WorldWideScience

Sample records for biomaterial mediated neural

  1. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  2. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  3. Biomaterial applications in neural therapy and repair

    Institute of Scientific and Technical Information of China (English)

    Harmanvir Ghuman; Michel Modo

    2017-01-01

    The use of biomaterials,such as hydrogels,as a scaffold to deliver cells and drugs is becoming increasingly common to treat neurological conditions,including stroke.With a limited intrinsic ability to regenerate after injury,innovative tissue engineering strategies have shown the potential of biomaterials in facilitating neural tissue regeneration and functional recovery.Using biomaterials can not only promote the survival and integration of transplanted cells in the existing circuitry,but also support controlled site specific delivery of therapeutic drugs.This review aims to provide the reader an understanding of the brain tissue microenvironment after injury,biomaterial criteria that support tissue repair,commonly used natural and synthetic biomaterials,benefits of incorporating cells and neurotrophic factors,as well as the potential of endogenous neurogenesis in repairing the injured brain.

  4. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  5. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  6. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  7. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    Science.gov (United States)

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  8. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    Science.gov (United States)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  9. Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior

    Directory of Open Access Journals (Sweden)

    Edi Meco

    2018-02-01

    Full Text Available Biomaterial scaffolds mimic aspects of the native central nervous system (CNS extracellular matrix (ECM and have been extensively utilized to influence neural cell (NC behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and three-dimensional (3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  10. A review of organic and inorganic biomaterials for neural interfaces.

    Science.gov (United States)

    Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza

    2014-03-26

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.

  11. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  12. Biomaterials for mediation of chemical and biological warfare agents.

    Science.gov (United States)

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  13. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  14. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    Science.gov (United States)

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  15. Neural mechanisms mediating degrees of strategic uncertainty.

    Science.gov (United States)

    Nagel, Rosemarie; Brovelli, Andrea; Heinemann, Frank; Coricelli, Giorgio

    2018-01-01

    In social interactions, strategic uncertainty arises when the outcome of one's choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts' behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind 'I think that you think that I think etc.' We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others' beliefs). © The Author(s) (2017). Published by Oxford University Press.

  16. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  17. Neurally mediated syncope in electroconvulsive therapy maintenance.

    Science.gov (United States)

    Arbaizar, Beatriz; Llorca, Javier

    2012-03-01

    Electroconvulsive therapy (ECT) is especially necessary to revert some types of depressive disease; nevertheless, it has some widely recognized adverse effects, such as short-term memory loss. Moreover, some articles have reported its potential association with falls; this literature is, however, scanty and mainly consists of case reports. We present the case of a man who has a diagnosis of neurally mediated syncope at the age of 79 years, during the maintenance ECT. The patient had a significant increase in syncope frequency in the period he was treated with ECT, followed by a dramatic decrease when ECT was discontinued.

  18. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering.

    Science.gov (United States)

    Tseng, Ting-Chen; Wong, Chui-Wei; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2017-12-01

    Three-dimentional (3D) multicellular aggregates (spheroids), compared to the traditional 2D monolayer cultured cells, are physiologically more similar to the cells in vivo. So far there are various techniques to generate 3D spheroids. Spheroids obtained from different methods have already been applied to regenerative medicine or cancer research. Among the cell spheroids created by different methods, the substrate-derived spheroids and their forming mechanism are unique. This review focuses on the formation of biomaterial substrate-mediated multicellular spheroids and their applications in tissue engineering and tumor models. First, the authors will describe the special chitosan substrate-derived mesenchymal stem cell (MSC) spheroids and their greater regenerative capacities in various tissues. Second, the authors will describe tumor spheroids derived on chitosan and hyaluronan substrates, which serve as a simple in vitro platform to study 3D tumor models or to perform cancer drug screening. Finally, the authors will mention the self-assembly process for substrate-derived multiple cell spheroids (co-spheroids), which may recapitulate the heterotypic cell-cell interaction for co-cultured cells or crosstalk between different types of cells. These unique multicellular mono-spheroids or co-spheroids represent a category of 3D cell culture with advantages of biomimetic cell-cell interaction, better functionalities, and imaging possibilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structures based on semi-degradable biomaterials for neural regeneration in the central nervous system

    OpenAIRE

    Perez Garnes, Manuel

    2015-01-01

    Se pretende obtener un material semibiodegradable basado en ácido hialurónico químicamente enlazado a cadenas de polímeros acrílicos. Los hidrogeles de ácido hialurónico presentan en general buenas características para su utilización en regeneración del sistema nervioso central: es biodegradable, es un componente importante del tejido neural, sus propiedades mecánicas son semejantes a las del tejido cerebral, promueve la formación de nuevos capilares (angiogénesis), y limita la inflamación. C...

  20. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  1. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.

    Science.gov (United States)

    D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K

    2014-04-17

    When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).

  3. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    International Nuclear Information System (INIS)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  4. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shih-Feng [Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799 (United States); Luo, Li-Jyuan [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China)

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  5. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  6. Neural networks mediating sentence reading in the deaf

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Hirshorn

    2014-06-01

    Full Text Available The present work addresses the neural bases of sentence reading in deaf populations. To better understand the relative role of deafness and English knowledge in shaping the neural networks that mediate sentence reading, three populations with different degrees of English knowledge and depth of hearing loss were included – deaf signers, oral deaf and hearing individuals. The three groups were matched for reading comprehension and scanned while reading sentences. A similar neural network of left perisylvian areas was observed, supporting the view of a shared network of areas for reading despite differences in hearing and English knowledge. However, differences were observed, in particular in the auditory cortex, with deaf signers and oral deaf showing greatest bilateral superior temporal gyrus (STG recruitment as compared to hearing individuals. Importantly, within deaf individuals, the same STG area in the left hemisphere showed greater recruitment as hearing loss increased. To further understand the functional role of such auditory cortex re-organization after deafness, connectivity analyses were performed from the STG regions identified above. Connectivity from the left STG toward areas typically associated with semantic processing (BA45 and thalami was greater in deaf signers and in oral deaf as compared to hearing. In contrast, connectivity from left STG toward areas identified with speech-based processing was greater in hearing and in oral deaf as compared to deaf signers. These results support the growing literature indicating recruitment of auditory areas after congenital deafness for visually-mediated language functions, and establish that both auditory deprivation and language experience shape its functional reorganization. Implications for differential reliance on semantic vs. phonological pathways during reading in the three groups is discussed.

  7. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  8. Coding of level of ambiguity within neural systems mediating choice.

    Science.gov (United States)

    Lopez-Paniagua, Dan; Seger, Carol A

    2013-01-01

    Data from previous neuroimaging studies exploring neural activity associated with uncertainty suggest varying levels of activation associated with changing degrees of uncertainty in neural regions that mediate choice behavior. The present study used a novel task that parametrically controlled the amount of information hidden from the subject; levels of uncertainty ranged from full ambiguity (no information about probability of winning) through multiple levels of partial ambiguity, to a condition of risk only (zero ambiguity with full knowledge of the probability of winning). A parametric analysis compared a linear model in which weighting increased as a function of level of ambiguity, and an inverted-U quadratic models in which partial ambiguity conditions were weighted most heavily. Overall we found that risk and all levels of ambiguity recruited a common "fronto-parietal-striatal" network including regions within the dorsolateral prefrontal cortex, intraparietal sulcus, and dorsal striatum. Activation was greatest across these regions and additional anterior and superior prefrontal regions for the quadratic function which most heavily weighs trials with partial ambiguity. These results suggest that the neural regions involved in decision processes do not merely track the absolute degree ambiguity or type of uncertainty (risk vs. ambiguity). Instead, recruitment of prefrontal regions may result from greater degree of difficulty in conditions of partial ambiguity: when information regarding reward probabilities important for decision making is hidden or not easily obtained the subject must engage in a search for tractable information. Additionally, this study identified regions of activity related to the valuation of potential gains associated with stimuli or options (including the orbitofrontal and medial prefrontal cortices and dorsal striatum) and related to winning (including orbitofrontal cortex and ventral striatum).

  9. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  10. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  11. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    Science.gov (United States)

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

    Science.gov (United States)

    Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang

    2015-02-01

    Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.

  13. Calcium signaling mediates five types of cell morphological changes to form neural rosettes.

    Science.gov (United States)

    Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man

    2018-02-12

    Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.

  14. Pacemaker Therapy in Patients With Neurally Mediated Syncope and Documented Asystole Third International Study on Syncope of Uncertain Etiology (ISSUE-3) A Randomized Trial

    NARCIS (Netherlands)

    Brignole, Michele; Menozzi, Carlo; Moya, Angel; Andresen, Dietrich; Blanc, Jean Jacques; Krahn, Andrew D.; Wieling, Wouter; Beiras, Xulio; Deharo, Jean Claude; Russo, Vitantonio; Tomaino, Marco; Sutton, Richard; Tomaino, M.; Pescoller, F.; Donateo, P.; Oddone, D.; Russo, V.; Pierri, F.; Matino, M. G.; Vitale, E.; Massa, R.; Piccinni, G.; Melissano, D.; Menozzi, C.; Lolli, G.; Gulizia, M.; Francese, M.; Iorfida, M.; Golzio, P.; Gaggioli, G.; Laffi, M.; Rabjoli, F.; Cecchinato, C.; Ungar, A.; Rafanelli, M.; Chisciotti, V.; Morrione, A.; del Rosso, A.; Guernaccia, V.; Palella, M.; D'Agostino, C.; Campana, A.; Brigante, M.; Miracapillo, G.; Addonisio, L.; Proclemer, A.; Facchin, D.; Vado, A.; Knops, R. E.; Dekker, L. R. C.

    2012-01-01

    Background-The efficacy of cardiac pacing for prevention of syncopal recurrences in patients with neurally mediated syncope is controversial. We wanted to determine whether pacing therapy reduces syncopal recurrences in patients with severe asystolic neurally mediated syncope. Methods and

  15. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  16. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Science.gov (United States)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  17. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  18. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  19. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  20. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  1. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  2. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  3. Adolescent girls' neural response to reward mediates the relation between childhood financial disadvantage and depression.

    Science.gov (United States)

    Romens, Sarah E; Casement, Melynda D; McAloon, Rose; Keenan, Kate; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2015-11-01

    Children who experience socioeconomic disadvantage are at heightened risk for developing depression; however, little is known about neurobiological mechanisms underlying this association. Low socioeconomic status (SES) during childhood may confer risk for depression through its stress-related effects on the neural circuitry associated with processing monetary rewards. In a prospective study, we examined the relationships among the number of years of household receipt of public assistance from age 5-16 years, neural activation during monetary reward anticipation and receipt at age 16, and depression symptoms at age 16 in 123 girls. Number of years of household receipt of public assistance was positively associated with heightened response in the medial prefrontal cortex during reward anticipation, and this heightened neural response mediated the relationship between socioeconomic disadvantage and current depression symptoms, controlling for past depression. Chronic exposure to socioeconomic disadvantage in childhood may alter neural circuitry involved in reward anticipation in adolescence, which in turn may confer risk for depression. © 2015 Association for Child and Adolescent Mental Health.

  4. GH mediates exercise-dependent activation of SVZ neural precursor cells in aged mice.

    Directory of Open Access Journals (Sweden)

    Daniel G Blackmore

    Full Text Available Here we demonstrate, both in vivo and in vitro, that growth hormone (GH mediates precursor cell activation in the subventricular zone (SVZ of the aged (12-month-old brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.

  5. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    Science.gov (United States)

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  6. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Neural Reactivity to Emotional Faces Mediates the Relationship Between Childhood Empathy and Adolescent Prosocial Behavior

    Science.gov (United States)

    Flournoy, John C.; Pfeifer, Jennifer H.; Moore, William E.; Tackman, Allison; Masten, Carrie L.; Mazziotta, John C.; Iacoboni, Marco; Dapretto, Mirella

    2017-01-01

    Reactivity to others' emotions can result in empathic concern (EC), an important motivator of prosocial behavior, but can also result in personal distress (PD), which may hinder prosocial behavior. Examining neural substrates of emotional reactivity may elucidate how EC and PD differentially influence prosocial behavior. Participants (N=57) provided measures of EC, PD, prosocial behavior, and neural responses to emotional expressions at age 10 and 13. Initial EC predicted subsequent prosocial behavior. Initial EC and PD predicted subsequent reactivity to emotions in the inferior frontal gyrus (IFG) and inferior parietal lobule, respectively. Activity in the IFG, a region linked to mirror neuron processes, as well as cognitive control and language, mediated the relation between initial EC and subsequent prosocial behavior. PMID:28262939

  8. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  9. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  10. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  11. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Science.gov (United States)

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  12. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  13. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  14. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  15. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  16. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  17. Designer biomaterials for mechanobiology

    Science.gov (United States)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  18. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  19. Thromboelastometric and platelet responses to silk biomaterials.

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C

    2014-05-13

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.

  20. Neuroautonomic evaluation of patients with unexplained syncope: incidence of complex neurally mediated diagnoses in the elderly

    Directory of Open Access Journals (Sweden)

    Rafanelli M

    2014-02-01

    Full Text Available Martina Rafanelli, Alessandro Morrione, Annalisa Landi, Emilia Ruffolo, Valentina M Chisciotti, Maria A Brunetti, Niccolò Marchionni, Andrea Ungar Syncope Unit, Cardiology and Geriatric Medicine, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy Background: The incidence of syncope increases in individuals over the age of 70 years, but data about this condition in the elderly are limited. Little is known about tilt testing (TT, carotid sinus massage (CSM, or supine and upright blood pressure measurement related to age or about patients with complex diagnoses, for example, those with a double diagnosis, ie, positivity in two of these three tests. Methods: A total of 873 consecutive patients of mean age 66.5±18 years underwent TT, CSM, and blood pressure measurement in the supine and upright positions according to the European Society of Cardiology guidelines on syncope.1 Neuroautonomic evaluation was performed if the first-line evaluation (clinical history, physical examination, electrocardiogram was suggestive of neurally mediated syncope, or if the first-line evaluation was suggestive of cardiac syncope but this diagnosis was excluded after specific diagnostic tests according to European Society of Cardiology guidelines on syncope, or if certain or suspected diagnostic criteria were not present after the first-line evaluation. Results: A diagnosis was reached in 64.3% of cases. TT was diagnostic in 50.4% of cases, CSM was diagnostic in 11.8% of cases, and orthostatic hypotension was present in 19.9% of cases. Predictors of a positive tilt test were prodromal symptoms and typical situational syncope. Increased age and a pathologic electrocardiogram were predictors of carotid sinus syndrome. Varicose veins and alpha-receptor blockers, nitrates, and benzodiazepines were associated with orthostatic hypotension. Twenty-three percent of the patients had a complex diagnosis. The most frequent association was

  1. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Neural Reward Processing Mediates the Relationship between Insomnia Symptoms and Depression in Adolescence.

    Science.gov (United States)

    Casement, Melynda D; Keenan, Kate E; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2016-02-01

    Emerging evidence suggests that insomnia may disrupt reward-related brain function-a potentially important factor in the development of depressive disorder. Adolescence may be a period during which such disruption is especially problematic given the rise in the incidence of insomnia and ongoing development of neural systems that support reward processing. The present study uses longitudinal data to test the hypothesis that disruption of neural reward processing is a mechanism by which insomnia symptoms-including nocturnal insomnia symptoms (NIS) and nonrestorative sleep (NRS)-contribute to depressive symptoms in adolescent girls. Participants were 123 adolescent girls and their caregivers from an ongoing longitudinal study of precursors to depression across adolescent development. NIS and NRS were assessed annually from ages 9 to 13 years. Girls completed a monetary reward task during a functional MRI scan at age 16 years. Depressive symptoms were assessed at ages 16 and 17 years. Multivariable regression tested the prospective associations between NIS and NRS, neural response during reward anticipation, and the mean number of depressive symptoms (omitting sleep problems). NRS, but not NIS, during early adolescence was positively associated with late adolescent dorsal medial prefrontal cortex (dmPFC) response to reward anticipation and depressive symptoms. DMPFC response mediated the relationship between early adolescent NRS and late adolescent depressive symptoms. These results suggest that NRS may contribute to depression by disrupting reward processing via altered activity in a region of prefrontal cortex involved in affective control. The results also support the mechanistic differentiation of NIS and NRS. © 2016 Associated Professional Sleep Societies, LLC.

  3. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  4. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  5. The neural mechanisms of affect infusion in social economic decision-making: A mediating role of the anterior insula

    NARCIS (Netherlands)

    Harlé, K.M.; Chang, L.J.; Wout, M. van 't; Sanfey, A.G.

    2012-01-01

    Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these

  6. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  7. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  8. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  9. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  10. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.

    Science.gov (United States)

    Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua

    2013-12-23

    Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.

  11. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  12. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  13. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  14. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  15. EPR analysis of biomaterials

    International Nuclear Information System (INIS)

    Sukhodub, L.

    2001-01-01

    There is the review of electron spin resonance application for paramagnetic individual investigation in biomaterials. Especially the bone tissue and tooth enamel can be taken into account. The material composition (e.g. Mn 2+ and Cr 3+ ions) can be measured, also after irradiation (X, γ radiations) when paramagnetic signal appears as a result of physical radiation effects

  16. Hot topics in biomaterials

    CERN Document Server

    Alton, Eric W; Griesenbach, Uta

    2014-01-01

    The expert coverage of the eight chapters in this book reflects the diverse nature of the field of biomaterials science and encompasses contributions from a wide range of fields, highlighting key classes of novel materials and exploring the underlying science and potential applications.

  17. Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2018-01-30

    Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS.

  18. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  19. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice

    NARCIS (Netherlands)

    Bank, Ruud A.; Zandstra, Jurjen; Room, Hilde; Petersen, Arjen H.; van Putten, Sander M.

    2017-01-01

    Macrophages are pivotal cells during the foreign body reaction (FBR), as they orchestrate the proinflammatory microenvironment inside and around biomaterials by secretion of inflammatory mediators. Furthermore, they are responsible for the degradation of biomaterials and are thought to instruct the

  20. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    Science.gov (United States)

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  1. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles

    Science.gov (United States)

    Rojas, Camilo; Tedesco, Mariateresa; Massobrio, Paolo; Marino, Attilio; Ciofani, Gianni; Martinoia, Sergio; Raiteri, Roberto

    2018-06-01

    Objective. We aim to develop a novel non-invasive or minimally invasive method for neural stimulation to be applied in the study and treatment of brain (dys)functions and neurological disorders. Approach. We investigate the electrophysiological response of in vitro neuronal networks when subjected to low-intensity pulsed acoustic stimulation, mediated by piezoelectric nanoparticles adsorbed on the neuronal membrane. Main results. We show that the presence of piezoelectric barium titanate nanoparticles induces, in a reproducible way, an increase in network activity when excited by stationary ultrasound waves in the MHz regime. Such a response can be fully recovered when switching the ultrasound pulse off, depending on the generated pressure field amplitude, whilst it is insensitive to the duration of the ultrasound pulse in the range 0.5 s–1.5 s. We demonstrate that the presence of piezoelectric nanoparticles is necessary, and when applying the same acoustic stimulation to neuronal cultures without nanoparticles or with non-piezoelectric nanoparticles with the same size distribution, no network response is observed. Significance. We believe that our results open up an extremely interesting approach when coupled with suitable functionalization strategies of the nanoparticles in order to address specific neurons and/or brain areas and applied in vivo, thus enabling remote, non-invasive, and highly selective modulation of the activity of neuronal subpopulations of the central nervous system of mammalians.

  2. Differentiating neural systems mediating the acquisition versus expression of goal-directed and habitual behavioral control

    Science.gov (United States)

    Liljeholm, Mimi; Dunne, Simon; O'Doherty, John P.

