WorldWideScience

Sample records for biomass resource assessments

  1. Biomass resource assessment for China

    Energy Technology Data Exchange (ETDEWEB)

    Li Jingjing; Zhou Aiming [Energy Research Institute of State Planning and Development Commission (China)

    1999-07-01

    This paper calculated and assessed the biomass resource availability in China, especially straw and stalk, domestic animal excreta and municipal solid waste. The assessment showed that biomass energy will be a rich and sustainable resource in China, important for developing the social economy and improving the environment in the future. (author)

  2. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  3. Assessment of Biomass Resources in Afghanistan

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  4. TVA GIS-based biomass resource assessment

    International Nuclear Information System (INIS)

    The focus of this paper is a computer-based system for estimating the costs of supplying wood fuel. The system is being developed for the Tennessee Valley Authority and is referred to as the Biomass Resource Assessment Version One (BRAVO) system. The main objective in developing the BRAVO system is to assist TVA in estimating the cost for supplying wood fuel to any one of its twelve coal-fired power plants. The BRAVO system is developed within a Geographic Information System (GIS) platform and is designed to allow a user to perform open-quotes what ifclose quotes analyses related to the costs of wood fuel supply. Three types of wood fuel are considered in the Bravo system: mill residues, logging residues and short-rotation woody crops (SRWC). Each type of wood fuel has unique economic and supply characteristics. The input data for the system includes the specific locations, amounts, and prices of the various types of wood fuel throughout the TVA region. The system input is completed by data on political boundaries, power plant locations, road networks and a model for estimating transportation costs as a function of distance. The result is a comprehensive system which includes information on all possible wood fuel supply points, demand points and product movement costs. In additions, the BRAVO system has been designed to allow a user to perform sensitivity analysis on a variety of supply system parameters. This will enable TVA to thoroughly investigate the financial impacts of issues such as increased competition for wood fuel, environmental policies, fuel taxes, and regional economic cycles

  5. Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R. P

    2008-11-01

    This survey of biomass resource assessments and assessment capabilities in Asia-Pacific Economic Cooperation (APEC) economies considered various sources: academic and government publications, media reports, and personal communication with contacts in member economies.

  6. Assessing Ohio's Biomass Resources for Energy Potential Using GIS

    OpenAIRE

    Jeanty, P. Wilner; Warren, Dave; Hitzhusen, Fred

    2004-01-01

    This recently completed AEDE study funded by Ohio DOD involves a geo-referenced inventory by county of Ohio biomass resources for energy. Categories include forest and crop residues, livestock manure, municipal solid waste and food processing waste. This is an update and expansion of an earlier (1982) inventory of biomass by Hitzhusen et al. It also disaggregates and expands a study by Walsh et al. in 2000 which ranked Ohio 11th among the 50 states in total biomass availability. By estimating...

  7. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  8. Biomass for energy in the European Union - a review of bioenergy resource assessments

    Directory of Open Access Journals (Sweden)

    Bentsen Niclas

    2012-04-01

    Full Text Available Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.

  9. Biomass for energy in the European Union - a review of bioenergy resource assessments.

    Science.gov (United States)

    Bentsen, Niclas Scott; Felby, Claus

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  10. Assessment of Biomass Resources from Marginal Lands in APEC Economies

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R. P.

    2009-08-01

    The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

  11. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  12. Biomass resources assessment: Measuring family fuelwood consumption in Zimbabwe

    International Nuclear Information System (INIS)

    Two surveys are reported: one to test possible economic benefits to low-income urban households of using a charcoal stove for cooking, and the other covering both fuelwood collected and consumed over twelve months, in order to compare fuelwood consumption of households using a 'fuel-saving' mudstove with that of those using the more usual open hearth. The charcoal stove and charcoal as a fuel, although having desirable characteristics, do not offer an appreciable saving to current users of paraffin or most urban wood users. Consumption of paraffin was found to be 0.5 ± 0.21/household/day; of wood 7 ± 2kg/household/day and of charcoal 1.0 ± 0.4kg/household/day. Enquiries on woodfuel cost revealed that prices are influenced more by supply-side than demand-side factors, and that preferred fuel species constitute most (more than 61-91% depending on location) of the wood on sale in the streets of the suburbs surveyed. Rural users of both the mudstove and the open hearth consume about 7.5kg/household/day, although the mudstoves in question were five years old, and near the end of their useful life. Evidence of pressure on fuelwood resources and motivation towards using fuel-saving stoves appeared: only 61% of samples recorded were of preferred fuelwood species, and both collection and use patterns showed adaptations to less easily obtainable supplies. Measurements in both the rural and urban cases showed consumption per household is a more reliable basis for comparison than consumption per head. Simpler tests on recently built mud stoves are recommended and are currently being carried out. (author)

  13. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    OpenAIRE

    Karthikeyan Natarajan; Petri Latva-Käyrä; Anas Zyadin; Suresh Chauhan; Harminder Singh; Ari Pappinen; Paavo Pelkonen

    2015-01-01

    India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, ...

  14. Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Natarajan

    2015-05-01

    Full Text Available India is experiencing energy crisis and a widening gap between energy supply and demand. The country is, however, endowed with considerable, commercially and technically available renewable resources, from which surplus agro-biomass is of great importance and a relatively untapped resource. In the policy making process, knowledge of existing biomass use, degree of social reliance, and degree of biomass availability for energy production is unequivocal and pre-conditional. Field observations, documentation, and fill-in sheet tools were used to investigate the potential of biomass resources and the existing domestic, commercial, and industrial uses of biomass in selected Indian states. To do so, a team of field observers/supervisors visited three Indian states namely: Maharashtra (MH, Madhya Pradesh (MP, and Tamil Nadu (TN. Two districts from each state were selected to collect data regarding the use of biomass and the extent of biomass availability for energy production. In total, 471 farmers were interviewed, and approximately 75 farmers with various land holdings have been interviewed in each district. The existing uses of biomass have been documented in this survey study and the results show that the majority of biomass is used as fodder for domestic livestock followed by in-site ploughing, leaving trivial surplus quantities for other productive uses. Biomass for cooking appeared to be insignificant due to the availability and access to Liquefied Petroleum Gas (LPG cylinders in the surveyed districts. Opportunities exist to utilize roadside-dumped biomass, in-site burnt biomass, and a share of biomass used for ploughing. The GIS-based maps show that biomass availability varies considerably across the Taluks of the surveyed districts, and is highly dependent on a number of enviromental and socio-cultural factors. Developing competitive bioenergy market and enhancing and promoting access to more LPG fuel connections seem an appropriate socio

  15. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  16. Assessment of equine waste as a biomass resource in New York State

    Science.gov (United States)

    Equine operations may generate excessive quantities of biomass (manure and used bedding) that could either become a waste or a resource, especially when the biomass is developed as an alternative energy source. Using the generated biomass as a resource can involve a variety of approaches such as la...

  17. Biomass for energy in the European Union - a review of bioenergy resource assessments

    OpenAIRE

    Bentsen Niclas; Felby Claus

    2012-01-01

    Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the cur...

  18. Resource Assessment for Microalgal/Emergent Aquatic Biomass Systems in the Arid Southwest: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, B. W.; Arthur, M. F.; Taft, L. G.; Wagner, C. K.; Lipinsky, E. S.; Litchfield, J. H.; McCandlish, C. D.; Clark, R.

    1982-12-23

    This research project has been designed to facilitate the eventual selection of biomass production systems using aquatic species (microalgal and emergent aquatic plant species (MEAP) which effectively exploit the potentially available resources of the Southwest.

  19. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  20. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO2, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case with

  1. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  2. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased rapidly in

  3. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  4. Biomass cogeneration. A business assessment

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  5. Assessment Planning and Evaluation of Renewable Energy Resources: an Interactive Computer Assisted Procedure. [hydroelectricity, biomass, and windpower in the Pittsfield metropolitan region, Massachusetts

    Science.gov (United States)

    Aston, T. W.; Fabos, J. G.; Macdougall, E. B.

    1982-01-01

    Adaptation and derivation were used to develop a procedure for assessing the availability of renewable energy resources on the landscape while simultaneously accounting for the economic, legal, social, and environmental issues required. Done in a step-by-step fashion, the procedure can be used interactively at the computer terminals. Its application in determining the hydroelectricity, biomass, and windpower in a 40,000 acre study area of Western Massachusetts shows that: (1) three existing dam sites are physically capable of being retrofitted for hydropower; (2) each of three general areas has a mean annual windspeed exceeding 14 mph and is conductive to windpower; and (3) 20% of the total land area consists of prime agricultural biomass while 30% of the area is prime forest biomass land.

  6. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  7. Bamboo: An Overlooked Biomass Resource?

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  8. Biomass Resource Allocation among Competing End Uses

    Energy Technology Data Exchange (ETDEWEB)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  9. Decarbonised Polygeneration from Fossil and Biomass Resources

    OpenAIRE

    Ng, Kok Siew

    2011-01-01

    Utilisation of biomass resources and CO2 abatement systems in currentlyexploited fossil resource based energy systems are the key strategies in resolving energysustainability issue and combating against global climate change. These strategies areaffected by high energy penalty and high investment. Therefore, it is imperative toassess the viability of these energy systems and further identify niche problem areasassociated with energy efficiency and economic performance improvement. Th...

  10. Soybean Biomass as a Renewable Energy Resource

    Directory of Open Access Journals (Sweden)

    Vlatka Rozman

    2009-12-01

    Full Text Available A constant need for energy is necessary and permanent as far as modern society is concerned. The primary energy resource in today’s world are fossil fuels. A serious problem is the fact that their amount is decreasing. Fossil fuels are not renewable. Their sources will disappear and new energy resources will have to be switched to, because the consequences of energy resources disappearance are inconceivable. Biomass as an energy resource is not properly used. There are many ways to generate energy from biomass. You can grow plants to get biomass for energy production or you can use plants’ residues, which are the results of agricultural production. You can also use organic waste products and animal faeces. The oldest way of the production of energy or fuel from biomass is burning. Agricultural biomass including soybean straw is a very acceptable fuel from the point of view of environmental protection and especially greenhouse gases emission.The use of biomass energy offers chances for the establishment of new jobs. This way it can have a positive influence on both the local and national economy.The knowledge and use of soybean growing has a great importance for the development of certain regions in Croatia, as well as on the employment rate and entrepreneur encouragement. It would be even more important to start using unused land areas. Soybean growing makes it possible to introduce “the third culture“ (except for wheat and corn, which will result in additional and safer profit for farmers in Croatia, a more favourable use of agricultural machines, and the profitability of production.

  11. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  12. Increasing biomass resource availability through supply chain analysis

    International Nuclear Information System (INIS)

    Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability. The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy. - Highlights: • As global biomass demand increases, focus is placed indigenous resources. • A Biomass Resource Model is applied to analyse UK biomass supply chain dynamics. • Biomass availability is best increased

  13. Sustainable Biomass Resources for Biogas Production:Mapping and Analysis of the Potential for Sustainable Biomass Utilization in Denmark and Europe

    OpenAIRE

    Meyer, Ane Katharina Paarup

    2015-01-01

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the...

  14. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  15. Biomass Resources Distribution in the Terrestrial Ecosystem of China

    Directory of Open Access Journals (Sweden)

    Na Li

    2015-07-01

    Full Text Available In this study, Moderate Resolution Imaging Spectroradiometer (MODIS data and the multiple linear regression model were used to estimate distribution of biomass resources in 2010. The establishment of models, developed using different vegetation biomass sample data, normalized difference vegetation index (NDVI, leaf area index (LAI, meteorological data, coordinates, terrain data, and statistical data. Results based on a cross-validation approach show that the model can explain 95.6% of the variance in biomass, with a relative estimation error of 67 g·m−2 for a range of biomass between 0–73,875 g·m−2. Spatial statistic results were consistent with the practical condition in most cases. The above- and below-ground biomass (ABGB of China was estimated to be 31.1 Pg (1 Pg = 1015 g in 2010. The forest ecosystem has the largest total biomass, which represents about 70% of the whole terrestrial ecosystem. The desert ecosystem has minimum biomass value. The Belowground Endowment (BRE varied differently in spatial distribution, with the high values occurring in the southeast and northeast. The low values were primarily distributed in north and northwest regions, where it is mostly desert and few plants. Biomass per capita indicates the availability of natural resources per capita. Tibet had the maximum biomass per capita (807 tone in 2010. Shanghai and Tianjin had the minimum biomass per capita, less than 500 kg. Shanghai, Tianjin, Guangzhou, Beijing, and Hainan had negative growth of biomass per capita.

  16. SSCM analyses of biomass resources in Randers, Norddjurs and Syddjurs

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    This project has been commissioned by ENERCOAST whose overall aim is to stimulate increased use and production of biomass, and create a market for bio energy in the North Sea region. The Enercoast project has been financed by the EU Interreg IVB with partners from Denmark, Germany, United Kingdom, Sweden and Norway. The Danish project leader is AgroBusiness Park/ CBMI /Innovation Centre for Bioenergy and Environmental Technology. Central Region Denmark is co-financing 34% of the Danish portion of the project, while the municipalities of Norddjurs, Syddjurs and Randers are contributing to the project with their working hours. The Danish portion of this project focuses on three Danish municipalities, Randers, Norddjurs, and Syddjurs, and the possibilities to reach local energy and climate targets by increasing the use and production of biomass. The project is divided into 6 phases of which this report is part of the second and third phase which focus on analyses of various biomass resources on a local level including carrying out SSCM analyses of these resources. The aim of this report is to assess the sustainability of relevant bio energy supply chains related to the resource accessibility in the three municipalities with main focus on biogas, straw, wood residues and energy crops for combined heat and power production. Sustainable Supply Chain Management (SSCM) is a concept that has many definitions and the methodologies used to approach this are numerous. In this report the SSCM analysis is used to answer the following question: What are the possibilities of increased use of biomass for energy production in the three municipalities, and what consequences are associated with the utilisation of each of the selected resources described through our case studies? For each of the resource case studies an overview of the supply chain is illustrated through a matrix. Each step of the supply chain from the primal material production in on end to heat and electricity

  17. Biomass Energy Systems and Resources in Tropical Tanzania

    OpenAIRE

    Wilson, Lugano

    2010-01-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity.  About 90% of the total primary energy consumption of the country is from biomass.  Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply.  However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal.  Due to reasons that include the limited...

  18. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO2, and reduced emissions of SO2, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO2 and SO2, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO2, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for achieving

  19. Biomass, new markets ! How to mobilize the resource? Seminar proceedings

    International Nuclear Information System (INIS)

    The various papers of this seminar addressed the following questions: how to valorize the biomass potential to respond to challenges of greenhouse gas emission reduction? What are the conditions to mobilize biomass considering the existing concurrence between its different usages? How to use experiences of biomass mobilization to cope with the demand increase? How to consider the key factors of success all together? More particularly, the interveners addressed the different resources (agricultural by-products, forestry, and wood waste), actors, technical approaches, and economical and logistical aspects, the role of biomass in the commitments for the struggle against climate change, the issue of supply

  20. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia

    International Nuclear Information System (INIS)

    Coal fired electricity is a major factor in Australia's greenhouse gas emissions (GHG) emissions. The country has adopted a mandatory renewable energy target (MRET) to ensure that 20% of electricity comes from renewable sources by 2020. In order to support the MRET, a market scheme of tradable Renewable Energy Certificates (RECs) has been implemented since 2001. Generators using biomass from eligible sources are able to contribute to GHG emission reduction through the substitution of coal for electricity production and are eligible to create and trade RECs. This paper quantifies the potential biomass resources available for energy generation from forestry and agriculture in the Green Triangle, one of the most promising Australian Regions for biomass production. We analyse the cost of electricity generation using direct firing of biomass, and estimate the required REC prices to make it competitive with coal fired electricity generation. Major findings suggest that more than 2.6 million tonnes of biomass are produced every year within 200 km of the regional hub of Mount Gambier and biomass fired electricity is viable using feedstock with a plant gate cost of 46 Australian Dollars (AUD) per tonne under the current REC price of 34 AUD per MWh. These findings are then discussed in the context of regional energy security and existing targets and incentives for renewable energies. -- Highlights: → We assessed the biomass production in the Green Triangle. → 2.6 million tonnes of biomass per year are produced within 200 km from Mt Gambier. → Renewable Energy Certificates makes bioenergy competitive with coal electricity. → At a REC price of 34 AUD, biomass of up to 46 AUD/tonne might be used for bionergy

  1. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  2. NATURAL RESOURCES ASSESSMENT

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  3. NATURAL RESOURCES ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this

  4. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.F. [ed.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  5. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.F. (ed.)

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  6. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  7. Uranium resource assessments

    International Nuclear Information System (INIS)

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  8. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  9. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  10. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C. [ed.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  11. Measuring Forest Biomass and Height from Space - Results from the assessment of ESA's BIOMASS satellite concept

    Science.gov (United States)

    Scipal, Klaus

    2010-05-01

    Knowledge about forest above-ground biomass is of fundamental importance in quantifying the terrestrial carbon cycle, but is also crucial in assessing forest resources and the ecosystem services provided by forests, and is an essential element in assessing carbon fluxes under the United Nations Framework Convention on Climate Change. For most parts of the world, in particular the tropical forests, information on biomass is currently very limited, at very coarse scales, and subject to large and unquantified errors. In response to the urgent need for greatly improved mapping of global biomass and the lack of any current space systems capable of addressing this need, the BIOMASS mission was proposed to the European Space Agency for the third cycle of Earth Explorer Core missions and was selected for Feasibility Study (Phase A) in March 2009. Over the five-year mission lifetime, it shall map the full range of the world's above-ground biomass with accuracy and spatial resolution compatible with the needs of national scale inventory and carbon flux calculations, and will map changes in forest biomass. The mission will carry a polarimetric P-Band SAR, capable of providing both direct measurements of biomass derived from inverting intensity data, and measurements of forest height derived from polarimetric interferometry. The BIOMASS payload consists of a fully polarimetric system operated at a centre frequency of 435 MHz (P-band) with a bandwidth of 6 MHz. To enable measurements at a scale comparable to that of deforestation and forest disturbance (i.e. around 1 ha), it is envisaged that BIOMASS will provide level-1 products with around 50 m x 50 m resolution at 4 looks, so around 16 looks at a scale of 1 ha. The satellite shall fly in a sun-synchronous dawn-dusk orbit to minimise ionospheric disturbances with a controlled drift to meet the revisit requirement for forest height recovery using Pol-InSAR techniques. The revisit time will be between 25-45 days to maintain

  12. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  13. An Overview of the Australian Biomass Resources and Utilization Technologies

    Directory of Open Access Journals (Sweden)

    Wall, T. F.

    2006-07-01

    Full Text Available Information on Australian biomass resources including bagasse, black liquor from paper pulp production, wood waste and forestry residues, energy crops, crop wastes, food and agricultural wet waste, and municipal solid wastes is provided in the review. The characteristics of the Australian biomass are typical of those of other countries, i.e., high moisture and volatile matter, low heating value and density, and low sulfur and nitrogen content, but high Ca and Mg for woody biomass. The characteristics influence biomass utilization. Biomass is used extensively at present within Australia, primarily for domestic heating, as bagasse in the sugar industry, and for electricity generation. Biomass usage for electricity generation is increasing and is expected to reach 5.2 Mt/year by 2019-20. Exports, as wood chips, are approximately 10 Mt/year in 2000-01. Forestry residues have been estimated to be 23 Mt/year. Current technologies that utilize biomass in Australia include those for electricity and heat by direct combustion, cofiring with coal and fluidized bed combustion, for biogas generation (from landfills, and aerobic digestion, and as bio-liquids. Related to bio-liquid fuels, ethanol production from molasses and wheat is making progress. The resultant ethanol is used as a petrol extender, and a bio-diesel process is under development.

  14. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  15. Zooplankton biomass and potential fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of zooplankton biomass, secondary production and potential fishery resources of the EEZ of India was made from the data collected during a period of 15 years from 1976 to 1991. The areas studied included the Arabian Sea, Bay of Bengal...

  16. Community assessment of tropical tree biomass

    DEFF Research Database (Denmark)

    Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K.

    2015-01-01

    previous experience. Indeed, only experienced monitors were able to discriminate trees with low wood densities. Local ecological knowledge did not allow consistent tree identification across monitors. Conclusion Future REDD+ programmes may benefit from the systematic training of local monitors in tree DBH...... communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess...... wood density and botanical identification of trees. Results Community monitors were able to measure tree DBH accurately, but some large errors were found in girth measurements of large and odd-shaped trees. Monitors with experience from the logging industry performed better than monitors without...

  17. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense of......Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030, regardless of...

  18. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    , regardless of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense......Among the existing environmental assessments of bioethanol for transport, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030...

  19. Petroleum resources assessment 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report consists of two articles. (1) Petroleum resources assessment of the Okinawa Trough: The hydrocarbon potential has been evaluated for the Tertiary strata in the northwestern margin of the Okinawa Trough on the basis of the pale-ontological, petrological, geochemical data from two wells (Nikkan 8-9 and JDZ 7-3), and geophysical data. (2) Petroliferous basin analysis in Jinju area (2): Petroleum geological studies such as stratigraphy, sedimentology, petrology and organic geochemistry were carried out in the Gyeongsang Supergroup, Junju area. Based on lithofacies and rock color, the sequence can be divided into seven formations which can be organized into two groups (Sindong Group: Nagdong, Hasandong and Jinju formations in ascending order; Hayang Group: Chilgog, Silla Conglomerate, Haman and Jindong formations). (author). 57 refs.

