013-01-01

    The model of Mother Tongue Tuition (MTT) which has developed in Sweden since the 1970's offers speakers of languages other than Swedish the opportunity to request tuition in their mother tongue, from kindergarten through to year 12. It is unique among the major immigrant-receiving countries of the world yet little is known about MTT and its…

  10. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.

    Science.gov (United States)

    Russo, R S; Blemker, S S; Fish, F E; Bart-Smith, H

    2015-06-16

    Growing interest in the development of bio-inspired autonomous underwater vehicles (AUVs) has motivated research in understanding the mechanisms behind the propulsion systems of marine animals. For example, the locomotive behavior of rays (Batoidea) by movement of the pectoral fins is of particular interest due to their superior performance characteristics over contemporary AUV propulsion systems. To better understand the mechanics of pectoral fin propulsion, this paper introduces a biomechanical model that simulates how batoid skeletal structures function to achieve the swimming locomotion observed in nature. Two rays were studied, Dasyatis sabina (Atlantic ray), and Rhinoptera bonasus (cownose ray). These species were selected because they exhibit very different swimming styles (undulation versus oscillation), but all use primarily their pectoral fins for propulsion (unlike electric rays or guitarfishes). Computerized tomography scans of each species were taken to image the underlying structure, which reveal a complex system of cartilaginous joints and linkages. Data collected from these images were used to quantify the complete skeletal morphometry of each batoid fin. Morphological differences were identified in the internal cartilage arrangement between each species including variations in the orientation of the skeletal elements, or radials, and the joint patterns between them, called the inter-radial joint pattern. These data were used as the primary input into the biomechanical model to couple a given ray skeletal structure with various swimming motions. A key output of the model is an estimation of the uniaxial strain that develops in the skeletal connective tissue in order for the structure to achieve motions observed during swimming. Tensile load tests of this connective tissue were conducted to further investigate the implications of the material strain predictions. The model also demonstrates that changes in the skeletal architecture (e.g., joint

  11. Mittal bonded tongue thrusting appliance

    Directory of Open Access Journals (Sweden)

    Rekha Mittal

    2014-01-01

    Full Text Available These days majority of orthodontist includes bonded molar attachment in their inventory to eliminate the discomfort of molar separation during initial appointment and band spaces left at the end of treatment. This article describes a innovative and economical method of attachment of bonded tongue crib if required during the initial or later stages of treatment along with bonded molar tubes.

  12. Tongues of Men and Angels

    DEFF Research Database (Denmark)

    McGraw, John J.

    2012-01-01

    The accelerating popularity of Charismatic Christianity has brought with it a host of new sensibilities and ritual practices. Glossolalia, or ‘speaking in tongues,’ stands out among these as a particularly dramatic innovation. Typically staid churchgoers, once touched by the Holy Spirit, begin...

  13. RELEASE OF TONGUE-TIE IN NEONATES

    Directory of Open Access Journals (Sweden)

    V. Raveenthiran

    2012-01-01

    Full Text Available Arguably, release of tongue tie is the oldest surgical procedure and it is perhaps older than circumcision. According to the Old Testament, the Lord released the tied tongue of Moses and made him speak well. Tongue-tie is pedantically known as ankyloglossia inferior minor. Simplicity of its treatment has earned this malady several etiological attributions such as difficulty of speech and breast feeding. All over the world, lactation consultants refer neonates for release of tongue tie as they believe it to be the cause of maternal nipple pain.Perhaps this is the only indication of tongue tie release in neonates.

  14. Influence of loading cycle profile and frequency on a biomechanical parameter of a model of a balloon kyphoplasty-augmented lumbar spine segment: a finite element analysis study.

    Science.gov (United States)

    Li, Yuan; Lewis, Gladius

    2010-01-01

    For patients who are suffering debilitating and persistent pain due to vertebral compression fracture(s) and for whom conservative therapies have not provided relief, balloon kyphoplasty (BKP) is used as a surgical option. There are only a very few literature reports on the use of the finite element analysis (FEA) method to obtain biomechanical parameters of models of spine segments that include BKP augmentation at a given level. In each of these studies, the applied loading used was quasi-static. During normal activities of daily living, the patient's spine would be subject to dynamically-applied loading. Thus, the question of the influence of the characteristics of a dynamically-applied loading cycle on biomechanical parameters of a spine that includes BKP-augmented segment(s) is germane; however, a study of this issue is lacking. We investigated this issue in the present FEA work, with the spine segment model being the L1-L3 motion segment units (MSUs) (a segment that is commonly augmented using BKP) and prophylactic BKP simulated at L2. The dynamic load was the compressive load-versus-time cycle to which the L3-L4 MSU is subjected during gait. Four cases of the cycle were considered, corresponding to slow-, normal-, fast- and very fast-paced gait. The loading cycle was applied to the superior surface of L1 while the inferior surface of L3 was fully constrained. It was found that (1) the global mean von Mises stress during the loading cycle (σVMG), in each tissue in the model increased in going from a slow-paced gait cycle to a very fast-paced gait cycle; and (2) for the slow-paced gait cycle, with increase in frequency of the cycle, f (1 ≤ f ≤ 3 Hz), σVMG in each of these tissues increased. Potential uses of the present findings are identified.

  15. [Neonatal tongue-tie: myths and science].

    Science.gov (United States)

    Dollberg, Shaul; Botzer, Eyal

    2011-01-01

    Anatomical restraining of tongue movement (tongue-tie, ankyloglossia) has been known for centuries and the subject of dozens of articles. The heated debate persists on its clinical significance and indications for treatment. Most authorities in the field of infant feeding and Lactation agree that breastfeeding problems, such as nipple pain and latching difficulties, are common signs of clinicaLly significant tongue-tie and indications for performing a frenotomy, while the sole presence of a visible lingual frenulum is not. In contrast, the lack of a visible frenulum does not rule out the diagnosis of clinically significant tongue-tie since submucosal ties, also called "posterior tongue-tie", may interfere with efficient breastfeeding. Whether tongue-tie interferes with speech articulation to a significant extent is currently unknown. Theoretically, articulation of some consonants (e.g., /s/, /th/, /r/) would be affected by impeded tongue movement. These articulation problems are, however, Less common than tongue-tie itself, and children and adults characteristically use various compensatory techniques of mouth opening and tongue movements. When it is indicated, frenotomy is performed by lifting the tongue and snipping the frenulum with scissors. Complications of frenotomy are rare and consist mainly of self-limited minor bleeding. The significance of posterior tongue tie and the long-term effects of frenotomy performed during early infancy are unresolved issues. PMID:21449157

  16. Bio-Mechanical Model of the Brain for a Per-Operative Image-Guided Neuronavigator Compensating for "Brain-Shift" Deformations

    CERN Document Server

    Bucki, Marek; Payan, Yohan

    2007-01-01

    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection.

  17. Gingival Recessions and Biomechanics

    DEFF Research Database (Denmark)

    Laursen, Morten Godtfredsen

    Gingival recessions and biomechanics “Tissue is the issue, but bone sets the tone.“ A tooth outside the cortical plate can result in loss of bone and development of a gingival recession. The presentation aims to show biomechanical considerations in relation to movement of teeth with gingival...... recessions. Gingival recession is a problem often in the region of the lower incisors. A micro-CT study on human autopsy material, performed at the University of Aarhus, confirmed that the anterior mandibular alveolar envelope is indeed very thin. The prognosis of a gingival recession can be improved...

  18. Does Anticoagulant Medication Alter Fracture-Healing? A Morphological and Biomechanical Evaluation of the Possible Effects of Rivaroxaban and Enoxaparin Using a Rat Closed Fracture Model.

    Science.gov (United States)

    Prodinger, Peter Michael; Burgkart, Rainer; Kreutzer, Kilian; Liska, Franz; Pilge, Hakan; Schmitt, Andreas; Knödler, Martina; Holzapfel, Boris Michael; Hapfelmeier, Alexander; Tischer, Thomas; Bissinger, Oliver

    2016-01-01

    Low molecular weight heparin (LMWH) is routinely used to prevent thromboembolism in orthopaedic surgery, especially in the treatment of fractures or after joint-replacement. Impairment of fracture-healing due to increased bone-desorption, delayed remodelling and lower calcification caused by direct osteoclast stimulation is a well-known side effect of unfractioned heparin. However, the effect of LMWH is unclear and controversial. Recent studies strongly suggest impairment of bone-healing in-vitro and in animal models, characterized by a significant decrease in volume and quality of new-formed callus. Since October 2008, Rivaroxaban (Xarelto) is available for prophylactic use in elective knee- and hip-arthroplasty. Recently, some evidence has been found indicating an in vitro dose independent reduction of osteoblast function after Rivaroxaban treatment. In this study, the possible influence of Rivaroxaban and Enoxaparin on bone-healing in vivo was studied using a standardized, closed rodent fracture-model. 70 male Wistar-rats were randomized to Rivaroxaban, Enoxaparin or control groups. After pinning the right femur, a closed, transverse fracture was produced. 21 days later, the animals were sacrificed and both femora harvested. Analysis was done by biomechanical testing (three-point bending) and micro CT. Both investigated substances showed histomorphometric alterations of the newly formed callus assessed by micro CT analysis. In detail the bone (callus) volume was enhanced (sign. for Rivaroxaban) and the density reduced. The bone mineral content was enhanced accordingly (sign. for Rivaroxaban). Trabecular thickness was reduced (sign. for Rivaroxaban). Furthermore, both drugs showed significant enlarged bone (callus) surface and degree of anisotropy. In contrast, the biomechanical properties of the treated bones were equal to controls. To summarize, the morphological alterations of the fracture-callus did not result in functionally relevant deficits. PMID:27455072

  19. Does Anticoagulant Medication Alter Fracture-Healing? A Morphological and Biomechanical Evaluation of the Possible Effects of Rivaroxaban and Enoxaparin Using a Rat Closed Fracture Model

    Science.gov (United States)

    Prodinger, Peter Michael; Burgkart, Rainer; Kreutzer, Kilian; Liska, Franz; Pilge, Hakan; Schmitt, Andreas; Knödler, Martina; Holzapfel, Boris Michael; Hapfelmeier, Alexander; Tischer, Thomas; Bissinger, Oliver

    2016-01-01

    Low molecular weight heparin (LMWH) is routinely used to prevent thromboembolism in orthopaedic surgery, especially in the treatment of fractures or after joint-replacement. Impairment of fracture-healing due to increased bone-desorption, delayed remodelling and lower calcification caused by direct osteoclast stimulation is a well-known side effect of unfractioned heparin. However, the effect of LMWH is unclear and controversial. Recent studies strongly suggest impairment of bone-healing in-vitro and in animal models, characterized by a significant decrease in volume and quality of new-formed callus. Since October 2008, Rivaroxaban (Xarelto) is available for prophylactic use in elective knee- and hip-arthroplasty. Recently, some evidence has been found indicating an in vitro dose independent reduction of osteoblast function after Rivaroxaban treatment. In this study, the possible influence of Rivaroxaban and Enoxaparin on bone-healing in vivo was studied using a standardized, closed rodent fracture-model. 70 male Wistar-rats were randomized to Rivaroxaban, Enoxaparin or control groups. After pinning the right femur, a closed, transverse fracture was produced. 21 days later, the animals were sacrificed and both femora harvested. Analysis was done by biomechanical testing (three-point bending) and micro CT. Both investigated substances showed histomorphometric alterations of the newly formed callus assessed by micro CT analysis. In detail the bone (callus) volume was enhanced (sign. for Rivaroxaban) and the density reduced. The bone mineral content was enhanced accordingly (sign. for Rivaroxaban). Trabecular thickness was reduced (sign. for Rivaroxaban). Furthermore, both drugs showed significant enlarged bone (callus) surface and degree of anisotropy. In contrast, the biomechanical properties of the treated bones were equal to controls. To summarize, the morphological alterations of the fracture-callus did not result in functionally relevant deficits. PMID:27455072

  20. Mother Tongue Tuition in Sweden - Curriculum Analysis and Classroom Experience

    OpenAIRE

    Anne REATH WARREN

    2013-01-01

    The model of Mother Tongue Tuition (MTT) which has developed in Sweden since the 1970’s offers speakers of languages other than Swedish the opportunity to request tuition in their mother tongue, from kindergarten through to year 12. It is unique among the major immigrant-receiving countries of the world yet little is known about MTT and its syllabus outside of its Nordic context. This article examines the syllabus for MTT from two perspectives; firstly using the framework of Constructive Alig...

  1. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra. PMID:21303323

  2. Biomechanical Comparison of Two Kinds of Internal Fixation in a Type C Zone Ⅱ Pelvic Fracture Model

    Institute of Scientific and Technical Information of China (English)

    Tao Wu; Wei Chen; Qi Zhang; Zhan-Le Zheng; Hong-Zhi Lyu; Yun-Wei Cui; Xiao-Dong Cheng

    2015-01-01

    Background:Unstable pelvic fractures are complex and serious injuries.Selection of a fixation method for these fractures remains a challenging problem for orthopedic surgeons.This study aimed to compare the stability of Tile C pelvic fractures fixed with two iliosacral (IS) screws and minimally invasive adjustable plate (MIAP) combined with one IS screw.Methods:This study was a biomechanical experiment.Six embalmed specimens of the adult pelvis were used.The soft tissue was removed from the specimens,and the spines from the fourth lumbar vertebra to the proximal one-third of both femurs were retained.The pubic symphysis,bilateral sacroiliac joints and ligaments,bilateral hip joints,bilateral sacrotuberous ligaments,and bilateral sacrospinous ligaments were intact.Tile C pelvic fractures were made on the specimens.The symphysis pubis was fixed with a plate,and the fracture on the posterior pelvic ring was fixed with two kinds of internal fixation in turn.The specimens were placed in a biomechanical machine at a standing neutral posture.A cyclic vertical load of up to 500 N was applied,and displacement was recorded.Shifts in the fracture gap were measured by a grating displacement sensor.Statistical analysis used:Paired-samples t-test.Results:Under the vertical load of 100,200,300,400,and 500 N,the average displacement of the specimens fixed with MIAP combined with one IS screw was 0.46,0.735,1.377,1.823,and 2.215 mm,respectively,which was significantly lower than that of specimens fixed with two IS screws under corresponding load (P < 0.05).Under the vertical load of 500 N,the shift in the fracture gap of specimens fixed with MIAP combined with one IS screw was 0.261 ± 0.095 mm,and that of specimens fixed with two IS screws was 0.809 ± 0.170 mm.The difference was significant (P < 0.05).Conclusion:The stability of Tile C pelvic fractures fixed with MIAP combined with one IS screw was better than that fixed with two IS screws.

  3. Dislocated Tongue Muscle Attachment and Cleft Palate Formation.

    Science.gov (United States)

    Kouskoura, T; El Fersioui, Y; Angelini, M; Graf, D; Katsaros, C; Chiquet, M

    2016-04-01

    In Pierre Robin sequence, a retracted tongue due to micrognathia is thought to physically obstruct palatal shelf elevation and thereby cause cleft palate. However, micrognathia is not always associated with palatal clefting. Here, by using the Bmp7-null mouse model presenting with cleft palate and severe micrognathia, we provide the first causative mechanism linking the two. In wild-type embryos, the genioglossus muscle, which mediates tongue protrusion, originates from the rostral process of Meckel's cartilage and later from the mandibular symphysis, with 2 tendons positive for Scleraxis messenger RNA. In E13.5 Bmp7-null embryos, a rostral process failed to form, and a mandibular symphysis was absent at E17.5. Consequently, the genioglossus muscle fibers were diverted toward the lingual surface of Meckel's cartilage and mandibles, where they attached in an aponeurosis that ectopically expressed Scleraxis. The deflection of genioglossus fibers from the anterior-posterior toward the medial-lateral axis alters their direction of contraction and necessarily compromises tongue protrusion. Since this muscle abnormality precedes palatal shelf elevation, it is likely to contribute to clefting. In contrast, embryos with a cranial mesenchyme-specific deletion of Bmp7 (Bmp7:Wnt1-Cre) exhibited some degree of micrognathia but no cleft palate. In these embryos, a rostral process was present, indicating that mesenchyme-derived Bmp7 is dispensable for its formation. Moreover, the genioglossus appeared normal in Bmp7:Wnt1-Cre embryos, further supporting a role of aberrant tongue muscle attachment in palatal clefting. We thus propose that in Pierre Robin sequence, palatal shelf elevation is not impaired simply by physical obstruction by the tongue but by a specific developmental defect that leads to functional changes in tongue movements.

  4. Do tongue ties affect breastfeeding?

    Science.gov (United States)

    Griffiths, D Mervyn

    2004-11-01

    This study assessed indications for and safety and outcome of simple division of tongue tie without an anesthetic. There were 215 infants younger than 3 months (mean 0-19 days) who had major problems breastfeeding, despite professional support. Symptoms, tongue tie details, safety of division, and complications were recorded. Feeding was assessed by the mothers immediately, at 24 hours, and 3 months after division. Prior to division, 88% had difficulty latching, 77% of mothers experienced nipple trauma, and 72% had a continuous feeding cycle. During division, 18% slept throughout; 60% cried more after division (mean 0-15 seconds). There were no significant complications. Within 24 hours, 80% were feeding better. Overall, 64% breastfed for at least 3 months (UK national average is 30%). Initial assessment, diagnosis, and help, followed by division and subsequent support by a qualified lactation consultant, might ensure that even more mothers and infants benefit from breastfeeding. PMID:15479660

  5. Linezolid induced black hairy tongue

    Directory of Open Access Journals (Sweden)

    Govindan Balaji

    2014-01-01

    Full Text Available Black hairy tongue (BHT also called as lingua villosa nigra, is a self limiting benign condition characterized by hypertrophy and elongation of filiform papillae of tongue with brown or black discoloration. Smoking, poor oral hygiene, xerostomia, using peroxide containing mouth washes, substance abuse and drugs (steroids, methyldopa, olanzapine, etc are the predisposing factors. However its occurrence in relation to linezolid ingestion among south Indians has not been reported in PubMed database. Here we report a case, where significant association of linezolid intake with BHT was found in a 10-year-old boy, who was treated with tablet linezolid for post surgical infection of left side radial neck fracture. This case is reported for the rarity of occurrence with linezolid therapy. According to Naranjo adverse drug reaction (ADR causality scale, the association of BHT due to linezolid in our case was probable.

  6. Ossifying chondrolipoma of the tongue

    Directory of Open Access Journals (Sweden)

    Tasić Desanka

    2012-01-01

    Full Text Available Introduction. Chondrolipomas and osteolipomas are uncommon variants of lipomatous tumors. Case report. We presented a 60-year-old woman with ossifying chondrolipoma of the tongue. Clinical examination revealed a firm nodular mass, located in the midline of the posterior region on the dorsal surface of the tongue. Histologically, the lesion was well-delimited showing areas of mature adipocytes arranged in lobules and separated by fibrous connective tissue septa, islands of mature cartilaginous tissue and osseous metaplasia. Trabeculae of lamellar bone within a fibro-fatty background were visible throughout the tumor. The cartilaginous areas merging centrally with bone formation and fatty marrow tissue were present, as well as the hematopoietic elements in the fatty marrow. The bone forming was found to be through both membranous and enchondral mechanisms. Conclusion. Ossifying chrondrolipoma with hematopoietic elements is extremely unusual lesion. This interesting entity should be kept in mind in the differential diagnosis of lingual lesions.

  7. 9 CFR 319.103 - Cured beef tongue.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Cured beef tongue. 319.103 Section 319... Cured beef tongue. In preparing “Cured Beef Tongue,” the application of curing solution to the fresh beef tongue shall not result in an increase in the weight of the cured beef tongue of more than...

  8. Tongue Color Analysis for Medical Application

    Directory of Open Access Journals (Sweden)

    Bob Zhang

    2013-01-01

    Full Text Available An in-depth systematic tongue color analysis system for medical applications is proposed. Using the tongue color gamut, tongue foreground pixels are first extracted and assigned to one of 12 colors representing this gamut. The ratio of each color for the entire image is calculated and forms a tongue color feature vector. Experimenting on a large dataset consisting of 143 Healthy and 902 Disease (13 groups of more than 10 samples and one miscellaneous group, a given tongue sample can be classified into one of these two classes with an average accuracy of 91.99%. Further testing showed that Disease samples can be split into three clusters, and within each cluster most if not all the illnesses are distinguished from one another. In total 11 illnesses have a classification rate greater than 70%. This demonstrates a relationship between the state of the human body and its tongue color.

  9. Somatosensory processing of the tongue in humans

    Directory of Open Access Journals (Sweden)

    Kiwako Sakamoto

    2010-11-01

    Full Text Available We review research on somatosensory (tactile processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex (SI, Brodmann area 40 (BA 40, and the anterior cingulate cortex (ACC.

  10. Morphological and Biomechanical Differences in the Elastase and AngII apoE−/− Rodent Models of Abdominal Aortic Aneurysms

    Directory of Open Access Journals (Sweden)

    Evan H. Phillips

    2015-01-01

    Full Text Available An abdominal aortic aneurysm (AAA is a potentially fatal cardiovascular disease with multifactorial development and progression. Two preclinical models of the disease (elastase perfusion and angiotensin II infusion in apolipoprotein-E-deficient animals have been developed to study the disease during its initiation and progression. To date, most studies have used ex vivo methods to examine disease characteristics such as expanded aortic diameter or analytic methods to look at circulating biomarkers. Herein, we provide evidence from in vivo ultrasound studies of the temporal changes occurring in biomechanical parameters and macromolecules of the aortic wall in each model. We present findings from 28-day studies in elastase-perfused rats and AngII apoE−/− mice. While each model develops AAAs specific to their induction method, they both share characteristics with human aneurysms, such as marked changes in vessel strain and blood flow velocity. Histology and nonlinear microscopy confirmed that both elastin and collagen, both important extracellular matrix molecules, are similarly affected in their levels and spatial distribution. Future studies could make use of the differences between these models in order to investigate mechanisms of disease progression or evaluate potential AAA treatments.

  11. Prevalence of Tongue Anomalies in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    F Mojarrad

    2008-07-01

    Full Text Available Background: Since the earliest days of medicine, the tongue has been considered a good reflection of systemic disease. Hippocrates, Galen and others considered the tongue to be barometer of health. In addition, the early diagnose of tongue lesions help to recognize the some systemic diseases. The purpose of this study was to determine the frequency of different morphological variations (anomaly of the tongue in a population of school children aged 6-12 years in Hamadan, Iran. Method: This cross sectional study was held with questionnaires and face-to-face interview among 1600 schoolchildren 6- 12 years old (800 girls, 800 boys with cluster randomize method were selected and examined. Each school was considered as a cluster that was selected by randomized selections in view of the total sample size. Results: Tongue lesions were found in 39.7% of the children. Overall, the most frequent condition was geographic tongue (27% and fissured tongue (12.9%. Microglosia and median rhomboid glossitis were in 0.2% of cases. Conclusion: The present study indicates a higher frequency of tongue abnormalities specially geographic tongue than previous studies however further investigation are required to indicate if hereditary and congenital factors play a vital role or if the environmental factors in this region vary with those in their regions. On the other hand the findings from this survey should serve as a baseline for future studies.

  12. Effectiveness of mechanical tongue cleaning on breath odour and tongue coating: a systematic review

    NARCIS (Netherlands)

    M.I. van der Sleen; D.E. Slot; E. van Trijffel; E.G. Winkel; G.A. van der Weijden

    2010-01-01

    Background:  The objective of this review was to summarize the available evidence regarding the effects of mechanical tongue cleaning compared with no mechanical tongue cleaning on breath odour and tongue coating (TC). Methods:  PubMed-MEDLINE, EMBASE and Cochrane-CENTRAL were searched to identify p

  13. Effectiveness of mechanical tongue cleaning on breath odour and tongue coating : a systematic review

    NARCIS (Netherlands)

    Van der Sleen, M. I.; Slot, D. E.; Van Trijffel, E.; Winkel, E. G.; Van der Weijden, G. A.

    2010-01-01

    Background: The objective of this review was to summarize the available evidence regarding the effects of mechanical tongue cleaning compared with no mechanical tongue cleaning on breath odour and tongue coating (TC). Methods: PubMed-MEDLINE, EMBASE and Cochrane-CENTRAL were searched to identify pot

  14. On seed physiology, biomechanics and plant phenology in Eragrostis tef

    NARCIS (Netherlands)

    Delden, van S.H.

    2011-01-01

    • Key words: Teff (Eragrostis tef (Zuccagni) Trotter), germination, temperature, model, leaf appearance, phyllochron, development rate, lodging, biomechanics, safety factor, flowering, heading, day length, photoperiod. • Background Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual g

  15. Tongue-Driven Wheelchair Out-Maneuvers the Competition

    Science.gov (United States)

    ... accurate joystick. The system employs a magnetic tongue stud worn by the user to wirelessly relay the ... a joystick. Tongue Drive System headset, magnetic tongue stud and smartphone. Source: Maysam Ghovanloo, Georgia Institute of ...

  16. Biomechanics of Tendon Transfers.

    Science.gov (United States)

    Livermore, Andrew; Tueting, Jonathan L

    2016-08-01

    The transfer of tendons in the upper extremity is a powerful technique to restore function to a partially paralyzed hand. The biomechanical principles of muscle tension and tendon excursion dictate motor function both in the native as well as transferred states. Appropriately tensioning transferred tendons to maximize the function of the associated muscle remains an area of focused research. Newer methods of tendon coaptation have proven similar in strength to the standard Pulvertaft weave, affording more options to the surgeon. PMID:27387073

  17. Tongue erosions and diet cola.

    Science.gov (United States)

    Jacob, Sharon E; Steele, Tace

    2007-04-01

    We report the case of a 38-year-old woman who presented with a 10-year history of painful ulcerations on her tongue. She reported that she drank large quantities of diet cola and some orange juice daily and that she used cinnamon-flavored toothpaste and mouthwash nightly. Patch testing elicited positive reactions to balsam of Peru (a fragrance as well as a flavoring agent put in cola drinks that cross-reacts with orange juice) and cinnamic aldehyde. She was diagnosed with allergic contact dermatitis. She was put on a restricted diet and a fragrance-free regimen, and her condition resolved. PMID:17500397

  18. Biomechanics of Pediatric Manual Wheelchair Mobility.

    Science.gov (United States)

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  19. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  20. Tongue controlled computer game: A new approach for rehabilitation of tongue motor function

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Jensen, Jim;

    2014-01-01

    Objective: To investigate the influence of tongue-disability, age and gender on motor performance for a tongue training paradigm involving playing a computer game using the Tongue Drive System (TDS). Design: Two controlled observational studies. Setting: A neurorehabilitation center and a dental...... school. Participants: In Study 1, eleven tongue-disabled patients with symptoms of dysphagia and dysarthria and 11 age-and sex-matched controls participated in tongue training. In Study 2, 16 healthy elderly and 16 healthy young participants volunteered. Intervention: In study 1 and study 2, the tongue...... training lasted 30 min and 40 min respectively. The participants were instructed to play a computer game with the tongue using TDS. Main Outcome Measures: Motor performance was compared between groups in both studies. Correlation analyses were performed between age and relative improvement in performance...

  1. Repeated tongue lift movement induces neuroplasticity in corticomotor control of tongue and jaw muscles in humans

    DEFF Research Database (Denmark)

    Komoda, Yoshihiro; Lida, Takashi; Kothari, Mohit;

    2015-01-01

    This study investigated the effect of repeated tongue lift training (TLT) on the excitability of the corticomotor representation of the human tongue and jaw musculature. Sixteen participants performed three series of TLT for 41min on each of 5 consecutive days. Each TLT series consisted of two....... EMG recordings from the left and right tongue dorsum and masseter muscles were made at three pressure levels (5kPa, 10kPa, 100% tongue lift), and tongue, masseter, and first dorsal interosseous (FDI) MEPs were measured. There were no significant day-to-day differences in the tongue pressure during...... maximum voluntary contractions. The amplitudes and thresholds of tongue and masseter MEPs after TLT on Day 5 were respectively higher and lower than before TLT on Day 1 (Ptongue and masseter MEP areas; no significant changes occurred in MEP onset...