    2015-01-01

    Considerable behavioral data indicates that operant actions can become habitual, as evidenced by insensitivity to changes in the action-outcome contingency and in subjective outcome values. Notably, although several studies have investigated the neural substrates of habits, none has clearly differentiated the areas of the human brain that support habit formation from those that implement habitual control. We scanned participants with fMRI as they learned and performed an operant task in which the conditional structure of the environment encouraged either goal-directed encoding of the consequences of actions, or a habit-like mapping of actions to antecedent cues. Participants were also scanned during a subsequent assessment of insensitivity to outcome devaluation. We identified dissociable roles of the cerebellum and ventral striatum, across learning and test performance, in behavioral insensitivity to outcome devaluation. We also show that the inferior parietal lobule – an area previously implicated in several aspects of goal-directed action selection, including the attribution of intent and awareness of agency – predicts sensitivity to outcome devaluation. Finally, we reveal a potential functional homology between the human subgenual cortex and rodent infralimbic cortex in the implementation of habitual control. In summary, our findings suggest a broad systems division, at the cortical and subcortical levels, between brain areas mediating the encoding and expression of action-outcome and stimulus-response associations. PMID:25892332

  3. Biomaterials and bone mechanotransduction

    Science.gov (United States)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  4. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  5. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  6. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  7. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production.

    Science.gov (United States)

    Russell, Lauren N; Lampe, Kyle J

    2016-01-01

    Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo. © 2016 S. Karger AG, Basel.

  8. The neural mechanisms of affect infusion in social economic decision-making: a mediating role of the anterior insula.

    Science.gov (United States)

    Harlé, Katia M; Chang, Luke J; van 't Wout, Mascha; Sanfey, Alan G

    2012-05-15

    Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these biases are implemented in the brain. Nineteen adult participants made decisions which involved accepting or rejecting monetary offers from others in an Ultimatum Game while undergoing functional magnetic resonance imaging (fMRI). Prior to each set of decisions, participants watched a short video clip aimed at inducing either a sad or neutral emotional state. Results demonstrated that, as expected, sad participants rejected more unfair offers than those in the neutral condition. Neuroimaging analyses revealed that receiving unfair offers while in a sad mood elicited activity in brain areas related to aversive emotional states and somatosensory integration (anterior insula) and to cognitive conflict (anterior cingulate cortex). Sad participants also showed a diminished sensitivity in neural regions associated with reward processing (ventral striatum). Importantly, insular activation uniquely mediated the relationship between sadness and decision bias. This study is the first to reveal how subtle mood states can be integrated at the neural level to influence decision-making. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  10. Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention.

    Science.gov (United States)

    Shany-Ur, Tal; Lin, Nancy; Rosen, Howard J; Sollberger, Marc; Miller, Bruce L; Rankin, Katherine P

    2014-08-01

    versus exaggerating deficits, overestimation and underestimation scores were analysed separately, controlling for age, sex, total intracranial volume and extent of actual functional decline. Atrophy related to overestimating one's functioning included bilateral, right greater than left frontal and subcortical regions, including dorsal superior and middle frontal gyri, lateral and medial orbitofrontal gyri, right anterior insula, putamen, thalamus, and caudate, and midbrain and pons. Thus, our patients' tendency to under-represent their functional decline was related to degeneration of domain-general dorsal frontal regions involved in attention, as well as orbitofrontal and subcortical regions likely involved in assigning a reward value to self-related processing and maintaining accurate self-knowledge. The anatomic correlates of underestimation (right rostral anterior cingulate cortex, uncorrected significance level) were distinct from overestimation and had a substantially smaller effect size. This suggests that underestimation or 'tarnishing' may be influenced by non-structural neurobiological and sociocultural factors, and should not be considered to be on a continuum with overestimation or 'polishing' of functional capacity, which appears to be more directly mediated by neural circuit dysfunction. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  12. Biomaterials in orthopaedics

    Science.gov (United States)

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A

    2008-01-01

    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  13. Trends in biomaterials

    CERN Document Server

    Kothiyal, G P

    2016-01-01

    Biomaterials research requires the union of materials scientists, engineers, biologists, biomedical doctors, and surgeons. Societal implications have invoked tremendous interest in this area of research in recent years. What started as a search for strong and durable implant materials has now led to path-breaking developments in tissue engineering, targeted drug delivery, and tissue scaffolds. Viable applications of mesoporous structures, polymer biocomposites, and fibers (synthetic and natural) in the areas of clinical orthopedics, controlled drug delivery, tissue engineering, orthodontics, etc., have emerged as relatively recent concepts. This book presents recent results related to both materials aspects and implant issues. The focus is on structural, magnetic, antibacterial, bioactivity/compatibility, mechanical, and other related properties and the implication of these results on biomedical applications. The book discusses technical problems faced by the surgeon during implant fixation in total hip repla...

  14. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  17. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  18. Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9.

    Science.gov (United States)

    Li, Shanshan; Liu, Yanwei; Liu, Zengrong; Wang, Ruiqi

    2016-01-01

    In the nervous system, Hes1 shows an oscillatory manner in neural progenitors but a persistent one in neurons. Many models involving Hes1 have been provided for the study of neural differentiation but few of them take the role of microRNA into account. It is known that a microRNA, miR-9, plays crucial roles in modulating Hes1 oscillations. However, the roles of miR-9 in controlling Hes1 oscillations and inducing transition between different cell fates still need to be further explored. Here we provide a mathematical model to show the interaction between miR-9 and Hes1, with the aim of understanding how the Hes1 oscillations are produced, how they are controlled, and further, how they are terminated. Based on the experimental findings, the model demonstrates the essential roles of Hes1 and miR-9 in regulating the dynamics of the system. In particular, the model suggests that the balance between miR-9 and Hes1 plays important roles in the choice between progenitor maintenance and neural differentiation. In addition, the synergistic (or antagonistic) effects of several important regulations are investigated so as to elucidate the effects of combinatorial regulation in neural decision-making. Our model provides a qualitative mechanism for understanding the process in neural fate decisions regulated by Hes1 and miR-9.

  19. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  20. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR) and Neural System Function during Facial Recognition: A Pilot Study

    Science.gov (United States)

    Nishikawa, Saori

    2015-01-01

    This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy) during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18) aged between 22 to 37 years old (mean age = 24.05 years old) provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing]), and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task), and a gene × environment (G×E) interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links. PMID:26418317

  1. Perceived Parenting Mediates Serotonin Transporter Gene (5-HTTLPR and Neural System Function during Facial Recognition: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Saori Nishikawa

    Full Text Available This study examined changes in prefrontal oxy-Hb levels measured by NIRS (Near-Infrared Spectroscopy during a facial-emotion recognition task in healthy adults, testing a mediational/moderational model of these variables. Fifty-three healthy adults (male = 35, female = 18 aged between 22 to 37 years old (mean age = 24.05 years old provided saliva samples, completed a EMBU questionnaire (Swedish acronym for Egna Minnen Beträffande Uppfostran [My memories of upbringing], and participated in a facial-emotion recognition task during NIRS recording. There was a main effect of maternal rejection on RoxH (right frontal activation during an ambiguous task, and a gene × environment (G × E interaction on RoxH, suggesting that individuals who carry the SL or LL genotype and who endorse greater perceived maternal rejection show less right frontal activation than SL/LL carriers with lower perceived maternal rejection. Finally, perceived parenting style played a mediating role in right frontal activation via the 5-HTTLPR genotype. Early-perceived parenting might influence neural activity in an uncertain situation i.e. rating ambiguous faces among individuals with certain genotypes. This preliminary study makes a small contribution to the mapping of an influence of gene and behaviour on the neural system. More such attempts should be made in order to clarify the links.

  2. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone.

    Science.gov (United States)

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-12-17

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  4. Endogenous and Exogenous Attention Shifts are Mediated by the Same Large-Scale Neural Network.

    NARCIS (Netherlands)

    Peelen, M.V.; Heslenfeld, D.J.; Theeuwes, J.

    2004-01-01

    Event-related fMRI was used to examine the neural basis of endogenous (top-down) and exogenous (bottom-up) spatial orienting. Shifts of attention were induced by central (endogenous) or peripheral (exogenous) cues. Reaction times on subsequently presented targets showed the expected pattern of

  5. What Types of Visual Recognition Tasks Are Mediated by the Neural Subsystem that Subserves Face Recognition?

    Science.gov (United States)

    Brooks, Brian E.; Cooper, Eric E.

    2006-01-01

    Three divided visual field experiments tested current hypotheses about the types of visual shape representation tasks that recruit the cognitive and neural mechanisms underlying face recognition. Experiment 1 found a right hemisphere advantage for subordinate but not basic-level face recognition. Experiment 2 found a right hemisphere advantage for…

  6. Neural Reactivity to Emotional Faces May Mediate the Relationship between Childhood Empathy and Adolescent Prosocial Behavior

    Science.gov (United States)

    Flournoy, John C.; Pfeifer, Jennifer H.; Moore, William E.; Tackman, Allison M.; Masten, Carrie L.; Mazziotta, John C.; Iacoboni, Marco; Dapretto, Mirella

    2016-01-01

    Reactivity to others' emotions not only can result in empathic concern (EC), an important motivator of prosocial behavior, but can also result in personal distress (PD), which may hinder prosocial behavior. Examining neural substrates of emotional reactivity may elucidate how EC and PD differentially influence prosocial behavior. Participants…

  7. Neural systems and hormones mediating attraction to infant and child faces

    Directory of Open Access Journals (Sweden)

    Lizhu eLuo

    2015-07-01

    Full Text Available We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed Kindchenschema or baby schema, and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It next reviews the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in both parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and then neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cutenessin infant faces with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses.Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention andattractionto infant cues in both sexes.

  8. Mini Review: Biomaterials for Enhancing Neuronal Repair

    Science.gov (United States)

    Cangellaris, Olivia V.; Gillette, Martha U.

    2018-04-01

    As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

  9. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  11. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  12. A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

    Directory of Open Access Journals (Sweden)

    Salvatore Fusco

    2016-02-01

    Full Text Available Summary: Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1 is modulated in neural stem and progenitor cells (NSCs by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein and Sirt-1 (Sirtuin 1, two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis. : Using a combination of in vitro and in vivo studies, Fusco et al. find that excess glucose impairs the self-renewal capacity of neural stem cells through a molecular circuit that involves the transcription factor CREB and Sirtuin 1. The authors suggest that this circuitry may link nutrient excess with neurodegeneration and brain aging. Keywords: neural stem cells, adult neurogenesis, CREB, Sirt-1, nutrients, metabolism, diabetes

  13. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  14. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis.

    Science.gov (United States)

    De Vadder, F; Plessier, F; Gautier-Stein, A; Mithieux, G

    2015-03-01

    Intestinal gluconeogenesis (IGN) promotes metabolic benefits through activation of a gut-brain neural axis. However, the local mediator activating gluconeogenic genes in the enterocytes remains unknown. We show that (i) vasoactive intestinal peptide (VIP) signaling through VPAC1 receptor activates the intestinal glucose-6-phosphatase gene in vivo, (ii) the activation of IGN by propionate is counteracted by VPAC1 antagonism, and (iii) VIP-positive intrinsic neurons in the submucosal plexus are increased under the action of propionate. These data support the role of VIP as a local neuromodulator released by intrinsic enteric neurons and responsible for the induction of IGN through a VPAC1 receptor-dependent mechanism in enterocytes. © 2015 John Wiley & Sons Ltd.

  15. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival

    DEFF Research Database (Denmark)

    Ditlevsen, Dorte K; Køhler, Lene B; Pedersen, Martin Volmer

    2003-01-01

    The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein...... kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating...... that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data...

  16. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  17. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  18. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  19. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  20. Menadione-mediated WST1 reduction assay for the determination of metabolic activity of cultured neural cells.

    Science.gov (United States)

    Stapelfeldt, Karsten; Ehrke, Eric; Steinmeier, Johann; Rastedt, Wiebke; Dringen, Ralf

    2017-12-01

    Cellular reduction of tetrazolium salts to their respective formazans is frequently used to determine the metabolic activity of cultured cells as an indicator of cell viability. For membrane-impermeable tetrazolium salts such as WST1 the application of a membrane-permeable electron cycler is usually required to mediate the transfer of intracellular electrons for extracellular WST1 reduction. Here we demonstrate that in addition to the commonly used electron cycler M-PMS, menadione can also serve as an efficient electron cycler for extracellular WST1 reduction in cultured neural cells. The increase in formazan absorbance in glial cell cultures for the WST1 reduction by menadione involves enzymatic menadione reduction and was twice that recorded for the cytosolic enzyme-independent WST1 reduction in the presence of M-PMS. The optimized WST1 reduction assay allowed within 30 min of incubation a highly reliable detection of compromised cell metabolism caused by 3-bromopyruvate and impaired membrane integrity caused by Triton X-100, with a sensitivity as good as that of spectrophotometric assays which determine cellular MTT reduction or lactate dehydrogenase release. The short incubation period of 30 min and the observed good sensitivity make this optimized menadione-mediated WST1 reduction assay a quick and reliable alternative to other viability and toxicity assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  2. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

    Science.gov (United States)

    Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2016-04-15

    Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.

  3. Sex differences in the neural circuit that mediates female sexual receptivity

    Science.gov (United States)

    Flanagan-Cato, Loretta M.

    2011-01-01

    Female sexual behavior in rodents, typified by the lordosis posture, is hormone-dependent and sex-specific. Ovarian hormones control this behavior via receptors in the hypothalamic ventromedial nucleus (VMH). This review considers the sex differences in the morphology, neurochemistry and neural circuitry of the VMH to gain insights into the mechanisms that control lordosis. The VMH is larger in males compared with females, due to more synaptic connections. Another sex difference is the responsiveness to estradiol, with males exhibiting muted, and in some cases reverse, effects compared with females. The lack of lordosis in males may be explained by differences in synaptic organization or estrogen responsiveness, or both, in the VMH. However, given that damage to other brain regions unmasks lordosis behavior in males, a male-typical VMH is unlikely the main factor that prevents lordosis. In females, key questions remain regarding the mechanisms whereby ovarian hormones modulate VMH function to promote lordosis. PMID:21338620

  4. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  5. Alterations in neural systems mediating cognitive flexibility and inhibition in mood disorders.

    Science.gov (United States)

    Piguet, Camille; Cojan, Yann; Sterpenich, Virginie; Desseilles, Martin; Bertschy, Gilles; Vuilleumier, Patrik

    2016-04-01

    Impairment in mental flexibility may be a key component contributing to cardinal cognitive symptoms among mood disorders patients, particularly thought control disorders. Impaired ability to switch from one thought to another might reflect difficulties in either generating new mental states, inhibiting previous states, or both. However, the neural underpinnings of impaired cognitive flexibility in mood disorders remain largely unresolved. We compared a group of mood disorders patients (n = 29) and a group of matched healthy subjects (n = 32) on a novel task-switching paradigm involving happy and sad faces, that allowed us to separate generation of a new mental set (Switch Cost) and inhibition of the previous set during switching (Inhibition Cost), using fMRI. Behavioral data showed a larger Switch Cost in patients relative to controls, but the average Inhibition Cost did not differ between groups. At the neural level, a main effect of group was found with stronger activation of the subgenual cingulate cortex in patients. The larger Switch Cost in patients was reflected by a stronger recruitment of brain regions involved in attention and executive control, including the left intraparietal sulcus, precuneus, left inferior fontal gyrus, and right anterior cingulate. Critically, activity in the subgenual cingulate cortex was not downregulated by inhibition in patients relative to controls. In conclusion, mood disorder patients have exaggerated Switch Cost relative to controls, and this deficit in cognitive flexibility is associated with increased activation of the fronto-parietal attention networks, combined with impaired modulation of the subgenual cingulate cortex when inhibition of previous mental states is needed. © 2016 Wiley Periodicals, Inc.

  6. Predoctoral Curriculum Guidelines for Biomaterials.

    Science.gov (United States)

    Journal of Dental Education, 1986

    1986-01-01

    The American Association of Dental Schools' predoctoral guidelines for biomaterials curricula includes notes on interrelationships between this and other fields, a curriculum overview, primary educational goals, prerequisites, a core content outline, specific behavioral objectives for each content area, and information on sequencing, faculty and…

  7. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  8. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  9. Neural processes mediating the preparation and release of focal motor output are suppressed or absent during imagined movement

    Science.gov (United States)

    Eagles, Jeremy S.; Carlsen, Anthony N.

    2016-01-01

    Movements that are executed or imagined activate a similar subset of cortical regions, but the extent to which this activity represents functionally equivalent neural processes is unclear. During preparation for an executed movement, presentation of a startling acoustic stimulus (SAS) evokes a premature release of the planned movement with the spatial and temporal features of the tasks essentially intact. If imagined movement incorporates the same preparatory processes as executed movement, then a SAS should release the planned movement during preparation. This hypothesis was tested using an instructed-delay cueing paradigm during which subjects were required to rapidly release a handheld weight while maintaining the posture of the arm or to perform first-person imagery of the same task while holding the weight. In a subset of trials, a SAS was presented at 1500, 500, or 200 ms prior to the release cue. Task-appropriate preparation during executed and imagined movements was confirmed by electroencephalographic recording of a contingent negative variation waveform. During preparation for executed movement, a SAS often resulted in premature release of the weight with the probability of release progressively increasing from 24 % at −1500 ms to 80 % at −200 ms. In contrast, the SAS rarely (movement. However, the SAS frequently evoked the planned postural response (suppression of bicep brachii muscle activity) irrespective of the task or timing of stimulation (even during periods of postural hold without preparation). These findings provide evidence that neural processes mediating the preparation and release of the focal motor task (release of the weight) are markedly attenuated or absent during imagined movement and that postural and focal components of the task are prepared independently. PMID:25744055

  10. Reorganization of neural systems mediating peripheral visual selective attention in the deaf: An optical imaging study.

    Science.gov (United States)

    Seymour, Jenessa L; Low, Kathy A; Maclin, Edward L; Chiarelli, Antonio M; Mathewson, Kyle E; Fabiani, Monica; Gratton, Gabriele; Dye, Matthew W G

    2017-01-01

    Theories of brain plasticity propose that, in the absence of input from the preferred sensory modality, some specialized brain areas may be recruited when processing information from other modalities, which may result in improved performance. The Useful Field of View task has previously been used to demonstrate that early deafness positively impacts peripheral visual attention. The current study sought to determine the neural changes associated with those deafness-related enhancements in visual performance. Based on previous findings, we hypothesized that recruitment of posterior portions of Brodmann area 22, a brain region most commonly associated with auditory processing, would be correlated with peripheral selective attention as measured using the Useful Field of View task. We report data from severe to profoundly deaf adults and normal-hearing controls who performed the Useful Field of View task while cortical activity was recorded using the event-related optical signal. Behavioral performance, obtained in a separate session, showed that deaf subjects had lower thresholds (i.e., better performance) on the Useful Field of View task. The event-related optical data indicated greater activity for the deaf adults than for the normal-hearing controls during the task in the posterior portion of Brodmann area 22 in the right hemisphere. Furthermore, the behavioral thresholds correlated significantly with this neural activity. This work provides further support for the hypothesis that cross-modal plasticity in deaf individuals appears in higher-order auditory cortices, whereas no similar evidence was obtained for primary auditory areas. It is also the only neuroimaging study to date that has linked deaf-related changes in the right temporal lobe to visual task performance outside of the imaging environment. The event-related optical signal is a valuable technique for studying cross-modal plasticity in deaf humans. The non-invasive and relatively quiet characteristics of

  11. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  12. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  13. The neural mediators of kindness-based meditation: a theoretical model

    Directory of Open Access Journals (Sweden)

    Jennifer Streiffer Mascaro

    2015-02-01

    Full Text Available Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work.

  14. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics

    Science.gov (United States)

    McLennan, Rebecca; Kulesa, Paul M.

    2011-01-01

    Cranial neural crest cells (NCCs) require neuropilin signaling to reach and invade the branchial arches. Here, we use an in vivo chick model to investigate whether the neuropilin-1 knockdown phenotype is specific to the second branchial arch (ba2), changes in NCC behaviors and phenotypic consequences, and whether neuropilins work together to facilitate entry into and invasion of ba2. We find that cranial NCCs with reduced neuropilin-1 expression displayed shorter protrusions and decreased cell body and nuclear length-to-width ratios characteristic of a loss in polarity and motility, after specific interaction with ba2. Directed NCC migration was rescued by transplantation of transfected cells into rhombomere 4 of younger hosts. Lastly, reduction of neuropilin-2 expression by shRNA either solely or with reduction of neuropilin-1 expression did not lead to a stronger head phenotype. Thus, NCCs, independent of rhombomere origin, require neuropilin-1, but not neuropilin-2 to maintain polarity and directed migration into ba2. PMID:20503363

  15. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis

    Directory of Open Access Journals (Sweden)

    Becker Jill B

    2012-06-01

    Full Text Available Abstract In this review we propose that there are sex differences in how men and women enter onto the path that can lead to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction. Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression. For this reason women enter into the downward spiral further along the path to addiction, and so transition to addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex differences in these systems and their functioning are accentuated with addiction. In the current review we discuss historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in the neurotransmitter systems that are implicated.