  20. Assessment of Danish biomass resources for producing biofuels for the transport sector towards the year 2020; Opgoerelse af den danske biomasseressourcer til brug for fremstilling af biobraendstoffer til transportsektoren frem mod 2020

    Energy Technology Data Exchange (ETDEWEB)

    Blume, S.; Hauggaard-Nielsen, H.; Jensen, E.S.

    2008-11-15

    The agricultural sector will have an increasing role to play according to society needs for biobased products, including biofuels. However, it is necessary to point out national positions of strength in order to act proactive and gain the benefits for this growing marked. It is clear from this report that both agriculture and forestry, and connected industries, have great possibilities to deliver biomass resources without decreasing the current food production. From the calculations in this report, including several assumptions concerning convertibility and uncertainties about yield potentials comparing, the sector can provide up to 30 % of the existing fossil fuel consumption in the transportation sector using cereal straw. Approximately, 10 % if the wood resources are utilized and about 6 % using more waste based biomasses. Fish and slaughterhouse waste can cover up to about 9 % of the present diesel consumption. However, increased sale of bioresources for bioenergy purposes require that this resource is validated as a part of the whole farm or forestry system including political regulations like for instance the EU Natura 2000 directives. Different crops have additional functions/ effects like groundwater protection, biodiversity, soil fertility (including carbon sequestration) which needs to be included when validating such biomass crops. Furthermore, several biomass resources which are regarded as waste at present represent a much higher value, and needs to be addressed in such perspective. (author)

  1. Biomass Assessment: A Question of Method and Expertise

    International Nuclear Information System (INIS)

    Whereas the new stakes on lignocellulosic biomass are often demand-oriented (heat, electricity, biofuels, etc.) mainly through public policies, the new equilibrium will depend also on the supply-side. This supply has to be understood as socio-economic and environmental targets combining many topics: multi- resources (agriculture, forest, 'dedicated coppices', by-products and wastes), available/potential quantities and costs, localisation, replacement/substitution effects (activities, lands), and supply- side stakeholders' behaviours. Many initiatives have been launched to grasp those dimensions through projects (National Research Agency, French Environment and Energy Management Agency, etc.). Many figures exist on the biomass assessment aspect but they are not clear enough and not comparable due to differences in definitions, scopes, data, parameters, geographical levels, reporting units, time-scale, etc. Regarding the characterisation of biomass supply chains, evaluations are often incomplete and lack methodological references. This article aims to focus on methodological key points and barriers to overcome, in order to get a better evaluation and understanding of biomass mobilisation expected by potential users and public authorities. (authors)

  2. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report consists of 2 subjects. 1) Petroleum resources assessment on the western part of the Kunsan Basin: Palynomorphs including spores, pollen and organic-walled microfossils and calcareous microfossils such as ostracods, charophytes and gastropods were studied for the biostratigraphic work of Kachi-1 and IIH-1Xa wells. Based on available well data, the rifting probably began in the Cretaceous time had continued until Paleocene. It is considered that compressional force immediately after rifting event deformed sedimentary sections. During the period of Paleocene to middle Miocene, the sediments were deposited in stable environment without particular tectonic event. 2) Petroliferous basin analysis in Taegu area (II): The Nakdong and Jinju formations contain abundant black shales, and thermal maturity of the organic matter reached at the final stage of dry gas generation. These formations also contain thick sandstones which can act as a petroleum reservoir. However, reservoir quality of the sandstones is poor (porosity: < 5%; permeability: < 0.001 md). In these sandstones, secondary pores such as dissolution pores and micropores can act as a tight gas reservoir. (author). 56 refs., 24 tabs., 68 figs.

  3. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This report consists of 2 subjects. 1) Petroleum resources assessment of the Kunsan Basin : Kunsan Basin is mainly filled with Cretaceous and Tertiary clastic sediments, and divided into Southwest Sub-basin, Central Sub-basin and Northeast Sub-basin by uplifts and faults developed in the basin. Microfossils were studied for the biostratigraphic works of drill wells in the Kunsan Basin. The microfossils include organic-walled microfossils such as spores, pollen and nonmarine dinoflagellates and calcareous microfossils such as ostracods, charophytes and gastropods. The fossil assemblages of the Kunsan Basin reveal nonmarine environments ranging from alluvial fan to shallow lacustrine and climatic variation between subtropical and cool temperate temperature in the arid/humid alternating conditions. According to the paleontological data, the Kunsan Basin was initiated in the Early Cretaceous and expanded during Paleogene followed by regional erosion at the closing time of Paleogene on which Neogene sediments have been accumulated. The Paleogene strata show laterally irregular thickness in each Epoch due to migrating depocenter. 2) Petroliferous basin analysis in Hapcheon area (I) : The Cretaceous Gyeongsang Supergroup consists of more than 9 Km sequences of sedimentary and volcanic rocks in Hapcheon-Changyong-Euiryong-Haman area and occupies the middle part of the Milyang subbasin. The Supergroup can be divided into three group; Sindong, Hayang and Yuchon groups in ascending order. Based on rock color, the Sindong Group can be subdivided into Nakdong, Hasandong and Jinju Formations. The Hayang Group can be subdivided into Chilgok, Silla Conglomerate, Haman and Jindong Formations. The Chilgok Formation includes basaltic lava and tuffs in the upper part. The Haman Formation has Kusandong tuff (keybed) in the uppermost part in the Changyong area, whereas the tuff is intercalated below the vocaniclastics in the Haman area. (author). 60 refs., 22 tabs., 61 figs.

  4. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    On the basis of diverse microfossils such as foraminifers, ostracods, micromulluscs, fossil spores and pollen and calcareous nannofossils derived from 14 drill holes, the sediments are divided into two part, the upper marine part and the lower nonmarine one. Marine part is subdivided into 4 foraminiferal zones and 3 nannofossil zones of Plio-Pleistocene age. In the lower part ranging from Oligocene to Late Miocene 4 palynomoph assemblages are established, which reflect climatic changes fluctuating between subtropical and cool temperate. Some fine sediments occurring in the South Sea continental shelf are rich in organic matter to be hydrocarbon source rock. The organic matter is mainly compared to type 3. However, lower part of the Geobuk-1 and Okdom-1 shows more oil prone geochemical characteristics than other wells. The kerosene is mixture type 1 and type 3 organic matter. The main oil generation zone located between 2,500 m and 3,000 m and gas generation zone from 3,500 m to 4,000 m approximately. Hydrocarbon accumulation could be expected in the trap formed in the period earlier than 10 Ma. as the hydrocarbon started to be expelled at 10 Ma. according to the modeling. Approximately 13,000 Line-km of multichannel seismic data integrated with 14 wells and gravity and magnetic data were analyzed to investigate the structural and stratigraphic evolution of southern part of offshore Korea. The northeast-southwest trending Taiwan-Sinzi Uplift Belt separates the area into two regions with different tectonic features, northwestern and southwestern regions. The potential hydrocarbon traps associated with anticline, tilted fault block, fault, unconformity, and rollover structure exist. This project is consisted of two main subjects. 1) Petroleum resources assessment on the continental shelf basin of the south sea. 2) Petroliferous basin analysis in Taegu area (1). (author). refs., tabs., figs.

  5. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    International Nuclear Information System (INIS)

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials

  6. Photoreceptor effects on plant biomass, resource allocation, and metabolic state.

    Science.gov (United States)

    Yang, Deyue; Seaton, Daniel D; Krahmer, Johanna; Halliday, Karen J

    2016-07-01

    Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions. PMID:27330114

  7. Uranium resource assessment activities

    International Nuclear Information System (INIS)

    The projected reductions in the growth of nuclear power have reduced the need for information on the long-term supply of uranium (i.e., beyond the year 2000). This change, plus the need to reduce budgets, has led to a modification to the program. As a consequence, the previous plans to carry on a modified National Uranium Resource Evaluation (NURE) Program, focusing on specific geologic areas of World-Class and intermediate-grade deposits, have been abandoned. The program for this fiscal year will focus on the core group of activities that were carried out here in Grand Junction prior to the start of the NURE activity. That core program will involve the collection of basic data from industry and estimation of ore reserves and production capability of the industry, as well as appraisal of potential resources based on company data and data developed in the NURE Program. Collection of other related data, on exploration activity, land holdings, and production, as well as on market activity, will also be continued. This program is expected to provide, as it has in the past, a wide spectrum of reliable information on uranium for use by government and industry explorers, producers, and consumers. The NURE Program has developed an enormous data base on the geochemical and characteristics of much of the country. In the international area, the principal activities will be carried out in cooperation with the OECD Nuclear Energy Agency and the IAEA. These activities will include the publication of biennial reports on world resources, production, and demand; cooperative studies on exploration and production technology; and work with the International Uranium Resource Evaluation Project. This project has completed the study of resources of some ten countries, and has two studies in progress

  8. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  9. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  10. Sustainable and resource-conserving utilization of global land areas and biomass; Globale Landflaechen und Biomasse nachhaltig und ressourcenschonend nutzen

    Energy Technology Data Exchange (ETDEWEB)

    Jering, Almut; Klatt, Anne; Seven, Jan; Ehlers, Knut; Guenther, Jens; Ostermeier, Andreas; Moench, Lars

    2012-10-15

    The contribution under consideration reports on the state of the art of biomass based land use as well as on existing and future global development trends. An ecologically compatible and socially equitable utilization of resources as well as priorities in the production and utilization of biomass are described in order to achieve their goals. Approaches to action, measures and policy recommendations are presented with respect to the development of a globally sustainable, resource-conserving utilization of land.

  11. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  12. Fort Carson Wind Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  13. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  14. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  15. Biomass for biorefining: Resources, allocation, utilization, and policies

    Science.gov (United States)

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  16. Assessment of rural energy resources

    International Nuclear Information System (INIS)

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity

  17. Balanced Ecological Use of Biomass Resources in DK

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Per Sieverts; Christensen, B.T.;

    1996-01-01

    use of biomass for energy purposes may however conflict with the need to maintain soil quality of arable fields. The official Danish policies are supporting both an expansion of ecological farming and an expansion of the use of biomass in the energy supply system. This may give rise to conflicts...... around the use of biomass between different interest groups....

  18. Performance Assessment and Optimization of Biomass Steam Turbine Power Plants by Data Envelopment Analysis

    OpenAIRE

    Nattanin Ueasin; Anupong Wongchai; Sakkarin Nonthapot

    2015-01-01

    As rice husk is abundantly natural resource in Thailand, it has been used as the biomass energy resource in the stream turbine power plants, in particular to very small power producers (VSPPs). The VSPPs’ plants produced by rice husk is generally found in many regions of Thailand, however its performance efficiency and optimization has never been assessed at any level. This study aimed to fulfill this gap by adopting the method of data envelopment analysis (DEA) to relatively measure the perf...

  19. Assessing Resource Assessment for MRE (Invited)

    Science.gov (United States)

    Hanson, H. P.; Bozec, A.; Duerr, A. S.; Rauchenstein, L. T.

    2010-12-01

    The Southeast National Marine Renewable Energy Center at Florida Atlantic University is concerned with marine renewable energy (MRE) recovery from the Florida Current using marine hydrokinetic technology and, in the future, from the thermocline in the Florida Straits via ocean thermal energy conversion. Although neither concept is new, technology improvements and the evolution of policy now warrant optimism for the future of these potentially rich resources. In moving toward commercial-scale deployments of energy-generating systems, an important first step is accurate and unembellished assessment of the resource itself. In short, we must ask: how much energy might be available? The answer to this deceptively simple question depends, of course, on the technology itself - system efficiencies, for example - but it also depends on a variety of other limiting factors such as deployment strategies, environmental considerations, and the overall economics of MRE in the context of competing energy resources. While it is universally agreed that MRE development must occur within a framework of environmental stewardship, it is nonetheless inevitable that there will be trade-offs between absolute environmental protection and realizing the benefits of MRE implementation. As with solar-energy and wind-power technologies, MRE technologies interact with the environment in which they are deployed. Ecological, societal, and even physical resource concerns all require investigation and, in some cases, mitigation. Moreover, the converse - how will the environment affect the equipment? - presents technical challenges that have confounded the seagoing community forever. Biofouling, for example, will affect system efficiency and create significant maintenance and operations issues. Because this will also affect the economics of MRE, nonlinear interactions among the limiting factors complicate the overall issue of resource assessment significantly. While MRE technology development is

  20. Outline of biomass resource analysis with a global land use and energy model

    International Nuclear Information System (INIS)

    Biomass resource analysis is outlined in consideration of land use competition, using a global land use and energy model (GLUE) formulated with a SD (System Dynamics) technique and a biomass balance table (BBT) that can show overall biomass flow and bio-energy potential quantitatively. Bio-energy potentials of not only energy crops but also biomass residues are evaluated, considering overall biomass flow including food chains and wood chains. Fluctuations of bio-energy potential are evaluated using two scenarios for animal food demands. (K.A.)

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. A Supply-Chain Analysis Framework for Assessing Densified Biomass Solid Fuel Utilization Policies in China

    Directory of Open Access Journals (Sweden)

    Wenyan Wang

    2015-07-01

    Full Text Available Densified Biomass Solid Fuel (DBSF is a typical solid form of biomass, using agricultural and forestry residues as raw materials. DBSF utilization is considered to be an alternative to fossil energy, like coal in China, associated with a reduction of environmental pollution. China has abundant biomass resources and is suitable to develop DBSF. Until now, a number of policies aimed at fostering DBSF industry have been proliferated by policy makers in China. However, considering the seasonality and instability of biomass resources, these inefficiencies could trigger future scarcities of biomass feedstocks, baffling the resilience of biomass supply chains. Therefore, this review paper focuses on DBSF policies and strategies in China, based on the supply chain framework. We analyzed the current developing situation of DBSF industry in China and developed a framework for policy instruments based on the supply chain steps, which can be used to identify and assess the deficiencies of current DBSF industry policies, and we proposed some suggestions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance the development of DBSF industry.

  3. Biomass, microorganisms for special applications, microbial products I, energy from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.J.; Reed, G. (eds.)

    1982-01-01

    The book contains the following sections: biomass from carbohydrates; biomass from higher n-alkanes; biomass from methane and methanol; phototropic microalgae; edible mushrooms; starter cultures for milk and meat processing; starter cultures for other purposes; microbial soil amelioration; bacteria for nitrogen fixation; microbial insecticides; ethanol fermentation; acetic acid; lactic acid; citric acid; gluconic acid; organic acids of minor importance; amino acids; extracellular polysaccharides; microbial emulsifiers and de-emulsifiers; and energy from renewable resources. 190 figures, 205 tabels. (CKK)

  4. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 109 GJ in 2005 to 5.7 × 109 GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  5. The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Xinhua Shen

    2015-09-01

    Full Text Available In order to solve the energy crisis and reduce emissions of greenhouse gases (GHG, renewable energy resources are exploited for power generation. Because lignocellulosic biomass resources are abundant and renewable, various technologies are applied to using lignocellulosic biomass to derive biofuel and electricity. This paper focuses on power generation from lignocellulosic biomass and comparison of the effects of different feedstocks, transportation, and power generation technologies evaluated through life cycle assessment (LCA. The inputs and boundaries of LCA vary with different feedstocks, such as forestry wood, agricultural residues, and fast-growing grass. For agricultural residues and fast-growing grass, the transportation cost from field to power plant is more critical. Three technologies for power generation are analyzed both with and without pelletization of lignocellulosic biomass. The GHG emissions also vary with different feedstocks and depend on burning technologies at different plant scales. The daily criteria pollutant emissions of power generation from different lignocellulosic biomass were evaluated with a life cycle assessment model of GREET.net 2014. It is concluded that bio-power generation is critical with the urgency of greenhouse effects.

  6. Canada's forest biomass resources: deriving estimates from Canada's forest inventory

    International Nuclear Information System (INIS)

    A biomass inventory for Canada was undertaken to address the data needs of carbon budget modelers, specifically to provide estimates of above-ground tree components and of non-merchantable trees in Canadian forests. The objective was to produce a national method for converting volume estimates to biomass that was standardized, repeatable across the country, efficient and well documented. Different conversion methods were used for low productivity forests (productivity class 1) and higher productivity forests (productivity class 2). The conversion factors were computed by constructing hypothetical stands for each site, age, species and province combination, and estimating the merchantable volume and all the above-ground biomass components from suitable published equations. This report documents the procedures for deriving the national biomass inventory, and provides illustrative examples of the results. 46 refs., 9 tabs., 5 figs

  7. Synthesis of methanol from biomass/CO{sub 2} resources

    Energy Technology Data Exchange (ETDEWEB)

    Specht, M.; Bandi, A.; Baumgart, F. [Center for Solar Energy and Hydrogen Research (ZSW), Stuttgart (Germany); Murray, C.N. [Joint Research Centre, Environment Inst., Ispra (Italy); Gretz, J. [Hydrogen Association, Hamburg (Germany)

    1999-07-01

    The utilisation of biomass for methanol production via gasification faces the problem of a large excess carbon in the produced synthesis gas. The stoichiometric adjustment can be accomplished either by adding hydrogen or by removing carbon in form of carbon dioxide. The addition of hydrogen allows a nearly complete utilisation of the carbon contained in the biomass, with a high methanol production rate. But hydrogen admixture to the syngas requires supplementary investments for an electrolysis unit. The removal of carbon dioxide is less investment intensive, but due to the extremely low carbon conversion efficiency of about 20% of the biomass carbon content, the methanol production costs become very high. An acceptable way is a partial compensation of the carbon excess by adding electrolytic hydrogen (using the oxygen for the gasifying process), saving about half of the carbon from the biomass and avoiding extremely high investment and electricity costs. (Author)

  8. Synthesis of methanol from biomass/CO2 resources

    International Nuclear Information System (INIS)

    The utilisation of biomass for methanol production via gasification faces the problem of a large excess carbon in the produced synthesis gas. The stoichiometric adjustment can be accomplished either by adding hydrogen or by removing carbon in form of carbon dioxide. The addition of hydrogen allows a nearly complete utilisation of the carbon contained in the biomass, with a high methanol production rate. But hydrogen admixture to the syngas requires supplementary investments for an electrolysis unit. The removal of carbon dioxide is less investment intensive, but due to the extremely low carbon conversion efficiency of about 20% of the biomass carbon content, the methanol production costs become very high. An acceptable way is a partial compensation of the carbon excess by adding electrolytic hydrogen (using the oxygen for the gasifying process), saving about half of the carbon from the biomass and avoiding extremely high investment and electricity costs. (Author)

  9. Extraction and characterization of lignin from different biomass resources

    OpenAIRE

    Dereca Watkins; Md. Nuruddin; Mahesh Hosur; Alfred Tcherbi-Narteh; Shaik Jeelani

    2015-01-01

    Lignocellulosic biomass has been acknowledged for potential use to produce chemicals and biomaterials. Lignin is the second most abundant natural polymer with cellulose being number one, making up to 10–25% of lignocellulosic biomass. Lignin is a three-dimensional, highly cross-linked macromolecule composed of three types of substituted phenols, which include: coniferyl, sinapyl, and p-coumaryl alcohols by enzymatic polymerization, yielding a vast number of functional groups and linkages. The...

  10. Region-Specific Indicators for Assessing the Sustainability of Biomass Utilisation in East Asia

    Directory of Open Access Journals (Sweden)

    Yuki Kudoh

    2015-12-01

    Full Text Available This paper presents the findings of an expert working group of researchers from East Asian countries. The group was tasked with developing a theoretically sound and practically implementable methodology for assessing the sustainability of biomass utilisation in East Asian countries based on the needs and potential of biomass resources in this region. Building on six years of research conducted between 2007 and 2013, the working group formulated a set of main and secondary indicators for biomass utilisation under three pillars of sustainability. For the environmental pillar, the main indicator was life cycle greenhouse gas emissions and secondary indicators were water consumption and soil quality. For the economic pillar, the main indicator was total value added and secondary indicators were net profit, productivity, and net energy balance. For the social pillar, the main indicators were employment generation and access to modern energy, and the secondary indicator was the human development index. The application of the working group methodology and indicators in sustainability assessments of biomass utilisation will enable decision makers in East Asian countries to compare the sustainability of biomass utilisation options and to make decisions on whether or not to launch or sustain biomass utilisation initiatives.