  2. Cysticercosis of tongue — A case report

    OpenAIRE

    Meher, Ravi; Gupta, Bulbul; Aggarwal, Sunil; Passey, J. C.

    2006-01-01

    Tongue is a rare site for cysticercosis cellulosae. Very few cases of solitary cysticercosis of tongue have been reported. We are reporting one such case. Also a review of reported cases in literature, etoipathogenesis, clinical course and management is being described.

  3. Looking Mother Tongue Instruction through Different Perspectives

    Science.gov (United States)

    Regmi, Kapil Dev

    2008-01-01

    Mother Tongue Instruction has been a debatable issue since long. There may be two options in the medium of instruction: either to teach especially primary and preprimary schoolchildren in their own mother tongue or continue using second or foreign language as the medium of instruction. Both of the approaches bear some pros and cons. This article…

  4. A Brief Analysis on Slips of Tongue

    Institute of Scientific and Technical Information of China (English)

    孟庆瑜

    2015-01-01

    The phenomenon of slips of tongue is very common in our daily life.And it is closely related to some psychological reasons.This paper aims to introduce the research about this phenomenon, to present the types of slips of tongue and some analysis on it.

  5. Tongue as the Window to the Heart

    Institute of Scientific and Technical Information of China (English)

    Tsung O. Cheng

    2011-01-01

    To the Editor: I read with great interest your masterful article on study of the tongue in patients with coronary heart disease.Tongue is,indeed,the window to the heart.Many cardiovascular diseases including coronary heart disease can be accurately diagnosed by the Chinese traditional physicians by careful inspection of the tongue(Figure 1).

  6. Lingual neurofibroma causing dysaesthesia of the tongue

    DEFF Research Database (Denmark)

    Lykke, Eva; Nørgaard, Tove; Rye Rasmussen, Eva

    2013-01-01

    of otorhinolaryngology with irritation and dysaesthesia of the lateral aspect of the tongue. The only finding was a slightly red area from which a biopsy was taken. The macroscopic findings observed by the surgeon were consistent with normal tongue tissue. The histopathological examination showed a small, rounded tumour...

  7. Tongue force in patients with myasthenia gravis

    NARCIS (Netherlands)

    Weijnen, FG; Kuks, JBM; van der Glas, HW; Wassenberg, MWM; Bosman, F

    2000-01-01

    Objectives - The aim was to study tongue force in patients with bulbar myasthenia gravis and compare it with that of patients with ocular myasthenia gravis, patients in clinical remission who previously suffered from bulbar myasthenia gravis, and healthy subjects. Material and methods - Tongue force

  8. Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion.

    Science.gov (United States)

    Maezawa, Hitoshi; Mima, Tatsuya; Yazawa, Shogo; Matsuhashi, Masao; Shiraishi, Hideaki; Funahashi, Makoto

    2016-03-01

    Tongue movements contribute to oral functions including swallowing, vocalizing, and breathing. Fine tongue movements are regulated through efferent and afferent connections between the cortex and tongue. It has been demonstrated that cortico-muscular coherence (CMC) is reflected at two frequency bands during isometric tongue protrusions: the beta (β) band at 15-35Hz and the low-frequency band at 2-10Hz. The CMC at the β band (β-CMC) reflects motor commands from the primary motor cortex (M1) to the tongue muscles through hypoglossal motoneuron pools. However, the generator mechanism of the CMC at the low-frequency band (low-CMC) remains unknown. Here, we evaluated the mechanism of low-CMC during isometric tongue protrusion using magnetoencephalography (MEG). Somatosensory evoked fields (SEFs) were also recorded following electrical tongue stimulation. Significant low-CMC and β-CMC were observed over both hemispheres for each side of the tongue. Time-domain analysis showed that the MEG signal followed the electromyography signal for low-CMC, which was contrary to the finding that the MEG signal preceded the electromyography signal for β-CMC. The mean conduction time from the tongue to the cortex was not significantly different between the low-CMC (mean, 80.9ms) and SEFs (mean, 71.1ms). The cortical sources of low-CMC were located significantly posterior (mean, 10.1mm) to the sources of β-CMC in M1, but were in the same area as tongue SEFs in the primary somatosensory cortex (S1). These results reveal that the low-CMC may be driven by proprioceptive afferents from the tongue muscles to S1, and that the oscillatory interaction was derived from each side of the tongue to both hemispheres. Oscillatory proprioceptive feedback from the tongue muscles may aid in the coordination of sophisticated tongue movements in humans.

  9. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  10. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    Science.gov (United States)

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  11. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    Directory of Open Access Journals (Sweden)

    Rexilius Jan

    2005-03-01

    Full Text Available Abstract Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR and 3D ultrasound (US image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies.

  12. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue.

    Science.gov (United States)

    Lu, Lin; Hu, Xianqiao; Tian, Shiyi; Deng, Shaoping; Zhu, Zhiwei

    2016-05-01

    This paper deals with a novel visualized attributive analysis approach for characterization and quantification of rice taste flavor attributes (softness, stickiness, sweetness and aroma) employing a multifrequency large-amplitude pulse voltammetric electronic tongue. Data preprocessing methods including Principal Component Analysis (PCA) and Fast Fourier Transform (FFT) were provided. An attribute characterization graph was represented for visualization of the interactive response in which each attribute responded by specific electrodes and frequencies. The model was trained using signal data from electronic tongue and attribute scores from artificial evaluation. The correlation coefficients for all attributes were over 0.9, resulting in good predictive ability of attributive analysis model preprocessed by FFT. This approach extracted more effective information about linear relationship between electronic tongue and taste flavor attribute. Results indicated that this approach can accurately quantify taste flavor attributes, and can be an efficient tool for data processing in a voltammetric electronic tongue system. PMID:27086094

  13. Biomechanical strain of goldsmiths.

    Science.gov (United States)

    Cândido, Paula Emanuela Fernandes; Teixeira, Juliana Vieira Schmidt; Moro, Antônio Renato Pereira; Gontijo, Leila Amaral

    2012-01-01

    The work of the goldsmiths consists in the manufacture of jewelry. The piece, be it an earring, bracelet or necklace, is hand-assembled. This task requires precision, skill, kindness and patience. In this work, we make use of tools such as cuticle clippers and rounded tip, beads or precious stones and also pieces of metal. This type of activity requires a biomechanical stress of hands and wrists. In order to quantify the biomechanical stress, we performed a case study to measure the movements performed by an assembly of pieces of jewelry. As method for research, filming was done during assembly of parts to a paste, using a Nikon digital camera, for 1 (one) hour. The film was edited by Kinovea software, and the task was divided into cycles, each cycle corresponds to a complete object. In one cycle, there are four two movements of supination and pronation movements of the forearm. The cycle lasts approximately sixteen seconds, totaling 1800 cycles in eight hours. Despite the effort required of the wrists, the activity shows no complaints from the employees, but this fact does not mischaracterizes the ability of employees to acquire repetitive strain injuries and work-related musculoskeletal disorders. PMID:22317096

  14. CLINICAL PATHOLOGICAL FEATURE OF EARLY TONGUE AMYLOIDOSIS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the clinical pathological feature and diagnostic criteria of tongue amyloidosis (AL).Methods During 1992 to 2005, 25 patients pathologically diagnosed as tongue AL in our hospital were reviewed retrospectively, and all of them had no enlarged tongue. Haematoxylin and eosin (HE) and immunohistochemical staining were used to detect the amyloid deposition on the tongue.Results Totally 84 % (21/25) patients had symptoms of xerostomia and taste-blindness, 44 % (11/25) patients complained of activity limitation of tongue. Macroscopic observation showed mucosa pallescence, punctuate hemorrhage, red grain particles, and ulcers on the tongue. HE staining indicated amyloid depositions in basement membrane,muscle cell, vessel wall, and nerve fiber. Immunohistochemical study demonstrated kappa light-chain deposition in 64%(16/25) cases, and lambda light-chain deposition in 36 % (9/25) cases. They presented in vessel wall, nerve fiber, and muscle cells.Conclusion The biopsy is an important means for the diagnosis of early tongue AL, and the wide variety of amyloid light chain is helpful to differential diagnosis.

  15. Biomechanics of knife stab attacks.

    Science.gov (United States)

    Chadwick, E K; Nicol, A C; Lane, J V; Gray, T G

    1999-10-25

    Equipment, materials and methods for the measurement of the biomechanical parameters governing knife stab attacks have been developed and data have been presented that are relevant to the improvement of standards for the testing of stab-resistant materials. A six-camera Vicon motion analysis system was used to measure velocity, and derive energy and momentum during the approach phase of the attack and a specially developed force-measuring knife was used to measure three-dimensional forces and torque during the impact phase. The body segments associated with the knife were modelled as a series of rigid segments: trunk, upper arm, forearm and hand. The velocities of these segments, together with knowledge of the mass distribution from biomechanical tables, allowed the calculation of the individual segment energy and momentum values. The instrumented knife measured four components of load: axial force (along the length of the blade), cutting force (parallel to the breadth of the blade), lateral force (across the blade) and torque (twisting action) using foil strain gauges. Twenty volunteers were asked to stab a target with near maximal effort. Three styles of stab were used: a short thrust forward, a horizontal style sweep around the body and an overhand stab. These styles were chosen based on reported incidents, providing more realistic data than had previously existed. The 95th percentile values for axial force and energy were 1885 N and 69 J, respectively. The ability of current test methods to reproduce the mechanical parameters measured in human stab attacks has been assessed. It was found that current test methods could reproduce the range of energy and force values measured in the human stab attacks, although the simulation was not accurate in some respects. Non-axial force and torque values were also found to be significant in the human tests, but these are not reproduced in the standard mechanical tests.

  16. Mother Tongue Tuition in Sweden - Curriculum Analysis and Classroom Experience

    Directory of Open Access Journals (Sweden)

    Anne REATH WARREN

    2013-10-01

    Full Text Available The model of Mother Tongue Tuition (MTT which has developed in Sweden since the 1970’s offers speakers of languages other than Swedish the opportunity to request tuition in their mother tongue, from kindergarten through to year 12. It is unique among the major immigrant-receiving countries of the world yet little is known about MTT and its syllabus outside of its Nordic context. This article examines the syllabus for MTT from two perspectives; firstly using the framework of Constructive Alignment, secondly from the perspective of what is hidden. The intended syllabus is revealed as well-aligned, but the hidden curriculum impedes successful enactment in many contexts. Examples from case studies in a larger on-going research project offer an alternate approach to syllabus implementation when the negative effects of the hidden curriculum are challenged. While highly context-specific, this model may represent a step in the right direction for implementation of the syllabus.

  17. Electronic Tongue Containing Redox and Conductivity Sensors

    Science.gov (United States)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  18. Automatic Extraction of Tongue Coatings from Digital Images: A Traditional Chinese Medicine Diagnostic Tool

    Institute of Scientific and Technical Information of China (English)

    Linda Yunlu BAI; SHI Yundi; WU Jia; ZHANG Yonghong; WONG Weiliang; WU Yu; BAI Jing

    2009-01-01

    In traditional Chinese medicine, the coating on the tongue is considered to be a reflection of various pathologic factors. However, the conventional method to examine the tongue lacks an acceptable standard and does not provide the means for sharing information. This paper describes a segmentation method to extract tongue coatings. First, the tongue body was extracted from the original image using the watershed transform. Then, a threshold method was applied to the image to eliminate the light from the camera flash.Finally, a threshold method using the Otsu model in combination with a splitting-merging method was used in the red, green, and blue (RGB) space to extract the thin coating. The combination of the above two methods is applied in the hue, saturation, and value (HSV) space to extract the thick coating. The feasibility of this method is tested by experiments, and the accuracy of segmentation is 95.9%.

  19. ADIEU TO TONGUE TIE. LINGUAL FRENECTOMY: A CASE REPORT

    OpenAIRE

    Rizwan Sanadi; Jayant Ambulgekar; Manan Doshi

    2013-01-01

    A Frenum is a fold of mucous membrane, usually with enclosed muscle fibers, that attaches the lips and cheeks to the alveolar mucosa and/or mucosa and underlying periosteum. Tongue tie or ankyloglossia is a developmental anomaly of the tongue characterized by an abnormally short, thick lingual frenum resulting in limitation of tongue movement. It causes difficulty in speech articulation due to limitation in tongue movement. In this article we report a case of 24 years old female with Tongue t...

  20. Accounting for the tongue-and-groove effect using a robust direct aperture optimization approach

    International Nuclear Information System (INIS)

    Purpose: Traditionally, the tongue-and-groove effect due to the multileaf collimator architecture in intensity-modulated radiation therapy (IMRT) has typically been deferred to the leaf sequencing stage. The authors propose a new direct aperture optimization method for IMRT treatment planning that explicitly incorporates dose calculation inaccuracies due to the tongue-and-groove effect into the treatment plan optimization stage. Methods: The authors avoid having to accurately estimate the dosimetric effects of the tongue-and-groove architecture by using lower and upper bounds on the dose distribution delivered to the patient. They then develop a model that yields a treatment plan that is robust with respect to the corresponding dose calculation inaccuracies. Results: Tests on a set of ten clinical head-and-neck cancer cases demonstrate the effectiveness of the new method in developing robust treatment plans with tight dose distributions in targets and critical structures. This is contrasted with the very loose bounds on the dose distribution that are obtained by solving a traditional treatment plan optimization model that ignores tongue-and-groove effects in the treatment planning stage. Conclusions: A robust direct aperture optimization approach is proposed to account for the dosimetric inaccuracies caused by the tongue-and-groove effect. The experiments validate the ability of the proposed approach in designing robust treatment plans regardless of the exact consequences of the tongue-and-groove architecture.

  1. Amperometric Bioelectronic Tongue for glucose determination

    Directory of Open Access Journals (Sweden)

    Yazan Al-Issa

    2015-03-01

    Full Text Available An amperometric Bioelectronic Tongue is reported for glucose determination that contains eight sensor electrodes constructed using different metal electrodes (Pt, Au, oxidoreductase enzymes (glucose oxidase, ascorbate oxidase, uricase, and membrane coatings (Nafion, chitosan. The response to varying concentrations of glucose, ascorbic acid, uric acid, and acetaminophen was tested for two models, concentration determination by current density measurements at individual electrodes and concentration determination by a linear regression model for the entire electrode array. The reduced chi-squared for the full array model was found to be about one order of magnitude lower than that for the individual-electrode model. Discrimination of glucose from chemical interference by the other three species is accomplished through a combination of enzyme catalysis, metal electrocatalysis, and membrane surface charge. The benefit of incorporating enzyme electrodes into the sensor array is illustrated by the lower correlation coefficients between different enzyme electrodes relative to non-enzyme coated electrodes. This approach can be more generally applied to detection of other substrates of oxidoreductase enzymes.

  2. Tongue tie: the evidence for frenotomy.

    Science.gov (United States)

    Brookes, Alastair; Bowley, Douglas M

    2014-11-01

    Tongue tie or ankyloglossia is a congenital variation characterised by a short lingual frenulum which may result in restriction of tongue movement and thus impact on function. Tongue tie division (frenotomy) in affected infants with breastfeeding problems yields objective improvements in milk production and breastfeeding characteristics, including objective scoring measures, weight gain and reductions in maternal pain. For the majority of mothers, frenotomy appears to enhance maintenance of breastfeeding. Tongue tie division is a safe procedure with minimal complications. The commonest complication is minor bleeding. Recurrence leading to redivision occurs with rates of 0.003-13% reported; this appears to be more common with posterior than anterior ties. There are limited reports indicating that prophylactic frenotomy may promote subsequent speech development; however, evidence is currently insufficient to condone this practice and further good quality research into this area is warranted. PMID:25258296

  3. Investigation of the Chinese rolling tongue consonants

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ligang; Keni'ti Kido

    2000-01-01

    Some special monosyllabic Chinese words which contain rolling tongue consonants are discussed. Based on the spectrum analysis, the special characteristic is found at a frequency higher than 3 kHz. The distinction is not only in the consonant part but also in the vowel part.The people in the north region of China distinguish the rolling tongue consonants from the straight tongue consonants both in utterance and in hearing, but those in the south region of China do not. The results of the hearing investigation using synthesized speech show that the consonant part corresponding to the normal one has more effect than the vowel part on the recognition of the words containing the rolling tongue consonant.

  4. Transfer of mother tongue in SLA

    Institute of Scientific and Technical Information of China (English)

    米海燕

    2012-01-01

    In SLA transfer of mother tongue can not be overlooked. And we group it into positive transfer and negative transfer, which are reflected on different levels including pronunciation, vocabulary, syntax and culture.

  5. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  6. Biomechanics of occlusion--implications for oral rehabilitation.

    Science.gov (United States)

    Peck, C C

    2016-03-01

    The dental occlusion is an important aspect of clinical dentistry; there are diverse functional demands ranging from highly precise tooth contacts to large crushing forces. Further, there are dogmatic, passionate and often diverging views on the relationship between the dental occlusion and various diseases and disorders including temporomandibular disorders, non-carious cervical lesions and tooth movement. This study provides an overview of the biomechanics of the masticatory system in the context of the dental occlusion's role in function. It explores the adaptation and precision of dental occlusion, its role in bite force, jaw movement, masticatory performance and its influence on the oro-facial musculoskeletal system. Biomechanics helps us better understand the structure and function of biological systems and consequently an understanding of the forces on, and displacements of, the dental occlusion. Biomechanics provides insight into the relationships between the dentition, jaws, temporomandibular joints, and muscles. Direct measurements of tooth contacts and forces are difficult, and biomechanical models have been developed to better understand the relationship between the occlusion and function. Importantly, biomechanical research will provide knowledge to help correct clinical misperceptions and inform better patient care. The masticatory system demonstrates a remarkable ability to adapt to a changing biomechanical environment and changes to the dental occlusion or other components of the musculoskeletal system tend to be well tolerated. PMID:26371622

  7. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  8. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Ghadyani, HR [SUNY Farmingdale State College, Farmingdale, NY (United States); Bastien, AD; Lutz, NN [Univeristy Massachusetts Lowell, Lowell, MA (United States); Hepel, JT [Rhode Island Hospital, Providence, RI (United States)

    2015-06-15

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  9. Tongue coating removal: comparison of the efficiency of three techniques

    Directory of Open Access Journals (Sweden)

    Luciana Sassa Marocchio

    2009-12-01

    Full Text Available Objective: Compare the efficiency of three techniques for tongue cleaning, by comparison of the amount of tongue coating removed by each technique. Methods: Tongue cleaning was performed using an Oral B 30 (Procter&Gamble, São Paulo, Brasil toothbrush; a Saude Bucal (Odomed, São Paulo, Brasil tongue scraper, and a new tongue cleaning technique, consisting of a tongue cleaner with bristles and a scraping edge and a Halitus® (Halitus, Campinas, Brasil tongue cleaning spray solution. The study design used 15 healthy volunteers who were submitted to each of the tongue cleaning techniques, once every 21 days. The volunteers were instructed to abstain from any procedure to clean their tongues, for 48 hours before the application of each technique. At each scheduled time, a dental professional performed a single standardized tongue cleaning procedure using one of the cleaning methods, and inserted the removed tongue coating into a test tube. Results: The results were obtained by weighing the tube test with tongue coating after the cleaning procedure (final weight deducting the weight of the empty tube test (initial weight. The findings showed that the new tongue cleaning technique (combination of a tongue cleaner with brush and scraper plus a tongue cleaning spray solution was statistically superior in removing tongue coating when compared with the tongue scraper or toothbrush, probably due to the technique and materials used. Conclusion: The tongue cleaning procedure, when performed within a specific technique, associated with products that improve the cleaning action, makes possible to reach better results, allowing the removal of more tongue coating.

  10. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  11. Monitoring dissolved orthophosphate in a struvite precipitation reactor with a voltammetric electronic tongue.

    Science.gov (United States)

    Aguado, Daniel; Barat, Ramón; Soto, Juan; Martínez-Mañez, Ramón

    2016-10-01

    This study demonstrates the feasibility of using a voltammetric electronic tongue to monitor effluent dissolved orthophosphate concentration in a struvite precipitation reactor. The electrochemical response of the electronic tongue to the presence of orthophosphate in samples collected from the effluent of the precipitation reactor is used to predict orthophosphate concentration via a statistical model based on Partial Least Squares (PLS) Regression. PLS predictions were suitable for this monitoring application in which precipitation efficiencies higher than 80% (i.e., effluent dissolved orthophosphate concentrations lower than 40mg P-PO4(3-) L(-1)) could be considered as indicator of good process performance. The electronic tongue consisted of a set of metallic (noble and non-noble) electrodes housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. Fouling problems were prevented via a simple mechanical polishing of the electrodes. The measurement of each sample with the electronic tongue was done in less than 3s. Conductivity of the samples only affected the electronic tongue marginally, being the main electrochemical response due to the orthophosphate concentration in the samples. Copper, silver, iridium and rhodium were the electrodes that exhibited noticeable response correlated with the dissolved orthophosphate concentration variations, while gold, platinum and especially cobalt and nickel were the less useful electrodes for this application. PMID:27474282

  12. A biomechanical model of swallowing for understanding the influence of saliva and food bolus viscosity on flavour release

    CERN Document Server

    De Loubens, Clément; Doyennette, Marion; Tréléa, Ioan Cristian; Souchon, Isabelle

    2013-01-01

    After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were applied to predict aroma release kinetics. Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food bolus viscosity has a strong impact on mucosa coating and on flavour rel...

  13. Biomechanics of pediatric manual wheelchair mobility

    Directory of Open Access Journals (Sweden)

    Brooke A. Slavens

    2015-09-01

    Full Text Available Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the hand-rim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces and moments of 14 children with spinal cord injury (SCI during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  14. [Research progress on the risk factors of geographic tongue].

    Science.gov (United States)

    Huamei, Yang; Yu, Zhou; Xin, Zeng; Ga, Liao; Qianming, Chen

    2015-02-01

    Geographic tongue, also called benign migratory glossitis, is a common and superficial benign inflammatory disorder that affects the tongue epithelium. The majority of geographic tongue lesions typically manifest as irregular central erythematous patches. These lesions, which are caused by the loss of filiform papillae, are defined by an elevated whitish band-like border that can change location, size, and pattern over a period of time. Histological observations of the oral mucosa affected by geographic tongue revealed nonspecific inflammation. Some reports described cases of migratory stomatitis, wherein lesions simultaneously manifested on the extra lingual oral mucosa. This condition is also called ectopic geographic tongue, which is clinically and histologically similar to the type normally confined to the tongue. In most cases, patients are asymptomatic and do not require treatment. The condition may spontaneously exhibit periods of remission and exacerbation with good prognosis. The specific etiology of geographic tongue remains unknown. Geographic tongue is age-related and is prevalent among young individuals. Various etiological factors that have been suggested in literature include immunological factors, genetic factors, atopic or allergic tendency, emotional stress, tobacco consumption, hormonal disturbances, and zinc deficiency. Geographic tongue may coexist with other disorders, such as fissured tongue, psoriasis, diabetes mellitus, gastroin- testinal diseases, burning mouth syndrome, and Down syndrome. Experts currently disagree on whether geographic tongue is an oral manifestation of psoriasis. Moreover, some scholars suggest that geographic tongue is a prestage of fissured tongue. The objective of this review is to summarize current research on risk factors of geographic tongue. PMID:25872308

  15. Repeated tongue lift movement induces neuroplasticity in corticomotor control of tongue and jaw muscles in humans.

    Science.gov (United States)

    Komoda, Yoshihiro; Iida, Takashi; Kothari, Mohit; Komiyama, Osamu; Baad-Hansen, Lene; Kawara, Misao; Sessle, Barry; Svensson, Peter

    2015-11-19

    This study investigated the effect of repeated tongue lift training (TLT) on the excitability of the corticomotor representation of the human tongue and jaw musculature. Sixteen participants performed three series of TLT for 41 min on each of 5 consecutive days. Each TLT series consisted of two pressure levels (5 kPa and 10 kPa). All participants underwent transcranial magnetic stimulation (TMS) and electromyographic (EMG) recordings of motor evoked potentials (MEPs) in four sessions: (1) before TLT on Day 1 (baseline), (2) after TLT on Day 1, (3) before TLT on Day 5, and (4) after TLT on Day 5. EMG recordings from the left and right tongue dorsum and masseter muscles were made at three pressure levels (5 kPa, 10 kPa, 100% tongue lift), and tongue, masseter, and first dorsal interosseous (FDI) MEPs were measured. There were no significant day-to-day differences in the tongue pressure during maximum voluntary contractions. The amplitudes and thresholds of tongue and masseter MEPs after TLT on Day 5 were respectively higher and lower than before TLT on Day 1 (Ptongue and masseter MEP areas; no significant changes occurred in MEP onset latencies. FDI MEP parameters (amplitude, threshold, area, latency) were not significantly different between the four sessions. Our findings suggest that repeated TLT can trigger neuroplasticity reflected in increased excitability of the corticomotor representation of not only the tongue muscles but also the masseter muscles.

  16. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: A histological and biomechanical study

    Science.gov (United States)

    Cummings, Stephen H; Grande, Daniel A; Hee, Christopher K; Kestler, Hans K; Roden, Colleen M; Shah, Neil V; Razzano, Pasquale; Dines, David M; Chahine, Nadeen O

    2012-01-01

    Purpose: Repairing tendon injuries with recombinant human platelet-derived growth factor-BB has potential for improving surgical outcomes. Augmentation of sutures, a critical component of surgical tendon repair, by coating with growth factors may provide a clinically useful therapeutic device for improving tendon repair. Therefore, the purpose of this study was to (a) coat Vicryl sutures with a defined dose of recombinant human platelet-derived growth factor-BB without additional coating excipients (e.g. gelatin), (b) quantify the recombinant human platelet-derived growth factor-BB released from the suture, and (c) use the recombinant human platelet-derived growth factor-BB-coated sutures to enhance tendon repair in a rat Achilles tendon transection model. Methods: Vicryl sutures were coated with 0, 0.3, 1.0, and 10.0 mg/mL concentrations of recombinant human platelet-derived growth factor-BB using a dip-coating process. In vitro release was quantified by an enzyme-linked immunosorbent assay. Acutely transected rat Achilles tendons were repaired using one of the four suture groups (n = 12 per group). Four weeks following repair, the tensile biomechanical and histological (i.e. collagen organization and angiogenesis) properties were determined. Results: A dose-dependent bolus release of recombinant human platelet-derived growth factor-BB occurred within the first hour in vitro, followed by a gradual release over 48 h. There was a significant increase in ultimate tensile strength (p < 0.01) in the two highest recombinant human platelet-derived growth factor-BB dose groups (1.9 ± 0.5 and 2.1 ± 0.5 MPa) relative to controls (1.0 ± 0.2 MPa). The modulus significantly increased (p = 0.031) with the highest recombinant human platelet-derived growth factor-BB dose group (7.2 ± 3.8 MPa) relative to all other groups (control: 3.5 ± 0.9 MPa). No significant differences were identified for the maximum load or stiffness. The histological collagen and angiogenesis scores

  17. The influence of bone surface availability in bone remodelling - A mathematical model including coupled geometrical and biomechanical regulations of bone cells

    OpenAIRE

    Pivonka, Peter; Buenzli, Pascal R.; Scheiner, Stefan; Hellmich, Christian; Dunstan, Colin R.

    2012-01-01

    Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms have been identified in the interaction between osteoclasts and osteoblasts. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells...

  18. Comparative Biomechanical Modeling of Metatherian and Placental Saber-Tooths: A Different Kind of Bite for an Extreme Pouched Predator.