  16. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate.

    Science.gov (United States)

    Li, Wen; Yu, Min; Luo, Suhui; Liu, Huan; Gao, Yuxia; Wilson, John X; Huang, Guowei

    2013-07-01

    The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20-40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xi-Tao Yang

    2017-06-01

    Full Text Available The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2 on neural stem cells (NSCs remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1 protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy.

  19. Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: A translational study in rats and humans.

    Science.gov (United States)

    Skosnik, Patrick D; Hajós, Mihály; Cortes-Briones, Jose A; Edwards, Chad R; Pittman, Brian P; Hoffmann, William E; Sewell, Andrew R; D'Souza, Deepak C; Ranganathan, Mohini

    2018-06-01

    Cannabis use has been associated with altered sensory gating and neural oscillations. However, it is unclear which constituent in cannabis is responsible for these effects, or whether these are cannabinoid receptor 1 (CB1R) mediated. Therefore, the present study in humans and rats examined whether cannabinoid administration would disrupt sensory gating and evoked oscillations utilizing electroencephalography (EEG) and local field potentials (LFPs), respectively. Human subjects (n = 15) completed four test days during which they received intravenous delta-9-tetrahydrocannabinol (Δ 9 -THC), cannabidiol (CBD), Δ 9 -THC + CBD, or placebo. Subjects engaged in a dual-click paradigm, and outcome measures included P50 gating ratio (S2/S1) and evoked power to S1 and S2. In order to examine CB1R specificity, rats (n = 6) were administered the CB1R agonist CP-55940, CP-55940+AM-251 (a CB1R antagonist), or vehicle using the same paradigm. LFPs were recorded from CA3 and entorhinal cortex. Both Δ 9 -THC (p < 0.007) and Δ 9 -THC + CBD (p < 0.004) disrupted P50 gating ratio compared to placebo, while CBD alone had no effect. Δ 9 -THC (p < 0.048) and Δ 9 -THC + CBD (p < 0.035) decreased S1 evoked theta power, and in the Δ 9 -THC condition, S1 theta negatively correlated with gating ratios (r = -0.629, p < 0.012 (p < 0.048 adjusted)). In rats, CP-55940 disrupted gating in both brain regions (p < 0.0001), and this was reversed by AM-251. Further, CP-55940 decreased evoked theta (p < 0.0077) and gamma (p < 0.011) power to S1, which was partially blocked by AM-251. These convergent human/animal data suggest that CB1R agonists disrupt sensory gating by altering neural oscillations in the theta-band. Moreover, this suggests that the endocannabinoid system mediates theta oscillations relevant to perception and cognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces

    Czech Academy of Sciences Publication Activity Database

    Sauerzapfe, B.; Křenek, Karel; Schmiedel, J.; Wakarchuk, W.W.; Pelantová, Helena; Křen, Vladimír; Elling, L.

    2009-01-01

    Roč. 26, č. 2 (2009), s. 141-159 ISSN 0282-0080 R&D Projects: GA AV ČR IAA400200503; GA MŠk(CZ) LC06010 Grant - others:CZ(CZ) DAAD-AV ČR projekt PPP-D7-CZ 26/04-05D/03/44448 Institutional research plan: CEZ:AV0Z50200510 Keywords : chemo-enzymatic sysnthesis * galectin binding * biomaterials Subject RIV: EE - Microbiology, Virology Impact factor: 2.500, year: 2009

  1. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  2. AKT signaling mediates IGF-I survival actions on otic neural progenitors.

    Directory of Open Access Journals (Sweden)

    Maria R Aburto

    Full Text Available BACKGROUND: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I, through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K. Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of organotypic cultures of chicken (Gallus gallus otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1 transcription factor. By contrast, our results indicate that post-mitotic p27(Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.

  3. Neural Networks Mediating High-Level Mentalizing in Patients With Right Cerebral Hemispheric Gliomas

    Directory of Open Access Journals (Sweden)

    Riho Nakajima

    2018-03-01

    Full Text Available Mentalizing is the ability to understand others’ mental state through external cues. It consists of two networks, namely low-level and high-level metalizing. Although it is an essential function in our daily social life, surgical resection of right cerebral hemisphere disturbs mentalizing processing with high possibility. In the past, little was known about the white matter related to high-level mentalizing, and the conservation of high-level mentalizing during surgery has not been a focus of attention. Therefore, the main purpose of this study was to examine the neural networks underlying high-level mentalizing and then, secondarily, investigate the usefulness of awake surgery in preserving the mentalizing network. A total of 20 patients with glioma localized in the right hemisphere who underwent awake surgery participated in this study. All patients were assigned to two groups: with or without intraoperative assessment of high-level mentalizing. Their high-level mentalizing abilities were assessed before surgery and 1 week and 3 months after surgery. At 3 months after surgery, only patients who received the intraoperative high-level mentalizing test showed the same score as normal healthy volunteers. The tract-based lesion symptom analysis was performed to confirm the severity of damage of associated fibers and high-level mentalizing accuracy. This analysis revealed the superior longitudinal fascicles (SLF III and fronto-striatal tract (FST to be associated with high-level mentalizing processing. Moreover, the voxel-based lesion symptom analysis demonstrated that resection of orbito-frontal cortex (OFC causes persistent mentalizing dysfunction. Our study indicates that damage of the OFC and structural connectivity of the SLF and FST causes the disorder of mentalizing after surgery, and assessing high-level mentalizing during surgery may be useful to preserve these pathways.

  4. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation

    Science.gov (United States)

    Rosas-Ballina, Mauricio; Ferrer, Sergio Valdés; Dancho, Meghan; Ochani, Mahendar; Katz, David; Cheng, Kai Fan; Olofsson, Peder S.; Chavan, Sangeeta S.; Al-Abed, Yousef; Tracey, Kevin J.; Pavlov, Valentin A.

    2014-01-01

    Inflammatory conditions characterized by excessive immune cell activation and cytokine release, are associated with bidirectional immune system-brain communication, underlying sickness behavior and other physiological responses. The vagus nerve has an important role in this communication by conveying sensory information to the brain, and brain-derived immunoregulatory signals that suppress peripheral cytokine levels and inflammation. Brain muscarinic acetylcholine receptor (mAChR)-mediated cholinergic signaling has been implicated in this regulation. However, the possibility of controlling inflammation by peripheral administration of centrally-acting mAChR agonists is unexplored. To provide insight we used the centrally-acting M1 mAChR agonist xanomeline, previously developed in the context of Alzheimer’s disease and schizophrenia. Intraperitoneal administration of xanomeline significantly suppressed serum and splenic TNF levels, alleviated sickness behavior, and increased survival during lethal murine endotoxemia. The anti-inflammatory effects of xanomeline were brain mAChR-mediated and required intact vagus nerve and splenic nerve signaling. The anti-inflammatory efficacy of xanomeline was retained for at least 20h, associated with alterations in splenic lymphocyte, and dendritic cell proportions, and decreased splenocyte responsiveness to endotoxin. These results highlight an important role of the M1 mAChR in a neural circuitry to spleen in which brain cholinergic activation lowers peripheral pro-inflammatory cytokines to levels favoring survival. The therapeutic efficacy of xanomeline was also manifested by significantly improved survival in preclinical settings of severe sepsis. These findings are of interest for strategizing novel therapeutic approaches in inflammatory diseases. PMID:25063706

  5. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  6. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  7. Neural Computations Mediating One-Shot Learning in the Human Brain

    Science.gov (United States)

    Lee, Sang Wan; O’Doherty, John P.; Shimojo, Shinsuke

    2015-01-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required. PMID:25919291

  8. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Science.gov (United States)

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  9. Neural computations mediating one-shot learning in the human brain.

    Directory of Open Access Journals (Sweden)

    Sang Wan Lee

    2015-04-01

    Full Text Available Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively "switched" on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a "switch," turning on and off one-shot learning as required.

  10. Microgel Mechanics in Biomaterial Design

    OpenAIRE

    Saxena, Shalini; Hansen, Caroline E.; Lyon, L. Andrew

    2014-01-01

    Conspectus The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels a...

  11. Neural evidence for competition-mediated suppression in the perception of a single object.

    Science.gov (United States)

    Cacciamani, Laura; Scalf, Paige E; Peterson, Mary A

    2015-11-01

    Multiple objects compete for representation in visual cortex. Competition may also underlie the perception of a single object. Computational models implement object perception as competition between units on opposite sides of a border. The border is assigned to the winning side, which is perceived as an object (or "figure"), whereas the other side is perceived as a shapeless ground. Behavioral experiments suggest that the ground is inhibited to a degree that depends on the extent to which it competed for object status, and that this inhibition is relayed to low-level brain areas. Here, we used fMRI to assess activation for ground regions of task-irrelevant novel silhouettes presented in the left or right visual field (LVF or RVF) while participants performed a difficult task at fixation. Silhouettes were designed so that the insides would win the competition for object status. The outsides (grounds) suggested portions of familiar objects in half of the silhouettes and novel objects in the other half. Because matches to object memories affect the competition, these two types of silhouettes operationalized, respectively, high competition and low competition from the grounds. The results showed that activation corresponding to ground regions was reduced for high- versus low-competition silhouettes in V4, where receptive fields (RFs) are large enough to encompass the familiar objects in the grounds, and in V1/V2, where RFs are much smaller. These results support a theory of object perception involving competition-mediated ground suppression and feedback from higher to lower levels. This pattern of results was observed in the left hemisphere (RVF), but not in the right hemisphere (LVF). One explanation of the lateralized findings is that task-irrelevant silhouettes in the RVF captured attention, allowing us to observe these effects, whereas those in the LVF did not. Experiment 2 provided preliminary behavioral evidence consistent with this possibility. Copyright

  12. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  13. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  14. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  15. Cyclosporin A-Mediated Activation of Endogenous Neural Precursor Cells Promotes Cognitive Recovery in a Mouse Model of Stroke

    Directory of Open Access Journals (Sweden)

    Labeeba Nusrat

    2018-04-01

    Full Text Available Cognitive dysfunction following stroke significantly impacts quality of life and functional independance; yet, despite the prevalence and negative impact of cognitive deficits, post-stroke interventions almost exclusively target motor impairments. As a result, current treatment options are limited in their ability to promote post-stroke cognitive recovery. Cyclosporin A (CsA has been previously shown to improve post-stroke functional recovery of sensorimotor deficits. Interestingly, CsA is a commonly used immunosuppressant and also acts directly on endogenous neural precursor cells (NPCs in the neurogenic regions of the brain (the periventricular region and the dentate gyrus. The immunosuppressive and NPC activation effects are mediated by calcineurin-dependent and calcineurin-independent pathways, respectively. To develop a cognitive stroke model, focal bilateral lesions were induced in the medial prefrontal cortex (mPFC of adult mice using endothelin-1. First, we characterized this stroke model in the acute and chronic phase, using problem-solving and memory-based cognitive tests. mPFC stroke resulted in early and persistent deficits in short-term memory, problem-solving and behavioral flexibility, without affecting anxiety. Second, we investigated the effects of acute and chronic CsA treatment on NPC activation, neuroprotection, and tissue damage. Acute CsA administration post-stroke increased the size of the NPC pool. There was no effect on neurodegeneration or lesion volume. Lastly, we looked at the effects of chronic CsA treatment on cognitive recovery. Long-term CsA administration promoted NPC migration toward the lesion site and rescued cognitive deficits to control levels. This study demonstrates that CsA treatment activates the NPC population, promotes migration of NPCs to the site of injury, and leads to improved cognitive recovery following long-term treatment.

  16. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  17. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  18. Nanotechnology in medicine: nanofilm biomaterials.

    Science.gov (United States)

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  19. A Mediator Role of Perceived Organizational Support in Workplace Deviance Behaviors, Organizational Citizenship and Job Satisfaction Relations: A Survey Conducted With Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kürşad Zorlu

    2016-01-01

    Full Text Available The aim of the research is to estimate the effect of workplace deviance behavior on organizational citizenship and job satisfaction and to put forward the mediator role of the organizational support perception in possible relations. The information based on hypothetical and literature are provided in the research principally and then the research part including the questionnaire applied to the employees of Kirsehir Municipality is presented. The validity and reliability tests have been performed successfully and the artificial neural network method has been used as the analysis method. In parallel with the averages and correlation values of the variables in the analysis the Artificial Neural Networks have been modelled by determining the inputs and outputs. In accordance with the findings obtained the workplace deviance behavior has a negative impact on the organizational citizenship and job satisfaction and the organizational support perception can take the mediator role as a relative for eliminating the abovementioned effect. When the artificial neural networks’ being used as the analysis method and the difficulties in measuring the workplace deviance behavior are taken into consideration it can be stated that the findings obtained have at a certain level of originality in terms of management discipline.

  20. A Mediator Role of Perceived Organizational Support in Workplace Deviance Behaviors, Organizational Citizenship and Job Satisfaction Relations: A Survey Conducted With Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kursad Zorlu

    2014-07-01

    Full Text Available The aim of the research is to estimate the effect of workplace deviance behavior on organizational citizenship and job satisfaction and to put forward the mediator role of the organizational support perception in possible relations. The information based on hypothetical and literature are provided in the research principally and then the research part including the questionnaire applied to the employees of Kirsehir Municipality is presented. The validity and reliability tests have been performed successfully and the artificial neural network method has been used as the analysis method. In parallel with the averages and correlation values of the variables in the analysis the Artificial Neural Networks have been modelled by determining the inputs and outputs. In accordance with the findings obtained the workplace deviance behavior has a negative impact on the organizational citizenship and job satisfaction and the organizational support perception can take the mediator role as a relative for eliminating the abovementioned effect. When the artificial neural networks’ being used as the analysis method and the difficulties in measuring the workplace deviance behavior are taken into consideration it can be stated that the findings obtained have at a certain level of originality in terms of management discipline.

  1. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  2. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  3. Properties and clinical relevance of osteoinductive biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela

    2005-01-01

    This thesis had two main goals: (¿) to investigate parameters influencing osteoinductive potential of biomaterials in order to unravel the mechanism underlying osteoinduction and (¿¿) to investigate performance of osteoinductive biomaterials orthotopically in order to get insight into their clinical

  4. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    functional components are not generally considered to be biomaterials since by definition they are not in ... The requirements in these cases will be varied depending upon the stress transfer system within the ... few widely used biomaterials in clinical practice but rather a whole range of metals and alloys, ceramic and ...

  5. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  6. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    Science.gov (United States)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1

  8. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  9. New biomaterials for orthopedic implants

    Directory of Open Access Journals (Sweden)

    Ong KL

    2015-09-01

    Full Text Available Kevin L Ong, Brian Min Yun, Joshua B WhiteExponent, Inc., Philadelphia, PA, USAAbstract: With the increasing use of orthopedic implants worldwide, there continues to be great interest in the development of novel technologies to further improve the effective clinical performance of contemporary treatment modalities and devices. Continuing research interest also exists in developing novel bulk biomaterials (eg, polycarbonate urethanes, silicon or novel formulations of existing but less widely used biomaterials (eg, polyaryletherketones, polyetheretherketone. There is also growing focus on customizing the material properties of bioabsorbables and composite materials with fillers such as bioactive ceramics. In terms of tissue engineering, more recent developments have focused on basic engineering and biological fundamentals to use cells, signaling factors, and the scaffold material itself to better restore tissue and organ structure and function. There has also been recent controversy with the use of injectables as a nonsurgical approach to treat joint disorders, but more attention is being directed toward the development of newer formulations with different molecular weights. The industry has also continuously sought to improve coatings to supplement the function of existing implants, with the goal of improving their osseointegrative qualities and incorporating antimicrobial properties. These include the use of bone morphogenetic protein, bisphosphonates, calcium phosphate, silicon nitride, and iodine. Due to the widespread use of bone graft materials, recent developments in synthetic graft materials have explored further development of bioactive glass, ceramic materials, and porous titanium particles. This review article provides an overview of ongoing efforts in the above research areas.Keywords: coatings, scaffolds, bioabsorbables, bone graft, injectables

  10. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  11. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  12. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  13. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Clinically oriented device programming in bradycardia patients: part 2 (atrioventricular blocks and neurally mediated syncope). Proposals from AIAC (Italian Association of Arrhythmology and Cardiac Pacing).

    Science.gov (United States)

    Palmisano, Pietro; Ziacchi, Matteo; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe

    2018-04-01

    : The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features. In part 2, criteria for pacemaker choice and programming in atrioventricular blocks and neurally mediate syncope are proposed. The atrioventricular blocks can be paroxysmal or persistent, isolated or associated with sinus node disease. Neurally mediated syncope can be related to carotid sinus syndrome or cardioinhibitory vasovagal syncope. In sinus rhythm, with persistent atrioventricular block, we considered appropriate the activation of mode-switch algorithms, and algorithms for auto-adaptive management of the ventricular pacing output. If the atrioventricular block is paroxysmal, in addition to algorithms mentioned above, algorithms to maximize intrinsic atrioventricular conduction should be activated. When sinus node disease is associated with atrioventricular block, the activation of rate-responsive function in patients with chronotropic incompetence is appropriate. In permanent atrial fibrillation with atrioventricular block, algorithms for auto-adaptive management of the ventricular pacing output should be activated. If the atrioventricular block is persistent, the activation of rate-responsive function is appropriate. In carotid sinus syndrome, adequate rate hysteresis should be programmed. In vasovagal syncope, specialized sensing and pacing algorithms designed for reflex syncope prevention should be activated.

  15. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  16. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  17. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  18. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  19. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  20. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  1. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  2. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  3. Special Issue “Biomaterials and Bioprinting”

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2016-09-01

    Full Text Available The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.

  4. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  5. The effect of the inner-hair-cell mediated transduction on the shape of neural tuning curves

    Science.gov (United States)

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-05-01

    The inner hair cells of the mammalian cochlea transform the vibrations of their stereocilia into releases of neurotransmitter at the ribbon synapses, thereby controlling the activity of the afferent auditory fibers. The mechanical-to-neural transduction is a highly nonlinear process and it introduces differences between the frequency-tuning of the stereocilia and that of the afferent fibers. Using a computational model of the inner hair cell that is based on in vitro data, we estimated that smaller vibrations of the stereocilia are necessary to drive the afferent fibers above threshold at low (≤0.5 kHz) than at high (≥4 kHz) driving frequencies. In the base of the cochlea, the transduction process affects the low-frequency tails of neural tuning curves. In particular, it introduces differences between the frequency-tuning of the stereocilia and that of the auditory fibers resembling those between basilar membrane velocity and auditory fibers tuning curves in the chinchilla base. For units with a characteristic frequency between 1 and 4 kHz, the transduction process yields shallower neural than stereocilia tuning curves as the characteristic frequency decreases. This study proposes that transduction contributes to the progressive broadening of neural tuning curves from the base to the apex.

  6. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  7. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  8. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  9. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  10. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    International Nuclear Information System (INIS)

    Khan, Zahidul; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt; Almqvist, Per M.; Ekstroem, Tomas J.

    2007-01-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer

  11. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  12. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  13. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  14. Microgel mechanics in biomaterial design.

    Science.gov (United States)

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  15. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  17. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  18. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  19. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  20. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  1. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  2. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  3. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  4. Biomaterials and the U.S. Navy.

    Science.gov (United States)

    1984-07-10

    genetics, immunology, cell biology, micro- biology (including procaryotes and eucaryotes as well as heterotropha and autotrophs), biochemistry...expression in a marine animal and associated cellular events. Metallothionein genes offer a mechanism for detoxification of chemical effluents, as well as...cross-linked, would have interesting structural and cellular effector properties for a biomaterial. In addition, the regular cross-linking sequences

  5. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  6. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    Science.gov (United States)

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  7. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  8. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  9. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    Directory of Open Access Journals (Sweden)

    Hideo eOtsuna

    2014-02-01

    Full Text Available Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior.