  11. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  12. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  13. Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal

    International Nuclear Information System (INIS)

    Based on the results of previous studies, the efficiency of a Brayton/Hirn combined cycle fuelled with a clean syngas produced by means of biomass gasification and equipped with CO2 removal by chemical absorption reached 33.94%, considering also the separate CO2 compression process. The specific CO2 emission of the power plant was 178 kg/MW h. In comparison with values previously found for an integrated coal gasification combined cycle (ICGCC) with upstream CO2 chemical absorption (38-39% efficiency, 130 kg/MW h specific CO2 emissions), this configuration seems to be attractive because of the possibility of operating with a simplified scheme and because of the possibility of using biomass in a more efficient way with respect to conventional systems. In this paper, a life cycle assessment (LCA) was conducted with presenting the results on the basis of the Eco-Indicator 95 impact assessment methodology. Further, a comparison with the results previously obtained for the LCA of the ICGCC was performed in order to highlight the environmental impact of biomass production with fossil fuels utilisation. The LCA shows the important environmental advantages of biomass utilisation in terms of reduction of both greenhouse gas emissions and natural resource depletion, although an improved impact assessment methodology may better highlight the advantages due to the biomass utilisation

  14. Lidar-based biomass assessment for the Yukon River Basin

    Science.gov (United States)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    Climate change is expected to have a significant impact on high-latitude forests in terms of their ability to sequester carbon as expressed as pools of standing total biomass and soil organic matter. Above ground biomass is an important driver in ecosystem process models used to assess, predict, and understand climate change impacts. Therefore, it is of compelling interest to acquire accurate assessments of current biomass levels for these high-latitude forests, a particular challenge because of their vastness and remoteness. At this time, remote sensing is the only feasible method through which to acquire such assessments. In this study, the use of lidar data for estimating shrub and tree biomass for the Yukon Flats region of Alaska’s Yukon River Basin (YRB) is demonstrated. The lidar data were acquired in the late summer and fall of 2009 as were an initial set of field sampling data collected for training and validation purposes. The 2009 field campaigns were located near Canvasback Lake and Boot Lake in the YRB. Various tallies of biomass were calculated from the field data using allometric equations (Bond-Lamberty et al. 2002, Yarie et al. 2007, Mack et al. 2008). Additional field data were also collected during two 2010 field campaigns at different locations in the Yukon Flats. Linear regressions have been developed based on field-based shrub and tree biomass and various lidar metrics of canopy height calculated for the plots (900 m^2). A multiple linear regression performed at the plot level resulted in a strong relationship (R^2=0.88) between observed and predicted biomass at the plot level. The coefficients for this regression were used to generate a shrub and tree biomass map for the entire Yukon Flats study area covered by lidar. This biomass map will be evaluated using additional field data collected in 2010 as well as other remote sensing data sources. Furthermore, additional lidar metrics (e.g. height of median energy) are being derived from the raw

  15. The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom.

    Science.gov (United States)

    Phillips, D; Mitchell, E J S; Lea-Langton, A R; Parmar, K R; Jones, J M; Williams, A

    2016-07-01

    A number of countries have introduced energy policies to reduce the emission of carbon dioxide which, in the case of bio-heat, has resulted in increased use of small wood burning stoves and boilers, particularly in Europe. There are issues surrounding the supply of sustainable wood feedstock, prompting a desire to utilise local biomass resources. This includes biomass generated through the management of natural woodlands in nature reserves and conservation areas. These management practices can also extend to other areas, such as raised bog wildernesses and estuary Reed beds. We term the biomass from this resource as conservation biomass. This study is concerned with the viability of this resource as a fuel within the United Kingdom, and combustion tests were carried out using a small domestic stove. It was concluded that there is as much as 500kty(-1) that could be used in this way. PMID:27107483

  16. The French market of biomass. An analysis of barriers and levers of development of the wood-energy sector, main biomass resource

    International Nuclear Information System (INIS)

    This article presents the content of a market study which aimed at assessing the weight of wood-energy in the French energy mix when it represents 97 per cent of biomass consumed under the form of heat, at giving an overview of markets within which this energy is now valorised (housing heating, heat and cogeneration), at analysing the business model of biomass projects, at assessing mechanisms aimed at supporting this sector, and at assessing the potential of the French market as far as wood-energy is concerned. The report presents the operation principles and applications of biomass, analyses the share of wood-energy in the French energy mix and the objectives defined by the Grenelle de l'Environnement, presents the French forests as an abundant resource, comments wood-based heating of housing as an evolving market, presents and analyses the market of industrial and collective heat, and discusses the perspective of a multiplication by 4 by 2020 of cogeneration installed capacities

  17. Comparative assessment of national bioenergy strategies and biomass action plans in 12 EU countries. European Best Practice Report. Extended version

    International Nuclear Information System (INIS)

    This report is a key output of the EU project 'BAP Driver', an initiative of energy agencies from 8 European key bioenergy nations and the European Biomass Association (AEBIOM). The BAP Driver project aims at identifying ways for improvement of current national policy frameworks for bioenergy in Europe, and at leveraging the process of developing country-specific Biomass Action Plans (BAP). From a strategic perspective, the general approach of this report focuses on four stages, required for setting up national biomass strategies and action plans: Assessment of national biomass resources; Formulation of national bioenergy strategies and biomass action plans; Implementation of national bioenergy policies; Monitoring of national bioenergy markets and policies. Overall the analysis is split into three chapters corresponding to the following logical steps: Chapter B: Country analysis (12 individual country profiles); Chapter C: Benchmark analysis (comparative assessment of 12 countries); Chapter D: Best practice analysis (transnational conclusions across national boundaries)

  18. Comparative assessment of national bioenergy strategies and biomass action plans in 12 EU countries. European Best Practice Report. Executive Summary

    International Nuclear Information System (INIS)

    This report is a key output of the EU project 'BAP Driver', an initiative of energy agencies from 8 European key bioenergy nations and the European Biomass Association (AEBIOM). The BAP Driver project aims at identifying ways for improvement of current national policy frameworks for bioenergy in Europe, and at leveraging the process of developing country-specific Biomass Action Plans (BAP). From a strategic perspective, the general approach of this report focuses on four stages, required for setting up national biomass strategies and action plans: Assessment of national biomass resources; Formulation of national bioenergy strategies and biomass action plans; Implementation of national bioenergy policies; Monitoring of national bioenergy markets and policies. Overall the analysis is split into three chapters corresponding to the following logical steps: Chapter B: Country analysis (12 individual country profiles); Chapter C: Benchmark analysis (comparative assessment of 12 countries); Chapter D: Best practice analysis (transnational conclusions across national boundaries)

  19. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    International Nuclear Information System (INIS)

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics

  20. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  1. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  2. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    production is increasing. As the demand for biomaterials increases, so does the need for knowledge about their environmental performance – both in absolute terms and relative to the petrochemical counterparts that they may replace. LCA is a commonly used tool for assessing environmental sustainability......Goal and scope The goal of this PhD project is to contribute to a more consistent methodology for life cycle assessment (LCA) of biomaterials and to address the environmental performance and perspectives of biomaterials. In particular, it is the goal to develop an approach for dealing...... level. The temporal scope is defined by the impact category considered. The technological scope includes both current environmental performance of biomaterials and a discussion of future perspectives, including potentials for future change in their environmental impacts compared to fossil based...

  3. Estimating Biomass Burning Emissions for Carbon Cycle Science and Resource Monitoring & Management

    Science.gov (United States)

    French, N. H.; McKenzie, D.; Erickson, T. A.; McCarty, J. L.; Ottmar, R. D.; Kasischke, E. S.; Prichard, S. J.; Hoy, E.; Endsley, K.; Hamermesh, N. K.

    2012-12-01

    Biomass burning emissions, including emissions from wildland fire, agricultural and rangeland burning, and peatland fires, impact the atmosphere dramatically. Current tools to quantify emission sources are developing quickly in a response to the need by the modeling community to assess fire's role in the carbon cycle and the land management community to understand fire effects and impacts on air quality. In a project funded by NASA, our team has developed methods to spatially quantify wildland fire emissions for the contiguous United States (CONUS) and Alaska (AK) at regional scales. We have also developed a prototype web-based information system, the Wildland Fire Emissions Information System (WFEIS) to make emissions modeling tools and estimates for the CONUS and AK available to the user community. With new funding through two NASA programs, our team from MTRI, USFS, and UMd will be further developing WFEIS to provide biomass burning emissions estimates for the carbon cycle science community and for land and air quality managers, to improve the way emissions estimates are calculated for a variety of disciplines. In this poster, we review WFEIS as it currently operates and the plans to extend the current system for use by the carbon cycle science community (through the NASA Carbon Monitoring System Program) and resource management community (through the NASA Applications Program). Features to be enhanced include an improved accounting of biomass present in canopy fuels that are available for burning in a forest fire, addition of annually changing vegetation biomass/fuels used in computing fire emissions, and quantification of the errors present in the estimation methods in order to provide uncertainty of emissions estimates across CONUS and AK. Additionally, WFEIS emissions estimates will be compared with results obtained with the Global Fire Emissions Database (GFED), which operates at a global scale at a coarse spatial resolution, to help improve GFED estimates

  4. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 2: Country case studies

    International Nuclear Information System (INIS)

    The present publication presents the results of three UNIDO-sponsored case studies, each with a separate abstract, concerned with perspectives of development and utilisation of biomass energy resources in Brazil, Philippines and Romania. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  5. Symposium on development and utilization of biomass energy resources in developing countries. Proceedings. V. 1: Thematic papers

    International Nuclear Information System (INIS)

    The present publication consists of papers, each with a separate abstract, from fourteen countries giving broad perspectives on the development and utilisation of biomass energy resources. Emphasis is put on identifying regional biomass energy resources. Policies and strategies governing as well as barriers limiting the development and utilization of biomass energy are discussed. Innovative technologies as well as technology transfer related to biomass energy utilisation are dealt with, together with economic and environmental issues

  6. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  7. Extraction and characterization of lignin from different biomass resources

    Directory of Open Access Journals (Sweden)

    Dereca Watkins

    2015-01-01

    Full Text Available Lignocellulosic biomass has been acknowledged for potential use to produce chemicals and biomaterials. Lignin is the second most abundant natural polymer with cellulose being number one, making up to 10–25% of lignocellulosic biomass. Lignin is a three-dimensional, highly cross-linked macromolecule composed of three types of substituted phenols, which include: coniferyl, sinapyl, and p-coumaryl alcohols by enzymatic polymerization, yielding a vast number of functional groups and linkages. There is a wide range of lignin sources available, including: jute, hemp, cotton, and wood pulp. Hence, the lignin's physical and chemical behavior will be different with respect to the original source and extraction method used. The objective of this research is to extract lignin from nonwood cellulosic biomass (Wheat straw, Pine straw, Alfalfa, Kenaf, and Flax fiber by formic acid treatment followed by peroxyformic acid treatment for the potential use as a partial replacement for the phenol precursor in resole phenolic systems. Isolated lignins were purified to remove impurities and characterized by Fourier transform infrared spectroscopy (FTIR, Thermogravimetric analysis (TGA and Differential scanning calorimetry (DSC analysis to compare thermal properties and chemical composition. It was found that lignin obtained from alfalfa provided the greatest yield of the various sources. Enthalpy measurements were higher for lignin from flax fiber and alfalfa at 190.57 and 160.90 J/g, respectively. The source of lignin samples was seen to affect the thermal properties. Overall, lignin extracted from wheat straw had the greatest thermal stability followed very closely by that obtained from flax fiber.

  8. Griffiss AFB integrated resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  9. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  10. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-08-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  11. Feasibility study : identifying economic opportunities for bugwood and other biomass resources in Alberta and BC

    International Nuclear Information System (INIS)

    This feasibility study discussed energy technologies for biomass feedstocks including mill residues, roadside residues, and non-merchantable tree stands in Alberta and British Columbia (BC). The study demonstrated that the lack of mill residue resources means that targeted government support may be needed to help the energy industry to use more costly resources such as roadside residue or bugwood. Government policies are also needed to support the long-term availability of biomass supplies in order to lower the supply risks related to the use of biomass resources in the energy industry. Lower prices for power in both provinces make the use of biomass unfavourable for small-scale technologies under 10 MW. However, cogeneration projects using biomass showed higher returns when power conversion efficiency was low. Higher revenues were generated from heat sales displacing natural gas than from electricity sales at current tariffs. Large-scale biomass power plants were viable when lower-cost feedstocks were available. Bio-oils were suitable as supplements for heat generation in cogeneration processes. Pellet production was also viable using less expensive feedstocks.The co-firing of biomass at coal plants required little capital investment. The study demonstrated that Alberta's power production incentive of $60 per MWh was sufficient to improve the economics of small-scale projects. It was recommended that the program be continued and paid out over a period of 10 years. It was concluded that specific electricity tariffs and incentives are needed to accelerate regrowth and create a viable biomass industry for the future. 33 refs., 45 tabs., 17 figs

  12. Resource assessment/commercialization planning meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-24

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  13. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  14. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Labriet, M.; Cabal, H.; Lechon, Y.

    2008-07-01

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  15. An integrated environmental analysis of short rotation forests as a biomass resource

    International Nuclear Information System (INIS)

    Short-rotation plantations are an environmental sound energy resource if: (1) the biomass production systems are not pressed to maximum production, (2) cultivation measures are taken to minimize nutrient leaching, (3) the short-rotation plantations are designed for visual adaptation to the landscape, and (4) directed silvicultural measures are taken to retain and improve important habitats and protect marginal forest areas. (author)

  16. Enhancement of the NEEDS-TIMES Model: Data for Spain on Biomass Resources and Renewable Electricity

    International Nuclear Information System (INIS)

    The objective of this report is to describe the data related to both electricity generation (focus on distributed generation and Renewable Energy Source) as well as biomass resources and transformation in Spain. It will contribute to the analysis of the renewable energy potential at the European level (RES2020 project). (Author)

  17. Application of a GIS-BIOLOCO tool for the design and assessment of biomass delivery chains

    NARCIS (Netherlands)

    Geijzendorffer, I.R.; Annevelink, E.; Elbersen, B.S.; Smidt, R.A.; Mol, de R.M.

    2008-01-01

    The spatial fragmentation of different biomass sources in one or more regions makes design and assessment of sustainable biomass delivery chains rather complicated. This paper presents a GIS tool that supports the design and facilitates a sustainability assessment of biomass delivery chains at a reg

  18. Coal resource assessments: Calculating resources by GIS at the USGS

    Energy Technology Data Exchange (ETDEWEB)

    Gluskoter, H.; Tewalt, S.J.; Levine, M.

    1999-07-01

    Recent projections as to the future of coal are, for the most part, in general agreement that the production will continue to increase at approximately the current rate for the next 16 to 21 years. A very different view of the future resulted from recent analyses done by the EIA for the US House of Representatives Committee on Science. In these analyses the impacts of the Kyoto Protocol on US energy markets were modeled using six scenarios that reduced the carbon emission to varying levels below the reference case (carbon emissions in the reference case are 33% above the 1990 levels in 2020) The six scenarios resulted in projections that coal consumption in the US in 2010 would be reduced by between 18 and 77% with further significant decreases by 2020. This paper discusses national coal resource assessments by the USGS; coal resource data handling and analyses by GIS; coal assessments from resources to reserves; and coal resource information delivery.

  19. Natural resource damage assessments: The second generation

    International Nuclear Information System (INIS)

    The Damage Assessment Regulations Team (DART), Office of General Counsel, National Oceanic and Atmospheric Administration (NOAA), has focused on developing natural resource damage assessment regulations for oil pollution in navigable waters. These procedures may lower the transaction costs of assessments, encourage joint cooperative assessments, simplify most assessments and provide technical guidance for conducting assessments. DART is developing regulations for the assessment of damages due to injuries related to oil spills under the Oil pollution Act of 1990. These regulations will involve coordination, restoration and economic valuation. NOAA encourages federal, state, tribal and foreign trustees, to develop prespill plans. Coordination with response agencies assures protection of important natural resources. The regulations provide an open record, which becomes the basis for judicial review. Various methods being developed to assess damages for injuries to natural resources include: compensation formulas for spills under 50,000 gallons of oil, the Type A model, expedited damage assessment (EDA) procedures, and comprehensive damage assessment (CDA) procedures which can be used for spills of various sizes. These procedures provide trustees with a choice for assessing natural resource damages to each oil spill. NOAA is emphasizing the importance of restoration. Restoration plans will define project goals and objectives, establish procedures and methods for site restoration, and define the approach based on sound science. Finally, numerous economic methods are identified to calculate the lost or diminished use as passive use of the affected resources

  20. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  1. Remote sensing for forest resource assessment: applications to carbon management

    Science.gov (United States)

    Goetz, S. J.; Conn, C.; Wolf, J.

    2003-12-01

    The U.S. Forest Service and the State of Maryland's Department of Natural Resources have initiated an assessment of forest resources in Maryland, and across the Chesapeake Bay Watershed. This Strategic Forest Lands Assessment (SFLA) uses remote sensing and geographic information systems analyses to conduct ecological, socioeconomic and vulnerability assessments in support of resource management activities and forest product based economies. As part of this activity we are modeling net primary productivity of the region, and producing maps of land cover type - including the proportion of subpixel tree cover from Landsat7 imagery. These map products are being used in several programs to assess forest cover change, relationships with standing carbon stocks, and to target lands for a combination of ecological protection and economic resource extraction, as well as carbon sequestration. These efforts not only provide critical data sets and derived products used as decision tools for forest conservation, restoration and enhancement, but also advance efforts to promote sustainable forestry activities. The forest management efforts are designed to optimize carbon sink strategies and reduce atmospheric carbon pools. By using a combination of estimated, simulated and measured biomass and productivity, and timber removal estimates from Forest Inventory Analysis, we can determine where carbon sequestration can be maximized and sustainable forestry activities can be encouraged. The effects of these forest management activities, both past and present, and changes in forest cover, can have substantial impacts on regional carbon sequestration.

  2. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  3. Theoretical Assessment of Algal Biomass Potential for Carbon Mitigation and Biofuel Production

    Directory of Open Access Journals (Sweden)

    K. Sudhakar

    2012-01-01

    Full Text Available In view of ever increasing global demand for energy, there has been substantial interest in developing renewable biologically produced fuel. Microalgae are one such emerging resource considered as an alternative for biodiesel production. However its realistic potential is often either over estimated or underestimated. In view of this, a rigorous assessment is carried out to evaluate the realistic potential of micro algal biodiesel based on photosynthesis, thermodynamics and physical assumptions. This paper identifies six best regions in each continent for algal biomass cultivation considering both sunlight and local climatic conditions. The mean hourly meteorological data, sunlight, ambient temperature and rainfall information for the identified potential site is combined to estimate annual biomass production, lipid production and carbon mitigation potential. Maximum possible algal biomass yield and oil productivity have been estimated for six global sites at three different scenarios of photosynthetic efficiency 11.42, 6 and 3%. The upper optimistic biomass, oil yield and carbon fixation potential was calculated to be 533 T/ha/yr, 1, 25, 333 L/ha/yr. and 95 Tons CO2/ha/yr. This study provides a baseline data for theoretical maximum, minimum and best estimates of open pond microalgae production systems.

  4. Banana biomass as potential renewable energy resource: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Jing Yan; Lai, Chin Lin; Lee, Keat Teong; Tan, Kok Tat; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001-2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world. (author)

  5. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development o

  6. Economic value of geothermal resource assessment information

    Energy Technology Data Exchange (ETDEWEB)

    Packer, M.B.; Mikic, B.B.; Meal, H.C.; Guillamon-Duch, H.

    1980-07-01

    The potential of decision analysis for the evaluation of resource assessment expenditures is discussed. Calculations are shown for the expected value of information - both perfect and imperfect information. (MHR)

  7. Assessment and utilization of soil water resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analyses of water interactions and water balance, this paper discusses the issues on the assessment and regulation of soil water resources, which lays the scientific basis for limited irrigation and water-saving agriculture.

  8. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    impacts. Waste, such as municipal solid waste, does not involve land use change impacts. However, existing and emerging waste treatment technologies offer different environmental benefits and drawbacks which should be evaluated in order to recommend appropriate technologies in selected scenarios. To...... contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the...... as the overall energy conversion efficiency is significantly lower thereby leading to decreased GHG performances. On this basis, recovery of energy, materials and resources from waste such as residual agricultural/forestry biomass and municipal/commercial/industrial waste should be seen as the way...

  9. Biomass energy resource enhancement: the move to modern secondary energy forms

    International Nuclear Information System (INIS)

    Income growth and industrialization in developing countries is driving their economies towards the use of secondary energy forms that deliver high efficiency energy and environmentally more benignant-uses for biomass. Typical of these secondary energy forms are electricity, distributed gas systems and liquid fuels. This trend suggests that the hitherto separate pathways taken by biomass energy technology development in developing and industrialized countries will eventually share common elements. While in the United States and the European Union the majority of the bioenergy applications are in medium- and large-scale industrial uses of self-generated biomass residues, the characteristic use in developing countries is in rural cook-stoves. Increasing urbanization and investment in transportation infrastructure may allow increasing the operational scale in developing countries. One factor driving this trend is diminishing individual and household biomass resource demands as rural incomes increase and households ascend the energy ladder towards clean and efficient fuels and appliances. Scale increases and end-user separation from the biomass resource require that the biomass be converted at high efficiency into secondary energy forms that serve as energy carriers. In middle-income developing country economies such as Brazil, secondary energy transmission is increasingly in the form of gas and electricity in addition to liquid transportation fuels. Unfortunately, the biomass resource is finite, and in the face of competing food and fibre uses and land constraints, it is difficult to substantially increase the amount of biomass available. As a result, development must emphasize conversion efficiency and the applications of bioenergy. Moreover, as a consequence of economic growth, biomass resources are increasingly to be found in the secondary and tertiary waste streams of cities and industrial operations. If not used for energy production, this potential resource needs

  10. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    composition (e.g. amount of organic and paper) and properties (e.g. LHV, water content) play a crucial role in affecting the final ranking. When assessing the environmental performance of the waste refinery, a detailed knowledge of the waste composition is recommendable as this determines the energy outputs and thereby the assessment results. The benefits offered by the waste refinery compared with incinerators and MBT plants are primarily related to the optimized electricity and phosphorous recovery. However, recovery of nutrients and phosphorous might come at the expenses of increased N-eutrophication and emissions of hazardous substances to soil. The first could be significantly mitigated by post-treating the digestate left from bioliquid digestion (e.g. composting). Compared with waste refining treatment, efficient source-segregation of the organic waste with subsequent biological processing may decrease digestate/compost contamination and recover phosphorous similarly to the waste refinery process. However, recent studies highlighted how this strategy often fails leading to high mass/energy/nutrients losses as well as to contamination of the segregated organic waste with unwanted impurities. All in all, more insight should be gained into the magnitude of iLUC impacts associated with energy crops. Their quantification is the key factor determining a beneficial or detrimental GHG performance of bioenergy systems based on energy crops. If energy crops are introduced, combined heat and power production should be prioritized based on the results of this research. Production of liquid biofuels for transport should be limited as the overall energy conversion efficiency is significantly lower thereby leading to decreased GHG performances. On this basis, recovery of energy, materials and resources from waste such as residual agricultural/forestry biomass and municipal/commercial/industrial waste should be seen as the way ahead. Highly-efficient combustion and incineration offer

  11. Remote Assessment of Lunar Resource Potential

    Science.gov (United States)

    Taylor, G. Jeffrey

    1992-01-01

    Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.