    Directory of Open Access Journals (Sweden)

    Stephen Wroe

    Full Text Available Questions surrounding the dramatic morphology of saber-tooths, and the presumably deadly purpose to which it was put, have long excited scholarly and popular attention. Among saber-toothed species, the iconic North American placental, Smilodon fatalis, and the bizarre South American sparassodont, Thylacosmilus atrox, represent extreme forms commonly forwarded as examples of convergent evolution. For S. fatalis, some consensus has been reached on the question of killing behaviour, with most researchers accepting the canine-shear bite hypothesis, wherein both head-depressing and jaw closing musculatures played a role in delivery of the fatal bite. However, whether, or to what degree, T. atrox may have applied a similar approach remains an open question. Here we apply a three-dimensional computational approach to examine convergence in mechanical performance between the two species. We find that, in many respects, the placental S. fatalis (a true felid was more similar to the metatherian T. atrox than to a conical-toothed cat. In modeling of both saber-tooths we found that jaw-adductor-driven bite forces were low, but that simulations invoking neck musculature revealed less cranio-mandibular stress than in a conical-toothed cat. However, our study also revealed differences between the two saber-tooths likely reflected in the modus operandi of the kill. Jaw-adductor-driven bite forces were extremely weak in T. atrox, and its skull was even better-adapted to resist stress induced by head-depressors. Considered together with the fact that the center of the arc described by the canines was closer to the jaw-joint in Smilodon, our results are consistent with both jaw-closing and neck musculature playing a role in prey dispatch for the placental, as has been previously suggested. However, for T. atrox, we conclude that the jaw-adductors probably played no major part in the killing bite. We propose that the metatherian presents a more complete commitment

  19. Intrabody application of eptotermin alpha enhances bone formation in osteoporotic fractures of the lumbar spine; however, fails to increase biomechanical stability - results of an experimental sheep model.

    Science.gov (United States)

    Eschler, Anica; Roepenack, Paula; Herlyn, Philipp Karl Ewald; Roesner, Jan; Martin, Heiner; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg

    2015-01-01

    This study analyses the effect of eptotermin α application into fractured vertebrae. It is hypothesized that eptotermin α is capable to enhance bony healing of the osteoporotic spine. In 10 Merino sheep osteoporosis induction was performed by ovariectomy, corticosteroid therapy and calcium/phosphorus/vitamin D-deficient diet; followed by standardized creation of lumbar vertebral compression fractures (VCFs) type A3.1 and consecutive fracture reduction/fixation using expandable mesh cages. Randomly, intravertebral eptotermin α (G1) or no augmentation was added (G2). Macroscopic, micro-CT, and biomechanical evaluation assessed bony consolidation two months postoperatively: Micro-CT data revealed bony consolidation for all cases with significant increased callus development for G2 (60%) and BV/TV (bone volume/total volume 73.45%, osteoporotic vertebrae 35.76%). Neither group showed improved biomechanical stability. Eptotermin α enhanced mineralisation in VCFs in an experimental setup with use of cementless augmentation via an expandable cage. However, higher bone mineral density did not lead to superior biomechanical properties.

  20. Judo Biomechanical Optimization

    CERN Document Server

    Sacripanti, Attilio

    2016-01-01

    In this paper, for the first time, there is comprehensively tackling the problem of biomechanical optimization of a sport of situation such as judo. Starting from the optimization of more simple sports, optimization of this kind of complex sports is grounded on a general physics tool such as the analysis of variation. The objective function is divided for static and dynamic situation of Athletes couple, and it is proposed also a sort of dynamic programming problem Strategic Optimization. A dynamic programming problem is an optimization problem in which decisions have to be taken sequentially over several time periods linked in some fashion. A strategy for a dynamic programming problem is just a contingency plan, a plan that specifies what is to be done at each stage as a function of all that has transpired up to that point. It is possible to demonstrate, under some conditions, that a Markovian optimal strategy is an optimal strategy for the dynamic programming problem under examination. At last we try to appr...

  1. Electronic tongue: An analytical gustatory tool

    Directory of Open Access Journals (Sweden)

    Rewanthwar Swathi Latha

    2012-01-01

    Full Text Available Taste is an important organoleptic property governing acceptance of products for administration through mouth. But majority of drugs available are bitter in taste. For patient acceptability and compliance, bitter taste drugs are masked by adding several flavoring agents. Thus, taste assessment is one important quality control parameter for evaluating taste-masked formulations. The primary method for the taste measurement of drug substances and formulations is by human panelists. The use of sensory panelists is very difficult and problematic in industry and this is due to the potential toxicity of drugs and subjectivity of taste panelists, problems in recruiting taste panelists, motivation and panel maintenance are significantly difficult when working with unpleasant products. Furthermore, Food and Drug Administration (FDA-unapproved molecules cannot be tested. Therefore, analytical taste-sensing multichannel sensory system called as electronic tongue (e-tongue or artificial tongue which can assess taste have been replacing the sensory panelists. Thus, e-tongue includes benefits like reducing reliance on human panel. The present review focuses on the electrochemical concepts in instrumentation, performance qualification of E-tongue, and applications in various fields.

  2. Kinesiology/Biomechanics: Perspectives and Trends.

    Science.gov (United States)

    Atwater, Anne E.

    1980-01-01

    Past and recent developments and future directions in kinesiology and biomechanics are reviewed. Similarities and differences between these two areas are clarified. The areas of kinesiology and biomechanics have distinct unique qualities and should be treated as separate disciplines. (CJ)

  3. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  4. Undulating tongue in Wilson′s disease

    Directory of Open Access Journals (Sweden)

    M Nagappa

    2014-01-01

    Full Text Available We report an unusual occurrence of involuntary movement involving the tongue in a patient with confirmed Wilson′s disease (WD. She manifested with slow, hypophonic speech and dysphagia of 4 months duration, associated with pseudobulbar affect, apathy, drooling and dystonia of upper extremities of 1 month duration. Our patient had an uncommon tongue movement which was arrhythmic. There was no feature to suggest tremor, chorea or dystonia. It might be described as athetoid as there was a writhing quality, but of lesser amplitude. Thus, the phenomenology was uncommon in clinical practice and the surface of the tongue was seen to "ripple" like a liquid surface agitated by an object or breeze. Isolated lingual dyskinesias are rare in WD. It is important to evaluate them for WD, a potentially treatable disorder.

  5. Progress of Biomimetic Artificial Nose and Tongue

    Science.gov (United States)

    Wang, Ping; Liu, Qingjun

    2009-05-01

    As two of the basic senses of human beings, olfaction and gustation play a very important role in daily life. These two types of chemical sensors are important for recognizing environmental conditions. Electronic nose and electronic tongue, which mimics animals' olfaction and gustation to detect odors and chemical components, have been carried out due to their potential commercial applications for biomedicine, food industry and environmental protection. In this report, the biomimetic artificial nose and tongue is presented. Firstly, the smell and taste sensors mimicking the mammalian olfaction and gustation was described, and then, some mimetic design of electronic nose and tongue for odorants and tastants detection are developed. Finally, olfactory and gustatory biosensors are presented as the developing trends of this field.

  6. Stimulating effect of tongue on craniofacial growth.

    Science.gov (United States)

    Schumacher, G H; Becker, R; Hübner, A; Pommerenke, F

    1991-01-01

    The influence of the tongue on craniofacial growth was studied in 96 Mini-Lewe miniature pigs. The animals were partially glossectomized at different ages and slaughtered at various intervals after operation. The skulls were macerated for biometric analysis. Mandibular growth was significantly reduced lengthwise in animals glossectomized at age 12 weeks. The role played by the tongue in orofacial growth was also indicated by the reduced width of the lower jaw. In pigs partially glossectomized at age 12 weeks, lateral growth of the entire lower jaw was reduced after eight weeks. In animals glossectomized at age six weeks, lateral growth of the lower jaw was reduced in the region of the 1st deciduous molars and the canines after glossectomy. Partial glossectomy had no significant effects on vertical growth of the lower jaw, growth of the upper jaw or overall skull growth. Shortening of the tongue in miniature pigs six weeks old resulted in no measurable jaw changes 23 weeks after surgery.

  7. The Tongue as an Excitable Medium

    CERN Document Server

    Seiden, Gabriel

    2014-01-01

    Geographic tongue (GT) is a benign condition affecting approximately 2% of the population, whereby the papillae covering the upper part of the tongue are lost due to a slowly expanding inflammation. The resultant dynamical appearance of the tongue has striking similarities with well known phenomena observed in excitable media, such as forest fires, cardiac dynamics and chemically-driven reaction-diffusion systems. Here we explore the dynamics associated with GT from a dynamical systems perspective, utilizing cellular automata simulations. We emphasize similarities with other excitable systems as well as unique features observed in GT. Our results shed light on the evolution of the inflammation and contribute to the classification of the severity of the condition, based on the characteristic patterns observed in GT patients.

  8. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  9. Problems of Sport Biomechanics and Robotics

    OpenAIRE

    Erdmann, Wlodzimierz S.

    2013-01-01

    This paper presents many common areas of interest of different specialists. There are problems described from sport, biomechanics, sport biomechanics, sport engineering, robotics, biomechanics and robotics, sport biomechanics and robotics. There are many approaches to sport from different sciences and engineering. Robotics is a relatively new area and has had moderate attention from sport specialists. The aim of this paper is to present several areas necessary to develop sport robots based on...

  10. Rare fibrolipoma of the tongue: a case report

    OpenAIRE

    Iaconetta, Giorgio; Friscia, Marco; Cecere, Atirge; Romano, Antonio; Orabona, Giovanni Dell’Aversana; Califano, Luigi

    2015-01-01

    Introduction Lipoma is a benign tumor infrequent in the oral cavity, particularly in the tongue: indeed, lipomas only represent approximately 0.3% of all tongue neoplasia. Compared to conventional lipoma, fibrolipoma of the tongue is a very rare lesion that accounts for around 25–40% of tongue lipomas, and until now, to the best of our knowledge, only 14 cases have been described in which histological diagnosis of fibrolipoma was specifically confirmed. We report the case of a patient with a ...

  11. Characterization of Chinese rice wine taste attributes using liquid chromatographic analysis, sensory evaluation, and an electronic tongue.

    Science.gov (United States)

    Yu, HaiYan; Zhao, Jie; Li, Fenghua; Tian, Huaixiang; Ma, Xia

    2015-08-01

    To evaluate the taste characteristics of Chinese rice wine, wine samples sourced from different vintage years were analyzed using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Six organic acids and seventeen amino acids were measured using high performance liquid chromatography (HPLC). Five monosaccharides were measured using anion-exchange chromatography. The global taste attributes were analyzed using an electronic tongue (E-tongue). The correlations between the 28 taste-active compounds and the sensory attributes, and the correlations between the E-tongue response and the sensory attributes were established via partial least square discriminant analysis (PLSDA). E-tongue response data combined with linear discriminant analysis (LDA) were used to discriminate the Chinese rice wine samples sourced from different vintage years. Sensory evaluation indicated significant differences in the Chinese rice wine samples sourced from 2003, 2005, 2008, and 2010 vintage years in the sensory attributes of harmony and mellow. The PLSDA model for the taste-active compounds and the sensory attributes showed that proline, fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, threonine, and lysine had an influence on the taste characteristic of Chinese rice wine. The Chinese rice wine samples were all correctly classified using the E-tongue and LDA. The electronic tongue was an effective tool for rapid discrimination of Chinese rice wine.

  12. Tongues in degree 4 Blaschke products

    Science.gov (United States)

    Canela, Jordi; Fagella, Núria; Garijo, Antonio

    2016-11-01

    The goal of this paper is to investigate the family of Blasche products {{B}a}(z)={{z}3}\\frac{z-a}{1-\\bar{a}z} , which is a rational family of perturbations of the doubling map. We focus on the tongue-like sets which appear in its parameter plane. We first study their basic topological properties and afterwards we investigate how bifurcations take place in a neighborhood of their tips. Finally we see how the fixed tongue extends beyond its natural domain of definition.

  13. [Comparative imaging of cancers of the tongue].

    Science.gov (United States)

    Maradji-Melia, P; Bruneton, J N; Balu-Maestro, C; Marcy, P Y; Dubruque, F; Dassonville, O

    1993-05-01

    In a comparative study of 18 cases of tongue cancer examined with ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI), the authors assess the advantages and disadvantages of each technique. MRI seems to be more effective for the detection of small lesions, the examination of the mobile part of the tongue, in case of dental artifacts, for the study of regional extension and to screen recurrence. CT retains its indications for large tumors in patients who are in a poor general condition, tired, and cannot stand lengthy examinations. Ultrasonography remains the first-intention examination in all cases because of its indisputable superiority for lymph node examination.

  14. Influence of the ability to roll the tongue and tongue-training parameters on oral motor performance and learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Basic, Aida;

    2011-01-01

    . Standard session: 1h tongue-training with fixed training parameters; Modulation session: 1h tongue-training with modulation of training parameters every 20min (3 different settings - A, B, C, with different timing of task). Perceived task difficulty was evaluated on a 0-10 numerical rating scale (NRS......-training performance. Modulation of tongue-training parameters by alteration of timing of the training task influenced tongue-training performance and perceived task difficulty.......OBJECTIVE: Training of tongue function is an important part of rehabilitation of patients with brain damage. A standardized tongue-training task has been shown to induce cortical plasticity. This study tested the possible influence of the natural ability to roll the tongue and modulations of tongue...

  15. Evidence for an elastic projection mechanism in the chameleon tongue

    NARCIS (Netherlands)

    Groot, de J.H.; Leeuwen, van J.L.

    2004-01-01

    To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s-2. At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to p

  16. Tongue tie and breastfeeding: assessing and overcoming the difficulties.

    Science.gov (United States)

    Breward, Sharon

    2006-09-01

    Tongue tie, a condition in which the tongue's mobility is restricted, may reduce the ability of babies to breastfeed successfully. In this age of mass artificial feeding, the management of this condition has been, until recently, overlooked. This article highlights the effects of tongue tie on breastfeeding and what health professionals should be doing to assess and manage any difficulties PMID:17009777

  17. Tongue Control and Its Implication in Pronunciation Training

    Science.gov (United States)

    Ouni, Slim

    2014-01-01

    Pronunciation training based on speech production techniques illustrating tongue movements is gaining popularity. However, there is not sufficient evidence that learners can imitate some tongue animation. In this paper, we argue that although controlling tongue movement related to speech is not such an easy task, training with visual feedback…

  18. Biomechanical analysis of plate stabilization on cervical part of spine

    Directory of Open Access Journals (Sweden)

    M. Kiel

    2009-07-01

    Full Text Available Purpose: The main aim of the work was determination of biomechanical analysis of cervical spine – stabilizer system made of stainless steel (Cr-Ni-Mo and Ti-6Al-4V alloy.Design/methodology/approach: To define biomechanical characteristic of the system the finite elements method (FEM was applied. Geometric model of part of spine C5-C7 and stabilizer were discretized by SOLID95 element. Appropriate boundary conditions imitating phenomena in real system with appropriate accuracy were established.Findings: The result of biomechanical analysis was calculation of displacements and stresses in the vertebras and the stabilizer in a function of the applied loading: 50-300 N for the stabilizer made of stainless steel (Cr-Ni-Mo and Ti-6Al-4V alloy.Research limitations/implications: The result of biomechanical analysis for plate stabilizer obtained by FEM can be use to determine a construction features of the stabilizer, and to select mechanical properties of metallic biomaterial and estimation of stabilization quality. The calculation of displacements for part C5-C7 show that the proposed type of stabilizer enables correct stabilization used to clinical apply.Practical implications: The results of biomechanical analysis showed correct mechanical properties used to made the plate stabilizer.Originality/value: The obtained numerical results should be verified in “in vitro” tests.

  19. Biomechanics aspects of technique of high jump

    OpenAIRE

    Adashevskiy V.M.; Iermakov S.S.; Marchenko A. A.

    2013-01-01

    The purpose of work consists in the theoretical ground of optimum biomechanics descriptions in high jumps. A mathematical model is developed for determination of influence on the height of jump: speed and corner of flight of centre-of-mass during pushing away, positions of centre-of-mass body of sportsman in the phases of pushing away and transition through a slat, forces of resistance of air environment, influences of moment of inertia of body. The basic technical run-time errors of sportsma...

  20. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  1. Integrated biomechanical and topographical surface characterization (IBTSC)

    Science.gov (United States)

    Löberg, Johanna; Mattisson, Ingela; Ahlberg, Elisabet

    2014-01-01

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  2. Apc-Mutant Kyoto Apc Delta (KAD Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2014-07-01

    Full Text Available Despite widening interest in the possible association between infection/ inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females and F344/NS1c (22 males and 23 females rats received drinking water with or without 4-NQO (20 ppm for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01 and female F344/NS1c rats (p < 0.05. The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue carcinogenesis associated with inflammation.

  3. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji, E-mail: tmntt08@gmail.com [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Mori, Takayuki [Department of Pharmacy, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki 503-8502 (Japan); Watanabe, Naoki [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Naiki, Takafumi [Department of Clinical Laboratory, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513 (Japan); Moriwaki, Hisataka [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi [The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2014-07-21

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation.

  4. The biomechanical and structural properties of CS2 fimbriae

    CERN Document Server

    Mortezaei, Narges; Zakrisson, Johan; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in underdeveloped countries often leads to high mortality rates. Isolated ETEC express a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II that are assembled via the alternate chaperone pathway (ACP), are amongst the most common. Fimbriae are filamentous structures, whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical capability allowing them to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understandings about the role of fimbriae as virulence factors are pointing to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modelling its major structural subunit CotA ...

  5. Biomechanical analysis technique choreographic movements (for example, "grand battman jete"

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2015-04-01

    Full Text Available Purpose : biomechanical analysis of the execution of choreographic movement "grand battman jete". Material : the study involved students (n = 7 of the department of classical choreography faculty of choreography. Results : biomechanical analysis of choreographic movement "grand battman jete" (classic exercise, obtained kinematic characteristics (path, velocity, acceleration, force of the center of mass (CM bio parts of the body artist (foot, shin, thigh. Built bio kinematic model (phase. The energy characteristics - mechanical work and kinetic energy units legs when performing choreographic movement "grand battman jete". Conclusions : It was found that the ability of an athlete and coach-choreographer analyze the biomechanics of movement has a positive effect on the improvement of choreographic training of qualified athletes in gymnastics (sport, art, figure skating and dance sports.

  6. A Normative-Speaker Validation Study of Two Indices Developed to Quantify Tongue Dorsum Activity from Midsagittal Tongue Shapes

    Science.gov (United States)

    Zharkova, Natalia

    2013-01-01

    This study reported adult scores on two measures of tongue shape, based on midsagittal tongue shape data from ultrasound imaging. One of the measures quantified the extent of tongue dorsum excursion, and the other measure represented the place of maximal excursion. Data from six adult speakers of Scottish Standard English without speech disorders…

  7. LYMPHANGIOMA OF THE TONGUE: CASE REPORT

    Directory of Open Access Journals (Sweden)

    F. Ferrara

    2012-05-01

    Full Text Available Introduction. Lymphangiomas are uncommon congenital hamartomas of the lymphatic system, usually diagnosed in infancy and early childhood. Commonly located at head, neck extremities and genitals, they are rarely situated in the oral cavity. Pre- ferred site of oral involvement is the tongue. The authors present a case of lymphangioma of the tongue treated with laser therapy. Case report. The patient was a 7 years old female, that came to us for right upper quadrant abdominal pain. On examination we found the median lesion of the tongue in absence of symptoms. Thyroid scan was performed to exclude the presence of ectopic thyroid. Surgery was performed by excision of the lesion with CO2 20 W by trans-oral laser therapy. The anatamo- pathological report posed diagnosis of lymphangioma. The follow-up to 8 months is in the norm: the aesthetic results are ex- cellent and the patient doesn’t report any symptoms. Conclusion. This case had a very rare site of occurrence, the tongue, and was successfully managed with laser therapy. This surgical technique is very unusual among the various types of interventions but it allows good aesthetic results and good radical surgical excision, preserving vital structure.

  8. Acute dystonia mimicking angioedema of the tongue

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Pallesen, Kristine A U; Bygum, Anette

    2013-01-01

    We report a case of acute dystonia of the face, jaw and tongue caused by metoclopramide and mimicking angioedema. The patient had attacks for several years before the correct diagnosis was made and we present the first ever published video footage of an attack. This adverse drug reaction is known...

  9. The Tongue Map, Real or Not?

    Science.gov (United States)

    Marshall, Pamela A.

    2013-01-01

    Students need practice in proposing hypotheses, developing experiments that will test these hypotheses, and generating data that they will analyze to support or refute them. I describe a guided-inquiry activity based on the "tongue map" concept, appropriate for middle school and high school students.

  10. Biomechanics of Load Carriage--Historical Perspectives and Recent Insights.

    Science.gov (United States)

    Seay, Joseph F

    2015-11-01

    Loads carried by the warfighter have increased substantially throughout recorded history, with the typical U.S. ground soldier carrying external loads averaging 45 kg during operations in Afghanistan. Incidence of disability in the U.S. Army has also increased sixfold since the 1980s, predominantly driven by increases in musculoskeletal injuries, with load carriage implicated as a possible mechanism. This article will provide a brief overview of the biomechanics of load carriage and will provide some recent insights into how the stress of the loads carried by military personnel can affect the musculoskeletal system. Studies into the biomechanics of load carriage have documented motion-related differences such as increased step rate, decreased stride length, and more trunk lean with increases in pack-borne loads. However, there is a paucity of literature on the relationship between load carriage and biomechanical mechanisms of overuse injury. Findings of recent studies will be presented, which add mechanistic information to increased stresses on the lower extremity. This was particularly true at the knee, where in one study, peak knee extension moment increased 115% when carrying a 55 kg load (0.87 ± 0.16 Nm·kg⁻¹) vs. no external load (0.40 ± 0.13 Nm·kg⁻¹). Efforts to model injury mechanisms require continued biomechanical measurements in humans while carrying occupationally relevant loads to be validated. Specifically, imaging technologies (e.g., bone geometry scans) should be incorporated to produce higher fidelity model of the stresses and strains experienced by the load carrier. In addition to laboratory-based biomechanics, data are needed to further explore the mechanistic relationship between load magnitude and injury; to this end, wearable sensors should continue to be exploited to accurately quantify biomechanical stresses related to load carriage in the field.

  11. Biomechanical testing of implant free wedge shaped bone block fixation for bone patellar tendon bone anterior cruciate ligament reconstruction in a bovine model

    Directory of Open Access Journals (Sweden)

    Willis-Owen Charles A

    2010-09-01

    Full Text Available Abstract Background The use of an interference fit wedged bone plug to provide fixation in the tibial tunnel when using bone-patellar tendon-bone autograft for anterior cruciate ligament reconstruction offers many theoretic advantages including the potential to offer a more economical and biological alternative to screw fixation. This technique has not been subjected to biomechanical testing. We hypothesised that a wedged bone plug fixation technique provides equivalent tensile load to failure as titanium interference screw fixation. Methods In a controlled laboratory setting, anterior cruciate ligament reconstruction was performed in 36 bovine knees using bone-patella-bone autograft. In 20 knees tibial fixation relied upon a standard cuboid bone block and interference screw. In eight knees a wedge shaped bone block with an 11 mm by 10 mm base without a screw was used. In a further eight knees a similar wedge with a 13 mm by 10 mm base was used. Each specimen used a standard 10 mm tibial tunnel. The reconstructions were tested biomechanically in a physiological environment using an Instron machine to compare ultimate failure loads and modes of failure. Results Statistical analysis revealed no significant difference between wedge fixation and screw fixation (p = 0.16, or between individual groups (interference screw versus 11 mm versus 13 mm wedge fixation (P = 0.35. Conclusions Tibial tunnel fixation using an impacted wedge shaped bone block in anterior cruciate ligament reconstruction has comparable ultimate tensile strength to titanium interference screw fixation.

  12. ADIEU TO TONGUE TIE. LINGUAL FRENECTOMY: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Rizwan Sanadi

    2013-07-01

    Full Text Available A Frenum is a fold of mucous membrane, usually with enclosed muscle fibers, that attaches the lips and cheeks to the alveolar mucosa and/or mucosa and underlying periosteum. Tongue tie or ankyloglossia is a developmental anomaly of the tongue characterized by an abnormally short, thick lingual frenum resulting in limitation of tongue movement. It causes difficulty in speech articulation due to limitation in tongue movement. In this article we report a case of 24 years old female with Tongue tie, complaining of difficulty in speech. It was surgically treated with uneventful healing and good patient satisfaction.

  13. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte;

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  14. Clinical applications of biomechanics cinematography.

    Science.gov (United States)

    Woodle, A S

    1986-10-01

    Biomechanics cinematography is the analysis of movement of living organisms through the use of cameras, image projection systems, electronic digitizers, and computers. This article is a comparison of cinematographic systems and details practical uses of the modality in research and education. PMID:2946390

  15. Burning tongue in patients with geographic and grooved tongue: a study on secondary school students.

    Directory of Open Access Journals (Sweden)

    S. Shamsedini

    1994-07-01

    Full Text Available This study was conducted on the secondary school students by actively patient selection method; it means that patients did not go to see the doctor themselves. The studies were randomly selected among the schools located in areas of average socioeconomic status. Although geographic and fissured tongue disorders with no discomfort and with clinical sign are common phenomena, they are detected and diagnosed in clinical and collective examinations. people recognition and awareness about them and what they should do when they occur with Syndromal signs are important. Patients usually complain of pain and irritation of the tongue specially during eating spicy and sour food, because the bare part of tongue cannot tolerate the direct contact with such foods. This chronic irritation may cause the fear of cancer (Cancerophobia in patients. It should be pointed out that geographic tongue can be caused by known skin diseases like psoriasis or might be manifested as an allergic reaction to medicines like lithium. In this study we evaluated the relationship between grooved and geographic tongue and age, race, skin color, frequency of brushing, gum status, discomfort of tongue irritation and mouth breathing habit.

  16. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J

    2016-01-01

    Background Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. Results The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of

  17. 一个三维人膝关节弹性咬合的生物力学模型%A 3-D BIOMECHANICAL MODEL OF HUMAN KNEE JOINT ELASTICALLY ARTICULATE CONTACT

    Institute of Scientific and Technical Information of China (English)

    王西十; 王珉

    2000-01-01

    Based on the characterizations of human knee-joint anatomical structures and reports of the literature and experiments, a 3-D biomechanical model of the human knee-joint elastically articulate contact is developed under the conditions of sampling the human knee-joints. This model is believed to be a powerful tool for functional analysis of the knee, for evaluation of surgical and diagnostic procedures and for design of artificial joints.%基于人膝关节的解剖特征,在文献和试验的基础上,对膝关节解剖结构作了适当的简化,从而建立了一个完整的三维人膝关节弹性咬合的生物力学模型.