  10. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

    Science.gov (United States)

    Rabadán, M Angeles; Herrera, Antonio; Fanlo, Lucia; Usieto, Susana; Carmona-Fontaine, Carlos; Barriga, Elias H; Mayor, Roberto; Pons, Sebastián; Martí, Elisa

    2016-06-15

    Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination. © 2016. Published by The Company of Biologists Ltd.

  11. The role of arachidonic acid metabolites in signal transduction in an identified neural network mediating presynaptic inhibition in Aplysia

    International Nuclear Information System (INIS)

    Shapiro, E.; Piomelli, D.; Feinmark, S.; Vogel, S.; Chin, G.; Schwartz, J.H.

    1988-01-01

    Neuromodulation is a form of signal transduction that results in the biochemical control of neuronal excitability. Many neurotransmitters act through second messengers, and the examination of biochemical cascades initiated by neurotransmitter-receptor interaction has advanced the understanding of how information is acquired and stored in the nervous system. For example, 5-HT and other facilitory transmitters increase cAMP in sensory neurons of Aplysia, which enhances excitability and facilitates transmitter output. The authors have examined the role of arachidonic acid metabolites in a neuronal circuit mediating presynaptic inhibition. L32 cells are a cluster of putative histaminergic neurons that each make dual-action synaptic potentials onto two follower neurons, L10 and L14. The synaptic connections, biophysical properties, and roles in behavior of the L10 and L14 follower cells have been well studied. The types of ion channels causing each component of the L32-L10 and L32-L14 dual actions have been characterized and application of histamine mimics the effects of stimulating L32 in both L10 and L14

  12. Review of biomaterials for electronics and photonics

    Science.gov (United States)

    Ouchen, Fahima; Rau, Ileana; Kajzar, François; Heckman, Emily; Grote, James G.

    2018-03-01

    Much work has been done developing and utilizing biomaterials over the last decade. Biomaterials not only includes deoxyribonucleic acid (DNA), but nucleobases and silk. These materials are abundant, inexpensive, non-fossil fuel-based and green. Researchers have demonstrated their potential to enhance the performance of organic and inorganic electronic and photonic devices, such as light emitting diodes, thin film transistors, capacitors, electromagnetic interference shielding and electro-optic modulators. Starting around the year 2000, with only a hand full of researchers, including researchers at the Air Force Research Laboratory (AFRL) and researchers at the Chitose Institute of Technology (CIST), it has grown into a large US, Asia and European consortium, producing over 3400 papers, three books, many book chapters and multiple patents. Presented here is a short overview of the progress in this exciting field of nano bio-engineering.

  13. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  14. Maggot excretions inhibit biofilm formation on biomaterials.

    Science.gov (United States)

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  15. Trends in prosthetic biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Saranjit Singh Bhasin

    2015-01-01

    Full Text Available The most important criterion for the success of dental implants is the selection of a suitable implant biomaterial. To improve the biologic performance of an implant, it is necessary to select a material that does not elicit any negative biological response and at the same time maintains adequate function. It is mandatory for a dentist to have a comprehensive knowledge of various biomaterials used for dental implants. The material of choice for fabrication of the dental implant till date is titanium. With the advancements in the field of implants, zirconia seems to be propitious in the future. However, more advanced in vitro and in vivo studies are required before reaching any such conclusion. To increase the success of zirconia implants, care should be taken to reduce the incidence of mechanical failures. Such failures can be taken care of by having a thorough technical knowledge of implant designing and manufacturing defects. This article attempts to compare the advantages and disadvantages of various dental implant biomaterials. Focus is placed on the recent advances in this field with the recently introduced zirconia and its comparison to conventional titanium.

  16. Biomaterial associated impairment of local neutrophil function.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  17. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  18. Biomaterials based strategies for rotator cuff repair.

    Science.gov (United States)

    Zhao, Song; Su, Wei; Shah, Vishva; Hobson, Divia; Yildirimer, Lara; Yeung, Kelvin W K; Zhao, Jinzhong; Cui, Wenguo; Zhao, Xin

    2017-09-01

    Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders.

    Science.gov (United States)

    du Plessis, Lindie; Jacobson, Sandra W; Molteno, Christopher D; Robertson, Frances C; Peterson, Bradley S; Jacobson, Joseph L; Meintjes, Ernesta M

    2015-01-01

    Classical eyeblink conditioning (EBC), an elemental form of learning, is among the most sensitive indicators of fetal alcohol spectrum disorders. The cerebellum plays a key role in maintaining timed movements with millisecond accuracy required for EBC. Functional MRI (fMRI) was used to identify cerebellar regions that mediate timing in healthy controls and the degree to which these areas are also recruited in children with prenatal alcohol exposure. fMRI data were acquired during an auditory rhythmic/non-rhythmic finger tapping task. We present results for 17 children with fetal alcohol syndrome (FAS) or partial FAS, 17 heavily exposed (HE) nonsyndromal children and 16 non- or minimally exposed controls. Controls showed greater cerebellar blood oxygen level dependent (BOLD) activation in right crus I, vermis IV-VI, and right lobule VI during rhythmic than non-rhythmic finger tapping. The alcohol-exposed children showed smaller activation increases during rhythmic tapping in right crus I than the control children and the most severely affected children with either FAS or PFAS showed smaller increases in vermis IV-V. Higher levels of maternal alcohol intake per occasion during pregnancy were associated with reduced activation increases during rhythmic tapping in all four regions associated with rhythmic tapping in controls. The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.

  1. Localized immunosuppressive environment in the foreign body response to implanted biomaterials.

    Science.gov (United States)

    Higgins, David M; Basaraba, Randall J; Hohnbaum, April C; Lee, Eric J; Grainger, David W; Gonzalez-Juarrero, Mercedes

    2009-07-01

    The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.

  2. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  3. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    OpenAIRE

    Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestati...

  4. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  5. Inspiration and application in the evolution of biomaterials

    OpenAIRE

    Huebsch, Nathaniel; Mooney, David J.

    2009-01-01

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of ...

  6. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  7. Inspiration and application in the evolution of biomaterials.

    Science.gov (United States)

    Huebsch, Nathaniel; Mooney, David J

    2009-11-26

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.

  8. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  9. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different...... of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass...

  10. Hybrid laser technology and doped biomaterials

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-01-01

    Roč. 417, Sep (2017), s. 73-83 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 ; RVO:67985823 Keywords : hybrid PLD * Cr: DLC * Ti: DLC. comparison of properties * in vitro tests Subject RIV: BM - Solid Matter Physics ; Magnetism; EI - Biotechnology ; Bionics (FGU-C) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Biomaterials (as related to medical implants, devices, sensors) (FGU-C) Impact factor: 3.387, year: 2016

  11. Biomaterials and scaffolds in reparative medicine

    Science.gov (United States)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  12. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  13. Minimizing Skin Scarring through Biomaterial Design

    Directory of Open Access Journals (Sweden)

    Alessandra L. Moore

    2017-01-01

    Full Text Available Wound healing continues to be a major burden to patients, though research in the field has expanded significantly. Due to an aging population and increasing comorbid conditions, the cost of chronic wounds is expected to increase for patients and the U.S. healthcare system alike. With this knowledge, the number of engineered products to facilitate wound healing has also increased dramatically, with some already in clinical use. In this review, the major biomaterials used to facilitate skin wound healing will be examined, with particular attention allocated to the science behind their development. Experimental therapies will also be evaluated.

  14. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  15. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  16. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Use of radiation in biomaterials science

    International Nuclear Information System (INIS)

    Benson, Roberto S.

    2002-01-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue

  18. Translating Regenerative Biomaterials Into Clinical Practice.

    Science.gov (United States)

    Stace, Edward T; Dakin, Stephanie G; Mouthuy, Pierre-Alexis; Carr, Andrew J

    2016-01-01

    Globally health care spending is increasing unsustainably. This is especially true of the treatment of musculoskeletal (MSK) disease where in the United States the MSK disease burden has doubled over the last 15 years. With an aging and increasingly obese population, the surge in MSK related spending is only set to worsen. Despite increased funding, research and attention to this pressing health need, little progress has been made toward novel therapies. Tissue engineering and regenerative medicine (TERM) strategies could provide the solutions required to mitigate this mounting burden. Biomaterial-based treatments in particular present a promising field of potentially cost-effective therapies. However, the translation of a scientific development to a successful treatment is fraught with difficulties. These barriers have so far limited translation of TERM science into clinical treatments. It is crucial for primary researchers to be aware of the barriers currently restricting the progression of science to treatments. Researchers need to act prospectively to ensure the clinical, financial, and regulatory hurdles which seem so far removed from laboratory science do not stall or prevent the subsequent translation of their idea into a treatment. The aim of this review is to explore the development and translation of new treatments. Increasing the understanding of these complexities and barriers among primary researchers could enhance the efficiency of biomaterial translation. © 2015 Wiley Periodicals, Inc.

  19. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  20. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  1. Use of radiation in biomaterials science

    Science.gov (United States)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  2. Immunologically active biomaterials for cancer therapy.

    Science.gov (United States)

    Ali, Omar A; Mooney, David J

    2011-01-01

    Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.

  3. Innate Immunity and Biomaterials at the Nexus: Friends or Foes.

    Science.gov (United States)

    Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  4. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Directory of Open Access Journals (Sweden)

    Susan N. Christo

    2015-01-01

    Full Text Available Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  5. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  6. Low-temperature plasma techniques in surface modification of biomaterials

    International Nuclear Information System (INIS)

    Feng Xiangfen; Xie Hankun; Zhang Jing

    2002-01-01

    Since synthetic polymers usually can not meet the biocompatibility and bio-functional demands of the human body, surface treatment is a prerequisite for them to be used as biomaterials. A very effective surface modification method, plasma treatment, is introduced. By immobilizing the bio-active molecules with low temperature plasma, polymer surfaces can be modified to fully satisfy the requirements of biomaterials

  7. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  8. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    Science.gov (United States)

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.

  9. Biomaterials science an introduction to materials in medicine

    CERN Document Server

    Ratner, Buddy D; Lemons, Jack E; Yaszemski, Michael J; Yaszemski, Michael

    2004-01-01

    The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemi...

  10. Study on MCP-1 related to inflammation induced by biomaterials

    International Nuclear Information System (INIS)

    Ding Tingting; Sun Jiao; Zhang Ping

    2009-01-01

    The study of inflammation is important for understanding the reaction between biomaterials and the human body, in particular, the interaction between biomaterials and immune system. In the current study, rat macrophages were induced by multiple biomaterials with different biocompatibilities, including polyvinyl chloride (PVC) containing 8% of organic tin, a positive control material with cellular toxicity. Human umbilical vein endothelial cells (ECV-304), cultured with PRMI-1640, were detached from cells cultured with the supernatant of macrophages containing TNF-α and IL-1β because of stimulation by biomaterials. The cells were then treated with different biomaterials. Then both TNF-α and IL-1β in macrophages were detected by ELISA. Levels of monocyte chemoattractant protein-1 (MCP-1) were measured by RT-PCR. The results suggested that the expression of TNF-α and IL-1β was elevated by polytetrafluoroethylene (PTFE), polylactic-co-glycolic acid (PLGA) and American NPG alloy (p < 0.001). The level of MCP-1 cultured in supernatant of macrophages was higher than in PRMI-1640 with the same biomaterials. And the exposure to PTFE, PLGA and NPG resulted in the high expression of MCP-1 (p < 0.001) following cytokine stimulation. MCP-1 was also significantly expressed in β-tricalcium phosphate (β-TCP) and calcium phosphate cement samples (CPC) (p < 0.01). Thus, TNF-α, IL-1β and MCP-1 had played an important role in the immune reaction induced by biomaterials and there was a close relationship between the expression of cytokines and biomcompatibility of biomaterials. Furthermore, these data suggested that MCP-1 was regulated by TNF-α and IL-1β, and activated by both cytokines and biomaterials. The data further suggested that the expression of MCP-1 could be used as a marker to indicate the degree of immune reaction induced by biomaterials.

  11. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery

    Science.gov (United States)

    Badeau, Barry A.; Comerford, Michael P.; Arakawa, Christopher K.; Shadish, Jared A.; Deforest, Cole A.

    2018-03-01

    The successful transport of drug- and cell-based therapeutics to diseased sites represents a major barrier in the development of clinical therapies. Targeted delivery can be mediated through degradable biomaterial vehicles that utilize disease biomarkers to trigger payload release. Here, we report a modular chemical framework for imparting hydrogels with precise degradative responsiveness by using multiple environmental cues to trigger reactions that operate user-programmable Boolean logic. By specifying the molecular architecture and connectivity of orthogonal stimuli-labile moieties within material cross-linkers, we show selective control over gel dissolution and therapeutic delivery. To illustrate the versatility of this methodology, we synthesized 17 distinct stimuli-responsive materials that collectively yielded all possible YES/OR/AND logic outputs from input combinations involving enzyme, reductant and light. Using these hydrogels we demonstrate the first sequential and environmentally stimulated release of multiple cell lines in well-defined combinations from a material. We expect these platforms will find utility in several diverse fields including drug delivery, diagnostics and regenerative medicine.

  12. Role of plasma fibronectin in the foreign body response to biomaterials.

    Science.gov (United States)

    Keselowsky, Benjamin G; Bridges, Amanda W; Burns, Kellie L; Tate, Ciara C; Babensee, Julia E; LaPlaca, Michelle C; García, Andrés J

    2007-09-01

    Host responses to biomaterials control the biological performance of implanted medical devices. Upon implantation, synthetic materials adsorb biomolecules, which trigger an inflammatory cascade comprising coagulation, leukocyte recruitment/adhesion, and foreign body reaction. The foreign body reaction and ensuing fibrous encapsulation severely limit the in vivo performance of numerous biomedical devices. While it is well established that plasma fibrinogen and secreted cytokines modulate leukocyte recruitment and maturation into foreign body giant cells, mediators of chronic inflammation and fibrous encapsulation of implanted biomaterials remain poorly understood. Using plasma fibronectin (pFN) conditional knock-out mice, we demonstrate that pFN modulates the foreign body response to polyethylene terephthalate disks implanted subcutaneously. Fibrous collagenous capsules were two-fold thicker in mice depleted of pFN compared to controls. In contrast, deletion of pFN did not alter acute leukocyte recruitment to the biomaterial, indicating that pFN modulates chronic fibrotic responses. The number of foreign body giant cells associated with the implant was three times higher in the absence of pFN while macrophage numbers were not different, suggesting that pFN regulates the formation of biomaterial-associated foreign body giant cells. Interestingly, cellular FN (cFN) was present in the capsules of both normal and pFN-depleted mice, suggesting that cFN could not compensate for the loss of pFN. These results implicate pFN in the host response to implanted materials and identify a potential target for therapeutic intervention to enhance the biological performance of biomedical devices.

  13. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Devi, Dipali [Seri biotech laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Kalita, Dhaneswar [Government Ayurvedic College and Hospital, Jalukbari, Guwahati, Assam 781014 (India); Kalita, Kasturi [Department of Pathology, Hayat Hospital, Guwahati, Assam 781034 (India); Dash, Suvakanta [Girijananda Chowdhury Institute of pharmaceutical science, Azara, Guwahati, Assam 781017 (India); Kotoky, Jibon, E-mail: jkotoky@gmail.com [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India)

    2016-05-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  14. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    International Nuclear Information System (INIS)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Devi, Dipali; Kalita, Dhaneswar; Kalita, Kasturi; Dash, Suvakanta; Kotoky, Jibon

    2016-01-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  15. Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.

  16. Biomaterials in search of a meniscus substitute.

    Science.gov (United States)

    Rongen, Jan J; van Tienen, Tony G; van Bochove, Bas; Grijpma, Dirk W; Buma, Pieter

    2014-04-01

    The menisci fulfill key biomechanical functions in the tibiofemoral (knee) joint. Unfortunately meniscal injuries are quite common and most often treated by (partial) meniscectomy. However, some patients experience enduring symptoms, and, more importantly, it leads to an increased risk for symptomatic osteoarthritis. Over the past decades, researchers have put effort in developing a meniscal substitute able to prevent osteoarthritis and treat enduring clinical symptoms. Grossly, two categories of substitutes are observed: First, a resorbable scaffold mimicking biomechanical function which slowly degrades while tissue regeneration and organization is promoted. Second, a non resorbable, permanent implant which mimics the biomechanical function of the native meniscus. Numerous biomaterials with different (material) properties have been used in order to provide such a substitute. Nevertheless, a clinically applicable cartilage protecting material is not yet emerged. In the current review we provide an overview, and discuss, these different materials and extract recommendations regarding material properties for future developmental research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tribological characteristics of dental metal biomaterials

    Directory of Open Access Journals (Sweden)

    Walczak Mariusz

    2016-12-01

    Full Text Available The paper is a report of the examination of the tribological wear characteristics of certain dental metal biomaterials. In the study, tests were undertaken on the following materials: 316L steel, NiCrMo alloy, technically pure titanium (ASTM-grade 2 and Ti6Al4V ELI alloy (ASTM-grade 5. The tribological tests were performed in artificial saliva to determine the coefficient of friction and wear factor; the traces of wear were then ascertained through SEM. The significance of variations in the wear factor, was subsequently assessed by the U Mann-Whitney test. The resistance to wear in the ball-on-disc test under in vitro conditions was observed for the tested materials in the following order: NiCrMo>316L>Ti6Al4V>Ti grade 2.

  19. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  20. Toward biomaterial-based implantable photonic devices

    Directory of Open Access Journals (Sweden)

    Humar Matjaž

    2017-03-01

    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  1. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  2. Pulmonary emboli from blood-biomaterial interaction

    International Nuclear Information System (INIS)

    Coleman, J.E.; Ramberg, K.; McEnroe, C.S.; Connolly, R.J.; Callow, A.D.

    1988-01-01

    The problem of surface thrombosis and subsequent embolization remains entrenched as a yet incompletely surmounted barrier to the development of truly satisfactory intravascular prosthetic devices. A baboon ex vivo shunt was used to determine the interaction of Indium-111 platelets and potential biomaterials. The uptake of Indium-111 platelets was monitored continuously by gamma camera scanning. Several of the materials tested demonstrated a saw-toothed pattern of platelet activity, with accumulation followed by rapid decline. Neither PTFE nor Dacron exhibited this pattern. Post shunt scans of the animals' chests showed discrete foci of platelet activity in the lungs, corresponding to each embolic event noted on the material's scan. In conclusion, the search for a smooth surface as a blood material interface may produce a material which accumulates and then sloughs significant platelet aggregates. It is crucial that these materials be subjected to vigorous testing to determine their safety prior to initiation of clinical trials

  3. Regenerative immunology: the immunological reaction to biomaterials.

    Science.gov (United States)

    Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe

    2017-12-01

    Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.

  4. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  5. Calcium-based biomaterials for diagnosis, treatment, and theranostics.

    Science.gov (United States)

    Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng

    2018-01-22

    Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.

  6. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  7. Rectocele repair using biomaterial augmentation: current documentation and clinical experience.

    Science.gov (United States)

    Altman, Daniel; Mellgren, Anders; Zetterström, Jan

    2005-11-01

    Although the etiology of rectocele remains debated, surgical innovations are currently promoted to improve anatomic outcome while avoiding dyspareunia and alleviating rectal emptying difficulties following rectocele surgery. Use of biomaterials in rectocele repair has become widespread in a short time, but the clinical documentation of their effectiveness and complications is limited. Medline and the Cochrane database were searched electronically from 1964 to May 2005 using the Pubmed and Ovid search engines. All English language publications including any of the search terms "rectocele," "implant," "mesh," "biomaterial," "prolapse," "synthetical," "pelvic floor," "biological," and "compatibility" were reviewed. This review outlines the basic principles for use of biomaterials in pelvic reconstructive surgery and provides a condensation of peer-reviewed articles describing clinical use of biomaterials in rectocele surgery. Historical and new concepts in rectocele surgery are discussed. Factors of importance for human in vivo biomaterial compatibility are presented together with current knowledge from clinical studies. Potential risks and problems associated with the use of biomaterials in rectocele and pelvic reconstructive surgery in general are described. Although use of biomaterials in rectocele and other pelvic organ prolapse surgery offers exciting possibilities, it raises treatment costs and may be associated with unknown and potentially severe complications at short and long term. Clinical benefits are currently unknown and need to be proven in clinical studies. Obstetricians & Gynecologists, Family Physicians After completion of this article, the reader should be able to explain that the objective of surgical treatment is to improve anatomic outcome and alleviate rectal emptying difficulties, describe the efficacy of biomaterials in rectocele repair, and summarize the potential risks and problems associated with use of biomaterials in rectocele and pelvic

  8. Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts

    Science.gov (United States)

    Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

    2012-01-01

    This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

  9. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  10. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  11. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  12. Simulation of Protein and Peptide-Based Biomaterials

    National Research Council Canada - National Science Library

    Daggett, Valerie

    2002-01-01

    The overall goal of the proposed research is to pursue realistic molecular modeling studies of the stability, dynamics, structure, function, and folding of proteins and protein-based biomaterials in solution...