  12. In Brief: Assessing Afghanistan's mineral resources

    Science.gov (United States)

    Showstack, Randy

    2007-12-01

    Afghanistan has significant amounts of undiscovered nonfuel mineral resources, with copper and iron ore having the most potential for extraction, according to a new U.S. Geological Survey (USGS) assessment. The assessment, done cooperatively with the Afghanistan Geological Survey of the Afghanistan Ministry of Mines, also found indications of significant deposits of colored stones and gemstones (including emeralds, rubies, and sapphires), gold, mercury, sulfur, chromite, and other resources. ``Mineral resource assessments provide government decision-makers and potential private investors with objective, unbiased information on where undiscovered mineral resources may be located, what kinds of resources are likely to occur, and how much of each mineral commodity may exist in them,'' said USGS director Mark Myers. The USGS, in cooperation with the Afghan government, released an oil and gas resources assessment in March 2006 and an earthquake hazards assessment in May 2007. For more information, visit the Web sites: http://afghanistan.cr.usgs.gov and http://www.bgs.ac.uk/afghanminerals/.

  13. Assessment of integration of different biomass gasification alternatives in a district-heating system

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, E.; Ahlgren, E.O. [Department of Energy and Environment, Energy Systems Technology, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2009-12-15

    With increasingly stringent CO{sub 2} emission reduction targets, incentives for efficient use of limited biomass resources increase. Technologies for gasification of biomass may then play a key role given their potential for high electrical efficiency and multiple outputs; not only electricity but also bio transport fuels and district heat. The aim of this study is to assess the economic consequences and the potential for CO{sub 2} reduction of integration of a biomass gasification plant into a district-heating (DH) system. The study focuses on co-location with an existing natural gas combined cycle heat and power plant in the municipal DH system of Goeteborg, Sweden. The analysis is carried out using a systems modelling approach. The so-called MARTES model is used. MARTES is a simulating, DH systems supply model with a detailed time slice division. The economic robustness of different solutions is investigated by using different sets of parameters for electricity price, fuel prices and policy tools. In this study, it is assumed that not only tradable green certificates for electricity but also tradable green certificates for transport fuels exist. The economic results show strong dependence on the technical solutions and scenario assumptions but in most cases a stand-alone SNG-polygeneration plant with district-heat delivery is the cost-optimal solution. Its profitability is strongly dependent on policy tools and the price relation between biomass and fossil fuels. Finally, the results show that operation of the biomass gasification plants reduces the (DH) system's net emissions of CO{sub 2}. (author)

  14. Impact of Natural and Human Resources of Ethanol Production from Biomass

    OpenAIRE

    Lapillonne, B.

    1980-01-01

    The Resources Group at IIASA is concentrating an increasing amount of effort on the WELMM analysis and/or comparison of natural and synthetic liquid fuels, conventional oil, shale oil and syncrude from tar sands, liquid fuels from coal, etc. All these are of fossil origin. But a completely different class of synthetic liquid fuel also deserves attention -- one which is derived from so-called biomass. In this class of primary importance are alcohol and methanol (from wood). Methanol is of part...

  15. Sustainability assessment of forest biomass supply chain at local scale: carrying capacity of the system for energy valorisation

    OpenAIRE

    Martire, S; Castellani, V.; Sala, S.(INFN Sezione di Milano-Bicocca, Milano, Italy)

    2011-01-01

    Evaluation of the trade-off between the benefits coming from forest resources’ use and the conservation of forest ecosystems is needed. Considering the use of biomass for energy purpose, on one hand the use of wood resources should be based on an evaluation of the “carrying capacity” of the forest ecosystem and site-specific characteristics; on the other hand, the role of biomass valorisation has to be assessed considering the socio economic benefit or drawbacks due to the further development...

  16. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    Science.gov (United States)

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  17. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Xiu-Fang eXie

    2016-05-01

    Full Text Available Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth versus for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g. light, nutrients and water using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome. Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants.

  18. Residential use of firewood in Northern Sweden and its influence on forest biomass resources

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Ola [Department of Forest Resource Management, Swedish University of Agricultural Sciences, Skogsmarksgrand, SE-901 83 Umeaa (Sweden)

    2011-01-15

    Firewood is society's oldest source of household energy and is still extensively used around the world. However, little is known about firewood usage in technologically advanced countries with high energy consumption. Some key issues include quantities of firewood currently used and future trends, as well as the influence of this usage on available biomass resources. This study addresses those issues through a postal questionnaire to 1500 of the firewood using households in a region in Northern Sweden. One-third of households produced 11-20 solid m{sup 3} of firewood per year. Three-fourths expected their production to be unchanged or increase during the coming five years. A large proportion of young producers indicated long-term continuation of firewood usage. Half (53%) of the firewood producing households owned forest and thereby had free access to wood. Produced firewood volume corresponded to 4-8% of the region's roundwood volume harvested for industrial purposes. The use of firewood is suggested to influence decisions of private forest owners about management and harvest of forest biomass, and, thus, affect supply for bioenergy and other uses. With further incorporation of firewood usage into forest biomass management regimes, larger biomass quantities are likely to be available for industrial uses. (author)

  19. The Domestic Use of Firewood and its Influence on Biomass Resources

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, O. (Dept. of Forest Resource Management, Swedish Univ. of Agricultural Sciences, SE-901 83 Umeaa (Sweden)). e-mail: ola.lindroos@srh.slu.se

    2008-10-15

    Firewood is mankind's oldest energy source and is still extensively used around the world. However, little is known about firewood usage in industrialised countries. Missing key issues are volumes of firewood currently used and future trends, as well as the firewood usage's influence on available biomass resources. This study addresses those questions through a postal questionnaire to 13% of the firewood using households in a region in Northern Sweden. The largest share of households (33%) produced between 9-18 solid m3 of firewood per year. Three fourths expected their production to be unchanged or increase during the coming five years and a large body of young workers indicated long- term continuation. Half (53%) of the firewood producing households owned forest and thereby had free access to wood. Produced firewood volume corresponded to 4-8% of the region's roundwood volume harvested for industrial purposes. The use of firewood is suggested to influence private forest owners' decisions on management and harvest of forest biomass, and, thus, affect supply for bioenergy and other uses. With further incorporation of firewood consumption into forest biomass management regimes, larger biomass quantities are therefore likely to be available for industrial uses

  20. Life cycle assessment of biomass production: Development of a methodology to improve the environmental indicators and testing with fiber sorghum energy crop

    International Nuclear Information System (INIS)

    At the Biomass Research Centre - University of Perugia some LCA studies were carried out on different biomass chains, using a detailed software (Simapro 7.0) and the EcoIndicator 99 model in order to evaluate the global burden. Results showed that EcoIndicator 99 lacks some important features (e.g. freshwater consumption, nutrient emissions into water, soil erosion) that are necessary in evaluating the environmental load of energy crops. Therefore a new LCA methodology, tailored to biomass production, was developed, in which all resources used and emissions into environment were divided into the following impact categories: depletion of abiotic resources, freshwater consumption, climate change, land use, acidification, eutrophication, human toxicity, ecotoxicity, soil erosion. The impact assessment methodology was tested on fiber sorghum crop production, adopting two different agricultural techniques mainly regarding irrigation management, employing data from experimental fields in Umbria Region (Italy). Results showed a more reliable approach to the impact assessment of biomass cultivation phase. (author)

  1. Wind resource assessment in Europe using emergy

    OpenAIRE

    Paudel, S Subodh; Santarelli, M; Martin, V.; Lacarriere, B; Corre, le, O

    2014-01-01

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of ...

  2. Biomass transformation webs provide a unified approach to consumer-resource modelling.

    Science.gov (United States)

    Getz, Wayne M

    2011-02-01

    An approach to modelling food web biomass flows among live and dead compartments within and among species is formulated using metaphysiological principles that characterise population growth in terms of basal metabolism, feeding, senescence and exploitation. This leads to a unified approach to modelling interactions among plants, herbivores, carnivores, scavengers, parasites and their resources. Also, dichotomising sessile miners from mobile gatherers of resources, with relevance to feeding and starvation time scales, suggests a new classification scheme involving 10 primary categories of consumer types. These types, in various combinations, rigorously distinguish scavenger from parasite, herbivory from phytophagy and detritivore from decomposer. Application of the approach to particular consumer-resource interactions is demonstrated, culminating in the construction of an anthrax-centred food web model, with parameters applicable to Etosha National Park, Namibia, where deaths of elephants and zebra from the bacterial pathogen, Bacillus anthracis, provide significant subsidies to jackals, vultures and other scavengers. PMID:21199247

  3. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  4. Making environmental assessments of biomass production systems comparable worldwide

    Science.gov (United States)

    Meyer, Markus A.; Seppelt, Ralf; Witing, Felix; Priess, Joerg A.

    2016-03-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  5. Responses in chemical traits and biomass allocation of Arundo donax L. to deficit resources in the establishment year

    Directory of Open Access Journals (Sweden)

    Antonio Pompeiano

    2013-12-01

    Full Text Available A large expansion in renewable energy production is underway with an increasing focus on sustainable second-generation biofuels. Fast growing rhizomatous perennial grasses are leading candidates for lignocellulosic feedstock thanks to their positive energy balance, and low ecological/agro-management demands. Biomass accumulation is favored by the efficient use of available resources. The aim of this study was to identify which accumulation processes were most affected in the establishment year of a giant reed (Arundo donax L. field crop grown under water and N deficiencies. The relative plasticity of growth of A. donax in response to various levels of resource availability was evaluated. A field scale experiment was carried out, and treatments were arranged as a randomized complete block, strip-plot design with irrigation treatments as the main plot factor and pre-planting N rate as the sub-plot factor. Biometric relationships between variables were assessed to understand how agro-management factors influence the above ground biomass of giant reed, as well as yield over time. Evidence is presented indicating that growth is strongly enhanced by water availability (+97% dry weight biomass. Changes in composition were not significant within or among fixed treatments, rather changes were observed over time. A high content of glucans and xylans were detected from early stage, and as the mobilization of minerals increased, lignin content significantly increased as well (from 12% to 36% w/w. These results suggest that an increase in the growth of A. donax in the establishment year is accomplished by a limited use of the water input

  6. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  7. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  8. Biomass as renewable energy resource in Bosnia and Herzegovina. The state with the wooden waste

    International Nuclear Information System (INIS)

    Bosnia and Herzegovina today fulfills its needs for primary energy mainly from fossil fuels. In spite of significant resources of all renewable sources of energy and despite evidently open possibility for their utilization, these resources (except for, partly, hydropower) hove practically not been used to date. Due to its climatic situation, Bosnia and Herzegovina is very rich in woodland. Thus the production, harvesting and processing of timber is one of the country's oldest economic activities, and also has nowadays major strategic importance for the country's economic development. The purpose of this paper is to point out the energy potential of wooden waste, as a component of still un sufficiently utilized biomass in Bosnia and Herzegovina. In this paper, attention is primarily focused on results of research in the area of estimation of obviously significant energy potential of wooden waste produced in rather widespread wood and timber industry of Bosnia and Herzegovina. Preliminary research of this resource carried out to date showed that technical potential of biomass from timber waste is approx. 8,5 PJ. (Author)

  9. Food web architecture and basal resources interact to determine biomass and stoichiometric cascades along a benthic food web.

    Directory of Open Access Journals (Sweden)

    Rafael D Guariento

    Full Text Available Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ to evaluate the individual and interactive effects of resource availability (nutrients and light and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.

  10. Assessment of biomass residue availability and bioenergy yields in Ghana

    DEFF Research Database (Denmark)

    Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe;

    2014-01-01

    Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future us...

  11. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  12. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  13. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  14. Assessing the Performance of Natural Resource Systems

    Directory of Open Access Journals (Sweden)

    Tony Cunningham

    2002-01-01

    Full Text Available Assessing the performance of management is central to natural resource management, in terms of improving the efficiency of interventions in an adaptive-learning cycle. This is not simple, given that such systems generally have multiple scales of interaction and response; high frequency of nonlinearity, uncertainty, and time lags; multiple stakeholders with contrasting objectives; and a high degree of context specificity. The importance of bounding the problem and preparing a conceptual model of the system is highlighted. We suggest that the capital assets approach to livelihoods may be an appropriate organizing principle for the selection of indicators of system performance. In this approach, five capital assets are recognized: physical, financial, social, natural, and human. A number of principles can be derived for each capital asset; indicators for assessing system performance should cover all of the principles. To cater for multiple stakeholders, participatory selection of indicators is appropriate, although when cross-site comparability is required, some generic indicators are suitable. Because of the high degree of context specificity of natural resource management systems, a typology of landscapes or resource management domains may be useful to allow extrapolation to broader systems. The problems of nonlinearities, uncertainty, and time lags in natural resource management systems suggest that systems modeling is crucial for performance assessment, in terms of deriving “what would have happened anyway” scenarios for comparison to the measured trajectory of systems. Given that a number of indicators are necessary for assessing performance, the question becomes whether these can be combined to give an integrative assessment. We explore five possible approaches: (1 simple additive index, as used for the Human Development Index; (2 derived variables (e.g., principal components as the indices of performance; (3 two-dimensional plots of

  15. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  16. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market

    International Nuclear Information System (INIS)

    Rice straw, a rich agricultural byproduct in Taiwan, can be used as biomass feedstock for cofiring systems. In this study, we analyzed the penetration of rice straw cofiring systems in the Taiwanese power market. In the power generation system, rice straw is cofired with fossil fuel in existing electricity plants. The benefits of cofiring systems include increasing the use of renewable energy, decreasing the fuel cost, and lowering greenhouse gas emissions. We established a linear complementarity model to simulate the power market equilibrium with cofiring systems in Taiwan. GIS-based analysis was then used to analyze the geospatial relationships between paddy rice farms and power plants to assess potential biomass for straw-power generation. Additionally, a sensitivity analysis of the biomass feedstock supply system was conducted for various cofiring scenarios. The spatial maps and equilibrium results of rice straw cofiring in Taiwanese power market are presented in the paper. - Highlights: ► The penetration of straw cofiring systems in the power market is analyzed. ► GIS-based analysis assesses potential straw-power generation. ► The spatial maps and equilibrium results of rice straw cofiring are presented

  17. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.

    Science.gov (United States)

    Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D

    2010-07-01

    Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. PMID:20015644

  18. Assessing the performance of natural resource systems

    OpenAIRE

    Tony Cunningham; Manuel Ruiz-Pérez; Sonja Vermeulen; Peter Frost; Jeffrey A. Sayer; Bruce Campbell; Ravi Prabhu

    2001-01-01

    Assessing the performance of management is central to natural resource management, in terms of improving the efficiency of interventions in an adaptive-learning cycle. This is not simple, given that such systems generally have multiple scales of interaction and response; high frequency of nonlinearity, uncertainty, and time lags; multiple stakeholders with contrasting objectives; and a high degree of context specificity. The importance of bounding the problem and preparing a conceptual model ...

  19. STRATEGIC HUMAN RESOURCE MANAGEMENT ASSESSMENT AT PRICEWATERHOUSECOOPERS

    OpenAIRE

    Amelia Boncea; Cîrnu Doru

    2010-01-01

    The world we are living in today has increasingly become aware of the importance of the human factor in all types of organizations. The present paper is intended to assess the performance of the human resource department at PricewaterhouseCoopers and to provide adequate recommendations for activity improvement. After a statement of the current HR strategy and an in-depth analysis of the external and internal environment, the paper continues with some proposals upon ...

  20. Decomposer biomass in the rhizosphere to assess rhizodeposition

    DEFF Research Database (Denmark)

    Christensen, Søren; Bjørnlund, Lisa; Madsen, Mette Vestergård

    2007-01-01

    under sterile conditions give an unrealistic value. Quantifying bacterial production from 3H-thymidine incorporation falls short in the rhizosphere and the use of isotopes does not allow clear distinction between labeled CO2 released from roots or microbes. We reduced rhizodeposition in 3-5 week old...... barley with a 2 week leaf aphid attack and found that biomass of bacterivores but not bacteria in the rhizosphere correlated with plant-induced respiration activity belowground. This indicated top-down control of the bacteria. Moreover, at increasing density of aphids, bacterivore biomass in the...... rhizosphere decreased to the level in soil unaffected by roots. This suggests that difference in bacterivore biomass directly reflects variations in rhizodeposition. Rhizodeposition is estimated from plant-induced increases in bacterial and bacterivore biomass, and yield factors, maintenance requirements, and...

  1. Sustainability assessment of two chains of biomass supply from field to bioenergy

    DEFF Research Database (Denmark)

    Morandi, Fabiana; Østergård, Hanne

    2014-01-01

    LogistEC, “Logistics for Energy Crops biomass”, is an FP7 Project aiming at developing new or improvedtechnologies of the biomass logistics chains (http://www.logistecproject.eu/). Sustainability assessment of different biomasses is being performed by studying the environmental, economic and social...

  2. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO2eq. -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  3. Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D. S.; Pilasky, S.

    1998-02-01

    The availability of information and data on the renewable energy resources (solar, wind, biomass, geothermal, and hydro) for renewable energy technologies is a critical element in the successful implementation of these technologies. This paper presents a comprehensive summary of published information on these resources for each of 1 8 Asia-Pacific Economic Cooperation (APEC) economies. In the introductory sections, a discussion of the quality and completeness of this information is presented, along with recommendations on steps that need to be taken to facilitate the further development and deployment of renewable energy technologies throughout the APEC region. These sections are then followed by economy-specific reviews, and a complete bibliography and summary description for each citation. The major results of this survey are that a basis for understanding renewable energy resources is currently available for essentially all the economies, although there is a significant need to apply improved and updated resource assessment techniques in most. For example, most wind resource assessments rely on data collected at national weather stations, which often results in underestimates of the true potential wind resource within an economy. As a second example, solar resource assessments in most economies rely on an analysis of very simple sunshine record data, which results in large uncertainties in accurately quantifying the resource. National surveys of biomass, geothermal, and hydro resources are often lacking; in most cases, resources for these technologies were discussed for site-specific studies only. Thus, the major recommendations in this paper are to: ( 1 ) upgrade current or install new wind and solar measurement systems at key 'benchmark' locations to provide accurate, representative information on these resources; (2) apply advanced wind and solar resource assessment tools that rely on data quality assessment procedures, the use of satellite data

  4. Assessment of uranium resources and supply

    International Nuclear Information System (INIS)

    Uranium as nuclear fuel is an important energy resource, which generates about one-sixth of the world's total electricity generated in 1989. The current nuclear electricity generating capacity of 318 GW(e) is expected to grow by over 38% to 440 GW(e) in the year 2005. The world's uranium requirements are expected to increase similarly from about 52,000 t U in 1989 to over 70,000 t U in 2005. Beyond this time the uranium requirements are projected to reach over 80,000 t U in 2030. It was the objective of the Technical Committee Meeting on Assessment of Uranium Resources and Supply, organized by the IAEA and held in Vienna, between 29 August - 1 September 1989, to attract specialists in this field and to provide a forum for the presentation of reports on the methodologies and actual projects carried out in the different countries. Of special interest was the participation of specialists from some countries which did not or only occasionally co-operate with the IAEA in the projects related to the assessment of uranium resources and supply. A separate abstract was prepared for each of the 19 papers. Refs, figs and tabs

  5. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  6. US hydropower resource assessment for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  7. US hydropower resource assessment for New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  8. US hydropower resource assessment for Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  9. US hydropower resource assessment for Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose, The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Oklahoma.

  10. US hydropower resource assessment for Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

  11. U.S. Hydropower Resource Assessment - California

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  12. US hydropower resource assessment for Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1995-12-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Indiana.

  13. US hydropower resource assessment for Washington

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  14. Assessment of the status and outlook of biomass energy in Jordan

    International Nuclear Information System (INIS)

    Highlights: • The potential of utilizing biomass as an energy source in Jordan is investigated. • The biomass thermal energy represents 10.2% of the total primary energy. • Bioenergy production depends on biomass availability, conversion and recovery efficiency. - Abstract: This work investigates the status and potential of utilizing biomass as an energy source in Jordan. The amount of waste and residue is estimated to be 6.680 million tons for the year 2011. Two scenarios were investigated: biogas production and thermal treatment. The amount of biogas that can be produced from various biomass sources in Jordan is estimated at 428 MCM. The equivalent annual power production is estimated at 698.1 GW h. This is equivalent to about 5.09% of the consumed electricity (13,535 GW h) and 39.65% of the imported electricity in 2011. The alternative scenario of thermal treatment was investigated. The total theoretical thermal energy that can be obtained assuming 70% conversion efficiency is equivalent to 779 thousand toe (5.33 million barrels of crude oil) which amounts to 10.2% of the total primary energy consumed in 2011. Due to biomass collection and recovery challenges, the energy availability factor varies for the different resources. Hence, contribution of the different biomass resources can significantly vary

  15. Water Resources Inventory and Assessment: Patuxent Research Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Patuxent Research Refuge describes current hydrologic information, provides an assessment of water resource...

  16. Quivira National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Quivira NWR describes current hydrologic information, provides an assessment of water resource needs and...