  18. Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue

    International Nuclear Information System (INIS)

    Highlights: • Overconsumption of soft-drinks and fruit-beverages may enhance health risks. • Beverage’s healthy and sensory indexes were calculated using chromatographic data. • A potentiometric electronic tongue with multivariate linear models was applied. • E-tongue discriminated samples according to glycemic load or fructose-intolerance levels. • Healthy and sensory indexes were accurately quantified using E-tongue data. - Abstract: Overconsumption of sugar-sweetened beverages may increase the risk of health problems and so, the evaluation of their glycemic load and fructose-intolerance level is essential since it may allow establishing possible relations between physiologic effects of sugar-rich beverages and health. In this work, an electronic tongue was used to accurately classify beverages according to glycemic load (low, medium or high load) as well to their adequacy for people suffering from fructose malabsorption syndrome (tolerable or not): 100% of correct classifications (leave-one-out cross-validation) using linear discriminant models based on potentiomentric signals selected by a meta-heuristic simulated annealing algorithm. These results may be partially explained by the electronic tongue’s capability to mimic the human sweetness perception and total acid flavor of beverages, which can be related with glycemic load and fructose-intolerance index. Finally, the E-tongue was also applied to quantify, accurately, healthy and sensory indexes using multiple linear regression models (leave-one-out cross-validation: Radj > 0.99) in the following dynamic ranges: 4.7 < glycemic load ≤ 30; 0.4 < fructose intolerance index ≤ 1.5; 32 < sweetness perception < 155; 1.3 < total acid flavor, g L−1 < 8.3; and, 5.8 < well-balanced flavor ≤ 74. So, the proposed electronic tongue could be used as a practical, fast, low-cost and green tool for beverage’s healthy and sensory evaluation

  19. Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luís G., E-mail: ldias@ipb.pt [CIMO – Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Santa Apolónia, Apartado 1172, 5301-855 Bragança (Portugal); Sequeira, Cédric, E-mail: cedric.b.s@hotmail.com [CIMO – Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Santa Apolónia, Apartado 1172, 5301-855 Bragança (Portugal); Veloso, Ana C.A., E-mail: anaveloso@isec.pt [Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Sousa, Mara E.B.C., E-mail: mebsousadias@gmail.com [CIMO – Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Santa Apolónia, Apartado 1172, 5301-855 Bragança (Portugal); Peres, António M., E-mail: peres@ipb.pt [LSRE – Laboratory of Separation and Reaction Engineering – Associate Laboratory LSRE/LCM, Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Santa Apolónia, Apartado 1172, 5301-855 Bragança (Portugal)

    2014-10-27

    Highlights: • Overconsumption of soft-drinks and fruit-beverages may enhance health risks. • Beverage’s healthy and sensory indexes were calculated using chromatographic data. • A potentiometric electronic tongue with multivariate linear models was applied. • E-tongue discriminated samples according to glycemic load or fructose-intolerance levels. • Healthy and sensory indexes were accurately quantified using E-tongue data. - Abstract: Overconsumption of sugar-sweetened beverages may increase the risk of health problems and so, the evaluation of their glycemic load and fructose-intolerance level is essential since it may allow establishing possible relations between physiologic effects of sugar-rich beverages and health. In this work, an electronic tongue was used to accurately classify beverages according to glycemic load (low, medium or high load) as well to their adequacy for people suffering from fructose malabsorption syndrome (tolerable or not): 100% of correct classifications (leave-one-out cross-validation) using linear discriminant models based on potentiomentric signals selected by a meta-heuristic simulated annealing algorithm. These results may be partially explained by the electronic tongue’s capability to mimic the human sweetness perception and total acid flavor of beverages, which can be related with glycemic load and fructose-intolerance index. Finally, the E-tongue was also applied to quantify, accurately, healthy and sensory indexes using multiple linear regression models (leave-one-out cross-validation: R{sub adj} > 0.99) in the following dynamic ranges: 4.7 < glycemic load ≤ 30; 0.4 < fructose intolerance index ≤ 1.5; 32 < sweetness perception < 155; 1.3 < total acid flavor, g L{sup −1} < 8.3; and, 5.8 < well-balanced flavor ≤ 74. So, the proposed electronic tongue could be used as a practical, fast, low-cost and green tool for beverage’s healthy and sensory evaluation.

  20. Tongue adhesion in the horned frog Ceratophrys sp.

    Science.gov (United States)

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  1. Effects of incision and irradiation on regional lymph node metastasis in carcinoma of the hamster tongue

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, K.; Shingaki, S.; Nakajima, T. (Nigata Univ. (Japan))

    1990-07-01

    The effects of incision and irradiation on regional lymph node metastasis in DMBA-induced squamous cell carcinomas of the hamster tongue are reported. Metastasis to the submandibular lymph nodes was confirmed histologically in 48.0% of the animals. The incidence of lymph node metastasis was significantly increased (65.9%) after repeated incisions of tongue carcinomas. Three gray whole-body irradiation also increased the rate of metastasis from 31.0% to 46.3%. Higher incidences of lymphatic vessel invasion after incision and concomitant lymph node metastasis in the lymphatic invasion-positive group indicated a stepwise relationship leading to an increase in lymph node metastasis after incision. Because of the high incidence of metastases and close resemblance to human carcinomas in the tumor cell deposition and establishment of metastatic foci, DMBA-induced tongue carcinoma with invasion may serve as an experimental model of human oral carcinomas.

  2. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea

    Energy Technology Data Exchange (ETDEWEB)

    Palit, Mousumi [Department of Electronics and Telecommunication Engineering, Central Calcutta Polytechnic, Kolkata 700014 (India); Tudu, Bipan, E-mail: bt@iee.jusl.ac.in [Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata 700098 (India); Bhattacharyya, Nabarun [Centre for Development of Advanced Computing, Kolkata 700091 (India); Dutta, Ankur; Dutta, Pallab Kumar [Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata 700098 (India); Jana, Arun [Centre for Development of Advanced Computing, Kolkata 700091 (India); Bandyopadhyay, Rajib [Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata 700098 (India); Chatterjee, Anutosh [Department of Electronics and Communication Engineering, Heritage Institute of Technology, Kolkata 700107 (India)

    2010-08-18

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  3. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea.

    Science.gov (United States)

    Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh

    2010-08-18

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  4. Biomechanics of knee joint — A review

    Science.gov (United States)

    Madeti, Bhaskar Kumar; Chalamalasetti, Srinivasa Rao; Bolla Pragada, S. K. Sundara siva rao

    2015-06-01

    The present paper is to know how the work is carried out in the field of biomechanics of knee. Various model formulations are discussed and further classified into mathematical model, two-dimensional model and three-dimensional model. Knee geometry is a crucial part of human body movement, in which how various views of knee is shown in different planes and how the forces act on tibia and femur are studied. It leads to know the forces acting on the knee joint. Experimental studies of knee geometry and forces acting on knee shown by various researchers have been discussed, and comparisons of results are made. In addition, static and dynamic analysis of knee has been also discussed respectively to some extent.

  5. 肱骨三维模型的构建及其生物力学意义%Construction of humeral three-dimensional model and its biomechanical significance

    Institute of Scientific and Technical Information of China (English)

    苏佳灿; 张春才; 禹宝庆; 薛召军; 吴建国; 丁祖泉

    2005-01-01

    BACKGROUND: Various therapies can be used to treat humeral fracture,but serious complications like bone disunion, etc. Are often left over. New biomechanical analytical methods are tried to be applied to provide new approaches for the functional prognosis in humeral fracture and bone disunion.OBJECTIVE: To construct humeral three-dimension model to explore its correlated biomechanical significance.DESIGN: To construct humeral three-dimension finite element model. SETTING: Department of orthopedics of a military medical university-affiliated hospital and institute for biological science and bioengineering of a university.PARTICIPANTS: The study was conducted in Shanghai Changhai Hospital and the Laboratory of Biological Science of Shanghai Tongji University. One piece of typical adult wet humerus sample was selected.INTERVENTIONS: Cross section image of each humeral layer was obtained from the selected wet humerus sample by CT scanning, and humeral three-dimensional model was constructed by large finite element analytic software ANSYS5.6.MAIN OUTCOME MEASURES: ① Biomechanical features of the constructed humeral three-dimension mode; ② Differences from clinical reality and key similarities.RESULTS: The constructed humeral three-dimensional model vividly reflected the true humeral anatomic morphology and biomechanical behavior. Its precision was judged by the comparison with CT image.CONCLUSION: The construction of humeral three-dimension finite element model provides a precise model for the researches of normal humeral mechanical behavior and the basic mechanics of internal fixation after fracture.%背景:肱骨骨折治疗方法多样,但是也常常遗留严重的并发症如骨不连等,尝试采用新的生物力学分析手段,以期为肱骨骨折、骨不连的功能预后提供新思路.目的:构建肱骨三维模型,并探讨其相关的生物力学意义.设计:构建肱骨三维有限元模型.单位:一所军医大学的附属医院骨科和一所

  6. 骨质疏松性椎体脱矿化生物力学模型的研究进展%Research progress in biomechanical models using demineralized osteoporotic vertebra body

    Institute of Scientific and Technical Information of China (English)

    崔轶; 吴子祥; 刘达; 雷伟

    2011-01-01

    骨质疏松椎体脱矿化模型为骨质疏松模型的研究提出了一个新方向,利用脱钙液可与椎体中钙质结合,导致钙质流失、骨矿含量下降,从而使得椎体标本的骨密度下降,同时出现与体内骨质疏松状态下的生物力学性能相似的变化.骨质疏松椎体脱矿化模型能在短时间内建立,有利于及时反馈实验信息,缩短研究周期,并为进一步在体内骨质疏松动物模型的研究提供参考依据,为新型器械及新型手术方法提供可靠的生物力学测试平台.%Demineralized osteoporotic vertebra model raised a new direction for osteoporosis research. With decalcificating solution binding to calcium in the vertebra body, calcium could be deleted from the vertebrae resulting in a loss of calcium and decrease of bone mineral content. Bone mineral density in the vertebra specimen decreased, leading to biomechanical changes similar to those in osteoporosis in vivo. The model could be established in a short time, in favor of the feedback of experimental information and the shortening of research period. It could provide research reference for in vivo osteoporosis studies by the animal model.It could also provide a reliable platform of biomechanical testing for new instruments and surgical techniques.

  7. 中医屈指推法的生物力学建模及分析%Biomechanical model preparation and analysis of pushing manipulation with one-finger meditation (thumb flexion)

    Institute of Scientific and Technical Information of China (English)

    吕杰; 曹金凤; 方磊; 方舟; 章丹颂; 马龙龙; 许世雄; 房敏

    2011-01-01

    BACKGROUND: The development trend of Chinese massage is to get rid of the experience-oriented mode and gradually gets objective, accurate, quantitative and individual. Therefore, the quantitative research of massage is emergently needed.OBJECTIVE: To build a biomechanical model of pushing manipulation with one-finger meditation (thumb flexion) and put forward a method to calculate the force of joints which can hardly be measured noninvasively in vivo.METHODS: Cameras and Chinese massage force analyzer (FZ-I) were used to collect kinematic data and force data, and then a biomechanical model was established to calculate the force of joints according to these data.RESULTS AND CONCLUSION: A biomechanical model of pushing manipulation with one-finger meditation (thumb flexion) with 4 bars and 5 nodes was established, the force of thumb joint, thumb metacarpophalangeal joint, wrist joint and elbow joint was calculated and the function of the joints in manipulation was analyzed. The results were consistent with manipulator's feeling. The force of joints in pushing manipulation with one-finger meditation (thumb flexion) can be calculated through the biomechanical model. The method may be useful for massage teaching and researching.%背景:推拿医学发展趋势是逐步摆脱单纯经验化的模式,走向客观化、精确化、量化和个体化,使推拿医师能控制手法的力量、时间、方向、频率等各项指标.目的:建立中医一指禅推法(屈指)的生物力学模型,探索在体情况下无0法无创检测的关节作用力的计算方法.方法:采用摄像技术,采集一指禅推法(屈指)的运动学数据,同时利用FZ-I型中医推拿手法测力分析仪采集作用力数据,依此建立手法的生物力学模型并计算各主要关节的作用力.结果与结论:建立了4杆件、5结点的中医一指禅推法(屈指)生物力学模型,计算得到了拇指指间关节、拇指掌指关节、腕关节

  8. [Observation of the ultrastructure of the tongue coating].

    Science.gov (United States)

    Watanabe, Hideaki

    2006-03-01

    An observational study was conducted to clarify the morphological features of the fine structure of the tongue coating, which is one of the main causes of halitosis. Tongue specimens from cadavers, whom dental students had practiced on for anatomy class, were used as materials to observe the surface structure. Tongue coatings were obtained from patients who were referred to the Fresh Breath Clinic, Dental Hospital, Tokyo Medical and Dental University. After macroscopic observation of the tongue surface, tongue coating and examination of halitosis, the tongue coating was scraped carefully, following which it was observed using a light microscope and transmission electron microscope (TEM). The results obtained were as follows. The tongue coating consisted mainly of bacteria and desquamated keratinized epithelium which originated chiefly from the filiform papilla. The desquamated keratinized epithelium was also composed of degenerated epithelium of every level, from a comparatively normal epithelium to a fragmented altered epithelium. In addition, the level of degeneration of the keratinized epithelium differed according to the state of distribution and the revitalization of bacteria located in its surroundings. The intensity of halitosis increased with the amount of tongue coating. Increased amounts of tongue coating, however, did not necessarily correlate with increased halitosis in the patients. It was suggested that the severity of halitosis was probably associated with the level of bacterial invasion-related degeneration of the desquamated keratinized epithelium (tongue coating's quality).

  9. Proposal for a New Noncontact Method for Measuring Tongue Moisture to Assist in Tongue Diagnosis and Development of the Tongue Image Analyzing System, Which Can Separately Record the Gloss Components of the Tongue

    Directory of Open Access Journals (Sweden)

    Toshiya Nakaguchi

    2015-01-01

    Full Text Available Tongue diagnosis is a noninvasive diagnosis and is traditionally one of the most important tools for physicians who practice Kampo (traditional Japanese medicine. However, it is a subjective process, and its results can depend on the experience of the physician performing it. Previous studies have reported how to measure and evaluate the shape and color of the tongue objectively. Therefore, this study focused on the glossy component in order to quantify tongue moisture in tongue diagnosis. We hypothesized that moisture appears as a gloss in captured images and measured the amount of water on the tongue surface in 13 subjects. The results showed a high correlation between the degree of gloss and the amount of water on the tongue surface and suggested that the moisture on the tongue can be estimated by the degree of gloss in a captured image. Because the moisture level on the tongue changes during the course of taking photos, it became clear that we had to wait at least 3 minutes between photos. Based on these results, we established the tongue image analyzing system (TIAS, which can consistently record the gloss and color of the tongue surface simultaneously.

  10. Unified Approach to the Biomechanics of Dental Implantology

    Science.gov (United States)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  11. Biomolecular Markers in Cancer of the Tongue

    Directory of Open Access Journals (Sweden)

    Daris Ferrari

    2009-01-01

    Full Text Available The incidence of tongue cancer is increasing worldwide, and its aggressiveness remains high regardless of treatment. Genetic changes and the expression of abnormal proteins have been frequently reported in the case of head and neck cancers, but the little information that has been published concerning tongue tumours is often contradictory. This review will concentrate on the immunohistochemical expression of biomolecular markers and their relationships with clinical behaviour and prognosis. Most of these proteins are associated with nodal stage, tumour progression and metastases, but there is still controversy concerning their impact on disease-free and overall survival, and treatment response. More extensive clinical studies are needed to identify the patterns of molecular alterations and the most reliable predictors in order to develop tailored anti-tumour strategies based on the targeting of hypoxia markers, vascular and lymphangiogenic factors, epidermal growth factor receptors, intracytoplasmatic signalling and apoptosis.

  12. Flow and mixing around a glacier tongue

    Directory of Open Access Journals (Sweden)

    C. L. Stevens

    2010-08-01

    Full Text Available A glacier tongue floating in the coastal ocean presents a significant obstacle to the local flow and influences oceanic mixing and transport processes. Here ocean shear microstructure observations at a glacier tongue side-wall show tidally-induced flow pulses and vortices as well as concomitant mixing. Flow speeds within the pulses reached around three times that of the ambient tidal flow amplitude and generated vertical velocity shear as large as 3×10−3 s−1. During the maximum flow period turbulent energy dissipation rates reached a maximum of 10−5 m2 s−3, around three decades greater than local background levels. This is in keeping with estimates of the gradient Richardson Number which dropped to around unity. Associated vertical diffusivities are higher that expected from parameterization, possibly reflecting the proximity of the cryotopography.

  13. [Cavernous hemangioma confined to the tongue].

    Science.gov (United States)

    Galletti, C

    1988-12-01

    The authors relate on a case of an isolated cavernous haemangioma of the body of the tongue characterized by considerable size. Such neoplasms, usually described within the more extensive chapter of the more common angiomatous lesion of the oral cavity, are relatively rare. The authors describe a personal case discussing the diagnostic spects of such lesion and emphasizing the importance of the arteriography of the carotid artery and the of the selective arteriography of the lingual arteries, especially in considering surgery. Biopsies are not recommended. After discussing the histopathological and clinical aspects of such lesions the Authors emphasize the therapeutic ones. Even though radiotherapy, cryotherapy, laser therapy, medical treatment, injection of sclerosing substances and the selective embolization, of the lingual artery seem to have some efficacy, the authors conclude that surgery in the therapy of choice in the isolated vascular lesions of the body of the tongue. PMID:3274631

  14. Harmonic scalpel versus flexible CO2 laser for tongue resection: A histopathological analysis of thermal damage in human cadavers

    Directory of Open Access Journals (Sweden)

    Wolf Tamir

    2011-08-01

    Full Text Available Abstract Background Monopolar cautery is the most commonly used surgical cutting and hemostatic tool for head and neck surgery. There are newer technologies that are being utilized with the goal of precise cutting, decreasing blood loss, reducing thermal damage, and allowing faster wound healing. Our study compares thermal damage caused by Harmonic scalpel and CO2 laser to cadaveric tongue. Methods Two fresh human cadaver heads were enrolled for the study. Oral tongue was exposed and incisions were made in the tongue akin to a tongue tumor resection using the harmonic scalpel and flexible C02 laser fiber at various settings recommended for surgery. The margins of resection were sampled, labeled, and sent for pathological analysis to assess depth of thermal damage calculated in millimeters. The pathologist was blinded to the surgical tool used. Control tongue tissue was also sent for comparison as a baseline for comparison. Results Three tongue samples were studied to assess depth of thermal damage by harmonic scalpel. The mean depth of thermal damage was 0.69 (range, 0.51 - 0.82. Five tongue samples were studied to assess depth of thermal damage by CO2 laser. The mean depth of thermal damage was 0.3 (range, 0.22 to 0.43. As expected, control samples showed 0 mm of thermal damage. There was a statistically significant difference between the depth of thermal injury to tongue resection margins by harmonic scalpel as compared to CO2 laser, (p = 0.003. Conclusion In a cadaveric model, flexible CO2 laser fiber causes less depth of thermal damage when compared with harmonic scalpel at settings utilized in our study. However, the relevance of this information in terms of wound healing, hemostasis, safety, cost-effectiveness, and surgical outcomes needs to be further studied in clinical settings.

  15. Tongue mobility in patients with cerebral palsy

    OpenAIRE

    Živković Zorica; Golubović Slavica

    2012-01-01

    Background/Aim. In children with cerebral palsy speech is a big problem. Speech of these children is more or less understandable, depending on the degree of reduced mobility of articulatory organs. Reduced mobility is affected by inability to control facial grimacing and poor muscle strength when performing targeted movements. The aim of this study was to determine the mobility of tongue in patients with cerebral palsy. Methods. The study included a sample of 34 children - patients with...

  16. Irritation fibroma of tongue: a case report

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Vujhini

    2016-04-01

    Full Text Available Reactive hyperplastic outgrowths are seen in the oral cavity due to chronic irritation by plaque, calculus, overhanging margins, trauma and dental appliances. Irritation fibroma represents a reactive focal fibrous hyperplasia due to trauma or local irritation. We report a case of irritation fibroma of right lateral border of tongue in a 46-year-old female. [Int J Res Med Sci 2016; 4(4.000: 1272-1273

  17. Irritation fibroma of tongue: a case report

    OpenAIRE

    Sudhir Kumar Vujhini; E. Sridhar Reddy; Sudheer, M. V. S.; Hari Krishna Katikaneni

    2016-01-01

    Reactive hyperplastic outgrowths are seen in the oral cavity due to chronic irritation by plaque, calculus, overhanging margins, trauma and dental appliances. Irritation fibroma represents a reactive focal fibrous hyperplasia due to trauma or local irritation. We report a case of irritation fibroma of right lateral border of tongue in a 46-year-old female. [Int J Res Med Sci 2016; 4(4.000): 1272-1273

  18. Cysticercosis of tongue: Cytohistologic approach to diagnosis

    Directory of Open Access Journals (Sweden)

    Govindaswamy Koteeswaran

    2013-01-01

    Full Text Available Cysticercosis is continuing to be a major health problem in developing countries. Radiological and serological techniques are routinely used for pre-operative diagnosis of cysticercosis. But fine needle aspiration cytology (FNAC is cost effective and simple procedure, so it is important to be aware of diagnostic pitfalls in the cytomorphologic diagnosis of cysticercosis. We present a case of cysticercosis of tongue, which accounts for only 34 cases in the world literature.

  19. Cysticercosis of tongue: Cytohistologic approach to diagnosis

    OpenAIRE

    Govindaswamy Koteeswaran; Goneppanavar Mangala; Dhanajay Srikant Kotasthane; Tirou, Aroul T

    2013-01-01

    Cysticercosis is continuing to be a major health problem in developing countries. Radiological and serological techniques are routinely used for pre-operative diagnosis of cysticercosis. But fine needle aspiration cytology (FNAC) is cost effective and simple procedure, so it is important to be aware of diagnostic pitfalls in the cytomorphologic diagnosis of cysticercosis. We present a case of cysticercosis of tongue, which accounts for only 34 cases in the world literature.

  20. Actinomycosis of The Tongue: A Diagnostic Dilemma

    Directory of Open Access Journals (Sweden)

    Aniece Chowdary, Anirudh Kaul, Surinder Atri*

    2010-10-01

    Full Text Available Actinomycosis is a bacterial, suppurative chronic infectious disease caused by Actinomyces israelli.Actinomycotic infections of the cervicofacial region are not uncommon , however Actinomycosis of tongueis rare. A mass that may mimic both benign and malignant neoplasms can be seen at clinical presentationand may mislead the diagnosis. We report a patient who presented with a tumor like tongue mass causingspeech disturbance and difficulty in swallowing, diagnosed as actinomycosis

  1. Tongue Liminary Threshold Identification to Electrotactile Stimulation

    CERN Document Server

    Robineau, Fabien; Orliaguet, Jean-Pierre; Payan, Yohan

    2007-01-01

    Many applications use electrostimulation of the human skin to provide tactile sensation. The effect of electrotactile stimulations were studied on a 6x6 matrix of tactile electrodes placed on the anterior part of the tongue. The liminary threshold with continuous or discontinuous waveform and patterns with 2 or 4 electrodes was investigated. The result suggest that for energy saving and to improve the yield, it would probably be better to use discontinuous stimulation with two electrode patterns.

  2. TONGUE BASE SCHWANNOMA : A RARE ENTITY

    Directory of Open Access Journals (Sweden)

    Vivek

    2015-03-01

    Full Text Available INTRODUCTION: Schwannomas are the benign tumours arising from the Schwann cells. Intraoral and pharyngeal schwannomas are rare and constitute less than 1%. CASE REPORT: We report a case of a 39 year old lady who presented with progressive dysphagia and dysphonia since three months. Intraoral examination showed a well - defined reddish lesion arising from the base of the tongue. She was referred to the department of radiodiagnosis for CT and MRI of the neck to know the extent of the lesion. Differential diagnosis of schwannoma and minor salivary gland tumor was given. Excision biopsy of the lesion was done and the histologic examination showed it as schwannoma. DISCUSSION: Schwannomas of the base of the tongue are rare and should be included in the differential diagnosis based on the imaging features and enhancem ent pattern. CONCLUSION: Imaging features, particularly MRI with contrast helps in differentiating benign from malignant lesions of the base of the tongue. Schwannomas are benign and have good prognosis as they can be excised when compared to the other intraoral malignant lesions.

  3. Base of Tongue Tuberculosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Carlos Chiesa Estomba

    2015-05-01

    Full Text Available Introduction: Tuberculosis is an infectious disease that has displayed increasing incidence in the last decades. It is estimated that up to 20% of tuberculosis cases affect extra-pulmonary organs. In the ENT area, soft palate and tongue are the least probable locations.   Case Report A 62-year-old female with a history of rheumatoid arthritis and treatment with corticosteroids and Adalimumab, developed a foreign body sensation in the pharynx accompanied by a sore throat and halitosis. The laryngoscopy with a 70 degree rigid telescope showed an ulcerated hypertrophic lesion in the right vallecula of about 2-3 cm in the base of the tongue. Acid-alcohol resistant bacilli were found positive for M. tuberculosis, through the Ziehl Neelsen method and Löwenstein culture the patient was treated with tuberculostatic medication. Conclusion:  TB is a possible diagnosis when in the presence of an ulcerated lesion at the base of the tongue, accompanied by sore throat, dysphagia, or foreign body sensation.

  4. Methods and studies of tongue reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fahmi A. Numan; LIAO Gui-qing

    2007-01-01

    Total and even partial glossectomy could be a major event in the life of a patient. Tongue function is so complicated which makes maintaining normal functions of the tongue such as swallowing and speech and preserving larynx integrity after the surgery is a primary objective of the surgeon. This task is very difficult and the result is not predictable. Recent years, however, there has been interesting developments in microsurgical techniques, and these advancements enable oral and maxillofacial surgeons to achieve better results and improve the quality of their patient's life. The results even with use of the new technology are still far from perfect. Several reasons may cause variation in the result. Some of them have to do with the patient such as general health and other reasons are due to the method that is used and nature of the defect after the removal of the tumor. This article was undertaken to summarize the various methods and techniques used over the years to restore oral tongue functions after defects.

  5. Effectiveness of a new toothbrush design versus a conventional tongue scraper in improving breath odor and reducing tongue microbiota

    Directory of Open Access Journals (Sweden)

    Luciana Assirati Casemiro

    2008-08-01

    Full Text Available For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30 had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05. When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group. The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.

  6. Sport and Exercise Biomechanics (Bios Instant Notes)

    OpenAIRE

    Paul Grimshaw; Adrian Lees; Neil Fowler; Adrian Burden

    2007-01-01

    DESCRIPTION Instant Notes on Sport and Exercise Biomechanics provides a broad overview of the fundamental concepts in exercise and sport biomechanics. PURPOSE The book aims to provide instant notes on essential information about biomechanics, and is designed to help undergraduate students to grasp the corresponding subjects in physical effort rapidly and easily. AUDIENCE The book provides a useful resource for undergraduate and graduate students as a fundamental reference book. For the resear...

  7. Waveform effects of a metastable olivine tongue in subducting slabs

    Science.gov (United States)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  8. MOTHER TONGUE (L1 Vis-A-Vis OTHER TONGUE (L2?

    Directory of Open Access Journals (Sweden)

    Arun Behera

    2012-07-01

    Full Text Available Learning a language is always a difficult thing and more so when it comes to learning a second language (L2 for it reflects the complexity of learning a language which is the other tongue rather than the mother tongue of a person. The present paper proposes to focus on the prospects and benefits of the skill-based learning of the L2. All learners, as such pick up a language by two means: a acquisition of one's own language/mother tongue, and b learning another language. Acquisition is a subconscious and intuitive process, similar to that used by a child to pick up the first language (L1; and the second is conscious learning, in which a learner is aware of his/her own learning process.

  9. Enterobacteriaceae and pseudomonadaceae on the dorsum of the human tongue

    Directory of Open Access Journals (Sweden)

    Simone Conti

    2009-10-01

    Full Text Available OBJECTIVE: The aim of this study was to correlate the presence of Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Xanthomonadaceae on the posterior dorsum of the human tongue with the presence of tongue coating, gender, age, smoking habit and denture use. MATERIAL AND METHODS: Bacteria were isolated from the posterior tongue dorsum of 100 individuals in MacConkey agar medium and were identified by the API 20E system (Biolab-Mérieux. RESULTS: 43% of the individuals, presented the target microorganisms on the tongue dorsum, with greater prevalence among individuals between 40 and 50 years of age (p = 0.001 and non-smokers (p=0.0485. CONCLUSIONS: A higher prevalence of Enterobacteriaceae and Pseudomonadaceae was observed on the tongue dorsum of the individuals evaluated. There was no correlation between these species and the presence and thickness of tongue coating, gender and presence of dentures.