  13. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  14. Design and development of reactive injectable and settable polymeric biomaterials.

    Science.gov (United States)

    Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2013-12-01

    Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  15. Preparation of uniform porous hydroxyapatite biomaterials by a new method

    International Nuclear Information System (INIS)

    Tang Yuejun; Tang Yuefeng; Lv Chuntang; Zhou Zhonghua

    2008-01-01

    In this paper, a new method of preparation of uniform porous hydroxyapatite biomaterials was reported. In order to obtain uniform porous biomaterials, disk samples were formed by the mixture of hydroxyapatite (HAP) powders and monodispersed polystyrene microspheres, and then HAP uniform porous materials with different diameter and different porosity (diameter: 436 ± 25 nm, 892 ± 20 nm and 1890 ± 20 nm, porosity: 46.5%, 41.3% and 34.7%, respectively) were prepared by sintering these disk samples at 1250 deg. C for 5 h. The pure phase of HAP powders fabricated by the hydrothermal technology was confirmed by X-ray diffraction (XRD). The surface and size distribution of pores in HAP biomaterials were observed by scanning electron microscopy (SEM), and the pore size distribution in porous HAP biomaterials was tested by mercury intrusion method

  16. XPS - an essential tool in biomaterial research

    Energy Technology Data Exchange (ETDEWEB)

    StJohn, H.A.W.; Greisser, H.J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC (Australia). Molecular Science

    1999-12-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be `biocompatible`, such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving `biocompatibility` is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a `foreign` material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the `bulk` chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  17. XPS - an essential tool in biomaterial research

    International Nuclear Information System (INIS)

    StJohn, H.A.W.; Greisser, H.J.

    1999-01-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be 'biocompatible', such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving 'biocompatibility' is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a 'foreign' material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the 'bulk' chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  18. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    OpenAIRE

    Ke Yang; Changchun Zhou; Hongsong Fan; Yujiang Fan; Qing Jiang; Ping Song; Hongyuan Fan; Yu Chen; Xingdong Zhang

    2017-01-01

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) m...

  19. Interactions of Bacteria and Amoebae with Ocular Biomaterials

    OpenAIRE

    John, Thomas

    1991-01-01

    The use of biomaterials in periocular and intraocular sites has resulted in some ocular inflammations and infections which can result in vision-threatening ocular disease. This review addresses bacterial interactions with, and adherence to ocular biomaterials such as soft contact lenses, surgical suture materials, and intraocular lenses. In addition, adherence of Acanthamoeba to soft contact lenses is described, and the role of these lenses in the development of Acanthamoeba keratitis is disc...

  20. Conducting polymer-based multilayer films for instructive biomaterial coatings

    OpenAIRE

    Hardy, John G; Li, Hetian; Chow, Jacqueline K; Geissler, Sydney A; McElroy, Austin B; Nguy, Lindsey; Hernandez, Derek S; Schmidt, Christine E

    2015-01-01

    Aim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment. Materials & methods: Thin conducting composite biomaterials based on multilayer films of poly (3,4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion. Fibroblasts were observed with fluorescence microscopy and their alignment (relative to the dipping direction and direction of electrical current passed through the films)...

  1. Novel Biomaterials Used in Medical 3D Printing Techniques

    OpenAIRE

    Karthik Tappa; Udayabhanu Jammalamadaka

    2018-01-01

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and c...

  2. Advancing biomaterials of human origin for tissue engineering

    OpenAIRE

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking in...

  3. Preparation and mechanical property of polymer-based biomaterials

    International Nuclear Information System (INIS)

    Zhang, P; Chen, G; Zheng, X F

    2010-01-01

    The porous polymer-based biomaterial has been synthesized from PLGA, dioxane and tricalcium phosphate (TCP) by low-temperature deposition process. The deformation behaviours and fracture mechanism of polymer-based biomaterials were investigated using the compression test and the finite element (FE) simulation. The results show that the stress-strain curve of compression process includes linear elastic stage I, platform stage II and densification stage III, and the fracture mechanism can be considered as brittle fracture.

  4. Vitamin E-Mediated Modulation of Glutamate Receptor Expression in an Oxidative Stress Model of Neural Cells Derived from Embryonic Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Afifah Abd Jalil

    2017-01-01

    Full Text Available Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer’s disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF and alpha-tocopherol (α-TCP in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES cell cultures were elucidated. A transgenic mouse ES cell line (46C was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.

  5. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  6. The pathology of the foreign body reaction against biomaterials.

    Science.gov (United States)

    Klopfleisch, R; Jung, F

    2017-03-01

    The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.

  7. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    Science.gov (United States)

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  8. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation

    Science.gov (United States)

    Zhang, Jie; Zhang, Wen; Yang, Hui-Lin

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309

  9. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  10. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  11. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  13. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  14. Nerve growth factor expression by PLG-mediated lipofection.

    Science.gov (United States)

    Whittlesey, Kevin J; Shea, Lonnie D

    2006-04-01

    Biomaterials capable of efficient gene delivery provide a fundamental tool for basic and applied research models, such as promoting neural regeneration. We developed a system for the encapsulation and sustained release of plasmid DNA complexed with a cationic lipid and investigated their efficacy using in vitro models of neurite outgrowth. Sustained lipoplex release was obtained for up to 50 days, with rates controlled by the fabrication conditions. Released lipoplexes retained their activity, transfecting 48.2+/-8.3% of NIH3T3 cells with luciferase activity of 3.97x10(7)RLU/mg. Expression of nerve growth factor (NGF) was employed in two models of neurite outgrowth: PC12 and primary dorsal root ganglia (DRG) co-culture. Polymer-mediated lipofection of PC12 produced bioactive NGF, eliciting robust neurite outgrowth. An EGFP/NGF dual-expression vector identified transfected cells (GFP-positive) while neurite outgrowth verified NGF secretion. A co-culture model examined the ability of NGF secretion by an accessory cell population to stimulate DRG neurite outgrowth. Polymer-mediated transfection of HEK293T with an NGF-encoding plasmid induced outgrowth by DRG neurons. This system could be fabricated as implants or nerve guidance conduits to support cellular and tissue regeneration. Combining this physical support with the ability to locally express neurotrophic factors will potentiate regeneration in nerve injury and disease models.

  15. Microjet impingement followed by scanning electron microscopy as a qualitative technique to compare cellular adhesion to various biomaterials.

    Science.gov (United States)

    Richards, R G; ap Gwynn, I; Bundy, K J; Rahn, B A

    1995-12-01

    Adhesion of cells to biomaterial surfaces is one of the major factors which mediates their biocompatibility. Quantitative or qualitative cell adhesion measurements would be useful for screening new implant materials. Microjet impingement has been evaluated by scanning electron microscopy, to determine to what extent it measures cell adhesion. The shear forces of the impingement, on the materials tested here, are seen to be greater than the cohesive strength of the cells in the impinged area, causing their rupture. The cell bodies are removed during impingement, leaving the sites of adhesion and other cellular material behind. Thus the method is shown not to provide quantification of cell adhesion forces for the metals and culture plastic tested. It is suggested that with highly adherent biomaterials, the distribution and patterns of these adhesion sites could be used for qualitative comparisons for screening of implant surfaces.

  16. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  17. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  18. Biomaterials and mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  19. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  20. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  2. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  3. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    Science.gov (United States)

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  4. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  5. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Duda, Georg N; Geissler, Sven

    2017-09-01

    Mesenchymal stromal cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. Whether this paracrine function is influenced by the properties of biomaterials in general, and those used for cell delivery in particular, largely remains unexplored. Here, we investigated if three-dimensional culture in distinct microenvironments - nanoporous hydrogels (mean pore size ∼5 nm) and macroporous scaffolds (mean pore size ∼120 μm) - affects the secretion pattern of MSCs, and consequently leads to differential paracrine effects on target progenitor cells such as myoblasts. We report that compared to MSCs encapsulated in hydrogels, scaffold seeded MSCs show an enhanced secretion profile and exert beneficial paracrine effects on various myoblast functions including migration and proliferation. Additionally, we show that the heightened paracrine effects of scaffold seeded cells can in part be attributed to N-cadherin mediated cell-cell interactions during culture. In hydrogels, this physical interaction between cells is prevented by the encapsulating matrix. Functionally blocking N-cadherin negatively affected the secretion profile and paracrine effects of MSCs on myoblasts, with stronger effects observed for scaffold seeded compared to hydrogel encapsulated cells. Together, these findings demonstrate that the therapeutic potency of MSCs can be enhanced by biomaterials that promote cell-cell interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    Science.gov (United States)

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  7. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    Directory of Open Access Journals (Sweden)

    Ke Yang

    2017-12-01

    Full Text Available Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1 mechanical properties that mimic the host tissues; (2 sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3 a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  8. Bio-Functional Design, Application and Trends in Metallic Biomaterials.

    Science.gov (United States)

    Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong

    2017-12-22

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  9. Research in Biomaterials and Tissue Engineering: Achievements and perspectives.

    Science.gov (United States)

    Ventre, Maurizio; Causa, Filippo; Netti, Paolo A; Pietrabissa, Riccardo

    2015-01-01

    Research on biomaterials and related subjects has been active in Italy. Starting from the very first examples of biomaterials and biomedical devices, Italian researchers have always provided valuable scientific contributions. This trend has steadily increased. To provide a rough estimate of this, it is sufficient to search PubMed, a free search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics, with the keywords "biomaterials" or "tissue engineering" and sort the results by affiliation. Again, even though this is a crude estimate, the results speak for themselves, as Italy is the third European country, in terms of publications, with an astonishing 3,700 products in the last decade.

  10. Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: Through molecular control of interfaces

    Science.gov (United States)

    Verma, Devendra

    In this dissertation, novel biomaterials are designed for bone biomaterials and bone tissue engineering applications. Novel biomaterials of hydroxyapatite with synthetic and natural polymers have been fabricated using a combination of processing routes. Initially, we investigated hydroxyapatite-polycaprolactone-polyacrylic acid composites and observed that minimal interfacial interactions between polymer and mineral led to inadequate improvement in the mechanical properties. Bioactivity experiments on these composites showed that the presence of functional groups, such as carboxylate groups, influence bioactivity of the composites. We have developed and investigated composites of hydroxyapatite with chitosan and polygalacturonic acid (PgA). Chitosan and PgA are biocompatible, biodegradable, and also electrostatically complementary to each other. This strategy led to significant improvement in mechanical properties of new composites. The nanostructure analysis using atomic force microscopy revealed a multilevel organization in these composites. Enhancement in mechanical response was attributed to stronger interfaces due to strong electrostatic interaction between oppositely charged chitosan and PgA. Further analysis using the Rietveld method showed that biopolymers have marked impact on hydroxyapatite crystal growth and also on its crystal structure. Significant changes were observed in the lattice parameters of hydroxyapatite synthesized by following biomineralization method (organics mediated mineralization). For scaffold preparation, chitosan and PgA were mixed first, and then, nano-hydroxyapatite was added. Oppositely charged polyelectrolytes, such as chitosan and PgA, spontaneously form complex upon mixing. The poly-electrolyte complex exists as nano-sized particles. Chitosan/PgA scaffolds with and without hydroxyapatite were prepared by the freeze drying method. By controlling the rate of cooling and concentration, we have produced both fibrous and sheet

  11. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  12. Biomaterials approaches to treating implant-associated osteomyelitis.

    Science.gov (United States)

    Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2016-03-01

    Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biomaterials and host versus graft response: A short review

    Science.gov (United States)

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  14. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  15. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  16. An Overview of Biomaterials in Periodontology and Implant Dentistry

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2017-01-01

    Full Text Available Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted.

  17. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  18. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  19. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Elevated Postoperative Endogenous GLP-1 Levels Mediate Effects of Roux-en-Y Gastric Bypass on Neural Responsivity to Food Cues

    DEFF Research Database (Denmark)

    Ten Kulve, Jennifer S; Veltman, Dick J; Gerdes, Victor E A

    2017-01-01

    of the GLP-1 receptor antagonist exendin 9-39 (Ex9-39) and placebo were assessed in 10 women before and after RYGB. We used functional MRI to investigate CNS activation in response to visual food cues (pictures) and gustatory food cues (consumption of chocolate milk), comparing results with Ex9-39 versus...... in response to visual and gustatory food cues may be mediated by central effects of GLP-1. Our findings provide further insights into the mechanisms underlying the weight-lowering effects of RYGB.......OBJECTIVE: It has been suggested that weight reduction and improvements in satiety after Roux-en-Y gastric bypass (RYGB) are partly mediated via postoperative neuroendocrine changes. Glucagon-like peptide-1 (GLP-1) is a gut hormone secreted after food ingestion and is associated with appetite...

  1. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms

    NARCIS (Netherlands)

    Barradas, A.M.C.; Yuan, Huipin; van Blitterswijk, Clemens; Habibovic, Pamela

    2010-01-01

    In the past thirty years, a number of biomaterials have shown the ability to induce bone formation when implanted at heterotopic sites, an ability known as osteoinduction. Such biomaterials – osteoinductive biomaterials – hold great potential for the development of new therapies in bone

  2. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials

    NARCIS (Netherlands)

    Da Silva Domingues, Joana; Roest, Steven; Wang, Yi; van der Mei, Henny C.; Libera, Matthew; van Kooten, Theo G.; Busscher, Henk J.

    Biomaterial-associated-infection causes failure of biomaterial implants. Many new biomaterials have been evaluated for their ability to inhibit bacterial colonization and stimulate tissue-cell-integration, but neglect the role of immune cells. This paper compares macrophage phagocytosis of adhering

  3. The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    NARCIS (Netherlands)

    G.S.A. ter Hoeve-Boersema (Simone); N. Grotenhuis (Nienke); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractActivation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we

  4. MO-FG-BRA-04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Cifter, G; Altundal, Y; Moreau, M; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Sinha, N [Wentworth Institute of Technology, Boston, MA (United States); Makrigiorgos, G [Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: Studies show that stereotactic body radiation therapy (SBRT) of a primary tumor in combination with immune checkpoint inhibitors (ICI) could Result in an immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However toxicities due to repeated systematic administration of ICI have been shown to be a major obstacle in clinical trials. Towards overcoming these toxicity limitations, we investigate a potential new approach whereby the ICI are administered via sustained in-situ release from radiotherapy (RT) biomaterials (e.g. fiducials) coated with a polymer containing the ICI. Methods: New design RT biomaterials were prepared by coating commercially available spacers/fiducials with a biocompatible polymer (PLGA) film containing fluorescent nanoparticles of size needed to load the ICI. The release of the nanoparticles was investigated in-vitro. Meanwhile, an experimentally determined in- vivo nanoparticle diffusion coefficient was employed in analytic calculations based on Fick’s second law to estimate the time for achieving the concentrations of ICI in the tumor draining lymph node (TDLN) that are needed to engender the abscopal effect during SBRT. The ICI investigated here was anti-CTLA-4 antibody (ipilimumab) at approved FDA concentrations. Results: Our in -vitro study results showed that RT biomaterials could be designed to achieve burst release of nanoparticles within one day. Meanwhile, our calculations indicate that for a 2 to 4 cm tumor it would take 4–22 days, respectively, following burst release, for the required concentration of ICI nanoparticles to accumulate in the TDLN during SBRT. Conclusion: Current investigations combining RT and immunotherapy involve repeated intravenous administration of ICI leading to significant systemic toxicities. Our preliminary results highlight a potential new approach for sustained in-situ release of the ICI from new design RT biomaterials. These results

  5. MO-FG-BRA-04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors

    International Nuclear Information System (INIS)

    Hao, Y; Cifter, G; Altundal, Y; Moreau, M; Sajo, E; Sinha, N; Makrigiorgos, G; Ngwa, W

    2015-01-01

    Purpose: Studies show that stereotactic body radiation therapy (SBRT) of a primary tumor in combination with immune checkpoint inhibitors (ICI) could Result in an immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However toxicities due to repeated systematic administration of ICI have been shown to be a major obstacle in clinical trials. Towards overcoming these toxicity limitations, we investigate a potential new approach whereby the ICI are administered via sustained in-situ release from radiotherapy (RT) biomaterials (e.g. fiducials) coated with a polymer containing the ICI. Methods: New design RT biomaterials were prepared by coating commercially available spacers/fiducials with a biocompatible polymer (PLGA) film containing fluorescent nanoparticles of size needed to load the ICI. The release of the nanoparticles was investigated in-vitro. Meanwhile, an experimentally determined in- vivo nanoparticle diffusion coefficient was employed in analytic calculations based on Fick’s second law to estimate the time for achieving the concentrations of ICI in the tumor draining lymph node (TDLN) that are needed to engender the abscopal effect during SBRT. The ICI investigated here was anti-CTLA-4 antibody (ipilimumab) at approved FDA concentrations. Results: Our in -vitro study results showed that RT biomaterials could be designed to achieve burst release of nanoparticles within one day. Meanwhile, our calculations indicate that for a 2 to 4 cm tumor it would take 4–22 days, respectively, following burst release, for the required concentration of ICI nanoparticles to accumulate in the TDLN during SBRT. Conclusion: Current investigations combining RT and immunotherapy involve repeated intravenous administration of ICI leading to significant systemic toxicities. Our preliminary results highlight a potential new approach for sustained in-situ release of the ICI from new design RT biomaterials. These results

  6. Some Biomaterials based on Collagen in Human Health care

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Some Biomaterials based on Collagen in Human Health care. Ophthalmology. Wound healing. Burn Dressing. Tumor Treatment. Tissue Engineered devices. for cardio-vascular functions; For managing chronic illnesses including diabetic ulcers and foot. Smart shoe.

  7. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  8. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  9. Gradient biomaterials and their influences on cell migration

    Science.gov (United States)

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  10. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment

    OpenAIRE

    Pritchard, Eleanor M.; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L.

    2012-01-01

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material f...

  11. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  12. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants

    Science.gov (United States)

    Kurtz, S. M.; Devine, J. N.

    2007-01-01

    Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature. PMID:17686513

  13. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-01-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology…

  14. Logic of Biomaterial devices from CLRI for wound management

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Logic of Biomaterial devices from CLRI for wound management. Designing of biodegradable scaffolds. Designing the scaffold. Host drugs and growth factors. Design controlled drug release only to the wound area (based on pH differentials). Smartness is built in ...

  15. Standardization of incubation conditions for hemolysis testing of biomaterials

    NARCIS (Netherlands)

    Henkelman, Sandra; Rakhorst, Gerhard; Blanton, John; van Oeveren, Willem

    2009-01-01

    Hemolysis testing is the most common method to determine the hemocompatibility properties of biomaterials. There is however no consensus on the procedures of hemolysis testing due to insufficient comparative studies on the quality of the red blood cells used and the experimental conditions of

  16. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  17. Current and future biocompatibility aspects of biomaterials for hip prosthesis

    Directory of Open Access Journals (Sweden)

    Amit Aherwar

    2015-12-01

    Full Text Available The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

  18. Advances in the development of supramolecular polymeric biomaterials

    NARCIS (Netherlands)

    Goor, O.J.G.M.; Dankers, P.Y.W.