  17. Assessment of forest biomass technology: Direct combustion, charcoal-making and gasification

    International Nuclear Information System (INIS)

    This paper assesses the efficient forest biomass technology in groups of direct combustion, charcoal-making and gasification for application in developing countries. Other technologies, such as briquetting, biogas and alcohol distillation, are not covered. 7 refs, 7 tabs

  18. STRATEGIC HUMAN RESOURCE MANAGEMENT ASSESSMENT AT PRICEWATERHOUSECOOPERS

    Directory of Open Access Journals (Sweden)

    Amelia Boncea

    2010-12-01

    Full Text Available The world we are living in today has increasingly become aware of the importance of the human factor in all types of organizations. The present paper is intended to assess the performance of the human resource department at PricewaterhouseCoopers and to provide adequate recommendations for activity improvement. After a statement of the current HR strategy and an in-depth analysis of the external and internal environment, the paper continues with some proposals upon a more efficient HR function and the corresponding action plan to achieve this objective. In addition, the paper presents a section on how employees respond to change inside the company.

  19. Exergetic assessment of an integrated gasifier/boiler system for hydrogen production with different biomass types

    Energy Technology Data Exchange (ETDEWEB)

    Kalinci, Y. [Dokuz Eylul Univ., Izmir (Turkey). Izmir Vocational School; Hepbasli, A. [Ege Univ., Izmir (Turkey). Dept. of Mechanical Engineering; Dincer, I. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2009-07-01

    Biomass comprises all living matter present on earth and is derived from growing plants including algae, trees and crops or animal manure. It usually consists of carbon, hydrogen, oxygen and nitrogen. Sulfur is also present in small quantities, while some biomass consists of significant amounts of inorganic species. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Since biomass is renewable and consumes atmospheric carbon dioxide (CO{sub 2}) during growth, it can have a small net CO{sub 2} impact compared to fossil fuels. However, hydrogen from biomass has major challenges as there are no completed technology demonstrations. In addition, the yield of hydrogen is low from biomass to biomass since the hydrogen content in biomass is low to begin with and the energy content is low due to the 40 percent oxygen content of biomass. This paper highlighted the importance of biomass-based syntactical gas and hydrogen production and reviewed the characteristics of six different biomass fuels used in various gasification systems and their energetic aspects and technical details. These fuels included almond shells; walnut prunings; rice straw; whole tree wood chips; sludge; and non-recyclable waste paper for hydrogen production from an integrated gasifier-boiler power system. The paper also presented a case study on biomass-based hydrogen production and assessed its thermodynamic performance through exergy. The results of the study were discussed through exergetic, irreversibility and improvement potential. It was concluded that the highest exergy rate was found for walnut pruning and almond shell. 15 refs., 6 tabs., 6 figs.

  20. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    Science.gov (United States)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  1. Assessing natural resource damages from oil spills

    International Nuclear Information System (INIS)

    The Comprehensive Environmental response, Compensation and Liability Act of 1980 (CERCLA) required that the U. S. Department of the Interior develop rules for determining the natural resource damages resulting from a spill of hazardous substances, including oil. Thus, in developing those rules, these questions have been and are continuing to be addressed in detail with respect to damages in compensation to the public. Natural resources which are valued by the public include those where there are consumptive uses (fisheries and hunting of wildlife), non-consumptive uses (Wildlife viewing, shoreline recreation, boating, education), and existence and option values. Private interests would center on use values where a profit is made from those uses. This paper reports that there are two ways natural resource injuries following a spill might be quantified: by measuring the injury in the field and by utilizing a numerical model to estimate the expected injury given the circumstances and location of the spill. The CERCLA rules for damage assessment include these two options, termed type B and type A, respectively

  2. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  3. Wind Resource Assessment in Europe Using Emergy

    CERN Document Server

    Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

    2015-01-01

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

  4. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass

    International Nuclear Information System (INIS)

    Recent attention has focused on the net greenhouse gas (GHG) implications of using woody biomass to produce energy. In particular, a great deal of controversy has erupted over the appropriate manner and scale at which to evaluate these GHG effects. Here, we conduct a comparative assessment of six different assessment scales and four different metric calculation techniques against the backdrop of a common biomass demand scenario. We evaluate the net GHG balance of woody biomass co-firing in existing coal-fired facilities in the state of Virginia, finding that assessment scale and metric calculation technique do in fact strongly influence the net GHG balance yielded by this common scenario. Those assessment scales that do not include possible market effects attributable to increased biomass demand, including changes in forest area, forest management intensity, and traditional industry production, generally produce less-favorable GHG balances than those that do. Given the potential difficulty small operators may have generating or accessing information on the extent of these market effects, however, it is likely that stakeholders and policy makers will need to balance accuracy and comprehensiveness with reporting and administrative simplicity. -- Highlights: ► Greenhouse gas (GHG) effects of co-firing forest biomass with coal are assessed. ► GHG effect of replacing coal with forest biomass linked to scale, analytic approach. ► Not accounting for indirect market effects yields poorer relative GHG balances. ► Accounting systems must balance comprehensiveness with administrative simplicity.

  5. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  6. Assessment of mechanical properties of pellets produced from biomass

    Czech Academy of Sciences Publication Activity Database

    Závada, J.; Nadkanská, H.; Bouchal, T.; Šašek, Petr; Smatanová, N.

    Volume 1, Book 4. Sofie: International Multidisciplinary Scientific GeoConference & EXPO SGEM, 2014, s. 33-40. ISBN 978-619-7105-15-5. ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference. Albena (BG), 20140619] R&D Projects: GA MŠk(CZ) LO1219 Keywords : pellets * biomass * biofuel * strength Subject RIV: DM - Solid Waste and Recycling http://www.sgem.org/sgemlib/spip.php?article4625&lang=en

  7. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    OpenAIRE

    Ming Li; Elena Allegrini; Sonia Castellucci; Silvia Cocchi; Maurizio Carlini

    2013-01-01

    Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with th...

  8. California's forest resources. Preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This Preliminary Assessment was prepared in response to the California Forest Resources Assessment and Policy Act of 1977 (FRAPA). This Act was passed to improve the information base upon which State resource administrators formulate forest policy. The Act provides for this report and a full assessment by 1987 and at five year intervals thereafter. Information is presented under the following chapter titles: introduction to the forest resources assessment program; the forest area: a general description; classifications of the forest lands; the watersheds; forest lands and the air resource; fish and wildlife resources; the forested rangelands; the wilderness; forest lands as a recreation resource; the timber resource; wood energy; forest lands and the mineral, fossil fuels, and geothermal energy resources; mathematically modeling California's forest lands; vegetation mapping using remote sensing technology; important forest resources legislation; and, State and cooperative State/Federal forestry programs. Twelve indexes, a bibliography, and glossary are included. (JGB)

  9. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    Science.gov (United States)

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems. PMID:16915632

  10. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  11. Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and tosupport the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en vironment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.

  12. Biomass Assessment: A Question of Method and Expertise Évaluation de la ressource biomasse : une question de méthode et d’expertise

    Directory of Open Access Journals (Sweden)

    Thivolle-Cazat A.

    2013-08-01

    Full Text Available Whereas the new stakes on lignocellulosic biomass are often demand-oriented (heat, electricity, biofuels, etc. mainly through public policies, the new equilibrium will depend also on the supply-side. This supply has to be understood as socio-economic and environmental targets combining many topics: multi-resources (agriculture, forest, "dedicated coppices", by-products and wastes, available/potential quantities and costs, localisation, replacement/substitution effects (activities, lands, and supply-side stakeholders’ behaviours. Many initiatives have been launched to grasp those dimensions through projects (National Research Agency, French Environment and Energy Management Agency, etc.. Many figures exist on the biomass assessment aspect but they are not clear enough and not comparable due to differences in definitions, scopes, data, parameters, geographical levels, reporting units, time-scale, etc. Regarding the characterisation of biomass supply chains, evaluations are often incomplete and lack methodological references. This article aims to focus on methodological key points and barriers to overcome, in order to get a better evaluation and understanding of biomass mobilisation expected by potential users and public authorities. Alors que les objectifs non-alimentaires sur la biomasse ligno-cellulosique sont souvent orientés par la demande (chaleur, électricité, biocarburants, etc. principalement via des politiques publiques, le nouvel équilibre dépendra également de l’offre. L’appréciation de cette offre est rendue complexe par la multiplicité des critères techniques, socio-économiques et environnementaux qui la définissent et/ou qu’on souhaite lui assigner. Elle renvoie ainsi ceux qui s’y essaient à l’étude de combinaisons croisant plusieurs thématiques : multi-ressources (agriculture, forêt, cultures dédiées, co-produits et déchets, quantités disponibles/potentiels et coûts, localisation, effet de

  13. Biomass, energy and economic and natural resource differentiation in rural southern India

    International Nuclear Information System (INIS)

    The rural economy in India is as yet only partially monetized and continues to retain its semi-subsistence character, while at the same time undergoing the process of becoming more monetized and market-orientated. A large field study was conducted in rural Karnataka, a state in southern India, which uncovers the relations between the energy situations of the rural social classes and their access to labour, land, cash and physical assets. Of equal significance are regional variations in ecology, rainfall and irrigation. The study's principal focus is the rural household, but it also includes some analysis of the energy dimensions in agricultural activities and small-scale rural services. Eight villages were covered by the survey, one in each district, carefully selected to reflect the geographic, climatic, biomass-resource and socio-economic features of Karnataka. In each village an average of 55 households were studied in depth, making up a total of 450 households. Clear and marked differentiations are uncovered between the rural social classes in various aspects of energy production, purchase, sale and consumption, as well as in labour and cash inputs into the energy flows. It is found that traditional forms of biomass are still the dominant type of energy for all rural strata, and that only the rural middle class can be said to have begun the transition towards modern fuels, although its consumption of modern fuels is still negligibly small in absolute terms. The study reveals that the rural middle class faces no energy crisis, while the 'intermediate' class of the small peasantry is just about managing to make ends meet in energy terms. In contrast to this, the rural wage labour class continues to remain in a state of energy crisis. (author)

  14. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 1. Bottom-up Scenarios

    International Nuclear Information System (INIS)

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in the main report. This report (part 1) presents scenarios for future biomass use for energy and materials, and analyses the consequences on energy supply, chemical productions, costs and greenhouse gas (GHG) emissions with a bottom-up approach. The bottom-up projections, as presented in this report, form the basis for modelling work using the top-down macro-economic model (LEITAP) to assess the economic impact of substituting fossil-based energy carriers with biomass in the Netherlands. The results of the macro-economic modelling work, and the linkage between the results of the bottom-up and top-down work, will be presented in the top-down economic part and synthesis report of this study

  15. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  16. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios for......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is...

  17. Okefenokee National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Okefenokee National Wildlife Refugesummarizes available information relevant to refuge water resources,...

  18. Cape Romain National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes available information relevant to refuge water resources, provides an assessment of refuge water resource needs and issues of concern, and...

  19. Experimental biomass burning emission assessment by combustion chamber

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  20. Complex Assessment of Sufficiency of the Bank Resource Potential

    Directory of Open Access Journals (Sweden)

    Azizova Kateryna M.

    2014-01-01

    Full Text Available The goal of the article is development of methodical recommendations regarding assessment of sufficiency of the bank resource potential by means of identification and analysis of all its components and use of the method of rating assessment. Analysing, systemising and generalising scientific works of foreign and Ukrainian scientists, the article considers a complex approach to the bank resource potential management. In the result of the study the article identifies specific features of a complex approach in the bank resource potential management. The method of geometric average and normative values of selected ratios for calculation was used for the generalising complex assessment of sufficiency of the bank resource potential. The rating assessment of the Public JSC Mercury Bank resource potential was calculated by such indicators as: debt, loan and own resources. The stated algorithm of the rating assessment of the resource potential could be applied for comparison of banks in dynamics.

  1. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  2. Assessment of the phytoextraction potential of high biomass crop plants.

    Science.gov (United States)

    Hernández-Allica, Javier; Becerril, José M; Garbisu, Carlos

    2008-03-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg(-1)), Zn (10 916 mg kg(-1)), and Cd (242 mg kg(-1)), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot(-1). We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. PMID:17644228

  3. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    Science.gov (United States)

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  4. An assessement of global energy resource economic potentials

    CERN Document Server

    Mercure, J F

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  5. Sustainability assessment of heat supply from biomass; Nachhaltigkeitsbewertung der Waermeversorgung aus Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Daniel; Jenssen, Till; Eltrop, Ludger [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Wassermann, Sandra [Stuttgart Univ. (Germany). Interdisziplinaerer Forschungsschwerpunkt Risiko und Nachhaltige Technikentwicklung am Zentrum fuer Kultur und Technikforschung

    2010-07-01

    The authors present two approaches for integrated sustainability assessment of technologies, i.e. multicriteria decision analysis (MCDA) and the social cost of heat supply. Both approaches were developed by an interdisciplinary scientist team in the context of a BMFB-funded project (''Energie nachhaltig konsumieren - nachhaltige Energie konsumieren'') and were applied to the example of a modernized single-family home consuming 82 kWh per square metre per annum.

  6. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding

    Institute of Scientific and Technical Information of China (English)

    Jaume Casadesús; Dolors Villegas

    2014-01-01

    Affordable and easy-to-use methods for assessing biomass and leaf area index (LAI) would be of interest in most breeding programs. Here, we describe the evaluation of a protocol for photographic sampling and image analysis aimed at providing low-labor yet robust indicators of biomass and LAI. In this trial, two genotypes of triticale, two of bread wheat, and four of tritordeum were studied. At six dates during the growing cycle, biomass and LAI were measured destructively, and digital photography was taken on the same dates. Several vegetation indices were calculated from each image. The results showed that repeatable and consistent values of the indices were obtained in consecutive photographic samplings on the same plots. The photographic indices were highly correlated with the destructive measure-ments, though the magnitude of the correlation was lower after anthesis. This work shows that photographic assess-ment of biomass and LAI can be fast, affordable, have good repeatability, and can be used under bright and overcast skies. A practical vegetation index derived from pictures is the fraction of green pixels over the total pixels of the image, and as it shows good correlations with all biomass variables, is the most robust to lighting conditions and has easy interpretation.

  7. Water Resource Inventory and Assessment: Ruby Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Ruby Lake National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  8. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    Energy Technology Data Exchange (ETDEWEB)

    DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  9. Water Resources Inventory and Assessment: Cape May National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Cape May National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  10. Water Resources Inventory and Assessment: Parker River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Parker River National Wildlife Refuge describes current hydrologic information, provides an assessment of...

  11. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg-1), Zn (10 916 mg kg-1), and Cd (242 mg kg-1), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot-1. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  12. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  13. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  14. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  15. Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO2 emissions

    International Nuclear Information System (INIS)

    The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO2-capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO2 emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels

  16. Assessment of biomass and carbon sequestration potentials of standing Pongamia pinnata in Andhra University, Visakhapatnam, India

    Directory of Open Access Journals (Sweden)

    Annissa Muhammed Ahmedin, Keredin Temam Siraj,

    2013-07-01

    Full Text Available The significance of forested areas in carbon sequestration is conventional, and well renowned. But, hardly any attempts have been made to study the potential of trees in carbon sequestration from urban areas. Andhra University was selected for the study in Visakhapatnam city with the objectives of quantifying the total carbon sequestration by Pongamia pinata. Stratified random sampling was used for assessing biomass in two site and about 230 P. pinnata trees were taken. Biomass was calculated using Non-destructive allometric models. The biomass carbon content was taken as 55% of the tree biomass. Soil samples were taken from soil profile up to 40 cm depth for deep soils and up to bedrock for shallow soils at an interval of 10 and 20 cm for top and sub-soil respectively. Walkley‐Black Wet Oxidation method was applied for measuring soil organic carbon. Belowground biomass was estimated by the Root:Shoot ratio relationship. Total biomass and soil carbon was higher in Site-2 than in Site-1. Total carbon sequestration in Site-2 was found 1.59 times higher compared to Site-1 but the mean SOC stored was found higher in Site-1 than in Site-2, i.e.,14.48 tC/ha and 10.33 tC/ha, respectively.

  17. A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle

    International Nuclear Information System (INIS)

    Biomass fuelled trigeneration is the term given to the system which is the on-site generation of electricity, heat and cooling simultaneously, using biomass as the fuel source. As a form of the renewable energy sources biomass is not intermittent, location-dependent or very difficult to store. If grown sustainably, biomass can be considered to be CO2 neutral. Biomass, therefore, would be a promising option for the future to contribute both to the reduction of greenhouse gases and to the solution of replacing fossil fuels in power plants. For a wide range of commercial buildings, biomass trigeneration offers an economical solution of providing power, heat and cooling which is more environmentally friendly than conventional methods. This work focuses on the modelling, simulation and techno-economic analysis of small scale biomass trigeneration applications. The Organic Rankine Cycle (ORC) integrated with conventional combustion provides electricity for building use. The waste heat recovered from the ORC system and exhaust gases is used to supply hot water to space heating and excess heat is also used to drive an absorption cooling system. In order to use energy resources most efficiently, the proposed process is modelled and simulated using the ECLIPSE process simulation package. Based on the results achieved, the key technical and environmental issues have been examined. The study also investigates the impact of different biomass feedstock on the performance of trigeneration plant, biomass ash content ranges from 0.57 to 14.26% ash and a range of moisture content 10.6–33.51%. The calorific value across the biomass sources ranges between 16.56 and 17.97 MJ/kg daf. Finally, an economic evaluation of the system is performed along with sensitivity analyses such as capital investments, plant load factors and fuel costs. The results show that the maximum efficiencies and the best breakeven electricity selling price for the cases considered in this study are as follows

  18. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy's Resource Assessment Program.

  19. The second generation of natural resource damage assessments: Lessons learned?

    International Nuclear Information System (INIS)

    The Damage Assessment Regulations Team (DART), under the Office of General Counsel of the National Oceanic and Atmospheric Administration (NOAA), has centered its efforts on developing natural resource damage assessment regulations for oil pollution in navigable waters. These procedures will likely lower the costs associated with damage assessments, encourage joint cooperative assessments and simplify most assessments. The DART team of NOAA is developing new regulations for the assessment of damages due to injuries related to oil spills under the Oil Pollution Act of 1990. These regulations will involve coordination, restoration, and economic valuation. Various methods are currently being developed to assess damages for injuries to natural resources. The proposed means include: compensation tables for spills under 50,000 gallons, Type A model, expedited damage assessment (EDA) procedures, and comprehensive procedures. They are being developed to provide trustees with a choice for assessing natural resource damages for each oil spill

  20. Hawaii Geothermal Resource Assessment Program: western state cooperative direct heat resource assessment, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A regional geothermal resource assessment has been conducted for the major islands in the Hawaiian chain. The assessment was made through the compilation and evaluation of the readily accessible geological, geochemical, and geophysical data for the Hawaiian archipelago which has been acquired during the last two decades. The geologic criteria used in the identification of possible geothermal reservoirs were: age and location of most recent volcanism on the island and the geologic structure of each island. The geochemical anomalies used as traces for geothermally altered ground water were: elevated silica concentrations and elevated chloride/magnesium ion ratios. Geophysical data used to identify subsurface structure which may have geothermal potential were: aeromagnetic anomalies, gravity anomalies, and higher than normal well and basal spring discharge temperatures. Geophysical and geochemical anomalies which may be the result of subsurface thermal effects have been identified on the islands of Hawaii, Maui, Molokai and Oahu.

  1. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    One way of producing nearly CO2 free electricity is by using biomass as a combustible. In many cases, removal of CO2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  2. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  3. Linking light and productivity in lakes to zooplankton biodiversity, biomass and resource use efficiency

    OpenAIRE

    2013-01-01

    Introduction: Lake productivity is determined by the amount of nutrients and light available. While phosphorus is the main limiting nutrient in freshwater systems light availability can be reduced by several factors, while the most important one in Scandinavian lakes is the amount of dissolved organic compounds (DOC). Primary productivity can affect zooplankton biomass and diversity by bottom-up driven mechanisms while zooplankton biomass and diversity can also be affected by fish via top-dow...

  4. Synergy of optical and polarimetric microwave data for forest resource assessment

    International Nuclear Information System (INIS)

    Data acquired during the Mac-Europe 91 campaign over the Black Forest ( Germany) are used to study the synergy of optical imaging spectrometer data ( AVIRIS) and polarimetric microwave data ( AIRSAR) for forest resource assessment. Original and new derived bands from AIRSAR and AVIRIS data are used to predict age and biomass. The best predictors ( bands) are selected through a multivariate stepwise regression analysis of each of the datasets separately. Then the joint AIRSAR-AVIRIS dataset is analysed. This study shows how the synergistic use of AIRSAR and AVIRIS data improves significantly the predictions obtained from the individual datasets for both age and biomass over the test site. In the analysis of AVIRIS data a new approach for processing large datasets as those provided by imaging spectrometers is presented, so that maximum likelihood classification of these datasets becomes feasible. (author)

  5. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  6. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Barun Kumar Das

    2014-01-01

    Full Text Available Bangladesh is an agriculture based country where more than 65 percent of the people live in rural areas and over 70% of total primary energy consumption is covered by biomass, mainly agricultural waste and wood. Only about 6% of the entire population has access to natural gas, primarily in urban areas. Electricity production in Bangladesh largely depends on fossil fuel whose reserve is now under threat and the government is now focusing on the alternating sources to harness electricity to meet the continuous increasing demand. To reduce the dependency on fossil fuels, biomass to electricity could play a vital role in this regard. This paper explores the biomass based power generation potential of Bangladesh through gasification technology—an efficient thermochemical process for distributed power generation. It has been estimated that the total power generation from the agricultural residue is about 1178 MWe. Among them, the generation potential from rice husk, and bagasses is 1010 MWe, and 50 MWe, respectively. On the other hand, wheat straw, jute stalks, maize residues, lentil straw, and coconut shell are also the promising biomass resources for power generation which counted around 118 MWe. The forest residue and municipal solid waste could also contribute to the total power generation 250 MWe and 100 MWe, respectively.