  10. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized β-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models

    Directory of Open Access Journals (Sweden)

    Cao L

    2012-11-01

    Full Text Available Lu Cao,1 Ping-Guo Duan,1 Xi-Lei Li,1 Feng-Lai Yuan,3 Ming-Dong Zhao,2 Wu Che,1 Hui-Ren Wang,1 Jian Dong11Department of Orthopedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China; 2Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China; 3Affiliated Third Hospital of Nantong University, Wuxi, ChinaPurpose: The aim of this study was to investigate the biomechanical stability provided by a novel, polylactic acid/nano-sized, β-tricalcium phosphate, bioabsorbable, self-retaining cervical fusion cage (BCFC.Methods: Quasistatic nonconstraining torques (maximum 1.5 NM induced flexion, extension, lateral bending (±1.5 NM, and axial rotation (±1.5 NM on 32 sheep cervical spines (C2–C5. The motion segment C3–C4 was first tested intact; the following groups were tested after complete discectomy: autologous tricortical iliac crest bone graft, Medtronic–Wego polyetheretherketone (PEEK cage, Solis PEEK cage, and BCFC. The autologous bone graft group was tested with an anterior plate. The mean range of motion (ROM was calculated from the load-displacement curves.Results: BCFC significantly decreased ROM in lateral bending and axial rotation compared to other implants, and no significant difference in ROM between two types of PEEK cages and BCFC could be observed in flexion and extension. Anterior cervical plate (ACP significantly decreased ROM in flexion and extension, but no significant difference in ROM between BCFC and bone graft plus ACP could be determined in lateral bending and axial rotation.Conclusion: The BCFC device showed better stability to autologous tricortical iliac crest bone graft and PEEK cages in single-level anterior cervical discectomy and fusion models and thus may be a potential alternative to the current PEEK cages.Keywords: biomechanics, cervical spine, cages, bioabsorbable, sheep

  11. Assessment of Taste Attributes of Peanut Meal Enzymatic-Hydrolysis Hydrolysates Using an Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Li Wang

    2015-05-01

    Full Text Available Peanut meal is the byproduct of high-temperature peanut oil extraction; it is mainly composed of proteins, which have complex tastes after enzymatic hydrolysis to free amino acids and small peptides. The enzymatic hydrolysis method was adopted by using two compound proteases of trypsin and flavorzyme to hydrolyze peanut meal aiming to provide a flavor base. Hence, it is necessary to assess the taste attributes and assign definite taste scores of peanut meal double enzymatic hydrolysis hydrolysates (DEH. Conventionally, sensory analysis is used to assess taste intensity in DEH. However, it has disadvantages because it is expensive and laborious. Hence, in this study, both taste attributes and taste scores of peanut meal DEH were evaluated using an electronic tongue. In this regard, the response characteristics of the electronic tongue to the DEH samples and standard five taste samples were researched to qualitatively assess the taste attributes using PCA and DFA. PLS and RBF neural network (RBFNN quantitative prediction models were employed to compare predictive abilities and to correlate results obtained from the electronic tongue and sensory analysis, respectively. The results showed that all prediction models had good correlations between the predicted scores from electronic tongue and those obtained from sensory analysis. The PLS and RBFNN prediction models constructed using the voltage response values from the sensors exhibited higher correlation and prediction ability than that of principal components. As compared with the taste performance by PLS model, that of RBFNN models was better. This study exhibits potential advantages and a concise objective taste assessment tool using the electronic tongue in the assessment of DEH taste attributes in the food industry.

  12. Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height

    OpenAIRE

    Ivancic, Paul C.

    2014-01-01

    Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact lo...

  13. Peritoneal mesothelioma metastasis to the tongue – Comparison with 8 pleural mesothelioma reports with tongue metastases

    Science.gov (United States)

    Vazquez, Melisa V.; Selvendran, Selwyn; Cheluvappa, Rajkumar; McKay, Michael J.

    2015-01-01

    Purpose Malignant mesothelioma (MM) rarely arises from the peritoneum. We describe the 1st such case which metastasised to the head and neck region (tongue). Methods We briefly surveyed the American Surveillance Epidemiology and End Results (SEER) database, and the British Cancer Research UK database for the latest trends in MM incidence. We did a systematic Pubmed search for other MM reports with tongue metastases. Results and presentation of case American and British data show that MM incidence in men has stabilised in the last 10 years, earlier than previously predicted. The tongue is an unusual site for MM spread, with ours being only the 9th such case described. Our summary of published cases of MM metastasising to the tongue brings out our patient to be the least in age(35 years), and the only one to have peritoneal MM as the primary. Seven of the 9 cases were male. Only 2 had a recorded history of exposure to asbestos. All 9 patients had the epithelioid subtype of MM. Surgery was done as the exclusive reported intervention in 4 out of the 9 patients. Only 2 cases received radiotherapy, amongst whom, only our patient responded. Conclusions Metastasis of MM to the tongue is rare and usually in the uncommon context of MM with multiple sites of extra-thoracic or extra-abdominal spread. We have described a unique clinical manifestation of a rare subtype of mesothelioma. Moreover, we have tabulated and summarised details (including responses to surgery or/and radiotherapy) regarding all reported cases of mesotheliomas with tongue metastasis. PMID:26900461

  14. Acromioclavicular joint dislocation: a comparative biomechanical study of the palmaris-longus tendon graft reconstruction with other augmentative methods in cadaveric models

    Directory of Open Access Journals (Sweden)

    Sengupta S

    2007-11-01

    Full Text Available Abstract Background Acromioclavicular injuries are common in sports medicine. Surgical intervention is generally advocated for chronic instability of Rockwood grade III and more severe injuries. Various methods of coracoclavicular ligament reconstruction and augmentation have been described. The objective of this study is to compare the biomechanical properties of a novel palmaris-longus tendon reconstruction with those of the native AC+CC ligaments, the modified Weaver-Dunn reconstruction, the ACJ capsuloligamentous complex repair, screw and clavicle hook plate augmentation. Hypothesis There is no difference, biomechanically, amongst the various reconstruction and augmentative methods. Study Design Controlled laboratory cadaveric study. Methods 54 cadaveric native (acromioclavicular and coracoclavicular ligaments were tested using the Instron machine. Superior loading was performed in the 6 groups: 1 in the intact states, 2 after modified Weaver-Dunn reconstruction (WD, 3 after modified Weaver-Dunn reconstruction with acromioclavicular joint capsuloligamentous repair (WD.ACJ, 4 after modified Weaver-Dunn reconstruction with clavicular hook plate augmentation (WD.CP or 5 after modified Weaver-Dunn reconstruction with coracoclavicular screw augmentation (WD.BS and 6 after modified Weaver-Dunn reconstruction with mersilene tape-palmaris-longus tendon graft reconstruction (WD. PLmt. Posterior-anterior (horizontal loading was similarly performed in all groups, except groups 4 and 5. The respective failure loads, stiffnesses, displacements at failure and modes of failure were recorded. Data analysis was carried out using a one-way ANOVA, with Student's unpaired t-test for unpaired data (S-PLUS statistical package 2005. Results Native ligaments were the strongest and stiffest when compared to other modes of reconstruction and augmentation except coracoclavicular screw, in both posterior-anterior and superior directions (p WD.ACJ provided additional

  15. How to Assess the Biomechanical Risk Levels in Beekeeping.

    Science.gov (United States)

    Maina, G; Rossi, F; Baracco, A

    2016-01-01

    Beekeepers are at particular risk of developing work-related musculoskeletal disorders, but many of the studies lack detailed exposure assessment. To evaluate the biomechanical overload exposure in a specific farming activity, a multitasking model has been developed through the characterization of 37 basic operational tasks typical of the beekeeping activity. The Occupational Repetitive Actions (OCRA) Checklist and the National Institute for Occupational Safety and Health (NIOSH) Lifting Index methodologies have been applied to these elementary tasks to evaluate the exposure, and the resulting risk indices have been time-weighted averaged. Finally, an easy access, computer-assisted toolkit has been developed to help the beekeepers in the biomechanical risk assessment process. The risk of biomechanical overload for the upper limbs ranges from acceptable (maintenance and recovery of woody material and honey packaging with dosing machine tasks) to high (distribution of the top supers) risk level. The risk for back injury is always borderline in women and increases with exposure time, whereas it ranges from acceptable to borderline in men. The definition of the biomechanical risk levels allows for planning of corrective actions aimed at preventing and reducing the risk of musculoskeletal disorders through engineering, administrative, and behavioral interventions. The methodology can be used for risk assessment in other mainly manual agricultural activities. PMID:26765780

  16. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation

    Directory of Open Access Journals (Sweden)

    Rita I. Issa

    2012-05-01

    Full Text Available Obesity is a significant risk factor for developing osteoarthritis in weight-bearing and non-weight-bearing joints. Although the pathogenesis of obesity-associated osteoarthritis is not completely understood, recent studies indicate that pro-inflammatory metabolic factors contribute to an increase in osteoarthritis risk. Adipose tissue, and in particular infrapatellar fat, is a local source of pro-inflammatory mediators that are increased with obesity and have been shown to increase cartilage degradation in cell and tissue culture models. One adipokine in particular, leptin, may be a critical mediator of obesity-associated osteoarthritis via synergistic actions with other inflammatory cytokines. Biomechanical factors may also increase the risk of osteoarthritis by activating cellular inflammation and promoting oxidative stress. However, some types of biomechanical stimulation, such as physiologic cyclic loading, inhibit inflammation and protect against cartilage degradation. A high percentage of obese individuals with knee osteoarthritis are sedentary, suggesting that a lack of physical activity may increase the susceptibility to inflammation. A more comprehensive approach to understanding how obesity alters daily biomechanical exposures within joint tissues may provide new insight into the protective and damaging effects of biomechanical factors on inflammation in osteoarthritis.

  17. LUMBAR SPINAL STENOSIS. A REVIEW OF BIOMECHANICAL STUDIES

    Institute of Scientific and Technical Information of China (English)

    戴力扬; 徐印坎

    1998-01-01

    ObjectS. To investigate the biomechanical aspects of etiology, pathology, clinical manifestation, diagnosis and surgical treatment of the lumbar spinal stenosis. Methods. A series of biomechanical methods, such as three-dimensional finite element models, threedimensional kinematic measurement, cadeveric evaluation, and imaging assessment was applied to correlate lumbar biomechanics and lumber spinal stenosls. Surgery of lumber spinal stenosis has been improved. Results.The stresses significantly concentrate on the posterolateral part of the annulus fibrcsms of disc, the posterior surface of vertebral body, the pedlcle, the interarticularis and the beet joints. This trend is intensified by disc degeneration and lumber backward extension. Posterior elcxnent resection has a definite effect upon the biomechanical behavior of lumbar vertebrae. The improved operations proved satisfactory. Conclusion. Stress concentration in the lumber vertebrae is of importance to the etiology of degenerative lumbar spinal stenosls, and disc degeneratkm is the initial key of this process. Than these will be aggravatnd by backward extension. Functloval radiography and myelography are of assistance to the diagnosis of the lumhar spinal stenosls. For the surgcal treatment of the lumber spinal stenosis, destruction of the posterior element should be avoid as far as possible based upon the thorough decmnpression. Maintaining the lumbar spine in flexion by fusion after decorapression has been proved a useftd method. When developmental spinal stenoals is combined with disc herniation, discectoray through laminotomy is recommend for decompression.

  18. ENTEROBACTERIACEAE AND PSEUDOMONADACEAE ON THE DORSUM OF THE HUMAN TONGUE

    OpenAIRE

    Simone Conti; Silvana Soléo Ferreira dos Santos; Cristiane Yumi Koga-Ito; Antonio Olavo Cardoso Jorge

    2009-01-01

    OBJECTIVE: The aim of this study was to correlate the presence of Enterobacteriaceae, Pseudomonadaceae, Moraxellaceae and Xanthomonadaceae on the posterior dorsum of the human tongue with the presence of tongue coating, gender, age, smoking habit and denture use. MATERIAL AND METHODS: Bacteria were isolated from the posterior tongue dorsum of 100 individuals in MacConkey agar medium and were identified by the API 20E system (Biolab-Mérieux). RESULTS: 43% of the individuals, presented the targ...

  19. Geographic Tongue and Fissured Tongue in 348 Patients with Psoriasis: Correlation with Disease Severity

    OpenAIRE

    Bruna L. S. Picciani; Souza, Thays T.; Santos, Vanessa de Carla B.; Domingos, Tábata A.; Sueli Carneiro; João Carlos Avelleira; Azulay, David R.; Pinto, Jane M. N.; Dias, Eliane P.

    2015-01-01

    Geographic tongue (GT) and fissured tongue (FT) are the more frequent oral lesions in patients with psoriasis. The aims of this study were to compare the prevalence of GT/FT between psoriasis group (PG) and healthy controls (HC) and investigate the correlation between GT/FT and psoriasis severity using the PASI and age of psoriasis onset. Three hundred and forty-eight PG and 348 HC were selected. According to the age of psoriasis onset, the individuals were classified as having early psoriasi...

  20. Detection of antibiotic residues in bovine milk by a voltammetric electronic tongue system

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zhenbo [Zhejiang University, Department of Bio-Systems Engineering, 268 Kaixuan Road, Hangzhou, Zhejiang 310029 (China); Wang Jun, E-mail: jwang@zju.edu.cn [Zhejiang University, Department of Bio-Systems Engineering, 268 Kaixuan Road, Hangzhou, Zhejiang 310029 (China)

    2011-05-23

    A voltammetric electronic tongue (VE-tongue) was developed to detect antibiotic residues in bovine milk. Six antibiotics (Chloramphenicol, Erythromycin, Kanamycin sulfate, Neomycin sulfate, Streptomycin sulfate and Tetracycline HCl) spiked at four different concentration levels (0.5, 1, 1.5 and 2 maximum residue limits (MRLs)) were classified based on VE-tongue by two pattern recognition methods: principal component analysis (PCA) and discriminant function analysis (DFA). The VE-tongue was composed of five working electrodes (gold, silver, platinum, palladium, and titanium) positioned in a standard three-electrode configuration. The Multi-frequency large amplitude pulse voltammetry (MLAPV) which consisted of four segments (1 Hz, 10 Hz, 100 Hz and 1000 Hz) was applied as potential waveform. The six antibiotics at the MRLs could not be separated from bovine milk completely by PCA, but all the samples were demarcated clearly by DFA. Three regression models: Principal Component Regression Analysis (PCR), Partial Least Squares Regression (PLSR), and Least Squares-Support Vector Machines (LS-SVM) were used for concentrations of antibiotics prediction. All the regression models performed well, and PCR had the most stable results.

  1. Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue.

    Science.gov (United States)

    Dias, Luís G; Sequeira, Cédric; Veloso, Ana C A; Sousa, Mara E B C; Peres, António M

    2014-10-27

    Overconsumption of sugar-sweetened beverages may increase the risk of health problems and so, the evaluation of their glycemic load and fructose-intolerance level is essential since it may allow establishing possible relations between physiologic effects of sugar-rich beverages and health. In this work, an electronic tongue was used to accurately classify beverages according to glycemic load (low, medium or high load) as well to their adequacy for people suffering from fructose malabsorption syndrome (tolerable or not): 100% of correct classifications (leave-one-out cross-validation) using linear discriminant models based on potentiomentric signals selected by a meta-heuristic simulated annealing algorithm. These results may be partially explained by the electronic tongue's capability to mimic the human sweetness perception and total acid flavor of beverages, which can be related with glycemic load and fructose-intolerance index. Finally, the E-tongue was also applied to quantify, accurately, healthy and sensory indexes using multiple linear regression models (leave-one-out cross-validation: Radj>0.99) in the following dynamic ranges: 4.7fructose intolerance index≤1.5; 32tongue could be used as a practical, fast, low-cost and green tool for beverage's healthy and sensory evaluation.

  2. Training induced cortical plasticity compared between three tongue training paradigms

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Jensen, Jim;

    2013-01-01

    The primary aim of this study was to investigate the effect of different training types and secondary to test gender differences on the training-related cortical plasticity induced by three different tongue training paradigms: 1. Therapeutic tongue exercises (TTE), 2. Playing computer games......) (control) were established using transcranial magnetic stimulation (TMS) at three time-points: (1) before tongue training, (2) immediately after training, (3) 1 h after training. Subject-based reports of motivation, fun, pain and fatigue were evaluated on 0-10 numerical rating scales (NRS) after training....... The resting motor thresholds of tongue MEPs were lowered by training with TDS and TPT (Ptraining with TDS and TPT (P

  3. Linezolid-induced black hairy tongue: a case report

    Directory of Open Access Journals (Sweden)

    Khasawneh Faisal Abdullah

    2013-02-01

    Full Text Available Abstract Introduction Linezolid-induced black hairy tongue has been rarely reported. The purpose of this paper is to report a case of linezolid-induced black hairy tongue and review the literature. Case presentation A 56-year-old Caucasian man was admitted with community-acquired pneumonia that failed to respond to levofloxacin 750mg daily. He was started on linezolid and meropenem and was subsequently discharged home on oral linezolid 600mg every 12 hours and intravenous ertapenem 1g daily. On a follow-up clinic visit, day 14 of linezolid therapy, he complained of dysgeusia and his tongue examination was consistent with black hairy tongue. After he finished his antibiotic course, his complaints resolved with regular tongue brushing. Conclusion Black hairy tongue is characterized by abnormal hypertrophy and elongation of filiform papillae. Five reported cases of linezolid-induced black hairy tongue were identified in a MEDLINE search (from January 2000 to June 2012. The Naranjo Probability Scale revealed a probable adverse drug reaction of linezolid-induced black hairy tongue. Potential contributing factors included other antibiotics, drug–drug interaction and poor oral hygiene. Health care professionals should be aware of the possibility of linezolid-induced black hairy tongue. Thorough history for other possible contributing factors should be obtained. Patients on linezolid should be counseled to perform good oral hygiene.

  4. Relationship between tongue positions and formant frequencies in female speakers.

    Science.gov (United States)

    Lee, Jimin; Shaiman, Susan; Weismer, Gary

    2016-01-01

    This study examined the relationship (1) between acoustic vowel space and the corresponding tongue kinematic vowel space and (2) between formant frequencies (F1 and F2) and tongue x-y coordinates for the same time sampling point. Thirteen healthy female adults participated in this study. Electromagnetic articulography and synchronized acoustic recordings were utilized to obtain vowel acoustic and tongue kinematic data across ten speech tasks. Intra-speaker analyses showed that for 10 of the 13 speakers the acoustic vowel space was moderately to highly correlated with tongue kinematic vowel space; much weaker correlations were obtained for inter-speaker analyses. Correlations of individual formants with tongue positions showed that F1 varied strongly with tongue position variations in the y dimension, whereas F2 was correlated in equal magnitude with variations in the x and y positions. For within-speaker analyses, the size of the acoustic vowel space is likely to provide a reasonable inference of size of the tongue working space for most speakers; unfortunately there is no a priori, obvious way to identify the speakers for whom the covariation is not significant. A second conclusion is that F1 variations reflect tongue height, but F2 is a much more complex reflection of tongue variation in both dimensions.

  5. 膝关节三维有限元模型的构建及生物力学分析%Establishment and Biomechanical Analysis of a 3-D Finite Element Model of the Knee

    Institute of Scientific and Technical Information of China (English)

    李杏芮; 陈清; 盛华均; 杨美; 吕发金; 李信友; 梁熙

    2015-01-01

    Objective:To establish a three-dimensional finite element analysis model of the knee joint to be used on the ordinary computer and then to do a preliminary biomechanical analysis ,w hich could provide a simulated foundation for personalized prosthesis design and 3-D printing .Methods :CT scan results of healthy adult volunteers were imported into Mimics software to set up a three-dimensional model ,and then were imported into ANSYS software to establish the three-dimensional finite element model by defi-ning a unit type ,choosing material properties and meshing .Results:The three-dimensional finite element model was mimic and clear which could be used on the ordinary computer .Mechanics analysis results showed that the main stress on the knee extension position was minimum .Conclusion :Based on Mimics and ANSYS software ,a three-dimensional finite element model of the knee joint was established success-fully which could be applied on a personal computer .Biomechanical analysis of the model showed that in personalized design of the shape of the knee implant ,the patient's own knee extension position should be taken for reference .%目的 :构建一个能在普通计算机上使用的膝关节三维有限元模型 ,并进行初步生物力学分析 ,为个性化假体设计及3D打印提供仿真基础 .方法 :对健康成人志愿者进行CT扫描 ,导入Mimics软件中建立三维模型 ,再导入ANSYS软件中 ,通过定义单元类型、选择材料属性和划分网格 ,建立三维有限元模型 .结果 :三维有限元模型逼真、清晰、数据量小 ,适用于普通计算机 ;力学分析结果显示膝关节在伸直位时主应力最小 .结论 :基于Mimics及ANSYS软件 ,成功构建了能够在个人计算机上应用的膝关节三维有限元模型 ,对该模型生物力学分析显示 ,在个性化膝关节假体设计时 ,其形态应以病人自身膝关节伸直位为参考依据 .

  6. A review of biomechanics of the shoulder and biomechanical concepts of rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Nobuyuki Yamamoto

    2015-01-01

    Full Text Available In this article, we describe the basic knowledge about shoulder biomechanics, which is thought to be useful for surgeons. Some clinical reports have described that the excellent outcome after cuff repair without acromioplasty and a limited acromioplasty might be enough for subacromial decompression. It was biomechanically demonstrated that a 10-mm medial shift of the tendon repair site has a minimum effect on biomechanics. Many biomechanical studies reported that the transosseous equivalent repair was superior to other techniques, although the tendon may lose its inherent elasticity. We herein introduce our recent experiment data and latest information on biomechanics.

  7. Biomechanics of ossiculoplasty

    OpenAIRE

    Kelly, Daniel; PRENDERGAST, PATRICK JOHN

    2003-01-01

    PUBLISHED Many different designs of prostheses are available for middle ear surgery. Clinical comparisons of such prostheses are often difficult because of the large number of variables involved in the clinical outcome; including the skill of the surgeon or patient variability. In an attempt to compare the performance of four different middle ear implants (Kurz Bell-Tubingen, Kurz Aerial-Tubingen, Xomed no.0362, Xomed no. 0321), a finite element model of the middle ear befor...

  8. Small Animal Bone Biomechanics

    OpenAIRE

    Vashishth, Deepak

    2008-01-01

    Animal models, in particular mice, offer the possibility of naturally achieving or genetically engineering a skeletal phenotype associated with disease and conducting destructive fracture tests on bone to determine the resulting change in bone’s mechanical properties. Several recent developments, including nano- and micro- indentation testing, microtensile and microcompressive testing, and bending tests on notched whole bone specimens, offer the possibility to mechanically probe small animal ...

  9. Establishment of transplanted model of VX2 tongue carcinoma in rabbits and observation of their major biological features%兔VX2舌鳞癌移植瘤模型的建立及生物学特性观察

    Institute of Scientific and Technical Information of China (English)

    廖贵清; 田军; 刘海潮; 杜日昌; 李传真; 李清; 王敬旭; 李国永

    2009-01-01

    目的:建立可供实验研究的稳定的兔VX2舌鳞癌移植瘤模型,观察其主要生物学特性.方法:制备VX2肿瘤荷瘤种兔后,将荷瘤种兔新鲜鳞癌组织块移植于24只新西兰大白兔的舌侧缘中1/3黏膜下,制成兔VX2舌鳞癌移植瘤模型.荷瘤动物随机分为2组,第1组(n=6)不同时期分批处死,进行大体观察、组织病理及电镜检查;第2组(n=14)作为对照组.观察荷瘤动物的自然生存期.结果:成瘤率为83.3%(20/24);移植瘤的组织学特征与移植于兔其他部位的VX2肿瘤基本一致,在舌体内浸润性生长并向周围侵袭、扩散,符合中分化鳞状细胞癌的特征.结论:成功建立了兔VX2舌鳞癌移植瘤模型.该模型成瘤率高,潜伏期短,生长迅速,生物学特性稳定,易于复制,接近人舌鳞癌的临床特征.较客观地反映了舌癌的生物学行为,为舌鳞癌的研究提供了较理想的大型动物模型.%PURPOSE: To establish a stable large animal transplanted model of VX2 carcinoma in rabbit tongue and observe its major biological features. METHODS: After establishment of VX2 tumor-bearing rabbits, the carcinoma tissues were transplanted into the middle third of the lateral border of the tongues in twenty-four New-Zealand white rabbits submucosally to establish transplanted tumor model. The animals were randomly divided into two groups. Rabbits in groupl(n=6) were randomly sacrificed at day 3, 7, 14, 21, 28, and 35 after implantation, respectively, Tumor biological features were observed macroscopically and pathohistologically. The natural survival time of tumor-bearing rabbits were observed in group 2 (n=14). RESULTS: The tumor-loading rate was 83.3%(20/24). Histopathologicai examination indicated that the transplanted tumour grew infihratively and invasively at the lingual recipient sites, which was similar to the biological properties of VX2 transplanted squamous cell carcinoma in other sites of the rabbits. CONCLUSIONS: We successfully

  10. Risk assessment of tobacco, alcohol and diet in cancers of base tongue and oral tongue--a case control study.

    OpenAIRE

    Rao D; Desai P

    1998-01-01

    This is a retrospective case-control study of male tongue cancer patients seen at Tata memorial Hospital, Bombay, during the years 1980-84. The purpose of the study was to identify the association of tobacco, alcohol, diet and literacy status with respect to cancers of two sub sites of tongue namely anterior portion of the tongue (AT) (ICD 1411-1414) and base of the tongue (BT) (ICD 1410). There were 142 male AT patients and 495 BT patients interviewed during the period. 635 interviewed male ...

  11. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    Science.gov (United States)

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental. PMID:11347685

  12. Biomechanical properties of four dermal substitutes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-an; NING Fang-gang; ZHAO Nan-ming

    2007-01-01

    @@ Many kinds of cell-free dermal substitutes have been developed during the past several years, however,their biomechanical properties, including hysteresis,stress relaxation, creep, and non-linear stress-strain, are still unknown. In this study, we tested these biomechanical characteristics of four dermal substitutes,and compared them with those of fresh human skin (FHS).

  13. Applied Biomechanics in an Instructional Setting

    Science.gov (United States)

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  14. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  15. A 47-year-old man with tongue swelling.

    Science.gov (United States)

    Rodríguez-Roa, Maristely; Nazario, Sylvette; Ramos, Cristina

    2016-07-01

    Intermittent tongue angioedema can be the initial presentation of several disorders including angiotensin-converting-enzyme inhibitor induced angioedema and hereditary angioedema. Persistent angioedema on the other hand, can be associated with amyloidosis, tumors, thyroid disorders and acromegaly. We present a case of intermittent episodes of tongue swelling progressing to macroglossia. PMID:27401321

  16. Repair of large palatal fistula using tongue flap

    Directory of Open Access Journals (Sweden)

    Fejjal Nawfal

    2014-01-01

    Full Text Available Large palatal fistulas are a challenging problem in cleft surgery. Many techniques are used to close the defect. The tongue flap is an easy and reproductible procedure for managing this complication. The authors report a case of a large palatal fistula closure with anteriorly based tongue flap.

  17. Fifteen-minute consultation: the infant with a tongue tie.

    Science.gov (United States)

    Bowley, Douglas M; Arul, G Suren

    2014-08-01

    Tongue tie is an increasingly common cause for referral of infants to our general paediatric surgery service. In this article, we will explore the indications for tongue tie division in the newborn child, the practicalities of the procedure and the supporting evidence. PMID:24419208

  18. Mother Tongue and Education in Africa: Publicising the Reality

    Science.gov (United States)

    Kioko, Angelina N.; Ndung'u, Ruth W.; Njoroge, Martin C.; Mutiga, Jayne

    2014-01-01

    Varied realities surround the use of mother tongue education in Africa. These realities are entrenched in the attitudes and misconceptions that have gone unchallenged due to inadequate literature on the successful use of mother tongues in the classroom and beyond. The realities discussed in this paper include the frustrations of children…

  19. Tongue Measures in Individuals with Normal and Impaired Swallowing

    Science.gov (United States)

    Stierwalt, Julie A. G.; Youmans, Scott R.