    2016-01-01

    Regenerative medicine applications aim to recreate or repair the living functional environment of the human body. Many biomaterials that are designed and synthesized in recent years are inspired by the extracellular matrix (ECM) that is responsible for mechanical, structural, and biochemical support

  19. Cell Physiology and Interactions of Biomaterials and Matrices

    Czech Academy of Sciences Publication Activity Database

    Hunkeler, D.; Vaňková, Radomíra

    2003-01-01

    Roč. 28, č. 6 (2003), s. 193-197 ISSN 0032-3918 R&D Projects: GA MŠk OC 840.20 Institutional research plan: CEZ:AV0Z5038910 Keywords : Biomaterials * Cell physiology * Encapsulation Subject RIV: CE - Biochemistry

  20. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  1. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela; van der Valk, C.M.; van Blitterswijk, Clemens; de Groot, K.

    2004-01-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT–PBT)

  2. Semi-confined compression of microfabricated polymerized biomaterial constructs

    International Nuclear Information System (INIS)

    Moraes, Christopher; Likhitpanichkul, Morakot; Simmons, Craig A; Sun, Yu; Zhao, Ruogang

    2011-01-01

    Mechanical forces are critical parameters in engineering functional tissue because of their established influence on cellular behaviour. However, identifying ideal combinations of mechanical, biomaterial and chemical stimuli to obtain a desired cellular response requires high-throughput screening technologies, which may be realized through microfabricated systems. This paper reports on the development and characterization of a MEMS device for semi-confined biomaterial compression. An array of these devices would enable studies involving mechanical deformation of three-dimensional biomaterials, an important parameter in creating physiologically relevant microenvironments in vitro. The described device has the ability to simultaneously apply a range of compressive mechanical stimuli to multiple polymerized hydrogel microconstructs. Local micromechanical strains generated within the semi-confined hydrogel cylinders are characterized and compared with those produced in current micro- and macroscale technologies. In contrast to previous work generating unconfined compression in microfabricated devices, the semi-confined compression model used in this work generates uniform regions of strain within the central portion of each hydrogel, demonstrated here to range from 20% to 45% across the array. The uniform strains achieved simplify experimental analysis and improve the utility of the compression platform. Furthermore, the system is compatible with a wide variety of polymerizable biomaterials, enhancing device versatility and usability in tissue engineering and fundamental cell biology studies

  3. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2017-01-01

    Full Text Available Within the CNS nuclear factor-kappa B (NF-κB transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk.

  4. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  5. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen.

    Science.gov (United States)

    Benedykcinska, Anna; Ferreira, Andreia; Lau, Joanne; Broni, Jessica; Richard-Loendt, Angela; Henriquez, Nico V; Brandner, Sebastian

    2016-02-01

    Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours. © 2016. Published by The Company of Biologists Ltd.

  6. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen

    Directory of Open Access Journals (Sweden)

    Anna Benedykcinska

    2016-02-01

    Full Text Available Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS can be limited, when the promoter (such as GFAP is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.

  7. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  8. Effects of stress on gastrointestinal function: interactions of neural and endocrine systems in mediating stress-induced intestinal dysfunction in rats

    International Nuclear Information System (INIS)

    Williams, C.L.

    1987-01-01

    The etiology of stress-induced intestinal dysfunction is completely unresolved, and the lack of an appropriate animal model has hindered studies of causality. We compared a number of stressors and their resultant effects on intestinal transit, a measure of the propulsive motor activity of the gut, in the rat. We found that the response of the intestine to stress, and the neural systems activated by stress, were dependent on the type and duration of stress, as well as the animal strain, and gender. We developed a model, acute wrapping restraint stress, to fully characterize the effects of stress on intestinal transit. Wrap restraint stress is a nonulcerogenic model in which rats are subjected to acute restraint by wrapping them in a harness of paper tape to restrict, but not prevent movement of the upper body and forelimbs. Transit was evaluated by the geometric center method, in which a radiomarker ( 51 Cr) is instilled directly into the proximal duodenum and proximal colon via a surgically placed intestinal cannula, in fasted, adult female Sprague Dawley rats

  9. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates

    Science.gov (United States)

    Doloff, Joshua C.; Veiseh, Omid; Vegas, Arturo J.; Tam, Hok Hei; Farah, Shady; Ma, Minglin; Li, Jie; Bader, Andrew; Chiu, Alan; Sadraei, Atieh; Aresta-Dasilva, Stephanie; Griffin, Marissa; Jhunjhunwala, Siddharth; Webber, Matthew; Siebert, Sean; Tang, Katherine; Chen, Michael; Langan, Erin; Dholokia, Nimit; Thakrar, Raj; Qi, Meirigeng; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.

    2017-06-01

    Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.

  10. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    International Nuclear Information System (INIS)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing

    2015-01-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF

  11. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  12. Testosterone affects neural gene expression differently in male and female juncos: a role for hormones in mediating sexual dimorphism and conflict.

    Directory of Open Access Journals (Sweden)

    Mark P Peterson

    Full Text Available Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis, using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.

  13. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    Science.gov (United States)

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  14. Radiation-induced apoptosis of neural precursors cell cultures: early modulation of the response mediated by reactive oxygen and nitrogen species (ROS/RNS)

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, P.; Dubner, D.; Robello, E.; Michelin, S.; Perez, M. R.

    2004-07-01

    Apoptosis, the typical mode of radiation-induced cell death in developing Central Nervous System (CNS), is closely related with the oxidative status. Enhanced radiation-induced generation of ROS/RNS has been observed after exposures to low radiation doses leading to cellular amplification of signal transduction and further molecular and cellular radiation-responses. Moreover Nitric oxide (NO) and hydroxyl radical are implicated in dopaminergic neurotoxicity in different parading. This study is an attempt to address the participation of radiation-induced free radicals production, the contribution of endogenous NO generation, and the excitonic pathway, in the radiation-induced apoptosis of neural cortical precursors. Cortical cells obtained from at 17 gestational day (gd) were irradiated with doses from 0,2 Gy to 2 Gy at a dose-rate of 0.3 Gy/m. A significant decrease of Luminol-dependent Chemiluminescence was evident 30 m after irradiation reaching basal levels at 120 m follow for a tendency to increasing values Incubations with Superoxide Dismatuse (SOD) decreased significantly the chemiluminescence in irradiated samples NO content estimated by measuring the stable products NO{sub 2} and NO{sub 3} released to the culture medium in the same period, has shown a time-dependent accumulation from 1 h post-irradiation. the apoptosis, determined 24 h post-irradiation by flow cytometry, morphology and DNA fragmentation revealed a dose-effect relationship with significant differences from 0.4 Gy. The samples pre-treated with 10 mM of N-acetyl cysteine (NAC) a precursor of intracellular GSH synthesis, shown a significant decrease of the apoptosis. Apoptosis was significantly increased in irradiated cells after inhibition of nitric oxide synthase (NOS) byL-NAME. We conclude that ROS/RNS play a pivotal role in the early signaling pathways leading to a radiation-induced cell death. (Author) 40 refs.

  15. Radiation-induced apoptosis of neural precursors cell cultures: early modulation of the response mediated by reactive oxygen and nitrogen species (ROS/RNS)

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Robello, E.; Michelin, S.; Perez, M. R.

    2004-01-01

    Apoptosis, the typical mode of radiation-induced cell death in developing Central Nervous System (CNS), is closely related with the oxidative status. Enhanced radiation-induced generation of ROS/RNS has been observed after exposures to low radiation doses leading to cellular amplification of signal transduction and further molecular and cellular radiation-responses. Moreover Nitric oxide (NO) and hydroxyl radical are implicated in dopaminergic neurotoxicity in different parading. This study is an attempt to address the participation of radiation-induced free radicals production, the contribution of endogenous NO generation, and the excitonic pathway, in the radiation-induced apoptosis of neural cortical precursors. Cortical cells obtained from at 17 gestational day (gd) were irradiated with doses from 0,2 Gy to 2 Gy at a dose-rate of 0.3 Gy/m. A significant decrease of Luminol-dependent Chemiluminescence was evident 30 m after irradiation reaching basal levels at 120 m follow for a tendency to increasing values Incubations with Superoxide Dismatuse (SOD) decreased significantly the chemiluminescence in irradiated samples NO content estimated by measuring the stable products NO 2 and NO 3 released to the culture medium in the same period, has shown a time-dependent accumulation from 1 h post-irradiation. the apoptosis, determined 24 h post-irradiation by flow cytometry, morphology and DNA fragmentation revealed a dose-effect relationship with significant differences from 0.4 Gy. The samples pre-treated with 10 mM of N-acetyl cysteine (NAC) a precursor of intracellular GSH synthesis, shown a significant decrease of the apoptosis. Apoptosis was significantly increased in irradiated cells after inhibition of nitric oxide synthase (NOS) byL-NAME. We conclude that ROS/RNS play a pivotal role in the early signaling pathways leading to a radiation-induced cell death. (Author) 40 refs

  16. Inhibition of Myeloperoxidase by N-Acetyl Lysyltyrosylcysteine Amide Reduces Oxidative Stress-Mediated Inflammation, Neuronal Damage, and Neural Stem Cell Injury in a Murine Model of Stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Zheng, Shikan; Zhang, Hao

    2018-02-01

    Recent studies suggest that myeloperoxidase (MPO)-dependent oxidative stress plays a significant role in brain injury in stroke patients. We previously showed that N -acetyl lysyltyrosylcysteine amide (KYC), a novel MPO inhibitor, significantly decreased infarct size, blood-brain barrier leakage, infiltration of myeloid cells, loss of neurons, and apoptosis in the brains of middle cerebral artery occlusion (MCAO) mice. Inhibition of MPO also noticeably reduced neurologic severity scores of MCAO mice. Thus, our data support the idea that MPO-dependent oxidative stress plays a detrimental role in tissue injury in ischemic stroke. However, the mechanisms of MPO-induced injury in stroke are still largely unknown. Here, we present new evidence showing that KYC treatment greatly reduced inflammation by decreasing the number of proinflammatory M1 microglial cells and N1 neutrophils in the brains of MCAO mice. KYC also markedly reduced the expression of high-mobility group box 1, receptor for advanced glycation end products, and nuclear factor- κ B in the brains of MCAO mice. Both neurons and neural stem cells (NSCs) were oxidatively injured by MPO-dependent oxidative stress in MCAO mice. Inhibiting MPO-dependent oxidative stress with KYC significantly reduced oxidative injury and apoptosis in neurons and NSCs. KYC treatment also protected transplanted exogenous NSCs in the brains of MCAO mice. Thus, our studies suggest that MPO-dependent oxidative stress directly injures brain tissues by oxidizing neurons and NSCs and increasing inflammation during stroke. Inhibition of MPO activity with KYC preserves neuronal function and helps the brain recover from injury after stroke. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    Directory of Open Access Journals (Sweden)

    K Ishihara

    2000-01-01

    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  19. Mounting of Biomaterials for Use in Ophthalmic Cell Therapies.

    Science.gov (United States)

    Harkin, Damien G; Dunphy, Siobhan E; Shadforth, Audra M A; Dawson, Rebecca A; Walshe, Jennifer; Zakaria, Nadia

    2017-11-01

    When used as scaffolds for cell therapies, biomaterials often present basic handling and logistical problems for scientists and surgeons alike. The quest for an appropriate mounting device for biomaterials is therefore a significant and common problem. In this review, we provide a detailed overview of the factors to consider when choosing an appropriate mounting device including those experienced during cell culture, quality assurance, and surgery. By way of example, we draw upon our combined experience in developing epithelial cell therapies for the treatment of eye diseases. We discuss commercially available options for achieving required goals and provide a detailed analysis of 4 experimental designs developed within our respective laboratories in Australia, the United Kingdom, and Belgium.

  20. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  1. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  3. The role of biomaterials in the treatment of meniscal tears

    Directory of Open Access Journals (Sweden)

    Crystal O. Kean

    2017-11-01

    Full Text Available Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears.

  4. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  5. Structural analysis and application to biomaterials of the silk fibroins

    International Nuclear Information System (INIS)

    Nakazawa, Yasumoto

    2010-01-01

    Silk fibroin from Bombyx mori silkworm has outstanding mechanical properties despite being spun from aqueous solution. I have clarified two distinct structures in the solid state; silk I and silk II, which mean the structures before and after spinning, by using solid state NMR. Moreover, I have been developing several kinds of biomaterials, such as bone regeneration materials and vascular grafts. In this paper, I present two topics: one is the structural analyses of the silk fibroin in detail, the other is applications of silk fibroins to tissue engineering. In the case of vascular regeneration, I have developed the small diameter vascular grafts made by silk fibroins. The new grafts from silk fibroins have good patency, and these grafts were commonly covered with cells and platelets at 4 weeks after implantation. For bone tissue engineering, I performed structural analyses of a new silk-like peptide, E n (AGSGAG) 4 , in order to consider the molecular design of biomaterials for bone regeneration. (author)

  6. Interactions between bone cells and biomaterials: An update.

    Science.gov (United States)

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-06-01

    As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.

  7. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  8. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    Directory of Open Access Journals (Sweden)

    Sylvain Deville

    2010-03-01

    Full Text Available The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  9. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  10. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  11. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.

    Science.gov (United States)

    Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C

    2018-05-01

    Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Theoretical methods and models for mechanical properties of soft biomaterials

    Directory of Open Access Journals (Sweden)

    Zhonggang Feng

    2017-06-01

    Full Text Available We review the most commonly used theoretical methods and models for the mechanical properties of soft biomaterials, which include phenomenological hyperelastic and viscoelastic models, structural biphasic and network models, and the structural alteration theory. We emphasize basic concepts and recent developments. In consideration of the current progress and needs of mechanobiology, we introduce methods and models for tackling micromechanical problems and their applications to cell biology. Finally, the challenges and perspectives in this field are discussed.

  14. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  15. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    OpenAIRE

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2010-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: ...

  16. β-pyrophosphate: A potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, AD; Strafford, S; Posada-Estefan, O; Thomson, CL; Hussaein, SA; Edwards, TJ; Malinowski, M; Hondow, N; Metzger, NK; Brown, CTA; Routledge, MN; Brown, AP; Duggal, MS; Jha, A

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluat...

  17. β-pyrophosphate : a potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, A. D.; Strafford, S.; Posada-Estefan, O.; Thomson, C. L.; Hussaein, S. A.; Edwards, T. J.; Malinowski, M.; Hondow, N.; Metzger, N. K.; Brown, C. T. A.; Routledge, M. N.; Brown, A. P.; Duggal, M. S.; Jha, A.

    2017-01-01

    The authors acknowledge support from the sponsors of this work; the EPSRC LUMIN (EP/K020234/1) and EU-Marie-Curie-IAPP LUSTRE (324538) projects. Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral trans...

  18. Synthesis of a nanocomposite biomaterial for implant tissue engineering

    OpenAIRE

    Santos Montes, Angélica

    2015-01-01

    In order to improve health and quality of life, the challenge to develop new biomaterials has become extremely relevant. In this project, our main objective is to obtain a nanocomposite biopolymer that serves as a temporal synthetic extracellular matrix for cell growth and tissue regeneration. This matrix consists of a hydrogel lm of chitosan or agarose doped with di erent ceramic nanoparticles: titanium dioxide (TiO2) and aluminum oxide (Al2O3). Once developed, this composite will be tested...

  19. Novel biomaterials: plasma-enabled nanostructures and functions

    International Nuclear Information System (INIS)

    Levchenko, Igor; Ostrikov, Kostya; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua

    2016-01-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials. (topical review)

  20. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Designing protein-based biomaterials for medical applications.

    Science.gov (United States)

    Gagner, Jennifer E; Kim, Wookhyun; Chaikof, Elliot L

    2014-04-01

    Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  3. Atomic force microscopy for university students: applications in biomaterials

    International Nuclear Information System (INIS)

    Kontomaris, S V; Stylianou, A

    2017-01-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM. (review)

  4. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  5. Biomaterials in Cardiovascular Research: Applications and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Saravana Kumar Jaganathan

    2014-01-01

    Full Text Available Cardiovascular biomaterials (CB dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs, is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.

  6. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Osteoinduction of calcium phosphate biomaterials in small animals

    International Nuclear Information System (INIS)

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-01-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca 3 (PO 4 ) 2 , CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation

  8. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Silicon: the evolution of its use in biomaterials.

    Science.gov (United States)

    Henstock, J R; Canham, L T; Anderson, S I

    2015-01-01

    In the 1970s, several studies revealed the requirement for silicon in bone development, while bioactive silicate glasses simultaneously pioneered the current era of bioactive materials. Considerable research has subsequently focused on the chemistry and biological function of silicon in bone, demonstrating that the element has at least two separate effects in the extracellular matrix: (i) interacting with glycosaminoglycans and proteoglycans during their synthesis, and (ii) forming ionic substitutions in the crystal lattice structure of hydroxyapatite. In addition, the dissolution products of bioactive glass (predominantly silicic acids) have significant effects on the molecular biology of osteoblasts in vitro, regulating the expression of several genes including key osteoblastic markers, cell cycle regulators and extracellular matrix proteins. Researchers have sought to capitalize on these effects and have generated a diverse array of biomaterials, which include bioactive glasses, silicon-substituted hydroxyapatites and pure, porosified silicon, but all these materials share similarities in the mechanisms that result in their bioactivity. This review discusses the current data obtained from original research in biochemistry and biomaterials science supporting the role of silicon in bone, comparing both the biological function of the element and analysing the evolution of silicon-containing biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  11. Albumin grafting on biomaterial surfaces using gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls

  12. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  13. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  14. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2012-10-01

    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  15. Design strategies and applications of nacre-based biomaterials.

    Science.gov (United States)

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the

  16. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  17. [Materials/Biomaterials in Clinical Practice - a Short Review and Current Trends].

    Science.gov (United States)

    Bolle, T; Meyer, F; Walcher, F; Lohmann, C; Jockenhövel, S; Gries, T; Hoffmann, W

    2017-04-01

    Biomaterials play a major role in interventional medicine and surgery. However, the development of biomaterials is still in its early phases in spite of the huge progress made within the last decades. On the one hand, this is because our knowledge of the molecular and cellular processes associated with biomaterials is still increasing exponentially. On the other hand, a wide variety of advanced materials with highly interesting properties is being developed currently. This review provides a short introduction into the variety of materials in use as well as their application in interventional medicine and surgery. Also the importance of biomaterials for tissue engineering in the field of regenerative medicine and the functionalisation of biomaterials, including sterilisation methods are discussed. For the future, an even broader interdisciplinary scientific collaboration is necessary in order to develop novel biomaterials and facilitate their translation into clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  18. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    Science.gov (United States)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  19. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  20. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    OpenAIRE

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (?-TCP, without coating or ...

  1. Effective atomic numbers (Z_e_f_f) of based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Zenobio, Madelon Aparecida; Gonçalves Zenobio, Elton; Silva, Teógenes Augusto da; Socorro Nogueira, Maria do

    2016-01-01

    This study determined the interaction of radiation parameters of four biomaterials as attenuators to measure the transmitted X-rays spectra, the mass attenuation coefficient and the effective atomic number by spectrometric system comprising the CdTe detector. The biomaterial BioOss"® presented smaller mean energy than the other biomaterials. The μ/ρ and Z_e_f_f of the biomaterials showed their dependence on photon energy. The data obtained from analytical methods of x-ray spectra, µ/ρ and Z_e_f_f_, using biomaterials as attenuators, demonstrated that these materials could be used as substitutes for dentin, enamel and bone. Further, they are determinants for the characterization of the radiation in tissues or equivalent materials. - Highlights: • Measure of the transmitted x-rays spectra using based calcium phosphate biomaterials as attenuators. • Determination effective atomic number using four dental biomaterials. • Determination of the mass attenuation coefficient (µ/ρ) of the biomaterials samples calculated by the WinXCOM software. • Determination of the chemical composition of calcium phosphate biomaterials.

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. NASA's Needs for Biomaterials within the HEDS Initiative

    Science.gov (United States)

    Gillies, Donald C.

    2000-01-01

    The part to be played by materials scientists to further NASA's exploration missions cannot be underestimated. To quote Jerome Groopman (New Yorker, February 14, 2000), "The rocket science will be the easy part". The four main risks on the Critical Path Road Map during a three-year sojourn to Mars are osteoporosis, psychological problems, radiation induced cancer and acute medical trauma. NASA's microgravity materials science program has investigations in membrane fabrication, bone growth and materials for radiation protection. These programs will be reviewed in the context of the four main risks, as will other potential uses of biomaterials and applications of biomimetic processing.