  7. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  8. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  9. Urban Wood Waste Resource Assessment; TOPICAL

    International Nuclear Information System (INIS)

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris

  10. Pollution prevention opportunity assessments, a training and resource guide

    Energy Technology Data Exchange (ETDEWEB)

    VALERO, O.J.

    1998-11-03

    The intention of the ''Pollution Prevention Opportunity Assessment Training and Resource Guide'' is to help Hanford waste generators identify ways to reduce waste through the Pollution Prevention Opportunity Assessment (P20A) process. This document presents pollution prevention tools and provides a step-by-step approach for conducting assessments.

  11. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Directory of Open Access Journals (Sweden)

    Erik R. Venteris

    2014-09-01

    Full Text Available Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. We summarize our past results in a new analysis to explore the relative economic impact of these design choices. Our growth model is used to predict average biomass production for two saline strains (Nannocloropsis salina, Arthrospira sp., one fresh to brackish strain (Chlorella sp., DOE strain 1412, and one freshwater strain (order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE and hydrothermal liquefaction (HTL technologies. National-scale models of water, CO2 (as flue gas, land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area, a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1. Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive strain, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 1.8 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on rank, but the most costly resource component varies from site to site. The highest rank UFs are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations.

  12. Sandstone copper assessment of the Teniz Basin, Kazakhstan: Chapter R in Global mineral resource assessment

    Science.gov (United States)

    Cossette, Pamela M.; Bookstrom, Arthur A.; Hayes, Timothy S.; Robinson, Gilpin R., Jr.; Wallis, John C.; Zientek, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS) conducts national and global resource assessments (mineral, energy, water, and biological) to provide data and scientific analyses to support decision making. Three-part mineral resource assessments result in informed, unbiased, quantitative, and probabilistic estimates of undiscovered mineral resources and deposits. In particular, mineral assessment results inform decisions concerning land-use and mineral-resource development. A probabilistic mineral resource assessment of the sandstone subtype of sediment-hosted stratabound copper deposits in the Teniz Basin, Kazakhstan, was undertaken by the USGS.

  13. Online Resources for Assessment and Evaluation

    Science.gov (United States)

    Benjamin, Sheldon; Robbins, Lisa I.; Kung, Simon

    2006-01-01

    Objective: The Accreditation Council for Graduate Medical Education and the Liaison Committee on Medical Education have mandated the transition from written global evaluation methods to competency-based assessments in resident and medical student training. Assessment of competency requires analysis of performance data from numerous sources. This…

  14. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  15. Cultivation of Nannochloropsis oceanica biomass rich in eicosapentaenoic acid utilizing wastewater as nutrient resource.

    Science.gov (United States)

    Mitra, Madhusree; Shah, Freny; Bharadwaj, S V Vamsi; Patidar, Shailesh Kumar; Mishra, Sandhya

    2016-10-01

    The eicosapentaenoic acid rich marine eustigmatophyte Nannochloropsis oceanica was grown in wastewaters sampled from four different industries (i.e. pesticides industry, pharmaceutical industry, activated sludge treatment plant of municipality sewage and petroleum (oil) industry). Under the wastewater based growth conditions used in this study, the biomass productivity ranged from 21.78±0.87 to 27.78±0.22mgL(-1)d(-1) in relation to freeze dried biomass, while the lipid productivity varied between 5.59±0.02 and 6.81±0.04mgL(-1)d(-1). Although comparatively higher biomass, lipid and EPA productivity was observed in Conway medium, the %EPA content was similarly observed in pesticides industry and municipal effluents. The results highlight the possibility of selectively using wastewater as a growth medium, demonstrating the elevated eicosapentaenoic acid content and biodiesel properties, that complies with the European standards for biodiesel. PMID:27472494

  16. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  17. Assessment of the Projected One Billion Ton Biomass for Cellulosic Biofuel Production and Its Potential Implications on Regional Water Quality and Availability

    Science.gov (United States)

    Demissie, Y. K.; Yan, E.; Wu, M.

    2011-12-01

    The DOE and USDA joint study, also commonly referred as the "Billion-Ton" study, assessed the cellulosic feedstock resources potential in the U.S. for producing second generation biofuel to replace 30 percent of the country's transportation fuels by year 2030. The available resource is expected to come from changing cropping pattern, increasing crop yield, harvesting agricultural and forest wood residues, and developing energy crops. Such large-scale changes in land use and crop managements are likely to affect the associated water quality and resources at both regional and local scales. To address the water sustainability associated with the projected biomass production in the Upper Mississippi River Basin (UMRB), we have developed a SWAT watershed model that simulate the changes in water quality (nitrogen, phosphorus, and soil erosion) and resources (soil water content, evapotranspiration, and runoff) of the region due to future biomass production scenario estimated by the Billion-Ton study. The scenario is implemented by changing the model inputs and parameters at subbasin and hydrologic response unit levels, as well as by improving the SWAT model to represent spatially varying crop properties. The potential impacts on water quality and water availability were compared with the results obtained from a baseline simulation which represents current watershed conditions and existing level of feedstock production. The basin level results suggested mixed effects on the water quality. The projected large-scale biomass production scenario is expected to decrease loadings of total nitrogen and nitrate in the streams while increase total phosphorus and suspended sediment. Results indicate an increase in the rate of evapotranspiration and a decrease in the soil water content and in surface runoff. discharge to the streams. The impacts at the subbasin or local scale varies spatially and temporally depending on the types of land use change, their locations, and crop

  18. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  19. Cache River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) for Cache River National Wildlife Refuge summarizes available and relevant information for refuge water...

  20. Water Resource Inventory and Assessment (WRIA) - Horicon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Horicon National Wildlife Refuges describes current hydrologic information, provides an...

  1. Water Resource Inventory and Assessment (WRIA) - Shiawassee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Shiawassee National Wildlife Refuge (NWR) describes current hydrologic information, provides...

  2. Cahaba River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) report for Cahaba River National Wildlife Refuge describes current hydrologic information, provides an...

  3. An Assessment of Fishery Resources on Iroquois National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A qualitative assessment of the fishery resources on Iroquois National Wildlife Refuge was conducted by Fish and Wildlife Service personnel in September 1993. This...

  4. GIS Technology: Resource and Habitability Assessment Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a one-year project to apply a GIS analysis tool to new orbital data for lunar resource assessment and martian habitability identification.  We used...

  5. Water Resource Inventory and Assessment- Port Louisa NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Inventory, assessment, and summary of water rights, water quantity, water quality, water management, climate, and other water resource issues

  6. Resource Letter: Research-based Assessments in Physics and Astronomy

    CERN Document Server

    Madsen, Adrian; Sayre, Eleanor C

    2016-01-01

    This resource letter provides a guide to research-based assessments (RBAs) of physics and astronomy content. These are standardized assessments that were rigorously developed and revised using student ideas and interviews, expert input, and statistical analyses. RBAs have had a major impact on physics and astronomy education reform by providing a universal and convincing measure of student understanding that instructors can use to assess and improve the effectiveness of their teaching. In this resource letter, we present an overview of all content RBAs in physics and astronomy by topic, research validation, instructional level, format, and themes, to help faculty find the best assessment for their course.

  7. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass.

    Science.gov (United States)

    Pellicer-Nàcher, Carles; Domingo-Félez, Carlos; Mutlu, A Gizem; Smets, Barth F

    2013-10-01

    Extracellular polymeric substances (EPS) have a presumed determinant role in the structure, architecture, strength, filterability, and settling behaviour of microbial solids in biological wastewater treatment processes. Consequently, numerous EPS extraction protocols have recently been published that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction protocol. This study presents a rigorous and critical assessment of existing physical and chemical EPS extraction methods applied to mixed-culture biomass samples (nitrifying, nitritation-anammox, and activated sludge biomass). A novel fluorescence-based method was developed and calibrated to quantify the lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in severe underestimation of protein and carbohydrate concentrations by using standard analytical methods. Keeping both maximum EPS extraction yields and minimal biomass lysis as criteria, it was identified a sonication-based extraction method as the best to determine and compare tightly-bound EPS fractions in different biomass samples. Protein was consistently the main EPS component in all analysed samples. However, EPS from nitrifying enrichments was richer in DNA, the activated sludge EPS had a higher content in humic acids and carbohydrates, and the nitritation-anammox EPS, while similar in composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while

  8. A study of bonding and failure mechanisms in fuel pellets from different biomass resources

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.;

    2011-01-01

    Pelletization of biomass reduces its handling costs, and results in a fuel with a greater structural homogeneity. The aim of the present work was to study the strength and integrity of pellets and relate them to the quality and mechanisms of inter-particular adhesion bonding. The raw materials used...

  9. 'Reference Biospheres' for solid radioactive waste disposal. Report of BIOMASS Theme 1 of the BIOsphere Modelling and ASSessment (BIOMASS) Programme. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    International Nuclear Information System (INIS)

    The IAEA Programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in Vienna in October 1996. The programme was concerned with developing and improving capabilities to predict the transfer of radionuclides in the environment. The programme had three themes: Theme 1: Radioactive Waste Disposal. The objective was to develop the concept of a standard or reference biosphere for application to the assessment of the long-term safety of repositories for radioactive waste. Under the general heading of 'Reference Biospheres', six Task Groups were established: Task Group 1: Principles for the Definition of Critical and Other Exposure Groups. Task Group 2: Principles for the Application of Data to Assessment Models. Task Group 3: Consideration of Alternative Assessment Contexts. Task Group 4: Biosphere System Identification and Justification. Task Group 5: Biosphere System Descriptions. Task Group 6: Model Development. Theme 2: Environmental Releases. BIOMASS provided an international forum for activities aimed at increasing the confidence in methods and models for the assessment of radiation exposure related to environmental releases. Two Working Groups addressed issues concerned with the reconstruction of radiation doses received by people from past releases of radionuclides to the environment and the evaluation of the efficacy of remedial measures. Theme 3: Biosphere Processes. The aim of this Theme was to improve capabilities for modelling the transfer of radionuclides in particular parts of the biosphere identified as being of potential radiological significance and where there were gaps in modelling approaches. This topic was explored using a range of methods including reviews of the literature, model inter-comparison exercises and, where possible, model testing against independent sources of data. Three Working Groups were established to examine the modelling of: (1) long term tritium dispersion in the environment; (2) radionuclide uptake by fruits; and (3

  10. Performance assessment of biofuel production via biomass fast pyrolysis and refinery technologies

    OpenAIRE

    Shemfe, Mobolaji B.

    2016-01-01

    Biofuels have been identified as one of several GHG emission strategies to reduce the use of fossil fuels in the transport sector. Fast pyrolysis of biomass is one approach to producing second generation biofuels. The bio-oil product of fast pyrolysis can be upgraded into essential gasoline and diesel range products with conventional refinery technologies. Thus, it is important to assess their techno- economic and environmental performance at an early stage prior to commerci...

  11. Resource assessment of copper deposits in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; GU De-sheng; T. Shoji; H. Kaneda

    2005-01-01

    Copper-bearing deposits of China are statistically analyzed in terms of ore grade, metal amount and ore tonnage. Each of grade and metal amount shows more or less a lognormal distribution. Analysis gives 10 copper metallogenic districts, each having specific densities of deposit numbers and copper reserves larger than 3. Based on the ratio of copper in ore value (Rcu), Chinese copper deposits are classified into two groups: mainly copper-producing deposits (MC: Rcu≥0.5) and accessorily copper-producing deposits (AC: Rcu<0. 5). The grade-tonnage relation of MC deposits can be combined by two exponential functions approximating high grade (> 3.0 %) and low grade (<2.0%) parts. The critical copper grade, which is obtained from the low grade part of the relation, is 0. 34 %. Chinese copper resources are concluded to become pessimistic, because some mines are working with grades close to this critical value. Taking account of the fact that many copper deposits are actually polymetallic, Cu-equivalent grades, which are converted from ratios of metal prices to the copper price, are also introduced. The critical Cu-equivalent grade of MC deposits (0. 43 % ) also suggests that Chinese copper resources are pessimistic.

  12. Biomass potential assessment in Central and Eastern European Countries and opportunities for the Ukraine

    International Nuclear Information System (INIS)

    This paper discusses an approach to determine future biomass production potentials and cost supply curves based on a bottom-up approach. The approach uses detailed data on NUTS3 level (the nomenclature of territorial units for statistics (NUTS) provides a single, uniform breakdown of the economic territory of the European Union). The NUTS is the territorial classification for the compilation of regional accounts for Central and Eastern European Countries and results in biomass supply curves for different scenario conditions that could occur in a European setting. A first assessment of the Ukraine reveals that even with modest assumptions, the Ukrainian agricultural sector could supply 2,000 to 3,000 PJ of primary biomass per year on medium term (i.e. 2010-2015). Cost levels of liquid fuels produced from biomass (such as methanol or Fischer-Tropsch diesel) could end up around 6 Euro/GJ, which is about competitive with production costs of diesel and gasoline from mineral oil. Given the growing demand for biofuels in particular in the EU, biofuels could prove an extremely valuable export commodity for the Ukraine on shorter term already

  13. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  14. Assessment of Geothermal Data Resources and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    This paper is a review of Geothermal Technologies Program activities and archives related to data collection and analysis. It includes an assessment of the current state of geothermal data, future program and stakeholder data needs, existence of and access to critical data, and high-level direction and prioritization of next steps to meet the Program’s data needs.

  15. Hydropower Resource Assessment of Brazilian Streams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  16. Field biomass as energy resource for the future; Peltobiomassat tulevaisuuden energiaresurssina

    Energy Technology Data Exchange (ETDEWEB)

    Pahkala, K.; Loetjoenen, T. (eds.)

    2012-11-01

    Bioenergy can be derived from biomasses especially produced for bioenergy or from by-products, side streams and waste from wood processing industry, agriculture and forestry, or e.g. municipal waste. In the Nordic countries and Russia forests are a natural source of bioenergy. In many other European countries forests may be too scarce for bioenergy use. Therefore field biomasses form an interesting potential source for bioenergy. Production of field biomasses for non-food purposes has been criticized, especially as there is not enough food for everyone even at present, and in the future more food has to be produced as the world population increases. We studied the field biomass potential in different European countries with different scenarios for development. 'Good development' scenario includes improvements in plant breeding and food production and processing technologies, with increasing yields and decreasing waste of food products and raw materials. 'Bad development' scenario assumes stagnating yields and little improvement in technologies in the OECD countries, and only small improvements in former Soviet Union countries. The foci of the present research were the effects of development of food production, population growth and climate change on regional potential of field biomasses for bioenergy and sustainable use of crop residues and grasses for bioenergy. The field area that could be allocated to energy crops after growing enough food for the citizens of each country depends mostly on the diet. Growing food for vegetarian diet would occupy so little field area that every country under study could set aside at least half of their field area for bioenergy purposes already at present, if the 'good development' scenario was applied. With 'bad development' scenario some of the countries would be unable to set aside fields for bioenergy production even with vegetarian diet. With affluent diet there would be little field

  17. Resources

    Science.gov (United States)

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  18. Resources

    Science.gov (United States)

    ... Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - resources Gastrointestinal disorders - resources Hearing impairment - resources ...

  19. Biomass energy use at the household level in two villages of Bangladesh: assessment of field methods

    International Nuclear Information System (INIS)

    A study was conducted to assess biomass energy supply and use in two villages in different agro-ecological regions of Bangladesh using three different techniques: broad questionnaire survey, sample questionnaire survey, and physical monitoring in order to see which methodology was more appropriate for the accurate assessment of biomass cooking energy supply and demand. The study included four broad socio-economic groups, i.e. large, medium, small and landless households. It was found that, per capita cooking energy demand varied significantly between the villages, socio-economic groups, and the first two methods of survey. Energy used was found to be strongly correlated with family size and energy use decreased according to landholding size. The broad questionnaire survey showed an average cooking energy use of 11.8 and 10.1 GJ per capita/year, for Kazirshimla and Noagaon village, respectively, while the sample questionnaire survey estimated energy use at 9.2 an 8.5 GJ per capita/year. With physical monitoring, however, the respective figures were found as 9.0 and 8.2 GJ per capita/year. It was also found that energy use was at the subsistence level in both villages. In Kazirishimla village biomass supply was found to be marginally surplus to use, while Noagaon had a supply deficit. The study showed that a broad questionnaire survey gives a fairly general picture of both biomass supply and use, but to assess cooking energy use more accurately successive sample questionnaire surveys followed by physical monitoring are more effective. (author)

  20. Biomass gasification technology nationalization and human resources formation in North region: GASEIBRAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Santos, Sandra Maria Apolinario dos; Lora, Beatriz Acquaro [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail: suani@iee.usp.br, e-mail: sgvelaz@iee.usp.br, e-mail: sandra@iee.usp.br, e-mail: blora@iee.usp.br

    2008-07-01

    Gasification systems already developed in Brazil are not adjusted to the electricity production at isolated communities, because this models that supply a gas with satisfactory properties to this end, are projected to operate with coal and not with biomass in natura, what implies in the biomass transformation in coal with all the environmental impacts and loss of thermodynamic income associates to this practical. These problems had been surpassed with the GASEIFAMAZ Project development realized by CENBIO in the last two years. The project, that it aimed to make possible the electricity supply expansion in communities without energy access in the country north region, consisted of two gasification systems importation from the Indian Institute of Science, tests accomplishment and its transference to an isolated community. (author)

  1. Patrick Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Parker, S.A.; King, D.A.; Wahlstrom, R.R.; Elliott, D.B.; Shankle, S.A.

    1993-12-01

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL) in support of the US Department of Energy Federal Energy Management Program to identify, evaluate, and assist in acquiring all cost effective energy projects at Patrick Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Patrick AFB which is located south of Cocoa Beach, Florida. It is a companion report to Volume 1, Executive Summary, and Volume.2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance, and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost analysis indicating the net present value and value index of each ERO.

  2. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  3. Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

  4. Integrated assessment of dispersed energy resources deployment

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  5. Coalbed methane resources assessment in Asturias (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Cienfuegos, P.; Loredo, J. [Department of Mining and Exploration Engineering, University of Oviedo, C/Independencia 13, 33004-Oviedo (Spain)

    2010-09-01

    The Asturian Central Coal Basin, located in Northern Spain, is the most important coal basin in the Iberian Peninsula and some antecedents for coalbed methane exploration on this basin go back to the beginning of the 90's, when two deep wells were drilled in selected areas of the basin. This paper contains the results of preliminary studies, accomplished from 2003 to 2006, that focused on the potential of the Asturian Central Coal Basin for the development of coalbed methane projects. According to these studies, the gas content in coal beds approximately ranges from 3.88 to 10.81 m{sup 3}/t (ash free), and coalbed methane resources in the coal basin has been estimated in a minimum value of 25 100 Mm{sup 3}. Despite the fact that the gas content in the entire coal basin is modest, it appears to be adequate for a commercial coalbed methane development, although it is limited by the size of the basin. The option for implementation of coalbed methane projects in this basin is associated to the application of a non-traditional programme for coalbed methane development, including the use of directional drilling from a limited number of well sites. Carbon dioxide sequestration could be associated with the recuperation of methane from the unexploited coal beds. (author)

  6. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    that the combustion of biomass and fossil fuel references for electricity production takes place in a combined heat and power plant, but as a sensitivity analysis, we also consider combustion in a condensing mode power plant where only electricity is produced. Our results show that the production of 1 k......This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume...... on gasification technology appears to be more environmentally friendly than straw direct combustion in all impact categories considered. The comparison with coal results in the same conclusion as that reached in the comparison with straw direct combustion. The comparison with natural gas shows that using straw...

  7. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  8. Preliminary results of Aruba wind resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Guda, M.H. [Fundashon Antiyano Pa Energia, Curacao (Netherlands Antilles)

    1996-12-31

    As part of a project to assess the possibilities for wind energy utilitization in the Dutch Antilles islands, windspeed and -direction data were collected in Aruba for two years, from March 1992 to February 1994. Five sites that were estimated to be representative for the islands` wind regimes, were monitored during this period: two sites on the windward coast, one east and one west; two inland sites, again one east and one west, and one site topping the cliffs overlooking the eastern windward coast. Additionally, twenty years worth of data were analyzed for the reference site at the airport, which is in the middle part of the island, on the leeward coast. Correlation calculations between these data and the data for the project sites were performed, in order to establish a methodology for estimating the long-term behavior of the wind regimes at these sites. 8 figs., 3 tabs.

  9. Wind resource assessment: A three year experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N. [Energy Research Institute (ERI), Riyadh (Saudi Arabia)

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  10. Porphyry copper assessment of eastern Australia: Chapter L in Global mineral resource assessment

    Science.gov (United States)

    Bookstrom, Arthur A.; Len, Richard A.; Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Zientek, Michael L.; Drenth, Benjamin J.; Jaireth, Subhash; Cossette, Pamela M.; Wallis, John C.

    2014-01-01

    The U.S. Geological Survey (USGS) conducts national and global assessments of resources (mineral, energy, water, and biologic) to provide science in support of decision making. Mineral resource assessments provide syntheses of available information about where mineral deposits are known and suspected to occur in the Earth’s crust and which commodities may be present, together with estimates of amounts of resources that may be present in undiscovered deposits. The USGS collaborated with geologists of the Geological Survey of New South Wales and Geoscience Australia (formerly the Australian Geological Survey Organisation) on an assessment of Phanerozoic-age porphyry copper resources in Australia. Porphyry copper deposits contain about 11 percent of the identified copper resources in Australia. This study addresses resources of known porphyry copper deposits and expected resources of undiscovered porphyry copper deposits in eastern Australia.