    2007-01-01

    Purpose: This investigation sought to add to the extant literature on measures of normal tongue function, to provide information on measures of tongue function in a group of individuals with oral phase dysphagia, and to provide a comparison of these 2 groups matched for age and gender. Method: The Iowa Oral Performance Instrument was utilized to…

  20. The Use of Mother Tongue in Second Language Teaching

    Institute of Scientific and Technical Information of China (English)

    赵鸣霄; 张立杰

    2015-01-01

    This paper explores the specific application of mother tongue in Second Language learning from the perspective of class management, introducing learning methods, teaching vocabulary, teaching grammar, dealing with exercises and testing, and cooperation among students. It is concluded that mother tongue should be properly used in Second Language Teaching in or-der to improve the teaching of second language.

  1. Carp's Tongue Swords in Spain, France and Italy

    OpenAIRE

    Hugh O'Neill HENCKEN

    2009-01-01

    Professor Almagro in his article on the Huelva hoard has compared swords with carp's tongue points from that find to the well-known sword from Veii. In this connection some comment on carp's tongue points in Italy and their possible connection with the west may be of interest.

  2. Taste masking analysis in pharmaceutical formulation development using an electronic tongue.

    Science.gov (United States)

    Zheng, Jack Y; Keeney, Melissa P

    2006-03-01

    The purpose of this study is to assess the feasibility for taste masking and comparison of taste intensity during formulation development using a multichannel taste sensor system (e-Tongue). Seven taste sensors used in the e-Tongue were cross-selective for five basic tastes while having different sensitivity or responsibility for different tastes. Each of the individual sensors concurrently contributes to the detection of most substances in a complicated sample through the different electronic output. Taste-masking efficiency was evaluated using quinine as a bitter model compound and a sweetener, acesulfame K, as a bitterness inhibitor. In a 0.2 mM quinine solution, the group distance obtained from e-Tongue analysis was reduced with increasing concentration of acesulfame K. This result suggests that the sensors could detect the inhibition of bitterness by a sweetener and could be used for optimization of the sweetener level in a liquid formulation. In addition, the bitterness inhibition of quinine by using other known taste-masking excipients including sodium acetate, NaCl, Prosweet flavor, and Debittering powder or soft drinks could be detected by the e-Tongue. These results further suggest that the e-Tongue should be useful in a taste-masking evaluation study on selecting appropriate taste-masking excipients for a solution formulation or a reconstitution vehicle for a drug-in-bottle formulation. In another study, the intensity of the taste for several drug substances known to be bitter was compared using the e-Tongue. It was found that the group distance was 695 for prednisolone and 686 for quinine, which is much higher than that of caffeine (102). These results indicate that the taste of prednisolone and quinine is stronger or more bitter than that of caffeine as expected. Based on the group distance, the relative intensity of bitterness for these compounds could be ranked in the following order: ranitidine HCl>prednisolone Na>quinine HCl approximately

  3. Tongue piercing by a Yogi: QEEG observations.

    Science.gov (United States)

    Peper, Erik; Wilson, Vietta E; Gunkelman, Jay; Kawakami, Mitsumasa; Sata, Misa; Barton, William; Johnston, James

    2006-12-01

    : This study reports on the QEEG observations recorded from a yogi during tongue piercing in which he demonstrated voluntary pain control. The QEEG was recorded with a Lexicor 1620 from 19 sites with appropriate controls for impedence and artifacts. A neurologist read the data for abnormalities and the QEEG was analyzed by mapping, single and multiple hertz bins, coherence, and statistical comparisons with a normative database. The session included a meditation baseline and tongue piercing. During the meditative baseline period the yogi's QEEG maps suggesting that he was able to lower his brain activity to a resting state. This state showed a predominance of slow wave potentials (delta) during piercing and suggested that the yogi induced a state that may be similar to those found when individuals are under analgesia. Further research should be conducted with a group of individuals who demonstrate exceptional self-regulation to determine the underlying mechanisms, and whether the skills can be used to teach others how to manage pain.

  4. Base of Tongue Tuberculosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Prepageran Narayanan

    2012-02-01

    Full Text Available We report a rare case of base of tongue tuberculosis following pulmonary tuberculosis. Patient presented to us with chief complaints of sore throat and pain on swallowing for period of 3 months. On examination with 70 degree telescope, we observed an ulcer on right side of base of tongue. The edges of the ulcer appeared to be undermined with whitish slough at the centre of the ulcer. Examination of neck showed a multiple small palpable middle deep cervical lymph nodes on right side of neck. Biopsy of the ulcer was taken, which showed granulomatous inflammation, suggestive of tuberculosis. Laboratory investigations revealed a raise in erythrocyte sedimentation rate, sputum for acid fast bacilli was strongly positive. Chest X ray was performed for patient showed multiple areas of consolidation. Patient was referred to chest clinic for further management of tuberculosis and was started on anti-tuberculous drugs. In conclusion tuberculosis of oral cavity is rare, but should be considered among one of the differential diagnosis of the oral lesions and biopsy is necessary to confirm the diagnosis.

  5. Biomechanical simulation of thorax deformation using finite element approach

    OpenAIRE

    Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki

    2016-01-01

    Background The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. Methods We constructed a finite element model of t...

  6. Three-Dimensional Biomechanical Analysis of the Bovine Humerus

    OpenAIRE

    Bouza-Rodríguez, José Benito; Miramontes-Sequeiros, Luz Calia

    2014-01-01

    There are few reports on the biomechanical analysis of the animal humerus. In this study, a three-dimensional finite element model of the bovine humerus was created, and loaded with the physiological forces acting when the cow is falling or jumping (weight and impact forces). Subsequently the corresponding stress and strain distribution in the humerus for different inclined positions of bone was determined.The highest stress concentration occurred in the distal humeral diaphysis, both when on...

  7. Human papillomavirus and survival in patients with base of tongue cancer.

    Science.gov (United States)

    Attner, Per; Du, Juan; Näsman, Anders; Hammarstedt, Lalle; Ramqvist, Torbjörn; Lindholm, Johan; Marklund, Linda; Dalianis, Tina; Munck-Wikland, Eva

    2011-06-15

    The incidence of base of tongue cancer is increasing in Sweden and the proportion of human papillomavirus (HPV) positive cancer has increased in Stockholm, Sweden. Between 2006 and 2007, 84% of base of tongue cancer cases in Stockholm were HPV-positive. The objective of this study was to assess the impact of HPV status on prognosis for base of tongue cancer patients. One-hundred and nine patients were diagnosed with base of tongue cancer between 1998 and 2007 in Stockholm County and 95 paraffin-embedded diagnostic tumor biopsies were obtained and tested for HPV by PCR. Eighty-seven patients had available biopsies, were treated with intention to cure and could be included in the survival analysis. Age, sex, TNM-stage, stage, treatment and survival were recorded from patient charts. Kaplan-Meier curves were used to present survival data. In multivariable analyses, a Cox proportional hazards model was used to adjust for covariates. In total 68 (78%) tumor biopsies from the 87 included patients were HPV DNA positive. Kaplan-Meier estimates showed that the overall survival for patients with HPV-positive cancer was significantly better (p = 0.0004), (log-rank test) than that of patients with HPV-negative cancer. Patients with HPV-positive tumors also had significantly better disease-free survival (p = 0.0008), (log-rank test) than those with HPV-negative tumors. These results further strengthen the option to consider HPV-status when planning prospective studies on treatment for base of tongue cancer. PMID:20725995

  8. 一个人膝关节弹性咬合接触的生物力学模型%A Biomechanical Model of Human Knee-Joint Elastic Articulate Contact

    Institute of Scientific and Technical Information of China (English)

    王西十; TurgutTumer; 等

    2001-01-01

    In this paper, based on the characterizations of human knee-joint anatomical structures and reports of the literature and experiments, a biomechanical model of the human knee-joint elastic articulate contact is developed under the conditions of sampling the human knee-joints. This model is believed to be a powerful tool for functional analysis of the knee, for evaluation of surgical and diagnostic procedures and for design of artificial joints.%基于人膝关节的解剖特征,在文献和试验的基础上,对膝关节解剖结构作了适当的简化,从而根据赫茨理论,建立了膝关节股骨与胫骨弹性咬合接触的生物力学模型,并获得了膝关节弹性咬合接触的最大咬合接触应力、咬合接触面积和相对咬合接触变形的定解形式。这些解的结果,对于指导临床诊断和治疗膝关节病等均具有重要作用。

  9. 膝关节半月板三维有限元模型的动态仿真生物力学分析%Biomechanical analysis of dynamic simulation of three dimensional finite element models of knee joint meniscus

    Institute of Scientific and Technical Information of China (English)

    陈文栋; 杨光

    2016-01-01

    volunteers, the medicine finite element simulation software Mimics10.01 and reverse engineering software Rapidform XOR3 were utilized to reconstruct three-dimensional finite element model of knee joint meniscus. The advanced finite element analysis software Abaqus6.10-1 was utilized for analogue simulation and for analyzing biomechanical changes during flexion under vertical load of 300 N. RESULTS AND CONCLUSION:(1) While the knee joint flexed at 0°, 30°, 60° and 90°, with the increase of angle, maximum stress point moved from the anterior edge of tibia attachment surface of the medial meniscus posterior angle to the posterior edge of tibia attachment surface of the lateral meniscus anterior angle, and the stress range of lateral meniscus was greater than that of the medial meniscus. (2) The maximal displacement point moved from the midpoint of inner edge of the medial meniscus to the front outer-upper edge of the lateral meniscus at knee flexion of 0°, 30°, 60° and 90°. Moreover, the range of displacement of lateral meniscus was bigger than the medial meniscus. (3) These findings suggest that the meniscus is the major bearing structure in the process of knee flexion. The lateral meniscus injury rate is greater than the medial meniscus in process of exercise, which is associated with large stress and displacement.

  10. Biomechanical performance of new cardiovascular needles.

    Science.gov (United States)

    Thacker, J G; Ferguson, R E; Rodeheaver, G T; Edlich, R F

    2001-01-01

    Cardiovascular needles are now being manufactured from new stainless steel alloys containing high concentrations of nickel, Surgalloy and Ethalloy. The purpose of this study was to compare the biomechanical performance of a cardiovascular needle made of Surgalloy with a comparably sized needle made of Ethalloy. The parameters of biomechanical performance included sharpness, maintenance of sharpness, resistance to bending, and ductility. Because the biomechanical performance of these needles was remarkably similar, cardiovascular needles made of either the Surgalloy or Ethalloy alloys are recommended for cardiovascular surgery. PMID:11495105

  11. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    International Nuclear Information System (INIS)

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  12. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.com [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China); Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-04-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  13. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  14. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint. PMID:26072625

  15. [Biomechanics of the ankle joint].

    Science.gov (United States)

    Zwipp, H

    1989-03-01

    According to Fick, the tree-dimensional patterns of foot motion are best characterized as jawlike movement. Anatomically and biomechanically, this process represents conjoined, synchronous motion within the three mobile segments of the hindfoot: the ankle joint, the posterior subtalar joint, and the anterior subtalar joint. Foot kinematics can be described more completely if the anterior subtalar joint is defined not only as the talocalcaneal navicular joint, but as including the calcaneocuboid joint, thus representing the transverse joint of the tarsus, i.e., the Chopart joint. The axes of these three joints can be defined precisely. In some parts they represent a screwlike motion, clockwise or counter-clockwise, around the central ligamentous structures (fibulotibial ligament, talocalcaneal interosseous ligament, bifurcate ligament). The individual anatomy and structure of these ligaments provide variations in the degree and direction of foot motion. A precise knowledge of foot kinematics is important in surgical ligament and joint reconstruction and in selective foot arthrodeses.

  16. BIOMECHANIC EVALUATION OF CARPENTRY WORKERS IN THE DISTRITO FEDERAL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Nilton Cesar Fiedler

    2010-08-01

    Full Text Available The aim of this study was the biomechanical assessment of carpentry woodworkers, located in Brasília, DF. It was filmed the profile of each worker during the performance of his activities in the carpentry and the forces involved in the work were assessed. The image of each woodworker was congealed to accomplish the measurement of articulation angles. The data were submitted to the software of posture analysis “Winowas” (OWAS Method and to the biomechanic model of posture prognosis and static forces, developed by Michigan University. The OWAS method showed that, for all machines and carpentries assessed, the worst posture occurred when the worker lifted and placed the pieces of wood on the floor and during the feeding in the smoother. The tridimensional biomechanic model registered the worst posture in different phases of the work cycle. In the first one, there were problems in all articulations, except the hips, when placing the pieces on the floor from the smoother. In the second one, there were problems in all articulations, except the elbows and the L5-S1 column disc, by feeding the surface planer. The third one, the ankles were the most injured when feeding the smoother, the surface planer, the circular saw and the band saw. According to the results, the woodworkers should try to eliminate the constant work standing upright, use auxiliary machinery to handle pieces of wood, reduce the load during feeding the machines and improve postures.

  17. Bacillus as a potential diagnostic marker for yellow tongue coating.

    Science.gov (United States)

    Ye, Juan; Cai, Xueting; Yang, Jie; Sun, Xiaoyan; Hu, Chunping; Xia, Junquan; Shen, Jianping; Su, Kelei; Yan, Huaijiang; Xu, Yuehua; Zhang, Yiyan; Zhang, Sujie; Yang, Lijun; Zhi, Hao; Gao, Sizhi Paul; Yu, Qiang; Hu, Jingqing; Cao, Peng

    2016-01-01

    Observation of tongue coating, a foundation for clinical diagnosis and treatment in traditional Chinese medicine (TCM), is a major indicator of the occurrence, development, and prognosis of disease. The biological basis of tongue diagnosis and relationship between the types and microorganisms of tongue coating remain elusive. Thirteen chronic erosive gastritis (CEG) patients with typical yellow tongue coating (YTC) and ten healthy volunteers with thin white tongue coating (WTC) were included in this study. Patients were provided a 2-course targeted treatment of a herbal medicine Ban Xia Xie Xin decoction, traditionally prescribed for CEG patients with YTC, to evaluate the relationship between tongue coating microbiota and diagnosis of CEG with typical YTC. The tongue coating segregation structure was determined using Illumina Miseq sequencing of the V4-V5 region of the 16S ribosomal RNA gene. Bacillus was significantly observed only in CEG patients with YTC, but not in patients who received the decoction. YTC (n = 22) and WTC (n = 29) samples were collected for bacterial culturing to illustrate the relationship between Bacillus and YTC. The Bacillus positivity rate of YTC samples was 72.7%; Bacillus was not observed in WTC samples. In conclusion, Bacillus was strongly associated with YTC. PMID:27578261

  18. Living in limbo: Being diagnosed with oral tongue cancer

    Directory of Open Access Journals (Sweden)

    Genevieve Philiponis

    2015-01-01

    Full Text Available Objective: Oral tongue cancer presents clinical challenges to effective diagnosis that affect patient experience. Patient experience of the diagnostic process is poorly described, making opportunities for nursing intervention unclear. Methods: We qualitatively describe, using constant comparative analysis, oral tongue cancer diagnosis using data from a larger grounded theory study of oral tongue cancer survivorship. Using constant comparative analysis - in keeping with the methodology of the main study - we analyzed 16 survivor interviews for themes explaining the patient experience of oral tongue cancer diagnosis. Results: We termed the broader diagnostic process "living in limbo." This process includes the themes describing the peri-diagnostic process itself - "self-detected lesion," "lack of concern," "seeking help," "not a straightforward diagnosis," and "hearing the diagnosis." Entry into treatment concludes "Living in Limbo" and is described by the theme "worry and trust." Conclusions: Our findings are limited by retrospective interviews and participant homogeneity among other features. Future research with prospective designs and diverse groups of people at risk for and diagnosed with oral tongue cancer, as well as targeting those who have had negative biopsies with no eventual diagnosis of oral tongue cancer, will build on our findings. Further, study of patient experience in other sociocultural context and healthcare systems is needed to inform nursing science and practice. Finally, "living in limbo" suggests that clinician and public education about oral tongue cancer diagnosis is needed.

  19. Slip of the tongue: Implications for evolution and language development.

    Science.gov (United States)

    Forrester, Gillian S; Rodriguez, Alina

    2015-08-01

    A prevailing theory regarding the evolution of language implicates a gestural stage prior to the emergence of speech. In support of a transition of human language from a gestural to a vocal system, articulation of the hands and the tongue are underpinned by overlapping left hemisphere dominant neural regions. Behavioral studies demonstrate that human adults perform sympathetic mouth actions in imitative synchrony with manual actions. Additionally, right-handedness for precision manual actions in children has been correlated with the typical development of language, while a lack of hand bias has been associated with psychopathology. It therefore stands to reason that sympathetic mouth actions during fine precision motor action of the hands may be lateralized. We employed a fine-grained behavioral coding paradigm to provide the first investigation of tongue protrusions in typically developing 4-year old children. Tongue protrusions were investigated across a range of cognitive tasks that required varying degrees of manual action: precision motor action, gross motor action and no motor actions. The rate of tongue protrusions was influenced by the motor requirements of the task and tongue protrusions were significantly right-biased for only precision manual motor action (p<.001). From an evolutionary perspective, tongue protrusions can drive new investigations regarding how an early human communication system transitioned from hand to mouth. From a developmental perspective, the present study may serve to reveal patterns of tongue protrusions during the motor development of typically developing children. PMID:25966841

  20. Electronic Tongue for Quantitation of Contaminants in Water

    Science.gov (United States)

    Buehler, Marlin; Kuhlman, Gregory

    2004-01-01

    An assembly of sensors, denoted an electronic tongue, is undergoing development as a prototype of compact devices for use in measuring concentrations of contaminants in water. Thus far, the electronic tongue has been tested on ions of Cu, Zn, Pb, and Fe and shown to respond to concentrations as low as about 10 parts per million. This electronic tongue is expected to be capable of measuring concentrations of other metal ions and organic compounds. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings; detecting micro-organisms indirectly by measuring microbially influenced corrosion; and characterizing compounds of interest to the pharmaceutical and food industries. This version of the electronic tongue includes a heater, a temperature sensor, an array of ion-specific electrodes, an oxidation/ reduction sensor pair, an electrical-conductivity sensor, and an array of galvanic cells, all on one compact ceramic substrate. Special-purpose electronic excitation and readout circuitry for the sensors has also been constructed. The main advantage of the electronic tongue, relative to electrodes of this type used traditionally to assess water quality, is extreme ruggedness. The types of measurements that can be performed by use of the sensors on the electronic tongue are quite varied. The best combination of types of measurements for a given application depends on the specific contaminants that one seeks to detect. Experimental studies to identify such combinations were in progress at the time of reporting the information for this article.

  1. Explorations of the Similarities and Differences between the Mother Tongue and the Second Language Learning

    Institute of Scientific and Technical Information of China (English)

    张宝权

    2001-01-01

    This paper mainly discusses the similarities and differences between the mother tongue and the second language learning. That is, major characteristics of the mother tongue acquisition, the second language with own peculiarities and big difference from the mother tongue, some significant similarities between the mother tongue and the second languages and the implication for classroom teaching.

  2. Congenital benign teratoma of the tongue with bifid tip, ankyloglossia and polydactyly: report of a case.

    Science.gov (United States)

    Andrade, Neelam N; Raikwar, Kanchan

    2010-09-01

    Teratomas of the tongue are rare, and often accompany other anomalies within the head and neck. We describe a combination of anomalies in a 6-week-old infant with teratoma and bifid tip of the tongue, severe tongue tie, and polydactyly. The teratoma was excised and the tongue tie released with no complications. PMID:20579786

  3. On the Application of Mother tongue in Primary school English Teaching

    Institute of Scientific and Technical Information of China (English)

    刘侠

    2013-01-01

    This paper first briefly reviews the application of mother tongue in primary school English teaching and then hackles the positive contribution of learners’ mother tongue thinking and mother tongue knowledge in English learning.Finally,it suggests that it is necessary for English teachers at the primary school to make use of mother tongue in timely and appropriate way.

  4. ParselTongue: AIPS Talking Python

    Science.gov (United States)

    Kettenis, M.; van Langevelde, H. J.; Reynolds, C.; Cotton, B.

    2006-07-01

    After more than 20 years of service, classic AIPS still is the data reduction package of choice for many radio-interferometry projects, especially for VLBI. Its age shows, most prominently in the limited scripting capabilities of its user interface: POPS. ParselTongue is an attempt to make the trusted AIPS algorithms and AIPS data structures available in a modern dynamic programming language: Python. It also provides an environment to do distributed computing to take advantage of modern computing clusters. This makes it suitable for use as a scripting interface for doing complicated data reduction on large data sets. It is also used as a coding platform for the new calibration algorithms that are being developed for the European VLBI Network as part of the ALBUS project. Here we hope to take advantage of Python's extensive support for web-based technologies to automate things like collecting calibration data.

  5. Biomechanical metrics of aesthetic perception in dance.

    Science.gov (United States)

    Bronner, Shaw; Shippen, James

    2015-12-01

    The brain may be tuned to evaluate aesthetic perception through perceptual chunking when we observe the grace of the dancer. We modelled biomechanical metrics to explain biological determinants of aesthetic perception in dance. Eighteen expert (EXP) and intermediate (INT) dancers performed développé arabesque in three conditions: (1) slow tempo, (2) slow tempo with relevé, and (3) fast tempo. To compare biomechanical metrics of kinematic data, we calculated intra-excursion variability, principal component analysis (PCA), and dimensionless jerk for the gesture limb. Observers, all trained dancers, viewed motion capture stick figures of the trials and ranked each for aesthetic (1) proficiency and (2) movement smoothness. Statistical analyses included group by condition repeated-measures ANOVA for metric data; Mann-Whitney U rank and Friedman's rank tests for nonparametric rank data; Spearman's rho correlations to compare aesthetic rankings and metrics; and linear regression to examine which metric best quantified observers' aesthetic rankings, p < 0.05. The goodness of fit of the proposed models was determined using Akaike information criteria. Aesthetic proficiency and smoothness rankings of the dance movements revealed differences between groups and condition, p < 0.0001. EXP dancers were rated more aesthetically proficient than INT dancers. The slow and fast conditions were judged more aesthetically proficient than slow with relevé (p < 0.0001). Of the metrics, PCA best captured the differences due to group and condition. PCA also provided the most parsimonious model to explain aesthetic proficiency and smoothness rankings. By permitting organization of large data sets into simpler groupings, PCA may mirror the phenomenon of chunking in which the brain combines sensory motor elements into integrated units of behaviour. In this representation, the chunk of information which is remembered, and to which the observer reacts, is the elemental mode shape of

  6. Recent Progresses in Analysis of Tongue Manifestation for Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    WEI Bao-guo; CAI Yi-heng; ZHANG Xin-feng; SHEN Lan-sun

    2005-01-01

    Tongue diagnosis is one of the most precious and widely used diagnostic methods in Traditional Chinese Medicine (TCM). However, due to its subjective, qualitative and experience-dependent nature, the studies on tongue characterization have been widely emphasized. This paper surveys recent progresses in analysis of tongue manifestation. These new developments include the cross-network and cross-media color reproduction of tongue image, the automatic segmentation of tongue body based on knowledge, the automatic analysis of curdiness and griminess for the tongue fur and the automatic analysis of plumpness, wryness and dot -thorn of tongue body. The clinic experiments verify the validity of these new methods.

  7. Spectra and Corpora of a New Mother Tongue

    Directory of Open Access Journals (Sweden)

    Keren Gitai

    2012-03-01

    Full Text Available An everyday secular language whose basis is spiritual, cultural and religious, Hebrew, assesses the genesis of a contemporary mother tongue. How is a new mother tongue formed? Are there, in this specific language of verbal transmission between generations, versions, attempts, explorations or experiments, which could trace this process? The study of multifaceted Eliezer Ben-Yehuda, figure of the "resurrection" of Hebrew, as well as the study of the corpus of his personal library, allow us to explore the essential place of the text in the Hebraic mother tongue.

  8. 腰椎运动节段新型有限元模型建立及其生物力学意义%Establishment of finite element model of lumbar motion segments and its biomechanical significance

    Institute of Scientific and Technical Information of China (English)

    李康华; 王华; 黄晓元

    2005-01-01

    背景:腰椎力学性质较常见的研究方法有动物模型、物理模型和尸体模型,但每种都存在一定局限性.目的:建立腰椎运动节段的有限元模型,为腰椎生物力学研究提供理论依据.设计:以健康志愿者为研究对象的单一样本研究.单位:一所大学医院的骨科.对象:实验于2003-12/2004-08在中南大学湘雅医院骨科研究室完成.选择1名健康男性志愿者作为模拟对象.方法:对1名健康志愿者脊柱T12~S1节段进行层厚2 mm的连续扫描,共获得CT断层图像264幅,将CT扫描的腰椎图像结合人体解剖学数据通过3DSMAX软件建模形成正常中国男性L4-5运动节段的三维模型,用有限元分析软件SAP2000转换成有限元模型.主要观察指标:①3DSMAX软件中椎体、椎间盘模型.②SAP2000软件中运动节段有限元模型.结果:建立了腰椎L4~5节段的有限元模型,模型总节点数为2 120个,包括1728个Solid单元,592个Area单元,50个Link单元.结论:通过CT断层扫描、图像数字化处理及计算机辅助设计等方法,可以建立腰椎运动节段的有限元模型,用于脊柱生物力学的进一步研究.%BACKGROUND: The commonly used research methods of lumbar biomechanics are animal model, physical model and corpse model respectively. However, each model has its own disadvantages.OBJECTIVE: To establish the finite element model of lumbarmotionsegments in order to provide theoretical basis for biomechanical research of lumbar.DESIGN: Single sample study based on healthy volunteer.SETTING: Orthopaedic department of a university hospital.PARTICIPANTS: The experiment was completed in the Orthopaedic Department of Xiangya Hospital of Central South University from December 2003to August 2004. A healthy male volunteer was chosen as a mock object.METHODS:CT scanning was conducted to the spine(T12 - S1) of a healthy volunteer by 2 mm layer and got 264 images. The 3D model of normal Chinese male L4 5 motion segments

  9. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  10. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  11. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  12. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  13. A Critique of Cross-Linguistic Influence on Word Search In Tip-of-the-Tongue States

    Institute of Scientific and Technical Information of China (English)

    JI Xiao-tong

    2015-01-01

    This critique gives a brief summary of Cross-Linguistic Influence on Word Search in Tip-of-the-Tongue States and ana⁃lyzes its strengths and weaknesses from theoretical and methodological perspectives. Apart from critically reviewing the article, this paper draws inspiration from it with respect to mental lexicon, and proposes that this article can be a research model for studies of L2 influence on the retrieval of L1 in tip-of-the-tongue states in relation to cross-linguistic influence.

  14. Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Liu Ming-Gang

    2012-11-01

    Full Text Available Abstract Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5-extracellular signal-regulated kinase (ERK signaling in this process. Methods Complete Freund’s adjuvant (CFA was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK and mGluR5 in the trigeminal subnucleus caudalis (Vc and upper cervical spinal cord (C1-C2 were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t. route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and

  15. Biomechanical properties of peripheral nerve after acellular treatment

    Institute of Scientific and Technical Information of China (English)

    MA Xin-long; SUN Xiao-lei; YANG Zhao; LI Xiu-lan; MA Jian-xiong; ZHANG Yang; YUAN Zhen-zhen

    2011-01-01

    Background Peripheral nerve injury causes a high rate of disability and a huge economic burden,and is currently one of the serious health problems in the world.The use of nerve grafts plays a vital role in repairing nerve defects.Acellular nerve grafts have been widely used in many experimental models as a peripheral nerve substitute.The purpose of this study was to test the biomechanical properties of acellular nerve grafts.Methods Thirty-four fresh sciatic nerves were obtained from 17 adult male Wistar rats (age of 3 months) and randomly assigned to 3 groups:normal control group,nerve segments underwent no treatment and were put in phosphate buffered saline (pH 7.4) and stored at 4℃ until further use; physical method group,nerve segments were frozen at -196℃ and then thawed at 37℃; and chemical method group,nerve segments were chemically extracted with the detergents Triton X-200,sulfobetaine-10 (SB-10) and sulfobetaine-16 (SB-16).After the acellularization process was completed,the structural changes of in the sciatic nerves in each group were observed by hematoxylin-eosin staining and field emission scanning electron microscopy,then biomechanical properties were tested using a mechanical apparatus (Endura TEC ELF 3200,Bose,Boston,USA).Results Hematoxylin-eosin staining and field emission scanning electron microscopy demonstrated that the effects of acellularization,demyelination,and integrity of nerve fiber tube of the chemical method were better than that of the physical method.Biomechanical testing showed that peripheral nerve grafts treated with the chemical method resulted in some decreased biomechanical properties (ultimate load,ultimate stress,ultimate strain,and mechanical work to fracture) compared with normal control nerves,but the differences were not statistically significant (P >0.05).Conclusion Nerve treated with the chemical method may be more appropriate for use in implantation than nerve treated with the physical method.