  4. Evaluation of Biomaterials Using Micro-Computerized Tomography

    International Nuclear Information System (INIS)

    Torris, A. T. Arun; Columbus, K. C. Soumya; Saaj, U. S.; Krishnan, Kalliyana V.; Nair, Manitha B.

    2008-01-01

    Micro-computed tomography or Micro-CT is a high resolution, non-invasive, x-ray scanning technique that allows precise three-dimensional imaging and quantification of micro-architectural and structural parameters of objects. Tomographic reconstruction is based on a cone-beam convolution-back-projection algorithm. Micro-architectural and structural parameters such as porosity, surface area to volume ratio, interconnectivity, pore size, wall thickness, anisotropy and cross-section area of biomaterials and bio-specimens such as trabecular bone, polymer scaffold, bio-ceramics and dental restorative were evaluated through imaging and computer aided manipulation of the object scan data sets.

  5. Dosimetry by stimulated exoelectronic emission of apatites and dental biomaterials

    International Nuclear Information System (INIS)

    Rakotomalala, R.

    1982-02-01

    This work is a contribution to the study of stimulated exoelectronic emission, the goal of which is the development of a dosimetry available in case of accidental irradiation. The first part is devoted to a review of the various theoretical models suggested by several authors on the exoemission phenomenon, and to the description of the experimental set up: counter and detector electronic circuits. The second part gives the experimental results obtained with the different products studied: fluorapatite, hydroxyapatite (considered to be the major constituent of bones and teeth), tricalcic phosphate and dental biomaterials: porcelain and some canal obturation substances [fr

  6. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  7. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  8. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  9. Soft contact lens biomaterials from bioinspired phospholipid polymers.

    Science.gov (United States)

    Goda, Tatsuro; Ishihara, Kazuhiko

    2006-03-01

    Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

  10. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  11. PIXE study of the kinetics of biomaterials ossification

    Science.gov (United States)

    Weber, G.; Robaye, G.; Braye, F.; Oudadesse, H.; Irigaray, J. L.

    1994-05-01

    Biomaterials are frequently implanted in bones. This implantation is followed by a phenomenon of ossification. The purpose of this work was to study the time evolution of the gradient of characteristic atomic element's concentrations in the bone, the implant and the bone-implant interface. We have studied two types of neutral biomaterials: pure synthetic hydroxyapatite and porite's asteroid coral. The animal implantations have been made on sheep of the same age and sex having received the same basic diet. The implantations have been made in the cortical femur. On both sides of the implant, at the same distance, two screws were placed to allow further determination of the position of the implant. The PIXE method is particularly suitable here because of the possibility to analyze directly the samples without any preparation and to choose easily the dimensions of beam used for the gradient study. The X-rays have been detected with an ultra LEGe instead of the usual Si(Li) device to avoid the Si escape peak associated with the K α X-ray of calcium, the major constituent of bone. This peak is particularly disturbing here because its energy corresponds to the K α line of phosphorus, an important constituent of bone. The results of these determinations are presented and discussed.

  12. Teaching technological innovation and entrepreneurship in polymeric biomaterials.

    Science.gov (United States)

    Washburn, Newell R

    2011-01-01

    A model for incorporating an entrepreneurship module has been developed in an upper-division and graduate-level engineering elective on Polymeric Biomaterials (27-311/42-311/27-711/42-711) at Carnegie Mellon University. A combination of lectures, assignments, and a team-based project were used to provide students with a framework for applying their technical skills in the development of new technologies and a basic understanding of the issues related to translational research and technology commercialization. The specific approach to the project established in the course, which represented 20% of the students' grades, and the grading rubric for each of the milestones are described along with suggestions for generalizing this approach to different applications of biomaterials or other engineering electives. Incorporating this model of entrepreneurship into electives teaches students course content within the framework of technological innovation and many of the concepts and tools need to practice it. For students with situational or individual interest in the project, it would also serve to deepen their understanding of the traditional course components as well as provide a foundation for integrating technological innovation and lifelong learning. Copyright © 2010 Wiley Periodicals, Inc.

  13. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction.

    Science.gov (United States)

    Nayyer, Leila; Jell, Gavin; Esmaeili, Ali; Birchall, Martin; Seifalian, Alexander M

    2016-05-01

    Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  15. Preparation of mica/apatite glass-ceramics biomaterials

    International Nuclear Information System (INIS)

    Liu Yong; Sheng Xiaoxian; Dan Xiaohong; Xiang Qijun

    2006-01-01

    Glass-ceramics have become more and more important biomaterials. In this work mica glass/apatite composites with various compositions were prepared by casting and subsequent heat treatments. The effects of composition, phase constitution and crystallinity on mechanical properties, including elastic modulus and transverse rupture strength (TRS), were investigated by using X-ray diffraction analyses (XRD), scanning electron microscopy (SEM) and mechanical tests. Results show that addition of apatite composition in mica glass accelerates the crystallization process and induces the formation of fluoroapatite phase, and the nucleation of apatite crystals occurs before that of mica crystals. The fuoroapatite in this work is needle-like, which is almost the same to that in human bone. The transverse rupture strength increases with the content of fluoroapatite and the crystallinity increasing, except that at a low apatite content the mechanical properties are lower than those of mica glass under the same processing conditions. The transverse rupture strength and elastic modulus obtained in this work fall in the range of those of human bone. SBF immersion test demonstrates good bioactivity of this biomaterial

  16. Biomaterials Derived from Silk-Tropoelastin Protein Systems

    Science.gov (United States)

    Hu, Xiao; Wang, Xiuli; Rnjak, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2010-01-01

    A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from ~68% to ~97%, and elastic modulus between 2~9Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs. PMID:20674969

  17. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  18. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science

    Science.gov (United States)

    Choi, Ji Sun; Mahadik, Bhushan P.; Harley, Brendan A. C.

    2016-01-01

    Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body’s blood and immune cells. This process takes place primarily in the bone marrow in specialized ‘niche’ microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders. PMID:26356030

  19. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    Science.gov (United States)

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  1. Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Amanda L. Baillargeon

    2014-01-01

    Full Text Available Degradable biomaterials continue to play a major role in tissue engineering and regenerative medicine as well as for delivering therapeutic agents. Although the chemistry of polyphosphazenes has been studied extensively, a systematic review of their applications for a wide range of biomedical applications is lacking. Polyphosphazenes are synthesized through a relatively well-known two-step reaction scheme which involves the substitution of the initial linear precursor with a wide range of nucleophiles. The ease of substitution has led to the development of a broad class of materials that have been studied for numerous biomedical applications including as scaffold materials for tissue engineering and regenerative medicine. The objective of this review is to discuss the suitability of poly(amino acid esterphosphazene biomaterials in regard to their unique stimuli responsive properties, tunable degradation rates and mechanical properties, as well as in vitro and in vivo biocompatibility. The application of these materials in areas such as tissue engineering and drug delivery is discussed systematically. Lastly, the utility of polyphosphazenes is further extended as they are being employed in blend materials for new applications and as another method of tailoring material properties.

  2. Cleaning of biomaterial surfaces: protein removal by different solvents.

    Science.gov (United States)

    Kratz, Fabian; Grass, Simone; Umanskaya, Natalia; Scheibe, Christian; Müller-Renno, Christine; Davoudi, Neda; Hannig, Matthias; Ziegler, Christiane

    2015-04-01

    The removal of biofilms or protein films from biomaterials is still a challenging task. In particular, for research investigations on real (applied) surfaces the reuse of samples is of high importance, because reuse allows the comparison of the same sample in different experiments. The aim of the present study was to evaluate the cleaning efficiency of different solvents (SDS, water, acetone, isopropanol, RIPA-buffer and Tween-20) on five different biomaterials (titanium, gold, PMMA (no acetone used), ceramic, and PTFE) with different wettability which were covered by layers of two different adsorbed proteins (BSA and lysozyme). The presence of a protein film after adsorption was confirmed by transmission electron microscopy (TEM). After treatment of the surfaces with the different solvents, the residual proteins on the surface were determined by BCA-assay (bicinchoninic acid assay). Data of the present study indicate that SDS is an effective solvent, but for several protein-substrate combinations it does not show the cleaning efficiency often mentioned in literature. RIPA-buffer and Tween-20 were more effective. They showed very low residual protein amounts after cleaning on all examined material surfaces and for both proteins, however, with small differences for the respective substrate-protein combinations. RIPA-buffer in combination with ultrasonication completely removed the protein layer as confirmed by TEM. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    Science.gov (United States)

    2013-08-26

    injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up...Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions Catherine L. Ward, Benjamin T. Corona...investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle

  4. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  5. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials

    NARCIS (Netherlands)

    Zadpoor, A.A.; Hedayati, R.

    2016-01-01

    Recent developments in additive manufacturing techniques have motivated an increasing number of researchers to study regular porous biomaterials that are based on repeating unit cells. The physical and mechanical properties of such porous biomaterials have therefore received increasing attention

  6. Fatigue performance of additively manufactured meta-biomaterials : The effects of topology and material type

    NARCIS (Netherlands)

    Ahmadi, S.M.; Hedayati, R.; Li, Y; Lietaert, K.; Tümer, N.; Fatemi, A.; Rans, C.D.; Pouran, B.; Weinans, H.H.; Zadpoor, A.A.

    2018-01-01

    Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is,

  7. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Hosseini-Toudeshky, H; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly

  8. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    Science.gov (United States)

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  9. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations

    NARCIS (Netherlands)

    Bruining, MJ; Blaauwgeers, HGT; Kuijer, R; Jongsma, FHM; de Brabander, J; Nuijts, RMMA; Koole, LH

    2000-01-01

    The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of

  10. Cell-biomaterial mechanical interaction in the framework of tissue engineering: insights, computational modeling and perspectives.

    Science.gov (United States)

    Sanz-Herrera, Jose A; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.

  11. Infection resistance of degradable versus non-degradable biomaterials : An assessment of the potential mechanisms

    NARCIS (Netherlands)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; van der Mei, Henny C.; Busscher, Henk J.; Rochford, Edward T. J.

    Extended life expectancy and medical development has led to an increased reliance on biomaterial implants and devices to support or restore human anatomy and function. However, the presence of an implanted biomaterial results in an increased susceptibility to infection. Due to the severity of the

  12. New Models for Patient-specific Evaluation of the Effect of Biomaterials on Macrophages

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke)

    2017-01-01

    markdownabstractBiomaterials are often used in many fields of medicine to restore or replace tissue. These biomaterials always elicit a reaction of the immune system, called the foreign body reaction, which can lead to complications in patients and failure of the device. Macrophages are key players

  13. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  14. Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation.

    Science.gov (United States)

    Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F Begum; Topal, Ahmet E; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B; Guler, Mustafa O

    2018-01-10

    Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.

  15. A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment.

    Science.gov (United States)

    Caires, Hugo R; Barros da Silva, Patrícia; Barbosa, Mário A; Almeida, Catarina R

    2018-03-01

    The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Computer simulation of biomolecule–biomaterial interactions at surfaces and interfaces

    International Nuclear Information System (INIS)

    Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Zhang, Xing-dong; Liu, Yaling; Zhang, Hong-ping

    2015-01-01

    Biomaterial surfaces and interfaces are intrinsically complicated systems because they involve biomolecules, implanted biomaterials, and complex biological environments. It is difficult to understand the interaction mechanism between biomaterials and biomolecules through conventional experimental methods. Computer simulation is an effective way to study the interaction mechanism at the atomic and molecular levels. In this review, we summarized the recent studies on the interaction behaviors of biomolecules with three types of the most widely used biomaterials: hydroxyapatite (HA), titanium oxide (TiO 2 ), and graphene(G)/graphene oxide(GO). The effects of crystal forms, crystallographic planes, surface defects, doping atoms, and water environments on biomolecules adsorption are discussed in detail. This review provides valuable theoretical guidance for biomaterial designing and surface modification. (topical review)

  17. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  18. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    Science.gov (United States)

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. DMPD: The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedmacrophage function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16978691 The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedmacrophage function...(.svg) (.html) (.csml) Show The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedmacrophage function...and interleukin-1 in biomaterial-modulatedmacrophage function. Authors Schmidt DR, Kao WJ. Publication Bioma

  20. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  1. Perceived threat predicts the neural sequelae of combat stress

    NARCIS (Netherlands)

    van Wingen, G. A.; Geuze, E.; Vermetten, E.; Fernández, G.

    2011-01-01

    Exposure to severe stressors increases the risk for psychiatric disorders in vulnerable individuals, but can lead to positive outcomes for others. However, it remains unknown how severe stress affects neural functioning in humans and what factors mediate individual differences in the neural sequelae

  2. Perceived threat predicts the neural sequelae of combat stress.

    NARCIS (Netherlands)

    Wingen, G.A. van; Geuze, E.; Vermetten, E.; Fernandez, G.S.E.

    2011-01-01

    Exposure to severe stressors increases the risk for psychiatric disorders in vulnerable individuals, but can lead to positive outcomes for others. However, it remains unknown how severe stress affects neural functioning in humans and what factors mediate individual differences in the neural sequelae

  3. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  4. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  5. Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research

    DEFF Research Database (Denmark)

    Ding, Ming

    2009-01-01

    months. This suggests that a prolonged administration of GC is needed for a long-term observation to keep osteopenic bone.                 In conclusion, after 7 months of GC treatments with restricted diet, the microarchitectural characteristics, mechanical competence, mineralization of the bone tissues...... resemble osteoporosis in humans. This study aimed to validate glucocorticoid-induced osteopenia sheep model for orthopaedic implant and biomaterial research. We hypothesized that a 7-month GC treatment together with restricted diet but without OVX would induce osteopenia. Materials and Methods: Eighteen...... for 7 months. The sheep were housed outdoors in paddocks, and received restricted diet with low calcium and phosphorus (0.55% calcium and 0.35% phosphorus) and hay. After sacrifice, cancellous bone specimens from the 5th lumbar vertebra, bilateral distal femur, and bilateral proximal tibia, and cortical...

  6. Advances in Porous Biomaterials for Dental and Orthopaedic Applications

    Directory of Open Access Journals (Sweden)

    Arndt F. Schilling

    2010-04-01

    Full Text Available The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.

  7. Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization

    Directory of Open Access Journals (Sweden)

    Peter Dubruel

    2011-01-01

    Full Text Available In the present work, the immobilization of gelatin as biopolymer on two types of implantable biomaterials, polyimide and titanium, was compared. Both materials are known for their biocompatibility while lacking cell-interactive behavior. For both materials, a pre-functionalization step was required to enable gelatin immobilization. For the polyimide foils, a reactive succinimidyl ester was introduced first on the surface, followed by covalent grafting of gelatin. For the titanium material, methacrylate groups were first introduced on the Ti surface through a silanization reaction. The applied functionalities enabled the subsequent immobilization of methacrylamide modified gelatin. Both surface modified materials were characterized in depth using atomic force microscopy, static contact angle measurements, confocal fluorescence microscopy, attenuated total reflection infrared spectroscopy and X-ray photo-electron spectroscopy. The results indicated that the strategies elaborated for both material classes are suitable to apply stable gelatin coatings. Interestingly, depending on the material class studied, not all surface analysis techniques are applicable.

  8. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  9. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  10. Bio-tribocorrosion in biomaterials and medical implants

    CERN Document Server

    Yan, Yu

    2013-01-01

    During their service life, most biomaterials and medical implants are vulnerable to tribological damage. In addition, the environments in which they are placed are often corrosive. The combination of triobology, corrosion and the biological environment has been named 'bio-tribocorrosion'. Understanding this complex phenomenon is critical to improving the design and service life of medical implants. This important book reviews recent key research in this area. After an introduction to the topography of bio-tribocorrosion, Part one discusses different types of tribocorrosion including fatigue-corrosion, fretting-corrosion, wear-corrosion and abrasion-corrosion. The book also discusses the prediction of wear in medical devices. Part two looks at biological effects on tribocorrosion processes, including how proteins interact with material surfaces and the evolution of surface changes due to bio-tribocorrosion resulting from biofilms and passive films. Part three reviews the issue of bio-tribocorrosion in clinical...

  11. Soft X-ray emission studies of biomaterials

    International Nuclear Information System (INIS)

    Kurmaev, E.Z.; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M.

    2004-01-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B 12 and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B 12 is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair π-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon Kα emission spectra of a caries lesion suggest that the CaCO 3 like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack

  12. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  13. Clinical study on orofacial photonic hydration using phototherapy and biomaterials

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Grandi, Natália D. P.; Florez, Fernando L. E.; Grecco, Clovis; Lopes, Luciana A.

    2015-06-01

    Skin hydration is important to prevent aging and dysfunction of orofacial system. Nowadays, it is known that cutaneous system is linked to muscle system, then every dentist need to treat healthy facial skin, as lips, keeping orofacial functions healthy. Thirty-two patients were treated using laser and led therapy single or associated to biomaterials (dermo-cosmetics) searching for the best protocol to promote skin hydration. Using a peace of equipment to measure electric impedance, percentage of water and oil from skin, before and after different treatments were analyzed. Statistic tests using 5% and 0.1% of significance were applied and results showed that light could improve hydration of epidermis layer of facial skin. Considering just light effect, using infrared laser followed by blue led system is more effective to hydration than just blue led system application. Considering dermo-cosmetic and light, the association between both presented the best result.

  14. Contributions of human paleohistology to the study of biomaterials

    International Nuclear Information System (INIS)

    Nacarino Meneses, C.; Cambra-Moo, O.; Rodriguez Barbero, M. A.; Gonzalez Martin, A.

    2012-01-01

    The deep study of archaeological human bone could provide relevant information to biomaterials science, as it could tell how the implant process of bio glasses and bioresorbable ceramics is. In this paper, we propose to study, by means of different microscopic, spectroscopic, and X-ray diffraction techniques, the histological and mineral bone variability throughout ontogeny. Extrapolating this data, we could have a better knowledge of biodegradable materials implant. In different ages, we could notice different tissues in cortical bone: fibrolamellar bone is characteristic of early stages of life while secondary or harvesian bone is in adult individuals. Raman and infrared spectroscopy suggest an increase of critallinity in the inorganic matrix during live. Finally, the X-ray diffraction study of bone tissue shows β-calcium phosphate and hydroxyapatite as the main mineral bone components. (Author) 31 refs.

  15. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial

    Science.gov (United States)

    Jesionowski, Teofil; Norman, Małgorzata; Żółtowska-Aksamitowska, Sonia; Petrenko, Iaroslav; Ehrlich, Hermann

    2018-01-01

    The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics. PMID:29522478

  16. β-pyrophosphate: A potential biomaterial for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiou, A.D., E-mail: a.anastasiou@leeds.ac.uk [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Strafford, S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Posada-Estefan, O. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Thomson, C.L. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Hussain, S.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cambridge Graphene Centre, Engineering Department, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Edwards, T.J. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Malinowski, M. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Hondow, N. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Metzger, N.K.; Brown, C.T.A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Routledge, M.N. [Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, LS2 9JT (United Kingdom); Brown, A.P. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Duggal, M.S. [Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT (United Kingdom); Jha, A. [School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  17. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  18. Formation of blood clot on biomaterial implants influences bone healing.

    Science.gov (United States)

    Shiu, Hoi Ting; Goss, Ben; Lutton, Cameron; Crawford, Ross; Xiao, Yin

    2014-12-01

    The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This article reviews the formation of a blood clot during bone healing in relation to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting in conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in relation to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

  19. β-pyrophosphate: A potential biomaterial for dental applications

    International Nuclear Information System (INIS)

    Anastasiou, A.D.; Strafford, S.; Posada-Estefan, O.; Thomson, C.L.; Hussain, S.A.; Edwards, T.J.; Malinowski, M.; Hondow, N.; Metzger, N.K.; Brown, C.T.A.; Routledge, M.N.; Brown, A.P.; Duggal, M.S.; Jha, A.