  11. Energy resources and technologies, today and tomorrow with emphasis on pellets from woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, James

    2010-09-15

    There is a good case to be made for increased development of pellet and briquette production facilities in North America to alleviate our dependence on foreign oil, reduce carbon emissions and provide a continuously renewable energy source. Fuel from woody biomass, in the form of pellets and briquettes have the capability to provide the best near term solution to offsetting fossil fuels for power generation. Due to their transportability, existing transportation systems, and the vast amount of harvestable wood, this fuel will be a viable energy solution for future needs.

  12. Cape Canaveral Air Force Station integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Eichman, C.J.; King, D.A.; McMordie, K.L.; Parker, S.A.; Shankle, S.A.; Wahlstrom, R.R.

    1994-03-01

    The U.S. Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL) in support of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Cape Canaveral Air Force Station (AFS). Projects considered can be either in the form of energy management or energy conservation. The overall efforts of this task are based on a model program PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Cape Canaveral AFS, which is located approximately 10 miles north of Cocoa Beach, Florida. It is a companion report to Volume 1: Executive Summary and Volume 2: Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance (O&M), and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. Descriptions of the evaluation methodologies and technical and cost assumptions are also provided for each ERO. Summary tables present the cost- effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis, indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

  13. Vandenberg Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, K.K.; Dagle, J.E.; Dittmer, A.L.; Elliott, D.B.; Halverson, M.A.; Hickman, B.J.; Parker, G.B.; Richman, E.E.; Shankle, S.A.

    1993-06-01

    The US Air Force Space Command (SPACECOM) has tasked the Pacific Northwest Laboratory (PNL), as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the SPACECOM VAFB facility located approximately 50 miles northwest of Santa Barbara, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analysis of EROs are presented in ten common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). In addition, a case study of process loads at Space Launch Complex-4 (SLC-4) is included. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O and M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and value index (VI) of each ERO. Finally, an appendix includes a summary of an economic analysis case study of the South Vandenberg Power Plant (SVPP) operating scenarios.

  14. A Review of Mineral Resources and GIS Applications in Mineral Resource Assessment in Northeast China

    Institute of Scientific and Technical Information of China (English)

    Zhou Yunxuan; Wang Lei; Liu Wansong; Xu Huiping; Sun Fengyue

    2000-01-01

    Northeast China is one of the regions in China that possesses a great abundance of mineral resources.Coal, petroleum, natural gas, gold, iron, magnesite, graphite, talc, molding sand, glass sand and some others account for large portion in reserves and yields of that in the whole country. The region faced also shortages of copper, molybdenum, oil shale, zirconium, tantalum, rare earth, and beryllium, although they have large reserves,but limited by economical and technical factors. Geological mapping and mineral exploration activities have been intensive. Only the north part of Daxinanling Mountains in the region leaves unexplored. GIS applications in mineral resource assessment in the region start not long. Databases for GIS applications are on the way of construction.Well - trained technical staff and expertise do not meet the demand.This article reviews the situation of mineral resources and GIS applications for mineral resource assessment in the region. Suggestions on multi - lateral cooperation and GIS training are also made.

  15. A development perspective for biomass-fuelled electricity generation technologies. Economic technology assessment in view of sustainability

    International Nuclear Information System (INIS)

    In Chapters 1-3 the methodology for assessing the development of biomass based energy technologies for reducing greenhouse gas (GHG) emissions is brought into focus. The development of this methodology begins with a chapter on existing views regarding the environment, sustainability and the role of technology. In the second part of this thesis, the newly established methodology is applied to biomass-fuelled central electricity production. First the scope for application in the European Union (EU) is considered. Following this, the assessment focusses on rural electrification in developing countries. Where biomass, in addition to being grown purposefully as an energy crop, may become available as residues and waste, developments in legislation with regard to waste biomass can be critical. This is discussed in a special introduction to Part B. Here also, the methodological differences between technology assessments for waste processing and for sustainable electricity generation are discussed

  16. Assessment finds more natural gas resources but less oil

    Science.gov (United States)

    Showstack, Randy

    2012-05-01

    The latest report on undiscovered conventional oil and gas resources outside the United States estimates that there are more undiscovered and technically recoverable natural gas and natural gas liquids (NGLs) but less oil than had previously been thought. The 18 April report, issued by the U.S. Geological Survey (USGS) as part of its World Petroleum Resource Project, estimates that there are 5606 trillion cubic feet of natural gas, compared with 4669 trillion cubic feet in the previous assessment, in 2000, and 167 billion barrels of NGLs compared with an earlier 207 billion barrels. The assessment also estimates that there are 565 billion barrels of oil compared with an earlier 649 billion. About 75% of those resources outside the United States are located in four regions: South America and the Caribbean, sub-Saharan Africa, the Middle East and North Africa, and the Arctic provinces portion of North America, according to the new assessment.

  17. Assessment of South African uranium resources: methods and results

    International Nuclear Information System (INIS)

    This paper deals primarily with the methods used by the Atomic Energy Corporation of South Africa, in arriving at the assessment of the South African uranium resources. The Resource Evaluation Group is responsible for this task, which is carried out on a continuous basis. The evaluation is done on a property-by-property basis and relies upon data submitted to the Nuclear Development Corporation of South Africa by the various companies involved in uranium mining and prospecting in South Africa. Resources are classified into Reasonably Assured (RAR), Estimated Additional (EAR) and Speculative (SR) categories as defined by the NEA/IAEA Steering Group on Uranium Resources. Each category is divided into three categories, viz, resources exploitable at less than $80/kg uranium, at $80-130/kg uranium and at $130-260/kg uranium. Resources are reported in quantities of uranium metal that could be recovered after mining and metallurgical losses have been taken into consideration. Resources in the RAR and EAR categories exploitable at costs of less than $130/kg uranium are now estimated at 460 000 t uranium which represents some 14 per cent of WOCA's (World Outside the Centrally Planned Economies Area) resources. The evaluation of a uranium venture is carried out in various steps, of which the most important, in order of implementation, are: geological interpretation, assessment of in situ resources using techniques varying from manual contouring of values, geostatistics, feasibility studies and estimation of recoverable resources. Because the choice of an evaluation method is, to some extent, dictated by statistical consderations, frequency distribution curves of the uranium grade variable are illustrated and discussed for characteristic deposits

  18. Washington State biomass data book

    Energy Technology Data Exchange (ETDEWEB)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  19. Washington State biomass data book

    International Nuclear Information System (INIS)

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs

  20. Re-evaluating Primary Biotic Resource Use for Marine Biomass Production: A New Calculation Framework.

    Science.gov (United States)

    Luong, Anh D; Schaubroeck, Thomas; Dewulf, Jo; De Laender, Frederik

    2015-10-01

    The environmental impacts of biomass harvesting can be quantified through the amount of net primary production required to produce one unit of harvested biomass (SPPR-specific primary production required). This paper presents a new calculation framework that explicitly takes into account full food web complexity and shows that the resulting SPPR for toothed whales in the Icelandic marine ecosystem is 2.8 times higher than the existing approach based on food web simplification. In addition, we show that our new framework can be coupled to food web modeling to examine how uncertainty on ecological data and processes can be accounted for while estimating SPPR. This approach reveals that an increase in the degree of heterotrophy by flagellates from 0% to 100% results in a two-fold increase in SPPR estimates in the Barents Sea. It also shows that the estimated SPPR is between 3.9 (herring) and 5.0 (capelin) times higher than that estimated when adopting food chain theory. SPPR resulting from our new approach is only valid for the given time period for which the food web is modeled and cannot be used to infer changes in SPPR when the food web is altered by changes in human exploitation or environmental changes. PMID:26348118

  1. Exergetic assessment of an integrated gasifier/boiler system for hydrogen production with different biomass types

    International Nuclear Information System (INIS)

    In this study, we utilize some experimental data taken from the literature, especially on the air blown gasification characteristics of six different biomass fuels, namely almond shell (ASF), walnut pruning (WPF), rice straw (RSF), whole tree wood chips (WWF), sludge (SLF) and non-recyclable waste paper (NPF) for hydrogen production from an integrated gasifier-boiler power system. Then, we undertake an exergy analysis of this integrated system and assess its performance through energy and exergy efficiencies. The exergy content values calculated for the biomass fuels range from 15.89 to 22.07 MJ/kg. The stack gas is examined at cyclone out, and the hydrogen concentrations determined change between 7 and 18 (%v/v) for NPF and ASF. Furthermore, the system considered is studied in terms of irreversibility and improvement potential rates. These rate values change from 6.82 to 43.11 kW for irreversibility and 6.01 to 41.24 kW for improvement potential, respectively. The exergy efficiencies of the system are calculated as 4.33 to 11.89%. Finally, we consider N and NH3 contents of the six biomass fuels and their stack gas compositions. (author)

  2. Wind resource assessment method for floating deep offshore wind turbines

    OpenAIRE

    Estanqueiro, Ana; Couto, A.; Rodrigues, L.; Marujo, R.

    2014-01-01

    This study presents a new methodology for the assessment of the wind energy resource at deep offshore locations where the use of floating wind turbines is foreseen. The wind resource assessment methodology developed follows the principles used by IEC 61400-12-1 standard in general and proposes the use of experimental data from a floating light detection and ranging (LIDAR) system on a deep offshore region – that assumes the role of the ‘temporary mast’ – and a coastal meteorological mast inst...

  3. Risk assessment activities at NIOSH: Information resources and needs

    Energy Technology Data Exchange (ETDEWEB)

    Stayner, L.T.; Meinhardt, T.; Hardin, B. [National Institute for Occupational Safety and Health, Cincinnati, OH (United States)

    1990-12-31

    Under the Occupational Safety and Health, and Mine Safety and Health Acts, the National Institute for Occupational Safety and Health (NIOSH) is charged with development of recommended occupational safety and health standards, and with conducting research to support the development of these standards. Thus, NIOSH has been actively involved in the analysis of risk associated with occupational exposures, and in the development of research information that is critical for the risk assessment process. NIOSH research programs and other information resources relevant to the risk assessment process are described in this paper. Future needs for information resources are also discussed.

  4. Investigations and research of biomass energy resources in Lithuania; Versuche und Forschungen an Nachwachsenden Rohstoffen zur energetischen Nutzung in Litauen

    Energy Technology Data Exchange (ETDEWEB)

    Klimas, E.; Navickas, K.; Krythevieiene, A.; Thaltauskas, A.

    2003-07-01

    There are many areas of unused land in the country. Forests or energy plants grown in these lands would enable to protect the land from the erosion and would increase the resources of biomass. It is expected that Lithuania can use about 19% (600.000 ha) for energy plants (grasses, trees and miscantus). The advantage of the renewable energy sources is in the fact, that they can substitute the fossil fuel and save the currency means of the country. The production of the biomass would enable to create new working places. Significant effect of environment protection can be excepted from the production of biogas from the manure of animals and poultry. The manure processing on the biodigesters enables to minimize its polluting characteristics. Also biomass grown on set-aside land can be used for biogas production. The area of the rape crops according to the agrotechnical requirements should make 20-25% i.e., 232-290 thousand ha of the land can be use for the rape crops. The average yield in the future is expected to be 2,5 t ha{sup -1}. On the way of integration to EU it is essential to begin production of biodiesel fuel in Lithuania and extend this production to 80 thousands tons per year at 2010. The ethanol can be produced from the agricultural products, i.e., the grain, potatoes, sugar beet etc., and from the residues of the products of food industry. Approximately 25 thousand tons of ethanol can be made from this amount of the whey. (orig.)

  5. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  6. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    Science.gov (United States)

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  7. A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints

    International Nuclear Information System (INIS)

    Interest in bioenergy in recent years has been stimulated by both energy security and climate change concerns. Fuels derived from agricultural crops offer the promise of reducing energy dependence for countries that have traditionally been dependent on imported energy. Nevertheless, it is evident that the potential for biomass production is heavily dependent on the availability of land and water resources. Furthermore, capacity expansion through land conversion is now known to incur a significant carbon debt that may offset any benefits in greenhouse gas reductions arising from the biofuel life cycle. Because of such constraints, there is increasing use of non-local biomass through regional trading. The main challenge in the analysis of such arrangements is that individual geographic regions have their own respective goals. This work presents a multi-region, fuzzy input–output optimization model that reflects production and consumption of bioenergy under land, water and carbon footprint constraints. To offset any local production deficits or surpluses, the model allows for trade to occur among different regions within a defined system; furthermore, importation of additional biofuel from external sources is also allowed. Two illustrative case studies are given to demonstrate the key features of the model.

  8. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    Energy Technology Data Exchange (ETDEWEB)

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  9. Bioenergy in Australia: An improved approach for estimating spatial availability of biomass resources in the agricultural production zones

    International Nuclear Information System (INIS)

    Bioenergy production from crops and agricultural residues has a greenhouse gas mitigation potential. However, there is considerable debate about the size of this potential. This is partly due to difficulties in estimating the feedstock resource base accurately and with good spatial resolution. Here we provide two techniques for spatially estimating crop-based bioenergy feedstocks in Australia using regional agricultural statistics and national land use maps. The approach accommodates temporal variability by estimating ranges of feedstock availability and the shifting nature of zones of the highest spatial concentration of feedstocks. The techniques are applicable to biomass production from forestry, agricultural residues or oilseeds, all of which have been proposed as biofuel feedstocks. -- Highlights: → Dasymetric mapping appoach for producing spatial and temporal variation maps in feedstock production.→ Combines land use and crop statistics to produce regionally precise feedstock maps. → Feedstock concentrations and feedstock density maps enable identification of feedstock concentration spatially and comparison of yearly variation in production.

  10. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    Science.gov (United States)

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery. PMID:26808018

  11. Current status and prospects of biomass resources for energy production in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Katinas, Vladislovas; Markevicius, Antanas; Kavaliauskas, Andrius [Renewable Energy Laboratory, Lithuanian Energy Institute, 3 Breslaujos str., LT-44403 Kaunas (Lithuania)

    2007-04-15

    Basic biomass sources in Lithuania are comprised of wood, straw, biofuel and biogas. The current status and the problems from using biomass for energy production in Lithuania are analyzed. The possibility of utilizing wood waste, firewood, straw and biogas for energy is evaluated. Forest comprises about 2.05Mha or 31.3% of Lithuanian land area. About 4.3 million m{sup 3} solid volume of wood per year can be used for fuel (843ktoe). Wood as fuel is used directly or in processed form (briquettes, pellets and chips). Agriculture produces approximately 1.5-2.0 million tons of straw each year for animal feed, litter and olericulture. Around 30-40% (130ktoe) could be used as fuel for energy production. Boiler houses for combusting the straw have increased and now comprise about 7MW. Straw is also used for heating private houses. Sources for biogas production include sludge from water cleaning equipment, animal manure and organic waste in food processing companies. Total volume of operating bioreactors comprises about 24000m{sup 3}, and annual production of biogas is 6.3 million m{sup 3} per year (3.4ktoe). By year 2010 the total volume of bioreactors will increase to 35000m{sup 3} and about 50000m{sup 3} by 2040. In Lithuania biodiesel and bioethanol are mainly used in blending with conventional fuel. Following the requirements of the European Union (EU), 2% of total consumed fuel per year is to be produced in 2005. By 2010 biofuel should comprise not less than 5.75% of all fuel existing in the market. (author)

  12. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  13. The Gas Resources Assessment Expert System of the Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gas resources assessment expert system is one of the advanced methods for appraising oil and gas resources. The establishment of a knowledge base is the focal task in developing the expert system. This paper presents a summary of the mechanism and the major controlling factors in the formation of gas pools in the southeast uplift of the Songliao basin. Then an appropriate assessment model is established for trapping the gas resources and a knowledge base built in the expert system to realize the model. By using the expert system to appraise the gas-bearing probability of 25 major traps of the Quantou and Denglouku Formations in the Shiwu-Dehui area, the authors have proved that the expert system is suitable for appraising traps in the Songliao basin and similar basins.

  14. Implementation of the natural resource damage assessment rule

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    Regulations have been promulgated by the Department of Interior (DOI) which provide an administrative process whereby natural resource trustees may establish the type and extent of injury and evaluate the damages to natural resources. These regulations provide an optional mechanism for Natural Resource Damage Assessments (NRDAs), with four major components. A workshop was held to develop recommendations for DOE-OR regarding implementation of the DOI NRDA regulations at the Oak Ridge Reservation (ORR). The attendants were divided into three working groups to consider (1) administrative/legal requirements, (2) ecological assessments, and (3) the NRDA/economic evaluation process. This report supplies an overview of the DOI NRDA regulations as well as summaries of the consensus of each of the three working groups.

  15. Implementation of the natural resource damage assessment rule

    International Nuclear Information System (INIS)

    Regulations have been promulgated by the Department of Interior (DOI) which provide an administrative process whereby natural resource trustees may establish the type and extent of injury and evaluate the damages to natural resources. These regulations provide an optional mechanism for Natural Resource Damage Assessments (NRDAs), with four major components. A workshop was held to develop recommendations for DOE-OR regarding implementation of the DOI NRDA regulations at the Oak Ridge Reservation (ORR). The attendants were divided into three working groups to consider (1) administrative/legal requirements, (2) ecological assessments, and (3) the NRDA/economic evaluation process. This report supplies an overview of the DOI NRDA regulations as well as summaries of the consensus of each of the three working groups

  16. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilev

    Full Text Available A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  17. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    C"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio

  18. Information resource use and need in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Turturro, A. [National Center for Toxicological Research, Jefferson, AR (United States)

    1990-12-31

    The manner in which the Food and Drug Administration (FDA) uses information resources comprises an interesting illustration of federal agency information use. A description of the context in which risk assessment occurs within the FDA is followed by a discussion of information access and use, as well as a practical example.

  19. Assessment of the land resources management effectiveness in agriculture

    OpenAIRE

    S. Bohatyrchuk-Kryvko

    2015-01-01

    This paper deals with theoretical and methodological approaches to the assessment of the land resources management effectiveness in agriculture. This approach provides for the use of the integral index, which takes into account the system of ecological and economic parameters, which enable state and local authorities as well as economic actors to take adequate management decisions and ensure a balanced land use.

  20. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  1. LIFE CYCLE ASSESSMENT OF ARUNDO DONAX BIOMASS PRODUCTION IN A MEDITERRANEAN EXPERIMENTAL FIELD USING TREATED WASTEWATER

    Directory of Open Access Journals (Sweden)

    Claudia Arcidiacono

    2012-06-01

    Full Text Available In this study the Life Cycle Assessment (LCA of the Arundo donax production process for energy purpose is proposed. The cultivation of this type of herbaceous biomass, irrigated with urban wastewater, was carried out in an experimental field, sited in eastern Sicily (Italy. The analysis by LCA makes it possible, among other things, to evaluate the potential environmental impacts related to each phase of the process. In this study a sensitivity analysis of the LCA results were carried out by varying the process stages. Furthermore the incidence of each process stage on the damage categories by varying the cultivation- cycle length was evaluated. The stages constituting the Arundo donax production process, considered in this assessment, regard seedling production, agronomic practices, irrigation, and transport to boiler. The functional unit used in the analyses was 1 ton of biomass and crop productivity values were derived from literature. The analyses allowed to identify the most significant stages of the Arundo donax production process related to the experimental field. In detail, this study highlights that seedling production and irrigation stages contributed most of all to the overall environmental burden, whereas agronomic practices stage showed a minor influence on the process.

  2. Topical report on sources and systems for aquatic plant biomass as an energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.; Wilson, E.H.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with light as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.

  3. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Appendix 2. Macro-economic Scenarios

    International Nuclear Information System (INIS)

    The Bio-based Raw Materials Platform (known as PGG), which is part of the Energy Transition programme in the Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to study the macro-economic impact of large-scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including techno-economic projections of fossil and bio-based conversion technologies and a top-down study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down study (part 2) including macro-economic modelling of (global) trade of biomass and fossil resources, are presented in this report

  4. Solar energy scenarios in Brazil, Part one: Resource assessment

    International Nuclear Information System (INIS)

    The 'Solar and Wind Energy Resource Assessment' (SWERA) project was an international project financed by GEF/UNEP, which aimed at providing a consistent and accessible database to foster the insertion of renewable energies on the energy matrix of developing countries. This paper presents the solar energy resource assessment generated during the SWERA project by using the radiative transfer model BRASIL-SR fed with satellite and climate data. The solar irradiation estimates were validated by comparing with the ground data acquired in several sites spread out the Brazilian territory. Maps on 10x10 km2 spatial resolution were generated for global, diffuse and direct normal solar irradiation. Solar irradiation on a plane tilted by an angle equal to the local latitude was also generated at the same spatial resolution. Besides the solar resource maps, the annual and seasonal variability of solar energy resource was evaluated and discussed. By analyzing the Brazilian solar resource and variability maps, the great potential available for solar energy applications in Brazil is apparent, even in the semi-temperate climate in the southern region where the annual mean of solar irradiation is comparable to that estimated for the equatorial Amazonian region

  5. Final Report Low-temperature Resource Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR (US); Ross, H. [Earth Sciences and Resources Institute, University of Utah

    1996-02-01

    The U.S. Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation's low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20 degrees Celsius to 150 degrees Celsius has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50 degrees Celsius located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy costevaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  6. Low-temperature resource assessment program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center; Ross, H. [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.