  16. Problems and prospects of current studies on the microecology of tongue coating

    OpenAIRE

    Ye, Juan; Cai, Xueting; Cao, Peng

    2014-01-01

    Tongue diagnosis in traditional Chinese medicine (TCM) assesses the health by investigation of tongue coating. The science and technology of tongue coating analysis have become a significant issue for modernization of TCM. The relationship between microecology of tongue coating and TCM was relevant to the syndrome differentiation in TCM, such as the cold/hot syndrome may exhibit different specific microbiota patterns in the tongue coating. This article provides a review on the microbiota rese...

  17. Evaluation of milk and dairy products by electronic tongue

    Directory of Open Access Journals (Sweden)

    Mirjana Hruškar

    2009-09-01

    Full Text Available The concept of electronic tongue or taste sensor has been developed rapidly in the last decade due to their large potential in food quality control. The electronic tongue is based on electrochemical sensors combined with multivariate data analysis. The aim of this study was to evaluate the discriminating ability of the electronic tongue for the recognition of different milk and yoghurt samples from different producers and various dairy products from one producer. The results were evaluated by multivariate data analysis - Principal components analysis. The electronic tongue α-ASTREE (Alpha M.O.S has successfully distinguished five brands of milk purchased on the Croatian market, five brands of yoghurt also purchased on Croatian market and differentiated among various products from one dairy producer.

  18. The Novel Mechanical Property of Tongue of a Woodpecker

    Institute of Scientific and Technical Information of China (English)

    P Zhou; X Q Kong; C W Wu; Z Chen

    2009-01-01

    Biomaterials such as bone, teeth, nacre and silk are known to have superior mechanical properties due to their specific nanocomposite structures. Here we report that the woodpecker's tongue exhibits a novel strength and flexibility due to its special composite micro/nanostructure. The tongue consists of a flexible cartilage-and-bone skeleton covered with a thin layer tissue of high strength and elasticity. At the interface between the cartilage-and-bone skeleton and the tissue layer, there is a hierarchical fiber-typed connection. It is this special design of the tongue that makes the woodpeckers efficient in catching the insects inside trees. The special micro/nanostructures of the woodpecker's tongue show us a potential method to enhance the interfacial connection between soft and hard material layers forr bio-inspired composite system designs.

  19. E-tongue 2 REDOX response to heavy metals

    Science.gov (United States)

    Buehler, M. G.; Kuhlman, G. M.; Kounaves, S. P.

    2002-01-01

    E-Tongue 2 an array of electrochemical sensors including REDOX electrodes for Cylic Voltammetry and Anodic Stripping Voltammetry measurements, Galvanic cells for corrosion measurements, and Ion Selective Electrodes.

  20. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.

    Science.gov (United States)

    Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M

    2014-10-01

    Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils.

  1. Electronic Tongue-FIA system for the Monitoring of Heavy Metal Biosorption Processes

    Science.gov (United States)

    Wilson, D.; Florido, A.; Valderrama, C.; de Labastida, M. Fernández; Alegret, S.; del Valle, M.

    2011-09-01

    An automated flow injection potentiometric (FIP) system with electronic tongue detection (ET) was used for the monitoring of biosorption processes of heavy metals on waste biomaterial. Grape stalk wastes were used as biosorbent to remove Cu2+ ions in a fixed-bed column setup. For the monitoring, the used ET employed a sensor array formed by Cu2+ and Ca2+ selective electrodes and two generic heavy-metal electrodes. The subsequent cross-response obtained was processed by a multilayer artificial neural network (ANN) model in order to resolve the concentrations of the monitored species. The coupling of the electronic tongue with the automation features of the flow-injection system (ET-FIP) allowed us to accurately characterize the biosorption process, through obtaining its breakthrough curves. In parallel, fractions of the extract solution were analyzed by atomic absorption spectroscopy in order to validate the results obtained with the reported methodology.

  2. Potentiometric Electronic Tongue to Resolve Mixtures of Sulfide and Perchlorate Anions

    Directory of Open Access Journals (Sweden)

    Deivy Wilson

    2011-03-01

    Full Text Available This work describes the use of an array of potentiometric sensors and an artificial neural network response model to determine perchlorate and sulfide ions in polluted waters, by what is known as an electronic tongue. Sensors used have been all-solid-state PVC membrane selective electrodes, where their ionophores were different metal-phtalocyanine complexes with specific and anion generic responses. The study case illustrates the potential use of electronic tongues in the quantification of mixtures when interfering effects need to be counterbalanced: relative errors in determination of individual ions can be decreased typically from 25% to less than 5%, if compared to the use of a single proposed ion-selective electrode.

  3. Drinking in snakes: resolving a biomechanical puzzle.

    Science.gov (United States)

    Cundall, David; Brainerd, Elizabeth L; Constantino, Joseph; Deufel, Alexandra; Grapski, Douglas; Kley, Nathan J

    2012-03-01

    Snakes have long been thought to drink with a two-phase buccal-pump mechanism, but observations that some snakes can drink without sealing the margins of their mouths suggest that buccal pumping may not be the only drinking mechanism used by snakes. Here, we report that some snakes appear to drink using sponge-like qualities of specific regions of the oropharyngeal and esophageal mucosa and sponge-compressing functions of certain muscles and bones of the head. The resulting mechanism allows them to transport water upward against the effects of gravity using movements much slower than those of many other vertebrates. To arrive at this model, drinking was examined in three snake species using synchronized ciné and electromyographic recordings of muscle activity and in a fourth species using synchronized video and pressure recordings. Functional data were correlated with a variety of anatomical features to test specific predictions of the buccal-pump model. The anatomical data suggest explanations for the lack of conformity between a buccal-pump model of drinking and the performance of the drinking apparatus in many species. Electromyographic data show that many muscles with major functions in feeding play minor roles in drinking and, conversely, some muscles with minor roles in feeding play major roles in drinking. Mouth sealing by either the tongue or mental scale, previously considered critical to drinking in snakes, is incidental to drinking performance in some species. The sponge mechanism of drinking may represent a macrostomatan exaptation of mucosal folds, the evolution of which was driven primarily by the demands of feeding.

  4. Biomechanical Properties of Bone and Biomechanics of Age - Related Fractures - Review

    Directory of Open Access Journals (Sweden)

    Rezzan Günaydın

    2007-06-01

    Full Text Available From a biomechanical viewpoint, fractures are due to a structural failure of the bone. This failure occurs when the forces applied to the bone exceed its load – bearing capacity. The load – bearing capacity of a bone depends on the geometry (its size, shape and distribution of bone mass, and the material properties of a bone as well as the direction and magnitude of applied load. Bone fragility can be defined by biomechanical parameters such as strength, brittleness and work to failure. Strategies to reduce fracture risk must be based on a sound understanding of the cellular, molecular and biomechanical mechanisms that underlie the increased risk of fractures while aging. In this review biomechanics of bone and the etiology of age – related fractures from a biomechanical viewpoint have been discussed in the view of current literature. (From the World of Osteoporosis 2007;13:44-8

  5. A review of biomechanically informed breast image registration

    Science.gov (United States)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  6. The tongue after whiplash: case report and osteopathic treatment

    Directory of Open Access Journals (Sweden)

    Bordoni BB

    2016-07-01

    Full Text Available Bruno Bordoni,1-3 Fabiola Marelli,2,3 Bruno Morabito2-4 1Department of Cardiology, Santa Maria Nascente IRCCS, Don Carlo Gnocchi Foundation, Institute of Hospitalization and Care with Scientific Address, Milan, 2CRESO, School of Osteopathic Centre for Research and Studies, Castellanza,3CRESO, School of Osteopathic Centre for Research and Studies, Falconara Marittima, Ancona, 4Foundation Polyclinic University A, Gemelli University Cattolica del Sacro Cuore, Rome, Italy Abstract: The tongue plays a fundamental role in several bodily functions; in the case of a dysfunction, an exhaustive knowledge of manual techniques to treat the tongue is useful in order to help patients on their path toward recovery. A 30-year-old male patient with a recent history of whiplash, with increasing cervical pain during swallowing and reduced ability to open the mouth, was treated with osteopathic techniques addressed to the tongue. The osteopathic techniques led to a disappearance of pain and the complete recovery of the normal functions of the tongue, such as swallowing and mouth opening. The manual osteopathic approach consists of applying a low load, in order to produce a long-lasting stretching of the myofascial complex, with the aim of restoring the optimal length of this continuum, decreasing pain, and improving functionality. According to the authors’ knowledge, this is the first article reporting a case of resolution of a post whiplash disorder through osteopathic treatment of the tongue. Keywords: tongue, indirect osteopathic techniques, fascia, fascial release

  7. Enlarged tongue due to primary systemic amyloidosis:clinicopathologic observation

    Institute of Scientific and Technical Information of China (English)

    潘卫红; 李娜萍; 梁国芬

    2004-01-01

    @@Primary amyloidosis (AL) is characterized by deposition of abnormal extra cellular protein in the form of fibrils in many organs, especially the heart, kidneys, gastrointestinal tract, and peripheral nervous system.1 Involvement of the tongue is not uncommon in primary AL. In 22 % to 26 % of patients suffering from AL, amyloid deposition in the tongue can result in an enlarged tongue.2 Lingual changes arising from localization or from all over, AL has been reported frequently as initial signs of the disease. Macroscopically, it is difficult to distinguish AL of the tongue from other lesions. In view of the variety of protein species involved and the wide spectrum of possible clinical presentations,3 the diagnosis of lingual AL is frequently overlooked, because immunohistochemical studies of such cases have not been undertaken. Here we describe two male patients with primary systemic AL who developed enlarged tongues. In addition to the manifestation of lingual AL, in which oral signs were the primary indicators of the disease, we describe the immunohistochemical findings of the tongue to discuss diagnostic criteria for lingual amyloid in primary AL.

  8. Properties of Magnetic Tongues over a Solar Cycle

    CERN Document Server

    Poisson, M; Fuentes, M López; Mandrini, C H

    2016-01-01

    The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) presents during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic flux-tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. (2015, Solar Phys. 290, 727) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign-dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the em...

  9. [Hoarseness: biomechanisms and quantitative laryngoscopy].

    Science.gov (United States)

    Eysholdt, U

    2014-07-01

    Every phonosurgical procedure alters endolaryngeal anatomy; be it by removing tissue, or injection or implantation of autologous or foreign material. However, the effect that an altered airflow cross section and changed soft tissue elasticity will have on the voice cannot be predicted. With the aim of promoting rational indications for phonosurgery, the current article explains the biomechanisms of the normal and the disordered voice, including the complex interdependence of tissue viscoelasticity, glottal airstream and sound production. According to European Laryngological Society (ELS) recommendations, five - not entirely mutually independent - evaluation criteria form the basis of indication assessments: self-rating (by the patient), proxy rating (by the physician), technical signal analysis (computerized), aerodynamics (spirometry) and vibration analysis (stroboscopy). The ELS evaluation standards agreed upon in 2001 enable indications and - by virtue of pre- and postoperative comparisons - therapeutic successes to be assessed. The 10-year-old ELS protocol has been updated by a real-time method for visualizing vocal fold vibrations: the phonovibrogram (PVG) has replaced stroboscopy. Independently of the morphological anatomic details of the larynx, PVG visualizes the symmetry and regularity of vocal fold motion, thus allowing preoperative estimation of tissue elasticity. PMID:25056650

  10. Quantitative Contributions of the Muscles of the Tongue, Floor-of-Mouth, Jaw, and Velum to Tongue-to-Palate Pressure Generation

    Science.gov (United States)

    Palmer, Phyllis M.; Jaffe, Debra M.; McCulloch, Timothy M.; Finnegan, Eileen M.; Van Daele, Douglas J.; Luschei, Erich S.

    2008-01-01

    Purpose: The purpose of this investigation was to evaluate the relationship between tongue-to-palate pressure and the electromyography (EMG) measured from the mylohyoid, anterior belly of the digastric, geniohyoid, medial pterygoid, velum, genioglossus, and intrinsic tongue muscles. Methods: Seven healthy adults performed tongue-to-palate pressure…

  11. geneX骨水泥强化骨质疏松椎体椎弓根钉的生物力学研究%Biomechanical study of geneX cement augmentation of pedicle screw in osteoporotic calf vertebra model

    Institute of Scientific and Technical Information of China (English)

    张树芳; 江建明; 郭婷; 朱青安; 黄志平

    2012-01-01

    Objective To evaluate the biomechanical effects of geneX cement augmentation of pedicle screw in osteoporolic calf vertebra model. Methods Thirty vertebral bodies were harvested randomly for biomechanical tests and bone mineral density measurements was measured with dual-energy radiographic absorption. Each vertebral body was established into osteoporotic calf vertebra model by utilizing decalcifying chemical agents. Both vertebral pedicle were selected randomly into four groups:geneX cement group, CSC group, PMMA group, control group. In each vertebral body, 2.5 ml bone cement was injected into either the right or left prepared pedicle and then the screws were inserted. As a control, a screw was inserted into the contralateral hole of each vertebra without bone cement. Pull-out tests were performed using a mechanical testing machine, and the pull-out strength and energy were recorded. Results The pull-out strength and energy absorption of geneX, CSC and PMMA were significantly greater than that of intact control group respectively (P 0.05). Injection of PMMA produced significantly higher pullout strength than the injection of geneX and CSC (P <0.05). Conclusion geneX cement augmentation of the pedicle screw increases the strength of screw-bone interface, geneX cement augmentation of the pedicle screw may be a viable clinical option for the augmentation of pedicle screw fixation.%目的 评估骨质疏松情况下geneX骨水泥强化椎弓根钉的固定强度.方法 应用微量注射泵对30个新鲜小牛腰椎标本注射稀盐酸建立骨质疏松椎体模型.60个椎弓根分为四组:geneX骨水泥组,硫酸钙骨水泥(CSC)组,聚甲基丙烯酸甲酯骨水泥(PMMA)组,对照组.随机选择一侧注射2.5 ml骨水泥,然后置入螺钉;另一侧行正常螺钉固定对照,应用材料试验机进行轴向拔出力测试,记录各组的轴向最大拔出力和能量吸收值并进行比较.结果 geneX组与CSC组两组拔出力及能量吸收值比

  12. Towards a Biomechanical Understanding of Tempo in the Golf Swing

    CERN Document Server

    Grober, R D; Cholewicki, Jacek; Grober, Robert D.

    2006-01-01

    It is proposed that aspects of the tempo of the golf swing can be understood in terms of a biomechanical clock. This model explains several aspects of tempo in the golf swing; including total duration of the golf swing, the ratio of backswing to downswing time, and the relative insensitivity of tempo on the length of the golf shot. We demonstrate that this clock and the resulting tempo are defined by of the rotational inertia of the body/club system and the elastic properties of the body, yielding a system which can be modeled as a simple harmonic oscillator.

  13. 应用激光快速成型技术制作骨盆三维光弹生物力学模型%Construction of a three dimensional photoelastic model for pelvic biomechanic experiment with stereolithography technology

    Institute of Scientific and Technical Information of China (English)

    刘欣伟; 王志伟; 许硕贵; 张春才; 魏显招; 陈智; 鲁扬虎

    2010-01-01

    Objective To build a three dimensional photoelastic model for pelvic biomechanic experiment with stereolithography technology. Methods Through the spiral CT scan to obtain medical images, we built CAD model and transformed it to the files with the STL format which could be identified by rapid prototyping machine. The data were input into laser rapid prototyping machine. Three-dimensional pelvic model were fabricated by machine in layer-by-layer manufacturing principle with the material of Somos 11120 Photosensitive resin. Results The model was homogeneous and transparent with smooth surface, no bubbles and cracking deformation. There were no stripes in the field of polarized light refraction when not loaded. Conclusion The model was made successfully with stereolithography technology. Compared with traditional methods, this method could greatly shorten production time and reduce the production costs.%目的 应用激光快速成型技术制作骨盆三维光弹生物力学模型.方法 通过螺旋CT扫描获取医学图像,制作计算机辅助设计(CAD)模型并存储为STL格式文件,将文件载入激光快速成型机,对Somos 11120光敏树脂通过"分层制造、逐层叠加"的原理制造出三维骨盆实体模型.结果 制成的模型均匀透明,表而光滑,无气泡及开裂变形.未加载时在偏振光场种未见折射条纹出现.结论 利用激光快速成型技术快速制备骨盆三维光弹生物力学模型,与传统方法比较,可减少制作时间及制作成本.

  14. Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus.

    Science.gov (United States)

    Daegling, D J

    1989-09-01

    Mandibular cross sections of Pan, Pongo, Gorilla, Homo, and two fossil specimens of Paranthropus were examined by computed tomography (CT) to determine the biomechanical properties of the hominoid mandibular corpus. Images obtained by CT reveal that while the fossil hominids do not differ significantly from extant hominoids in the relative contribution of compact bone to total subperiosteal area, the shape of the Paranthropus corpora indicates that the mechanical design of the robust australopithecine mandible is fundamentally distinct from that of modern hominoids in terms of its ability to resist transverse bending and torsion. It is also apparent that, among the modern hominoids, interspecific and sexual differences in corpus shape are not significant from a biomechanical perspective. While ellipse models have been used previously to describe the size, shape, and subsequent biomechanical properties of the corpus, the present study shows that such models do not predict the biomechanical properties of corpus cross-sectional geometry in an accurate or reliable manner. The traditional "robusticity" index of the mandibular corpus is of limited utility for biomechanical interpretations. The relationship of compact bone distribution in the corpus to dimensions such as mandibular length and arch width may provide a more functionally meaningful definition of mandibular robusticity. PMID:2508480

  15. Radium therapy for carcinoma of the tongue

    International Nuclear Information System (INIS)

    Results of radium therapy with or without multi-disciplinary treatment for carcinoma of the tongue were studied in 117 patients treated from 1973 to 1981 at Gunma Cancer Center. 1. The patients were classified according to the TNM classification of UICC (1978). Seventeen patients were T1, 42 were T2, 31 were T3, 27 were T4, 92 were NO, 18 were N1, 2 were N2 and 5 were N3. 2. The treatment methods included external irradiation with 1,000-2,000 rads by 6MV X-ray followed by radium interstitial implants of 6,000-8,000 rads in 93 patients (73.9 per cent), radium therapy with additional Bleomycin 45-60 mg in 24 patients (20.5 per cent), and cryosurgery in 3 patients. 3. The five year survival rate was 41.6 per cent; 100.0 per cent for T1, 50.0 per cent for T2, 38.8 per cent for T3 and 10.5 per cent for T4. The overall five-year cumulative survival rate was 46.9 per cent. For primary lesions of T3 or T4, greater efforts should be made with combined modalities, such as planned multi-disciplinary treatments with combined radiation and major surgery. (author)

  16. SPORT AND EXERCISE BIOMECHANICS (BIOS INSTANT NOTES

    Directory of Open Access Journals (Sweden)

    Paul Grimshaw

    2007-06-01

    Full Text Available DESCRIPTION Instant Notes on Sport and Exercise Biomechanics provides a broad overview of the fundamental concepts in exercise and sport biomechanics. PURPOSE The book aims to provide instant notes on essential information about biomechanics, and is designed to help undergraduate students to grasp the corresponding subjects in physical effort rapidly and easily. AUDIENCE The book provides a useful resource for undergraduate and graduate students as a fundamental reference book. For the researcher and lecturer it would be a starting point to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in the field of exercise and sport biomechanics. It would also be interest to anyone who wonders the concepts like momentum possessed, whole body angular momentum, opposite parallel forces, superman position, parabolic flight path, joint/normal reaction force, etc. FEATURES This textbook is divided into following sections from A to F: kinematics of motion, kinetics of linear motion, kinetics of angular motion, special topics, applications and measurement techniques, respectively. In sub-sections the kinematics of motion are reviewed in detail, outlining the physics of motion. Furthermore, the discussions of mechanical characteristics of motion, the mechanisms of injury, and the analysis of the sport technique provide a source of valuable information for both students and lecturers in appropriate fields. ASSESSMENT This book is an important reading for biomechanics students, teachers and even researchers as well as anyone interested in understanding motion.

  17. Layer-by-layer fabrication of AgCl-PANI hybrid nanocomposite films for electronic tongues.

    Science.gov (United States)

    Manzoli, Alexandra; Shimizu, Flavio M; Mercante, Luiza A; Paris, Elaine C; Oliveira, Osvaldo N; Correa, Daniel S; Mattoso, Luiz H C

    2014-11-28

    The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided. PMID:25298297

  18. Are Hyoid Bone and Tongue the Risk Factors Contributing to Postoperative Relapse for Mandibular Prognathism?

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Tseng

    2016-01-01

    Full Text Available Objective. The purpose of this study was to investigate postoperative stability and the correlation between hyoid, tongue, and mandible position following surgery for mandibular prognathism. Materials and Methods. Thirty-seven patients, treated for mandibular prognathism using intraoral vertical ramus osteotomy (IVRO, were evaluated cephalometrically. A set of four standardized lateral cephalograms were obtained from each subject preoperatively (T1, immediately postoperatively (T2, six weeks to three months postoperatively (T3, and more than one year postoperatively (T4. The Student t-tests, the Pearson correlation coefficient, and the multiple linear regression were used for statistical analysis. Results. Immediately after surgery, menton (Me setback was 12.8 mm, hyoid (H setback was 4.9 mm, and vallecula epiglottica (V setback was 5.8 mm. The postoperative stability significantly correlated (r=-0.512, p<0.01 with the amount of setback. The hyoid bone and tongue did not have significant effects on postoperative stability. Multiple linear regression model (R2=0.2658, p<0.05 showed predictability: Horizontal Relapse Me (T4-T2 = −6.406 − 0.488Me (T2-T1 + 0.069H (T2-T1 − 0.0619V (T2-T1. Conclusion. Mandibular setback surgery may push the hyoid and tongue significantly backward, but this did not correlate with mandibular relapse. Postoperative stability significantly correlated with the amount of mandibular setback.

  19. Ability of eugenol to reduce tongue edema induced by Dieffenbachia picta Schott in mice.

    Science.gov (United States)

    Dip, Etyene Castro; Pereira, Nuno Alvarez; Fernandes, Patricia Dias

    2004-05-01

    Dieffenbachia picta Schott (Araceae), known in Brazil as "comigo-ninguém-pode" is an ornamental plant with toxic properties. Its juice, when chewed, causes a painful edema of the oral mucous membranes, buccal ulcerations and tongue hypertrophy. This acute inflammation sometimes becomes severe enough to produce glottis obstruction, respiratory compromise and death. Eugenol (4-alil-2-metoxiphenol), the essential oil extracted from Caryophyllus aromaticus (Myrtaceae) is widely used in odontology. In this study, our objective was to standardize, in mice, a measurable methodology for the tongue edema induced by the topical application of the D. picta stem juice; evaluate the effects of eugenol in this model and compare the results with emergency treatment used in hospitals. Our results show that in spite of a small increase in edema a few minutes after administration, emergency treatment reduced by 70% the overall edema. When compared with the combination of the above drugs, eugenol, even at the smallest dose of 5 microg/kg, regardless of the chosen administration route, or the moment the treatment began, presents better results in the reduction and inhibition of the tongue edema induced by the D. picta juice.

  20. An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Inmaculada Campos

    2013-10-01

    Full Text Available An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH42SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate.

  1. Biomechanics and physiology in active manual wheelchair propulsion

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Dallmeijer, A J; Janssen, T W; Rozendaal, L A

    2001-01-01

    Manual wheelchair propulsion in daily life and sports is increasingly being studied. Initially, an engineering and physiological perspective was taken. More recently a concomitant biomechanics interest is seen. Themes of biomechanical and physiological studies today are performance enhancing aspects

  2. Development of a bio-mechanical model of the spine based on 3D internal-external relationships: bi-planar radiography and Moire fringes

    International Nuclear Information System (INIS)

    Nowadays, radiography is the gold standard for the follow up of spinal pathologies. Furthermore, bi-planar radiography allows the assessment of vertebrae configuration, by 3-dimensional (3D) reconstruction. However, multiple radiographic examinations during childhood and adolescence increase the risk of breast cancer among women. To reduce radiation doses, some radiographic assessments could be replaced by the back surface evaluation. This kind of non-invasive procedure allows for acquisition of many clinical parameters useful for spinal pathologies diagnosis and follow-up. Moreover, with an appropriate bio mechanical model, the back surface measurements could be used to estimate the spine configuration. The aim of this thesis is to develop and implement such a model based on personalized internal and external data. The Biomod 3S device has been developed by the company AXS MEDICAL SAS, Bordeaux, France. It offers the possibility of simultaneous acquisitions of X-rays and Moire fringes to obtain 3D reconstructions of the spine and the back surface. Such acquisitions on fifteen scoliotic subjects have enabled us to assess several relationships between internal 3D parameters (for example axial rotation of vertebrae) and external 3D parameters (for example rib hump). The spine configuration and the back surface obtained during this acquisition will also be used as initial position to develop (with Scilab) the multi-body model. The other data used by the model are the back surface in a second position and constraints obtained from the surface in both positions (for example displacement of C7 vertebra). The model has been validated on nine healthy subjects, whose 3D spine and back surface were reconstructed in several positions (standing, leaning forward, sitting) from MRI acquisitions. Moreover, the model has been operated on a pathological subject. This work has explored and utilized many spine and back surface information and leads the way to non-invasive diagnosis

  3. Expandable intramedullary nail - experimental biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    A. Kajzer

    2010-01-01

    Full Text Available Purpose: The paper presents results of experimental analysis of femur and femur – expandable intramedullary nail system. The aim of the work was to determine displacement in three models. In addition, the torsion of the system aiming at determining the moments depending on the torsional angle of the bone was carried out.Design/methodology/approach: Three femurs were selected for studies. The analysis was carried out on the femur – expandable intramedullary nail system. The influence of the loads and displacements on the bone – nail system on the results of experimental analysis was analysed. In order to carry out calculations, three models were selected: model I – bone without fracture gap, model II and III – femur with expansion intramedullary nails – fracture gap was located 100 mm under greater trochanter. The studies were performed on femur models produced by Swedish company Sawbones. The intramedullary „Fixion IM” nails (Ti-6Al-4V alloy were implanted into the bone. Displacements of determinated models were being recorded from the sensors every 100 N from 10 N to 2000 N.Findings: The analyses showed the difference in displacements, depending on the selected models.Research limitations/implications: The limitations were connected with simplification of boundary conditions during analysis which were the result of the simplification of the models. While studying, muscles and ligaments supporting the bone in anatomic position were not taken into consideration. Instead, the system has been loaded with the axial force (compression.Practical implications: The obtained results can be useful in clinical practice. They can be applied in selection of stabilization methods or rehabilitation as well as in describing the biomechanical conditions connected with type of bone fracture obtained from medical imaging.Originality/value: . The work compares the values of displacement of characteristic points of femur (healthy – model I with the

  4. Ischaemic necrosis of the tongue as a rare complication of cardiogenic shock.

    Science.gov (United States)

    Hulstaert, E; Roggeman, E; Beeckman, A-S; Moerman, M; Vanderstraeten, E; Rasquin, K; Monsaert, E; Baert, D; Dewint, P; Burvenich, P; Van Steenkiste, C

    2015-12-01

    Ischaemic necrosis of the tongue is an unusual clinical finding. In most cases it is associated with vasculitis, particularly giant cell arteritis (GCA). Other causes include profound cardiogenic shock. We report a case of tongue necrosis in an 81-year-old Caucasian woman. The patient was admitted to the intensive care unit (ICU) for cardiogenic shock. Swelling of the tongue was reported before intubation and evolved into tongue ischaemia and necrosis of the tip of the tongue. After surgical debridement the patient recovered. To our knowledge, this is the second report of a patient surviving tongue necrosis resulting from cardiogenic shock.