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluate this densified mineral as a potential replacement material for dental hard tissue. To this end, we have tested the hardness of β-pyrophosphate pellets (sintered at 1000 °C) and its mineral precursor (brushite), the wear rate during simulated tooth-brushing trials and the cytocompatibility of these minerals in powder form. It was found that the hardness of the β-pyrophosphate pellets is comparable with that of dental enamel and significantly higher than dentine while, the brushing trials prove that the wear rate of β-pyrophosphate is much slower than that of natural enamel. Finally, cytotoxicity and genotoxicity tests suggest that iron doped β-pyrophosphate is cytocompatible and therefore could be used in dental applications. Taken together and with the previously reported results on laser irradiation of these materials we conclude that iron doped β-pyrophosphate may be a promising material for restoring acid eroded and worn enamel. - Highlights: • A novel procedure for the restoration of dental enamel is introduced. • Fe-doped ß-pyrophosphate is evaluated as potential biomaterial for enamel restoration. • Fe-doped ß-pyrophosphate found to have the same hardness as natural enamel and dramatically lower wear rate. • Cytotoxicity and genotoxicity tests suggest that Fe-doped ß-pyrophosphate is safe for dental applications.

  20. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    Science.gov (United States)

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  1. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction.

    Science.gov (United States)

    Lucaciu, Ondine; Băciuţ, Mihaela; Băciuţ, G; Câmpian, R; Soriţău, Olga; Bran, S; Crişan, B; Crişan, Liana

    2010-01-01

    This research was developed in order to demonstrate the tissue engineering method as an alternative to conventional methods for bone reconstruction, in order to overcome the frequent failures of alloplastic commercial biomaterials, allografts and autografts. Tissue engineering is an in vitro method used to obtain cell based osteoinductive bone grafts. This study evaluated the feasibility of creating tissue-engineered bone using mesenchymal cells seeded on a scaffold obtained from the deciduous red deer antler. We have chosen mesenchymal stem cells because they are easy to obtain, capable to differentiate into cells of mesenchymal origin (osteoblasts) and to produce tissue such as bone. As scaffold, we have chosen the red deer antler because it has a high level of porosity. We conducted a case control study, on three groups of mice type CD1--two study groups (n=20) and a control group (n=20). For the study groups, we obtained bone grafts through tissue engineering, using mesenchymal stem cells seeded on the scaffold made of deciduous red deer antler. Bone defects were surgically induced on the left parietal bone of all subjects. In the control group, we grafted the bone defects with commercial biomaterials (OsteoSet, Wright Medical Technology, Inc., Arlington, Federal USA). Subjects were sacrificed at two and four months, the healing process was morphologically and histologically evaluated using descriptive histology and the golden standard - histological scoring. The grafts obtained in vivo through tissue engineering using adult stem cell, seeded on the scaffold obtained from the red deer antler using osteogenic medium have proven their osteogenic properties.

  2. Gloss measurements and rugometric inspection in dental biomaterials

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Yebra, Ana; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    In dental applications, optimizing appearance is desirable and increasingly demanded by patients. The specular gloss is among the major appearance properties of dental biomaterials, and its relationship with surface roughness has been reported. Roughness and gloss are key surface aspects that complement each other. We have experimentally analyzed the specular gloss and surface roughness of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We have studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental resin. Gloss measurements were performed with a standardized reflectometer and the corresponding gloss percentages were calculated. All the samples were submitted to rugometric non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to determine meaningful statistical parameters such as the average roughness (Ra) and the root-mean-square deviation (Rq). For a comparison of the different biomaterials, the uncertainties associated to the measure of the surface gloss and roughness were also determined. The differences between the two shades of both kinds of composites proved significant in the case of the roughness parameters but not for the specular gloss. The surface treatment applied to the dental-resin composites increased the average roughness but the changes in the specular gloss were significant only for the A2 enamel nano-composite. For the zirconia ceramic the sintered process resulted in an increase in the surface roughness with a decrease of the specular gloss, corroborating that the relationship between the gloss and the roughness shows the expected behavior.

  3. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    Peptides and polypeptides are emerging as a new class of biomaterials due to their unique structural, physiochemical, mechanical, and biological properties. The development of peptide and protein-based biomaterials is driven by the convergence of convenient techniques for peptide/protein engineering and its importance in applications as smart biomaterials. The thesis is divided in two parts; the first part highlights the importance of incorporation of non-natural amino acids into peptides and proteins. In particular, incorporation on p-bromophenylalanine in short alpha-helical peptide templates to control the association of chromophores is discussed. In the second part, design of a multi-component, biocompatible polypeptide with superior elasticity is discussed. Part 1. Novel peptide templates to control association of chromophores. Tailor made peptide and protein materials have many versatile applications, as both conformation and functional group position can be controlled. Such control may have intriguing applications in the development of hybrid materials for electroactive applications. A critical need in fabricating devices from organic semiconducting materials is to achieve control over the conformation and distance between two conjugated chains. Controlling chromophore spacing and orientation with required precision over nanometer length scale poses a greater challenge. Here we propose a peptide based template to control the alignment of the methylstilbene and Oxa-PPV chromophores with desired orientations and spacing. The hybrid peptides were characterized via CD, exciton coupled CD, 1H NMR and photoluminescence experiments. It is observed that slight change in the orientation of molecules has pronounced effect on the photo-physical behavior of the molecules. Characterization of the hybrid peptides via circular dichroism (CD) confirmed the helical character of the designed peptides and indicated that inclusion of non-natural amino acids has significant

  4. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. The important social, clinical and economic impacts of implant-related infections are promoting the efforts to obviate these severe diseases. In this context, the development of anti-infective biomaterials and of infection-resistant surfaces is being regarded as the main strategy to prevent the establishment of implant colonisation and biofilm formation by bacteria. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  5. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Handheld skin printer: in situ formation of planar biomaterials and tissues.

    Science.gov (United States)

    Hakimi, Navid; Cheng, Richard; Leng, Lian; Sotoudehfar, Mohammad; Ba, Phoenix Qing; Bakhtyar, Nazihah; Amini-Nik, Saeid; Jeschke, Marc G; Günther, Axel

    2018-05-15

    We present a handheld skin printer that enables the in situ formation of biomaterial and skin tissue sheets of different homogeneous and architected compositions. When manually positioned above a target surface, the compact instrument (weight <0.8 kg) conformally deposits a biomaterial or tissue sheet from a microfluidic cartridge. Consistent sheet formation is achieved by coordinating the flow rates at which bioink and cross-linker solution are delivered, with the speed at which a pair of rollers actively translate the cartridge along the surface. We demonstrate compatibility with dermal and epidermal cells embedded in ionically cross-linkable biomaterials (e.g., alginate), and enzymatically cross-linkable proteins (e.g., fibrin), as well as their mixtures with collagen type I and hyaluronic acid. Upon rapid crosslinking, biomaterial and skin cell-laden sheets of consistent thickness, width and composition were obtained. Sheets deposited onto horizontal, agarose-coated surfaces were used for physical and in vitro characterization. Proof-of-principle demonstrations for the in situ formation of biomaterial sheets in murine and porcine excisional wound models illustrate the capacity of depositing onto inclined and compliant wound surfaces that are subject to respiratory motion. We expect the presented work will enable the in situ delivery of a wide range of different cells, biomaterials, and tissue adhesives, as well as the in situ fabrication of spatially organized biomaterials, tissues, and biohybrid structures.

  7. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface.

    Science.gov (United States)

    Qu, Feini; Pintauro, Michael P; Haughan, Joanne E; Henning, Elizabeth A; Esterhai, John L; Schaer, Thomas P; Mauck, Robert L; Fisher, Matthew B

    2015-01-01

    Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    Science.gov (United States)

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bone grafting with granular biomaterial in segmental maxillary osteotomy: A case report

    Directory of Open Access Journals (Sweden)

    Orion Luiz Haas Junior

    2016-01-01

    Conclusion: This is the first report of bone grafting with a granular biomaterial in segmental maxillary osteotomy. Successful formation of new bone with density greater than that of the surrounding tissue was achieved, preventing pseudarthrosis and postoperative instability.

  10. Biodegradable Poly (Ester Urethane) Urea Biomaterials For Applications in Combat Casualty Care

    National Research Council Canada - National Science Library

    Guelcher, S. A; Sriniwasan, A; Hollinger, J. O

    2006-01-01

    A family of biocompatible, biodegradable poly(ester urethane)urea (PEUUR) biomaterials has been developed that degrade to non-toxic by-products and support the attachment and proliferation of cells...

  11. The use of CD47-modified biomaterials to mitigate the immune response.

    Science.gov (United States)

    Tengood, Jillian E; Levy, Robert J; Stachelek, Stanley J

    2016-05-01

    Addressing the aberrant interactions between immune cells and biomaterials represents an unmet need in biomaterial research. Although progress has been made in the development of bioinert coatings, identifying and targeting relevant cellular and molecular pathways can provide additional therapeutic strategies to address this major healthcare concern. To that end, we describe the immune inhibitory motif, receptor-ligand pairing of signal regulatory protein alpha and its cognate ligand CD47 as a potential signaling pathway to enhance biocompatibility. The goals of this article are to detail the known roles of CD47-signal regulatory protein alpha signal transduction pathway and to describe how immobilized CD47 can be used to mitigate the immune response to biomaterials. Current applications of CD47-modified biomaterials will also be discussed herein. © 2016 by the Society for Experimental Biology and Medicine.

  12. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    of biomaterials.The recently developed approach for quantifying the climate tipping potential (CTP) of emissions is used, with some adaption, to account for the value of temporary carbon storage. CTP values for short-, medium- and long-term carbon storage in chosen biomaterials are calculated for two possible...... future atmospheric greenhouse gas (GHG) concentration development scenarios. The potential magnitude of the temporary carbon storage in biomaterials is estimated by considering the global polymer production being biobased in the future.Both sets of CTP values show the same trend; storage which releases...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...

  13. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  14. Building a Roadmap for the Biomaterials Science and Technology to Serve Military Needs

    National Research Council Canada - National Science Library

    Kohn, Joachim; Kantor, Carole; Devore, David

    2005-01-01

    In order to develop a requirements document detailing the medical product needs of the military that could be enabled by biomaterials technologies, we conducted a planning conference on February 2-4...

  15. Pronounced biomaterial dependency in cartilage regeneration using nonexpanded compared with expanded chondrocytes

    NARCIS (Netherlands)

    Tsuchida, A.I.; Bekkers, J.E.J.; Beekhuizen, M.; Vonk, L.A.; Dhert, W.J.A.; Saris, Daniël B.F.; Creemers, L.B.

    2013-01-01

    We aimed to investigate freshly isolated compared with culture-expanded chondrocytes with respect to early regenerative response, cytokine production and cartilage formation in response to four commonly used biomaterials. Materials & methods: Chondrocytes were both directly and after expansion to

  16. Solid-phase based synthesis of ureidopyrimidinone-peptide conjugates for supramolecular biomaterials

    NARCIS (Netherlands)

    Feijter, de I.; Goor, O.J.G.M.; Hendrikse, S.I.S.; Comellas Aragones, M.; Sontjens, S.H.M.; Zaccaria, S.; Fransen, P.P.K.H.; Peeters, J.W.; Milroy, L.G.; Dankers, P.Y.W.

    2015-01-01

    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the

  17. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation

    OpenAIRE

    Sun, GuoQiang; Yu, Ruth T.; Evans, Ronald M.; Shi, Yanhong

    2007-01-01

    TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to ...

  18. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers.

    Science.gov (United States)

    Klopfleisch, R

    2016-10-01

    The foreign body reaction (FBR) is a response of the host tissue against more or less degradation-resistant foreign macromolecular material. The reaction is divided into five different phases which involve most aspects of the innate and the adaptive immune system: protein adsorption, acute and chronic inflammation, foreign body giant cell formation and fibrosis. It is long known, that macrophages play a central role in all of these phases except for protein adsorption. Initially it was believed that the macrophage driven FBR has a complete negative effect on biocompatibility. Recent progress in biomaterial and macrophage research however describe macrophages as more than pure antigen phagocytosing and presenting cells and thus pro-inflammatory cells involved in biomaterial encapsulation and failure. Quite contrary, both, pro-inflammatory M1 macrophages, the diverse regulatory M2 macrophage subtypes and even foreign body giant cells (FBGC) are after necessary for integration of non-degradable biomaterials and degradation and replacement of degradable biomaterials. This review gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed. The view on role of macrophages in the foreign body reaction against biomaterials is rapidly changing. Despite the initial idea that macrophage are mainly involved in undesired degradation and biomaterial rejection it becomes now clear that they are nevertheless necessary for proper integration of non-degradable biomaterials and degradation of placeholder, degradable biomaterials. As a pathologist I experienced a lack on a good summary on the current taxonomy, functions and phenotypes of macrophages in my recent projects on the biocompatibility of biomaterials in the mouse model. The submitted review therefore intends to gives a

  19. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  20. Real-time in vivo detection of biomaterial-induced reactive oxygen species

    OpenAIRE

    Liu, Wendy F.; Ma, Minglin; Bratlie, Kaitlin M.; Dang, Tram T.; Langer, Robert; Anderson, Daniel G.

    2010-01-01

    The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to...

  1. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    OpenAIRE

    Udayabhanu Jammalamadaka; Karthik Tappa

    2018-01-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the abi...

  2. Preparation of polymeric biomaterials with the aid of radiation-chemical methods

    International Nuclear Information System (INIS)

    Kabanov, Vitalii Ya

    1998-01-01

    The results of the application of radiation-chemical methods for the preparation of polymeric biomaterials are surveyed and treated systematically. The characteristic features of these methods and their advantages and disadvantages are indicated. The properties of polymeric biomaterials prepared using ionising radiation are examined. Particular attention is devoted to studies carried out during the last 10-15 years. The bibliography includes 492 references.

  3. The use of confocal Raman spectroscopy to characterise the microstructure of complex biomaterials: foods

    OpenAIRE

    Pudney, Paul D. A.; Hancewicz, Thomas M.; Cunningham, Dale G.

    2002-01-01

    The properties and behaviour of many biomaterials often depends crucially on their microstructure. This is especially true of the largest class of biomaterials in use, foods. They include general properties, e.g., food texture, and others, such as spreadability of margarine/butter, pourablity of ketchup, scoopablity of ice cream, and also flavour release (a problem that has much in common with drug delivery), to name but a few. Thus, most food laboratories do a large amount of work in rheolog...

  4. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  5. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.

    Science.gov (United States)

    Jammalamadaka, Udayabhanu; Tappa, Karthik

    2018-03-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  6. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  7. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Udayabhanu Jammalamadaka

    2018-03-01

    Full Text Available Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  8. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    Science.gov (United States)

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  9. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2016-03-01

    Full Text Available The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  10. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  11. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  12. Physicochemical properties of marine collagen-alginate biomaterial

    Science.gov (United States)

    Soon, K. S.; Hii, S. L.; Wong, C. L.; Leong, L. K.; Woo, K. K.

    2017-12-01

    Collagen base biomaterials are widely applied in the field of tissue engineering. However, these fibrous proteins in animal connective tissues are insufficient to fulfill the mechanical properties for such applications. Therefore, alginate as a natural polysaccharide was incorporated. In this study, Smooth wolf herring skins was collected from the local fish ball processing industry for collagen extraction using acid solubilisation method. On the other hand, alginate from brown seaweed (Sargassum polycystum) was extracted with calcium carbonate at 50 °C. The composite films of different collagen and alginate ratio were prepared by lyophilisation with pure collagen film as control. The effects of alginate on swelling behaviour, porosity, collagenase degradation and tensile strength of the composite films were investigated. Swelling behaviour increased with alginate content, 50 % alginate film achieved 1254.75 % swelling after 24 h. All composite films achieved more than 80 % porosity except the film with 80 % collagen (65.41 %). Porosity was highest in 100 % alginate (94.30 %). Highest tensile strength (1585.87 kPa) and young modulus (27.05 MPa) was found in 50 % alginate film. In addition, resistance to collagenase degradation was improved with alginate content, lowest degradation rate was determined in 80 % alginate film. Results indicated alginate is efficient in improving some mechanical properties of the composite film.

  13. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    Science.gov (United States)

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  14. Improving the clinical impact of biomaterials in cancer immunotherapy

    Science.gov (United States)

    Gammon, Joshua M.; Dold, Neil M.; Jewell, Christopher M.

    2016-01-01

    Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients. PMID:26871948

  15. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding.

    Science.gov (United States)

    Hickman, DaShawn A; Pawlowski, Christa L; Sekhon, Ujjal D S; Marks, Joyann; Gupta, Anirban Sen

    2018-01-01

    Bleeding complications arising from trauma, surgery, and as congenital, disease-associated, or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Therefore, stoppage of bleeding (hemostasis) is of paramount clinical significance in prophylactic, surgical, and emergency scenarios. For externally accessible injuries, a variety of natural and synthetic biomaterials have undergone robust research, leading to hemostatic technologies including glues, bandages, tamponades, tourniquets, dressings, and procoagulant powders. In contrast, treatment of internal noncompressible hemorrhage still heavily depends on transfusion of whole blood or blood's hemostatic components (platelets, fibrinogen, and coagulation factors). Transfusion of platelets poses significant challenges of limited availability, high cost, contamination risks, short shelf-life, low portability, performance variability, and immunological side effects, while use of fibrinogen or coagulation factors provides only partial mechanisms for hemostasis. With such considerations, significant interdisciplinary research endeavors have been focused on developing materials and technologies that can be manufactured conveniently, sterilized to minimize contamination and enhance shelf-life, and administered intravenously to mimic, leverage, and amplify physiological hemostatic mechanisms. Here, a comprehensive review regarding the various topical, intracavitary, and intravenous hemostatic technologies in terms of materials, mechanisms, and state-of-art is provided, and challenges and opportunities to help advancement of the field are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  17. Stem cells in skin regeneration: biomaterials and computational models

    Directory of Open Access Journals (Sweden)

    Daniele eTartarini

    2016-01-01

    Full Text Available The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles, has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.

  18. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  19. Controlling fungal biofilms with functional drug delivery denture biomaterials.

    Science.gov (United States)

    Wen, Jianchuan; Jiang, Fuguang; Yeh, Chih-Ko; Sun, Yuyu

    2016-04-01

    Candida-associated denture stomatitis (CADS), caused by colonization and biofilm-formation of Candida species on denture surfaces, is a significant clinical concern. We show here that modification of conventional denture materials with functional groups can significantly increase drug binding capacity and control drug release rate of the resulting denture materials for potentially managing CADS. In our approach, poly(methyl methacrylate) (PMMA)-based denture resins were surface grafted with three kinds of polymers, poly(1-vinyl-2-pyrrolidinone) (PNVP), poly(methacrylic acid) (PMAA), and poly(2-hydroxyethyl methacrylate) (PHEMA), through plasma-initiated grafting polymerization. With a grafting yield as low as 2 wt%, the three classes of new functionalized denture materials showed significantly higher drug binding capacities toward miconazole, a widely used antifungal drug, than the original PMMA denture resin control, leading to sustained drug release and potent biofilm-controlling effects against Candida. Among the three classes of functionalized denture materials, PNVP-grafted resin provided the highest miconazole binding capability and the most powerful antifungal and biofilm-controlling activities. Drug binding mechanisms were studied. These results demonstrated the importance of specific interactions between drug molecules and functional groups on biomaterials, shedding lights on future design of CADS-managing denture materials and other related devices for controlled drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Fox, Kate; Brandt, Milan; Nisbet, David; Williams, Richard

    2017-01-01

    The ability to fabricate artificial tissue constructs through the controlled organisation of cells, structures and signals within a biomimetic scaffold offers significant promise to the field of regenerative medicine, drug delivery and tissue engineering. Advances in additive manufacturing technologies have facilitated the printing of spatially defined cell-laden artificial tissue constructs capable of providing biomimetic spatiotemporal presentation of biological and physical cues to cells in a designed multicomponent structure. Despite significant progress in the field of bioprinting, a key challenge remains in developing and utilizing materials that can adequately recapitulate the complexities of the native extracellular matrix on a nanostructured, chemical level during the printing process. This gives rise to the need for suitable materials - particularly in establishing effective control over cell fate, tissue vascularization and innervation. Recently, significant interested has been invested into developing candidate materials using protein and peptide-derived biomaterials. The ability of these materials to form highly printable hydrogels which are reminiscent of the native ECM has seen significant use in a variety of regenative applications, including both organ bioprinting and non-organ bioprinting. Here, we discuss the emerging technologies for peptide-based bioprinting applications, highlighting bioink development and detailing bioprinter processors. Furthermore, this work presents application specific, peptide-based bioprinting approaches, and provides insight into current limitations and future perspectives of peptide-based bioprinting techniques.