  5. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  6. Suture anchor fixation strength with or without augmentation in osteopenic and severely osteoporotic bones in rotator cuff repair: a biomechanical study on polyurethane foam model

    OpenAIRE

    Er, Mehmet Serhan; Altinel, Levent; Eroglu, Mehmet; Verim, Ozgur; Demir, Teyfik; Atmaca, Halil

    2014-01-01

    Background The purpose of the present study was to compare the results of various types of anchor applications with or without augmentation in both osteopenic and severely osteoporotic bone models. Methods Two different types of suture anchors were tested in severely osteoporotic (SOP) and osteopenic polyurethane (PU) foam blocks using an established protocol. An Instron machine applied static loading parallel to the axis of insertion until failure, and the mean anchor failure strengths were ...

  7. Murine patellar tendon biomechanical properties and regional strain patterns during natural tendon-to-bone healing after acute injury

    OpenAIRE

    Gilday, Steven D.; Casstevens, E. Chris; Kenter, Keith; Jason T Shearn; David L Butler

    2013-01-01

    Tendon-to-bone healing following acute injury is generally poor and often fails to restore normal tendon biomechanical properties. In recent years, the murine patellar tendon (PT) has become an important model system for studying tendon healing and repair due to its genetic tractability and accessible location within the knee. However, the mechanical properties of native murine PT, specifically the regional differences in tissue strains during loading, and the biomechanical outcomes of natura...

  8. Finite Element Analysis of Biomechanical Interactions of A Tooth-Implant Splinting System for Various Bone Qualities

    OpenAIRE

    Chun-Li Lin; Shih-Hao Chang; Jen-Chyan Wang

    2006-01-01

    Background: The splinting of an implant and tooth is a rational alternative in some clinicalsituations. The complex biomechanical aspects of a tooth-implant system arederived from the dissimilar mobility between the osseointegrated implantand the tooth. The aim of this study was to analyze the biomechanics in atooth-implant splinting system for various bone qualities with differentocclusal forces using non-linear finite element (FE) analysis.Methods: A 3D FE model containing one Frialit-2 imp...

  9. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadyari, P [Nuclear Engineering Department, School of Mechanical Engineering, Shiraz Un, Ilam (Iran, Islamic Republic of); Faghihi, R [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Shirazi, M Mosleh [Radiotherapy and Oncology Department, Namazi Hospital, Shiraz University of M, Shiraz (Iran, Islamic Republic of); Lotfi, M [Shiraz University of Medical Sciences, Medical Imaging Research Center, Shiraz (Iran, Islamic Republic of); Meigooni, A [Comprehensive cancer center of Nevada - University of Nevada Las Vegas UNL, Las Vegas, NV (United States)

    2014-06-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD

  10. Analysis of Biomechanical Factors in Bend Running

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-03-01

    Full Text Available Sprint running is the demonstration of comprehensive abilities of technology and tactics, under various conditions. However, whether it is just to allocate the tracks for short-distance athletes from different racetracks has been the hot topic. This study analyzes its forces, differences in different tracks and winding influences, in the aspects of sport biomechanics. The results indicate, many disadvantages exist in inner tracks, middle tracks are the best and outer ones are inferior to middle ones. Thus it provides references for training of short-distance items in biomechanics and psychology, etc.

  11. Beer classification by means of a potentiometric electronic tongue.

    Science.gov (United States)

    Cetó, Xavier; Gutiérrez-Capitán, Manuel; Calvo, Daniel; del Valle, Manel

    2013-12-01

    In this work, an electronic tongue (ET) system based on an array of potentiometric ion-selective electrodes (ISEs) for the discrimination of different commercial beer types is presented. The array was formed by 21 ISEs combining both cationic and anionic sensors with others with generic response. For this purpose beer samples were analyzed with the ET without any pretreatment rather than the smooth agitation of the samples with a magnetic stirrer in order to reduce the foaming of samples, which could interfere into the measurements. Then, the obtained responses were evaluated using two different pattern recognition methods, principal component analysis (PCA), which allowed identifying some initial patterns, and linear discriminant analysis (LDA) in order to achieve the correct recognition of sample varieties (81.9% accuracy). In the case of LDA, a stepwise inclusion method for variable selection based on Mahalanobis distance criteria was used to select the most discriminating variables. In this respect, the results showed that the use of supervised pattern recognition methods such as LDA is a good alternative for the resolution of complex identification situations. In addition, in order to show an ET quantitative application, beer alcohol content was predicted from the array data employing an artificial neural network model (root mean square error for testing subset was 0.131 abv).

  12. A Physics-Based Modeling and Real-Time Simulation of Biomechanical Diffusion Process Through Optical Imaged Alveolar Tissues on Graphical Processing Units

    Science.gov (United States)

    Kaya, Ilhan; Santhanam, Anand P.; Lee, Kye-Sung; Meemon, Panomsak; Papp, Nicolene; Rolland, Jannick P.

    Tissue engineering has broad applications from creating the much-needed engineered tissue and organ structures for regenerative medicine to providing in vitro testbeds for drug testing. In the latter, application domain, creating alveolar lung tissue, and simulating the diffusion process of oxygen and other possible agents from the air into the blood stream as well as modeling the removal of carbon dioxide and other possible entities from the blood stream are of critical importance to simulating lung functions in various environments. In this chapter, we propose a physics-based model to simulate the alveolar gas exchange and the alveolar diffusionDiffusion alveolar process. Tissue engineers, for the first time, may utilize these simulation results to better understand the underlying gas exchange process and properly adjust the tissue growing cycles. In this work, alveolar tissues are imaged by means of an optical coherence microscopyOptical coherence microscopy (OCM Modality OCM ) system developed in our laboratory. As a consequence, 3D alveoli tissue data with its inherent complex boundary is taken as input to the simulationSimulation diffusion system, which is based on computational fluid mechanics in simulating the alveolar gas exchange. The visualizationVisualization and the simulation of diffusion of the air into the blood through the alveoli tissue is performed using a state-of-art graphics processing unitGraphics processing unit (GPU). Results show the real-time simulation of the gas exchange through the 2D alveoli tissue.

  13. Transcriptomic dissection of tongue squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Schwartz Joel L

    2008-02-01

    Full Text Available Abstract Background The head and neck/oral squamous cell carcinoma (HNOSCC is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Results Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1, and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5. The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. Conclusion In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.

  14. Policy and experiment in mother tongue literacy in Nigeria

    Science.gov (United States)

    Akinnaso, F. Niyi

    1993-07-01

    The advocacy for initial mother tongue literacy in elementary schools and in adult education has been intensified within the past three decades, reflecting new attitudes to cultural diversity, especially to multilingual and multicultural education. This paper assesses the efforts made in one country, Nigeria, to achieve mother tongue literacy for its citizens, through a comparative analysis of the national policy on mother tongue literacy and the Ife experimental project, whose major purpose was to test the effectiveness of the use of the mother tongue as a medium of instruction throughout the six years of primary education. Although, like the Ife project, many experimental projects on mother tongue literacy in other countries are shown to have succeeded in realizing their objectives, the findings highlight the mediating effects of several non-linguistic variables. The findings indicate that its use as the medium of instruction in schools cannot compensate for the deficiencies in the educational system, particularly poor quality instructional facilities, or the social barriers in the wider society which prevent certain groups of minority children from learning well in school. The implications of the findings are discussed.

  15. The tongue after whiplash: case report and osteopathic treatment

    Science.gov (United States)

    Bordoni, Bruno; Marelli, Fabiola; Morabito, Bruno

    2016-01-01

    The tongue plays a fundamental role in several bodily functions; in the case of a dysfunction, an exhaustive knowledge of manual techniques to treat the tongue is useful in order to help patients on their path toward recovery. A 30-year-old male patient with a recent history of whiplash, with increasing cervical pain during swallowing and reduced ability to open the mouth, was treated with osteopathic techniques addressed to the tongue. The osteopathic techniques led to a disappearance of pain and the complete recovery of the normal functions of the tongue, such as swallowing and mouth opening. The manual osteopathic approach consists of applying a low load, in order to produce a long-lasting stretching of the myofascial complex, with the aim of restoring the optimal length of this continuum, decreasing pain, and improving functionality. According to the authors’ knowledge, this is the first article reporting a case of resolution of a post whiplash disorder through osteopathic treatment of the tongue. PMID:27462180

  16. Paired pulse TMS stimulation and human tongue corticomotor pathways

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk;

    (CS) and the test stimulus (TS). The aim of the present methodological study was to optimize stimulus parameters for ppTMS studies of tongue motor control by examining the influence of different ISI and intensities of the CS on SICI and ICF. Methods: 17 healthy volunteers participated (mean age: 22.......6±0.8 years). ppTMS was applied to the “hot-spot” of the tongue motor cortex and motor evoked potential (MEPs) were recorded from the tongue muscles with surface EMG electrodes. TS intensity was set at 120% of resting motor threshold (rMT). Single pulse and six different ISIs for ppTMS: 2, 2.5, 3, 3.5, 10, 15...... different intensities of CS and ISIs. Conclusion: Significant SICI but no ICF was evoked with the present stimulus paradigms. The two stimulus intensities of the CS evoked similar responses. These results may be applied in future studies on the effect of tongue training on SICI and ICF in the tongue motor...

  17. Morphometric growth relationships of the immature human mandible and tongue.

    Science.gov (United States)

    Hutchinson, Erin F; Kieser, Jules A; Kramer, Beverley

    2014-06-01

    The masticatory apparatus is a highly adaptive musculoskeletal complex comprising several relatively independent structural components, which assist in functions including feeding and breathing. We hypothesized that the tongue is elemental in the maintenance of normal ontogeny of the mandible and in its post-natal growth and development, and tested this using a morphometric approach. We assessed tongue and mandibular measurements in 174 (97 male) human cadavers. Landmark lingual and mandibular data were gathered individuals aged between 20 gestational weeks and 3 yr postnatal. In this analysis, geometric morphometrics assisted in visualizing the morphometrical growth changes in the mandible and tongue. A linear correlation in conjunction with principal component analysis further visualized the growth relationship between these structures. We found that the growth of the tongue and mandible were intrinsically linked in size and shape between 20 gestational weeks and 24 months postnatal. However, the mandible continued to change in shape and size into the 3rd yr of life, whereas the tongue only increased in size over this same period of time. These findings provide valuable insights into the allometric growth relationship between these structures, potentially assisting the clinician in predicting the behaviour of these structures in the assessment of malocclusions.

  18. Cine-MRI swallowing evaluation after tongue reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Dana M. [Department of Otolaryngology-Head and Neck Surgery, Institute Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)], E-mail: dmhartl@aol.com; Kolb, Frederic; Bretagne, Evelyne [Department of Otolaryngology-Head and Neck Surgery, Institute Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France); Bidault, Francois; Sigal, Robert [Department of Radiology, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2010-01-15

    Objective: To determine the feasibility of cine-MRI for non-invasive swallowing evaluation after surgery for lingual carcinoma with reconstruction using microvascular free flaps. Methods: Ten patients with stage IV carcinoma of the mobile tongue and/or tongue base treated by surgical resection and reconstruction with a free flap were evaluated after an average of 4.3 years (range: 1.5-11 years), using cine-MRI in 'single-shot fast spin echo' (SSFSE) mode. Fiberoptic laryngoscopy of swallowing was performed before MRI to detect aspiration. The tolerance and ability to complete the exam were noted. The mobilities of the oral and pharyngeal structures visualized were evaluated as normal, reduced or increased. Results: Cine-MRI was well tolerated in all cases; 'dry' swallow was performed for the 2 patients with clinical aspiration. Tongue base-pharyngeal wall contact was observed in 5 cases. An increased anterior tongue recoil, increased mandibular recoil, increased posterior oropharyngeal wall advancement and an increased laryngeal elevation were observed in 4 cases. One case of a passive 'slide' mechanism was observed. Conclusions: Cine-MRI is a safe, non-invasive technique for the evaluation of the mobility of oral and oropharyngeal structures after free-flap reconstruction of the tongue. For selected cases, it may be complementary to clinical examination for evaluation of dysphagia after surgery and free-flap reconstruction. Further technical advances will be necessary before cine-MRI can replace videofluoroscopy, however.

  19. 198Au grain implantation for early tongue cancer in patients of advanced age or poor performance status

    International Nuclear Information System (INIS)

    Brachytherapy using 198Au grains is minimally invasive and the only curative treatment for early tongue cancer in patients of advanced age or poor performance status available in our institution. From March 1993 to February 2008, 198Au grains were used to treat a group of 96 Stage I–II tongue cancer patients who could not undergo surgery or brachytherapy using 192Ir pins because of an advanced age (≥75 years) or poor performance status (≥2). The patients were followed for 3.9 ± 3.3 years, and the cause-specific survival and local control rates were determined. Survival analyses were performed using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox proportional hazard model. The results were compared with those for a group of 193 early tongue-cancer patients who underwent treatment using iridium pins. The 5-year cause-specific survival and local control rates of the 198Au grains group were 71% and 68%, respectively, both of which were 16% lower than the corresponding rates for the 192Ir pins group. Our study demonstrated that as the last curative treatment available, 198Au grain implantation could be used to achieve moderate treatment results for early tongue cancer in patients of advanced age or poor performance status

  20. Biomechanical evaluation of wrist-driven flexor hinge orthosis in persons with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yeoun-Seung Kang, MD, PhD, CPO

    2013-11-01

    Full Text Available The wrist-driven flexor hinge orthosis (WDFHO is a device used to restore hand function in persons with tetraplegic spinal cord injury by furnishing three-point prehension. We assessed the effectiveness and biomechanical properties of the WDFHO in 24 persons with cervical 6 or 7 tetraplegia who have severely impaired hand function. This study introduces a mechanical operating model to assess the efficiency of the WDFHO. Experimental results showed that pinch force increased significantly (p < 0.001 after using the WDFHO and was found to positively correlate with the strength of wrist extensor muscles (r = 0.41, p < 0.001. However, when the strength of the wrist extensors acting on the WDFHO was greater, the reciprocal wrist and finger motion that generates three-point prehension was less effective (r = 0.79, p < 0.001. Reliable and valid biomechanical evaluation of the WDFHO could improve our understanding of its biomechanics.

  1. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  2. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion.

  3. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model.

    Science.gov (United States)

    Hu, Ming-Hsien; Lee, Pei-Yuan; Chen, Wen-Cheng; Hu, Jin-Jia

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4-L5 vertebrae in fifteen adult rats (n=5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion. PMID

  4. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  5. A Fatal Fad? Tongue Studs Cause More Problems Than Chipped Teeth

    Science.gov (United States)

    ... more Seniors' Oral Health How to Keep Your Teeth for a Lifetime Tooth loss is simply the ... Fad? Tongue Studs Cause More Problems Than Chipped Teeth Article Chapters A Fatal Fad? Tongue Studs Cause ...

  6. A Comparative Study of Contemporary Color Tongue Image Extraction Methods Based on HSI

    Directory of Open Access Journals (Sweden)

    Mingfeng Zhu

    2014-01-01

    Full Text Available Tongue image with coating is of important clinical diagnostic meaning, but traditional tongue image extraction method is not competent for extraction of tongue image with thick coating. In this paper, a novel method is suggested, which applies multiobjective greedy rules and makes fusion of color and space information in order to extract tongue image accurately. A comparative study of several contemporary tongue image extraction methods is also made from the aspects of accuracy and efficiency. As the experimental results show, geodesic active contour is quite slow and not accurate, the other 3 methods achieve fairly good segmentation results except in the case of the tongue with thick coating, our method achieves ideal segmentation results whatever types of tongue images are, and efficiency of our method is acceptable for the application of quantitative check of tongue image.

  7. Impact of self-tongue brushing on taste perception in Thai older adults: A pilot study.

    Science.gov (United States)

    Madiloggovit, Jirakate; Chotechuang, Nattida; Trachootham, Dunyaporn

    2016-01-01

    Oral hygiene influences taste, affecting appetite and nutrition in older adults. However, the impact of self-administered tongue brushing on their taste perceptions was unclear. This pilot study (N = 44) was aimed to observe the changes in taste thresholds using Filter Paper Disc after tongue brushing in Thai older adults. Based on the results, continuous tongue brushing for 3 months reduced tongue coat (p taste in 74% of participants. Sweet and salty recognition thresholds were reduced in both anterior and posterior tongue, while sour and bitter thresholds were reduced only in posterior tongue. No changes in umami (savory) were observed. Daily brushing was more effective than weekly brushing in improving the sweet and bitter tastes. The data suggested that tongue brushing could improve perception of multiple tastes and daily tongue brushing was recommended as routine personal care for older adults. This study supports further investigation in a randomized-controlled setting. PMID:26747405

  8. 76 FR 5649 - Tongue River Railroad Company, Inc.-Construction and Operation-Western Alignment

    Science.gov (United States)

    2011-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Tongue River Railroad Company, Inc.--Construction and Operation-- Western... Tongue River Railroad Company's (TRRC) application to construct and operate a rail line in...

  9. Superselective arterial chemoembolization in treating advanced tongue cancinoma

    International Nuclear Information System (INIS)

    Objective: To evaluate the inducing chemotherapy through superselective arterial approch for patients with advanced tongue squamous cancinoma. Methods: Two patients with advanced tongue cancinoma of III stage were treated with lingual arterial superselective chemoembolization via femoral arterial approach with mixture of CDDP 150-200 mg, 5-FU 1.5-2.0 g, PYM 50-80 mg together with stripes of gelfoam sponge. Effects of the chemotherapy were evaluated and the tumors were undergone surgery 14 d after the chemoembolization. Results: The tumor masses became smaller associated with necrosis, disaggregation and liquefaction with a week after the therapy accompanied by slight systemic side effects, and signs of recurrence or metastasis was not found after follow-up of 18 months. Conclusion: Pre-operative superselective arterial chemoembolization would minimize complications, promote the effectiveness and be a good therapy for advanced tongue cancinoma. (authors)

  10. Cavernous hemangioma of the tongue: A rare case report

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2014-01-01

    Full Text Available Hemangiomas are developmental vascular abnormalities and more than 50% of these lesions occur in the head and neck region, with the lips, tongue, buccal mucosa, and palate most commonly involved. They are considered as hamartomas rather than true neoplasms. Here we report a case of hemangioma of the body of the tongue, discussing the diagnostic aspects and treatment modalities of such lesion and emphasizing the role of the color Doppler ultrasonography, especially in the diagnosis and treatment. Factors such as patient′s age, size and site of lesion and the proximity of lesion to vital structure are paramount in the determination of the therapeutic approach and surgical excision. Even though radiotherapy, cryotherapy, laser therapy, medical treatment, injection of sclerosing substances and the selective embolization of the lingual artery seem to have some efficacy, the author conclude that surgery is the therapy of choice in the isolated vascular lesions of the body of the tongue.

  11. Cutaneous metastasis from squamous carcinoma of the base of tongue

    Directory of Open Access Journals (Sweden)

    Tashnin Rahman

    2015-01-01

    Full Text Available Context: Cutaneous metastasis from head and neck cancer is uncommon and it is seen from laryngeal cancer. Cutaneous metastasis from the base of tongue is relatively rare. Case Report: A 55-year-old male, who was a treated case of squamous carcinoma of the base of tongue presented with metastatic nodule on the skin of face and thigh. But, there was complete resolution of the tumor at the primary site. In the present case, clinically obvious cutaneous nodules with metastasis appeared soon after the completion of treatment with concurrent chemo-radiotherapy. The metastasis to the skin of face clinically appeared like an inflammatory lesion. Fine needle aspiration cytology confirmed the diagnosis of metastasis to skin at both the sites. Conclusion: Our case has highlighted that there could be associated occult skin metastasis at the time of diagnosis in squamous carcinoma of the base of tongue.

  12. The Chêneau concept of bracing--biomechanical aspects.

    Science.gov (United States)

    Rigo, Manuel; Weiss, Hans-Rudolf

    2008-01-01

    Current concept of bracing must take in consideration both the three-dimensional (3D) nature of Adolescent Idiopathic Scoliosis (AIS) and its pathomechanism of progression. A modern brace should be able to correct in 3D in order to break the so called 'vicious cycle' model. Generally speaking, it is necessary to create detorsional forces to derotate in the transversal plane, to correct the lateral deviation in the frontal plane and to normalize the sagittal profile of the spine. Breathing mechanics can be used to fight against the thoracic structural flat back. The original Chêneau brace was introduced at the end of the 70's and its principles were based more in anatomical observations rather than in biomechanics. A further evolution , enunciating new principles, has allowed a higher standard, improving in brace corrections and trunk modelling. This biomechanical principles have been developed under the name of Rigo-Chêneau-System (RSC) and used later in latest brace models like the Chêneau light with reduced material, and similar in brace corrections. Experience is also important to improve the end results. The blueprints to built the brace according to the anatomorradiological pattern are very helpful.

  13. A finite element model of C1 lateral mass-C2 intralaminar screw-rod fixation and its biomechanical analysis%寰椎侧块-枢椎椎板螺钉固定的有限元分析

    Institute of Scientific and Technical Information of China (English)

    张凯; 刘新宇; 黄晓慧; 汪耀; 田永昊

    2011-01-01

    目的:建立寰椎侧块-枢椎椎板螺钉同定的三维有限元模型并进行有限元分析,探讨其牛物力学特性.方法:通过CT扫描获取1例健康成年男件寰枢椎图像信息,应用VTK软件及ABAQUS软件构建寰椎侧块-枢椎椎板螺钉固定的三维有限元模型,观察中立、前屈/后伸、侧弯、旋转、前后平移等载荷下固定系统的应力变化,分析寰枢侧块-枢椎椎板螺钉同定系统的牛物力学特性.结果:所建立的有限元模型逼真地描绘了寰椎侧块-枢椎椎板螺钉固定系统的结构特点,共包含183363个节点(椎骨130982个,螺钉52381个),116082个单元(椎骨83776个,螺钉32306个).存不同运动状念下,螺钉应力分布主要集中在螺钉置入骨质部分的根部周围和钉棒连接处.前屈载荷时,连接捧从头端至尾端的应力逐步减小,在寰椎侧块螺钉的钉俸连接处应力最大;其他载荷下连接棒应力分布从头端至尾端逐步增大,至枢椎椎板螺钉的钉棒连接处达到最大.后伸和旋转载荷下,螺钉存在明显的高应力区,各螺钉的应力最大值大于其他运动状态.结论:寰椎侧块-枢椎椎板螺钉固定系统固定时各螺钉在颈椎旋转及后伸时所受应力明显增加,术后应避免颈椎过度旋转及后伸,以减少螺钉松动和断裂的发生.%Objective: To establish an anatomic detailed finite element model of C1-C2 complex and investigate the biomechanical features of intralaminar C2 screws.Method:The coordinate data of the cervical vertebrae were obtained from the CT scan images of a healthy Chinese male adult volunteer.Visualization Toolkit (VTK) software was used to preprocess and establish the geometry model of the C1-C2 cervical spine.The geometry model was meshed by ABAQUS software.Some material parameters were defined from other available material parameters by using proportion and function scale method.The changes of theoretical stress in different positions of atlas

  14. A Biomechanical Analysis of the Karate Chop.

    Science.gov (United States)

    Cavanagh, Peter R.; Landa, Jean

    Although the sport of karate has been somewhat neglected by scientists, the following two isolated biomechanical studies exist in literature: (1) tracings of a karate chop in two planes were presented, but no data was given concerning the rates of movement of the limb segments, and (2) pre- and postimpact phenomena of five subjects were studied,…

  15. Interdisciplinary Vertical Integration: The Future of Biomechanics

    Science.gov (United States)

    Gregor, Robert J.

    2008-01-01

    The field of biomechanics has grown rapidly in the past 30 years in both size and complexity. As a result, the term might mean different things to different people. This article addresses the issues facing the field in the form of challenges biomechanists face in the future. Because the field is so diverse, strength within the different areas of…

  16. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  17. The biomechanical interaction between horse and rider

    NARCIS (Netherlands)

    Cocq, de P.

    2012-01-01

    The forces exerted by a rider on a horse have a direct influence on the mechanical load experienced by the horse and consequently on its motion pattern. The aim of this thesis is to explore the biomechanical interaction between rider, saddle and horse in order to get insight in the loading of the ho

  18. Ultrasonographic assessment of carpal tunnel biomechanics

    NARCIS (Netherlands)

    van Doesburg, M.H.M.

    2012-01-01

    In this thesis, we searched for a way to assess flexor tendon and median nerve biomechanics, as well as subsynovial connective tissue thickness (SSCT) in the carpal tunnel with ultrasound, and tried to see if these patterns would give a clue towards understanding the etiology of carpal tunnel syndro

  19. The Value of Biomechanical Research in Dance.

    Science.gov (United States)

    Ranney, D. A.

    Simple observation of dance movement, while very useful, can lead to misconceptions, about the physical realities of dance movement, that make learning difficult. This gap between reality and understanding can be reduced by the application of biomechanical techniques such as cinematography, electromyography, and force-plate analysis. Biomechanical…

  20. Estudo biomecânico da rigidez da osteossíntese com placas em ponte em tíbias de cadáveres humanos Biomechanical study of the osteosynthesis stiffness with bridging plates in cadaveric tibial models

    Directory of Open Access Journals (Sweden)

    Edwin Eiji Sunada

    2010-01-01

    Full Text Available OBJETIVO: comparar a rigidez de três diferentes montagens de placa em ponte com a da haste intramedular bloqueada, em tíbias de cadáveres com fratura tipo C. MATERIAIS E MÉTODOS: vinte tíbias humanas captadas de cadáveres, submetidas à fratura do tipo C; quinze fixadas com placas em ponte, divididas em 03 grupos, de acordo com o tamanho das placas (10, 14 e 18 furos e 05 fixadas com hastes intramedulares bloqueadas. Todas as tíbias foram expostas a cargas progressivas e semelhantes. Foram medidos os deslocamentos de ambos fragmentos (proximal e distal, nos planos sagital, coronal e axial do espaço, conforme incremento gradual de carga. RESULTADOS: tíbias fixadas com placas em ponte de 18 furos apresentam um comportamento biomecânico semelhante às fixadas com haste intramedular bloqueada. CONCLUSÕES: Em fraturas do tipo C em tíbias há maior mobilidade do segmento ósseo distal no plano coronal, quando a fratura é fixada com placas em ponte de 14 e 18 furos que quando fixada com haste intramedular bloqueada sem fresagem. Apesar dessa maior mobilidade, os movimentos relativos entre os fragmentos fraturários nos GHB e GP18 tendem a ser semelhantes entre si.OBJECTIVE: To compare the stiffness of three different assemblies of bridging plates with intramedullary locking nails in cadaveric models of tibial fractures type C. MATERIALS AND METHODS: Twenty cadaveric tibias subjected to type C fractures; fifteen were fixed with the bridging plate technique and divided into three groups, according to the plate size (10, 14 and 18 holes, and five were fixed with intramedullary nail. All the tibias were exposed to similar and progressive loads. Dislocation of both fragments (proximal and distal was measured on three planes (sagittal, coronal and axial, as the load was increased. RESULTS: tibias fixed with the 18 hole bridging plate have the same biomechanical behavior of tibias fixed with intramedullary locking nails. CONCLUSIONS: In type C