    1996-02-01

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  7. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Mariah [BEC Environmental, Inc., Las Vegas, NV (United States)

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  8. Introduction to the Biomass Project: An Illustration of Evidence-Centered Assessment Design and Delivery Capability. CSE Report.

    Science.gov (United States)

    Steinberg, Linda S.; Mislevy, Robert J.; Almond, Russell G.; Baird, Andrew B.; Cahallan, Cara; Dibello, Louis V.; Senturk, Deniz; Yan, Duanli; Chernick, Howard; Kindfield, Ann C. H.

    This paper describes the design rationale for a prototype of an innovative assessment product, and the process that led to the design. The goals of the Biomass project were to demonstrate: (1) an assessment product designed to serve two new purposes in the transition from high school to college; and (2) the capability needed to produce this kind…

  9. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  10. Washington's marine oil spill compensation schedule - simplified resource damage assessment

    International Nuclear Information System (INIS)

    The Washington State Preassessment Screening and Oil Spill Compensation Schedule Rule (Chapter 173-183 Washington Administrative Code), which simplifies natural resource damage assessment for many oil spill cases, became effective in May 1992. The approach described in the rule incorporates a number of preconstructed rankings that rate environmental sensitivity and the propensity of spilled oil to cause environmental harm. The rule also provides guidance regarding how damages calculated under the schedule should be reduced to take into account actions taken by the responsible party that reduce environmental injury. To apply the compensation schedule to marine estuarine spills, the resource trustees need only collect a limited amount of information such as type of product spilled, number of gallons spilled, compensation schedule subregions the spill entered, season of greatest spill impact, percent coverage of habitats affected by the spill, and actions taken by the responsible party. The result of adding a simplified tool to the existing assortment of damage assessment approaches is that resource trustees will now be able to assess damages for most oil spill cases and shift more effort than was possible in the past to resource restoration

  11. Air resource management program assessment (Rocky Mountain Region)

    International Nuclear Information System (INIS)

    The Rocky Mountain Region of the USDA Forest Service comprises 17 National Forests and seven National Grasslands in Colorado, Wyoming, Nebraska, and South Dakota. These contain sensitive ecosystems and spectacular scenery which can be harmed by existing and future air pollution. To minimize or prevent such damage, the Region has created the Air Resource Management Program Assessment. Its basic purpose is to ensure that the Region's most sensitive ecosystems will be identified and protected. Also, by helping to coordinate air resource management activities between Forests, unnecessary duplication of effort will be minimized

  12. Lithium Resources and Production: Critical Assessment and Global Projections

    OpenAIRE

    Mohr, Steve H.; GavinM. Mudd; Damien Giurco

    2012-01-01

    This paper critically assesses if accessible lithium resources are sufficient for expanded demand due to lithium battery electric vehicles. The ultimately recoverable resources (URR) of lithium globally were estimated at between 19.3 (Case 1) and 55.0 (Case 3) Mt Li; Best Estimate (BE) was 23.6 Mt Li. The Mohr 2010 model was modified to project lithium supply. The Case 1 URR scenario indicates sufficient lithium for a 77% maximum penetration of lithium battery electric vehicles in 2080 wherea...

  13. An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada

    International Nuclear Information System (INIS)

    This study explores the economic feasibility of fossil fuel substitution with biomass from short-rotation willow plantations as an option for greenhouse heating in southern Ontario, Canada. We assess the net displacement value of fossil fuel biomass combustion systems with an integrated purpose-grown biomass production enterprise. Key project parameters include greenhouse size, heating requirements, boiler capital costs and biomass establishment and management costs. Several metrics have been used to examine feasibility including net present value, internal rate of return, payback period, and the minimum or break-even prices for natural gas and heating oil for which the biomass substitution operations become financially attractive. Depending on certain key assumptions, internal rates of return ranged from 11-14% for displacing heating oil to 0-4% for displacing natural gas with woody biomass. The biomass heating projects have payback periods of 10 to >22 years for substituting heating oil and 18 to >22 years for replacing a natural gas. Sensitivity analyses indicate that fossil fuel price and efficiency of the boiler heating system are critical elements in the analyses and research on methods to improve growth and yield and reduce silviculture costs could have a large beneficial impact on the feasibility of this type of bioenergy enterprise. (author)

  14. Species diversity, biomass, and carbon stock assessments of a natural mangrove forest in palawan, philippines

    International Nuclear Information System (INIS)

    Philippines claims international recognition for its mangrove-rich ecosystem which play significant functions from the viewpoint of ecosystem services and climate change mitigation. In this study, we assessed the species diversity of the natural mangrove forest of Bahile, Puerto Princesa City, Palawan and evaluated its potential to sequester and store carbon. Sixteen plots with a size of 10 m * 10 m were established using quadrat sampling technique to identify, record, and measure the trees. Diversity index and allometric equations were utilized to determine species diversity, and biomass and carbon stocks. Sediment samples in undisturbed portions using a 30 cm high and 5 cm diameter corer were collected in all plots to determine near-surface sediment carbon. The diversity index (H = 0.9918) was very low having a total of five true mangrove species identified dominated by Rhizophora apiculata Bl. with an importance value index of 148.1%. Among the stands, 74% of the total biomass was attributed to the above-ground (561.2 t ha-1) while 26% was credited to the roots (196.5 t ha-1). The total carbon sequestered and stored in the above-ground and root biomass were 263.8 t C ha-1 (50%) and 92.3 t C ha-1 (17%), respectively. Sediments contained 33% (173.75 t C ha-1) of the mangrove C-stocks. Stored carbon was equivalent to 1944.5 t CO/sub 2/ ha-1. These values suggest that Bahile natural mangrove forest has a potential to sequester and store substantial amounts of atmospheric carbon, hence the need for sustainable management and protection of this important coastal ecosystem. (author)

  15. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems

    Directory of Open Access Journals (Sweden)

    Z. H. Zhou

    2015-07-01

    Full Text Available Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic and nitrogen (Nmic and related parameters from 207 independent studies published during the past 15 years across China's forest ecosystems. Our objectives were to (1 examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates by climate zones and management regimes for these forests; and (2 identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1, Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25, Cmic / Csoil rate (1.92 %, and Nmic / Nsoil rate (3.43 % across China's forests, with coefficients of variation varying from 61.2 to 95.6 %. The natural forests had significantly greater Cmic and Nmic than the planted forests, but had less Cmic : Nmic ratio and Cmic / Csoil rate. Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with the Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plastic homeostasis of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil and Nmic / Nsoil rates were responsive to soil resources and climate differently, suggesting that soil microbial assimilation of carbon and nitrogen be regulated by different mechanisms. We conclude that soil resources and climate jointly drive microbial growth and metabolism, and also emphasize the necessity of appropriate procedures for data compilation and standardization in cross-study syntheses.

  16. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems

    Science.gov (United States)

    Zhou, Z. H.; Wang, C. K.

    2015-07-01

    Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published during the past 15 years across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg-1), Nmic (60.1 mg kg-1), Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic/ Nsoil rate (3.43 %) across China's forests, with coefficients of variation varying from 61.2 to 95.6 %. The natural forests had significantly greater Cmic and Nmic than the planted forests, but had less Cmic : Nmic ratio and Cmic / Csoil rate. Soil resources and climate together explained 24.4-40.7 % of these variations. The Cmic : Nmic ratio declined slightly with the Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plastic homeostasis of microbial carbon-nitrogen stoichiometry. The Cmic/ Csoil and Nmic / Nsoil rates were responsive to soil resources and climate differently, suggesting that soil microbial assimilation of carbon and nitrogen be regulated by different mechanisms. We conclude that soil resources and climate jointly drive microbial growth and metabolism, and also emphasize the necessity of appropriate procedures for data compilation and standardization in cross-study syntheses.

  17. Reviews and syntheses: Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems

    Science.gov (United States)

    Zhou, Z. H.; Wang, C. K.

    2015-11-01

    Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published up to November 2014 across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg-1), Nmic (60.1 mg kg-1, Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic / Nsoil rate (3.43 %) across China's forests. The natural forests had significantly greater Cmic (514.1 mg kg-1 vs. 281.8 mg kg-1) and Nmic (82.6 mg kg-1 vs. 39.0 mg kg-1) than the planted forests, but had less Cmic : Nmic ratio (7.3 vs. 9.2) and Cmic / Csoil rate (1.7 % vs. 2.1 %). Soil resources and climate together explained 24.4-40.7 % of these variations. The Cmic : Nmic ratio declined slightly with Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plasticity of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil rate decreased with Csoil : Nsoil ratio, whereas the Nmic / Nsoil rate increased with Csoil : Nsoil ratio; the former was influenced more by soil resources than by climate, whereas the latter was influenced more by climate. These results suggest that soil microbial assimilation of carbon and nitrogen are jointly driven by soil resources and climate, but may be regulated by different mechanisms.

  18. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries

    International Nuclear Information System (INIS)

    This work reports on the assessment of the dye methylene blue biosorption properties of Pyracantha coccinea berries under different experimental conditions. Equilibrium and kinetic studies were carried out to determine the biosorption capacity and rate constants. The highest biosorption yield was observed at about pH 6.0, while the biosorption capacity of the biomass decreased with decreasing initial pH values. Batch equilibrium data obtained at different temperatures (15, 25, 35 and 45 deg. C) were modeled by Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm model fitted the equilibrium data, at the all studied temperatures, better than the other isotherm models indicating monolayer dye biosorption process. The highest monolayer biosorption capacity was found to be 127.50 mg/g dry biomass at 45 deg. C. Kinetic studies indicate that the biosorption process followed the pseudo-second-order model, rather than the pseudo-first-order model. ΔGo, ΔHo and ΔSo parameters of biosorption show that the process is spontaneous and endothermic in nature. The biosorbent-dye interaction mechanisms were investigated using a combination of Fourier transform infrared spectroscopy and scanning electron microscopy. The biosorption procedure was applied to simulated wastewater including several pollutants. The results obtained indicated that the suggested inexpensive and readily available biomaterial has a good potential for the biosorptive removal of basic dye.

  19. Biomass for fuel cells: A technical and economic assessment. Paper no. IGEC-1-Keynote-Peppley

    International Nuclear Information System (INIS)

    Fuel cells can be highly efficient energy conversion devices. However, the environmental benefit of utilising fuel cells for energy conversion is completely dependent on the source of the fuel. Hydrogen is the ideal fuel for fuel cells but the current most economical methods of producing hydrogen also result in the production of significant amounts of CO2. Utilising biomass to produce the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with CO in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells. It is, however, extremely difficult to assess the economic feasibility of biomass-fuelled fuel cell systems because of a lack of published cost information and uncertainty in the predicted cost per kW of the various types of fuel cells for large volume production methods. From the scant information available it appears that the current cost for fuel-cell systems operating on anaerobic digester gas is about US$2500 per kW compared to a target price of US$1200 required to compete with conventional technologies. (author)

  20. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  1. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  2. Assessment of undiscovered petroleum resources in Central and South America

    Science.gov (United States)

    Schenk, C.J.

    2002-01-01

    The USGS has assessed undiscovered conventional oil and gas resources in 128 selected petroleum provinces of the world. Of these 128 provinces, 23 are in South America, Central America, and the Caribbean area. In the USGS 2000 Assessment, the provinces resulted in mean totals for undiscovered resource of 105 billion bbl of oil and 487 tcf of gas. The potential for giant oil and gas fields is greatest in the basins along the Atlantic margin of eastern South America, from the Santos Basin in the south to the Guyana-Suriname Basin in the north. The potential for giant fields is mainly offshore, in water depths up to 3600 m. The South and Central America region ranks third in the world for undiscovered conventional oil and gas behind the Middle East and the Former Soviet Union.

  3. Resource assessment of the Imperial Valley. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biehler, S.; Lee, T.

    1977-01-01

    A resource assessment of the Imperial Valley has been made based on the use of the gravity anomalies as indicators of total excess mass. These data indicate a potential of producing electric power of 7 to 80 thousand megawatts for 30 years. Over half of the total potential is located in the Salton Sea Anomaly and approximately half of the potential of the Salton Sea field is water covered. An attempt has been made to assess not only the heat in storage in the fluid but also recoverable from the country rock by reinjection. Based on calculations, the natural recharge rate of heat in the Valley due to sea floor spreading is too small to give the resource an indefinite life-span since the economic rates of withdrawal appear to be at least an order of magnitude greater.

  4. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, A. C.

    2013-12-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  5. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability...... criteria. Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....

  6. Colorado's hydrothermal resource base: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  7. The National Climate Assessment as a Resource for Science Communication

    Science.gov (United States)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  8. Strategic human resource management assessment PricewaterhouseCoopers

    OpenAIRE

    Amelia Boncea; Cîrnu Doru

    2010-01-01

    The world we are living in today has increasingly become aware of the importance of the human factor in all types of organizations. The present paper is intended to assess the performance of the human resource department at PricewaterhouseCoopers and to provide adequate recommendations for activity improvement. After a statement of the current HR strategy and an in-depth analysis of the external and internal environment, the paper continues with some proposals upon a more efficient HR functio...

  9. Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools

    Directory of Open Access Journals (Sweden)

    Goran Finnveden

    2016-06-01

    Full Text Available A thermodynamic approach based on exergy use has been suggested as a measure for the use of resources in Life Cycle Assessment and other sustainability assessment methods. It is a relevant approach since it can capture energy resources, as well as metal ores and other materials that have a chemical exergy expressed in the same units. The aim of this paper is to illustrate the use of the thermodynamic approach in case studies and to compare the results with other approaches, and thus contribute to the discussion of how to measure resource use. The two case studies are the recycling of ferrous waste and the production and use of a laptop. The results show that the different methods produce strikingly different results when applied to case studies, which indicates the need to further discuss methods for assessing resource use. The study also demonstrates the feasibility of the thermodynamic approach. It identifies the importance of both energy resources, as well as metals. We argue that the thermodynamic approach is developed from a solid scientific basis and produces results that are relevant for decision-making. The exergy approach captures most resources that are considered important by other methods. Furthermore, the composition of the ores is shown to have an influence on the results. The thermodynamic approach could also be further developed for assessing a broader range of biotic and abiotic resources, including land and water.

  10. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Mutlu, Ayten Gizem;

    2013-01-01

    that aim to optimize the trade off between high EPS recovery and low cell lysis. Despite extensive efforts, the obtained results are often contradictory, even when analysing similar biomass samples and using similar experimental conditions, which greatly complicates the selection of an extraction...... lysis potential of different EPS extraction protocols. We concluded that commonly used methods to assess cell lysis (DNA concentrations or G6PDH activities in EPS extracts) do not correlate with cell viability. Furthermore, we discovered that the presence of certain chemicals in EPS extracts results in...... composition to the nitrifier EPS, had a lower fraction of hydrophobic biopolymers. In general, the easily-extractable EPS fraction was more abundant in carbohydrates and humic substances, while DNA could only be found in tightly bound EPS fractions. In conclusion, the methodology presented herein supports the...

  11. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    International Nuclear Information System (INIS)

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U3O8 forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs

  12. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  13. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  14. Genetic resources for methane production from biomass described with gene ontology

    Directory of Open Access Journals (Sweden)

    Endang ePurwantini

    2014-12-01

    Full Text Available Methane (CH4 is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing gold standards for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/.

  15. Genetic resources for methane production from biomass described with the Gene Ontology.

    Science.gov (United States)

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C; Tyler, Brett M; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http

  16. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

    2006-01-01

    Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

  17. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  18. Potential biomass resource of the county of Olavarria for the generation of electricity by means of anaerobic digestion

    International Nuclear Information System (INIS)

    Through the present study the possibility is analyzed of implementing a biogas power station in the County of OlavarrIa from previous to the report of the biomass potential of the area.The proposal is to install it in the plant of treatment of sewer residuals in order to take advantage of the residual water as the necessary liquid resource to complete the process of anaerobic fermentation.145 ton/day distributed in the following way would be used: 95% bovine manure, 2.5% of preparing, 2.2% content of the rumen, and the rest among swinish and ovine.It would be operated with three digesters of 1417 m3, in thermophilic conditions (55 degree C)under a continuous regime and with a time of hydraulic retention of 14 days, generating 6383 m3/dia of biogas whose conversion in electricity is of 507 kwh, avoiding that 8181 kg of CO2e/day is emitted if it was replaced to the natural gas

  19. Assessment of geothermal resources of the United States, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L.J.P. (ed.)

    1979-01-01

    The geothermal resource assessment presented is a refinement and updating of USGS Circular 726. Nonproprietary information available in June 1978 is used to assess geothermal energy in the ground and, when possible, to evaluate the fraction that might be recovered at the surface. Five categories of geothermal energy are discussed: conduction-dominated regimes, igneous-related geothermal systems, high-temperature (> 150/sup 0/C) and intermediate-temperature (90 to 150/sup 0/C) hydrothermal convection systems, low-temperature (< 90/sup 0/C) geothermal waters, and geopressured-geothermal energy (both thermal energy and energy from dissolved methane). Assessment data are presented on three colored maps prepared in cooperation with the National Oceanic and Atmospheric Administration. Separate abstracts were prepared for papers on these five categories.

  20. ASSESSMENT OF WATER RESOURCES AT HONGHE NATIONAL NATURE RESERVE

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-Mao; LU Xian-Guo; ZHAO Chun-Hui; ZHAO Yan-Bo; QI Han-Qiang

    2004-01-01

    A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide scientific base on restoring and managing the hydrologic regime for planning and designing at HNNR. Both the assessment area and its adjacent watershed of Bielahong River belong to the same region in the climate and surface features. Total of 46 years of serial data from 1956-2001 in the Bielahong Hydrology Station was employed. Typical analysis of the serial runoff was conducted by adopting the residual mass curve method. The calculation methods of hydrological parameters are valuable for analyzing the water balance of HNNR. The results showed that the inputs of 118.29 × 106 m3 of the surface runoff and 1 478km2 of the areas of natural watershed in HNNR were decreased. At the same time some measurements to control and prevent water resources decreased have been proposed.

  1. Coal availability: issues in assessing US coal reserves and resources

    Energy Technology Data Exchange (ETDEWEB)

    Newcombe, R J

    1981-05-01

    There are a number of important uncertainties about the economic significance of US coal resources. These uncertainties can be categorized as affecting: the physical size and location of coal resources and reserves; the regional and local variation in coal quality; and the legal and economic availability of coal resources. A more precise understanding of coal availability is important. Richard Schmidt has suggested that consumer undertainty about reserve magnitude and availability may be exploited by producers in setting contract prices, and it has been suggested that errors in assessing the geological and legal recoverability of coal resources may affect coal prices more significantly than variability in estimates of production and distribution costs. Further, misconceptions about coal availability are more likely to cause underestimates then overestimates of future prices. The objectives of this paper are: to discuss some methods used in modeling the nation's coal reserves; and to identify some of the problems involved. The issue of coal availability is addressed in an effort to suggest the need for a systematic approach to the problem.

  2. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  3. Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China

    International Nuclear Information System (INIS)

    Jatropha curcas L. (JCL) is believed to be the most promising tree species used to produce biodiesel in China. Due to its abundant marginal land resource and good meteorological conditions, Southwest China is the major region to develop JCL. With Southwest China being taken as the study area in this paper, multi-factor comprehensive analysis is used to identify marginal land resources suitable to JCL plantation and make suitability assessment, thus obtaining their spatial distribution, suitability degree and total amount. With life cycle analysis (LCA), the life cycle net energy and greenhouse gas emission reduction capacity of marginal land resources with different suitability degrees used to produce biodiesel are investigated. Based on the research results, the life cycle model is expanded to obtain the potentiality of total net energy production and greenhouse gas emission reduction of large-scale plantation of JCL in southwest China. The results show that the area of land resources suitable and moderately suitable for JCL plantation is 1.99 × 106 ha and 5.57 × 106 ha, respectively. If all of these land resources are put into use, the maximum net production potential of biodiesel from JCL would be 1.51 × 108 GJ/a, and the total greenhouse gas emission reduction capacity 1.59 × 107 t/a in Southwest China. -- Highlights: •A LCA based approach for assessing net energy potential of Jatropha curcas L. was presented. •The net production potential of biodiesel from JCL is 1.51 × 108 GJ/a in Southwest China. •The total GHG emission reduction capacity from JCL is 1.59 × 107 t/a in Southwest China

  4. Fuzzy Multi-actor Multi-criteria Decision Making for Sustainability Assessment of biomass-based technologies for hydrogen production

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Fedele, Andrea; Mason, Marco;

    2013-01-01

    The purpose of this paper is to develop a sustainability assessment method to rank the prior sequence of biomass-based technologies for hydrogen production. A novel fuzzy Multi-actor Multi-criteria Decision Making method which allows multiple groups of decision-makers to use linguistic variables to...

  5. U.S. hydropower resource assessment for Maine

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  6. U.S. hydropower resource assessment for North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of North Carolina.

  7. Reconnaissance geothermal resource assessment of 40 sites in California

    Energy Technology Data Exchange (ETDEWEB)

    Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

    1981-01-01

    Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

  8. U.S. hydropower resource assessment for Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Pennsylvania.

  9. Lithium Resources and Production: Critical Assessment and Global Projections

    Directory of Open Access Journals (Sweden)

    Steve H. Mohr

    2012-03-01

    Full Text Available This paper critically assesses if accessible lithium resources are sufficient for expanded demand due to lithium battery electric vehicles. The ultimately recoverable resources (URR of lithium globally were estimated at between 19.3 (Case 1 and 55.0 (Case 3 Mt Li; Best Estimate (BE was 23.6 Mt Li. The Mohr 2010 model was modified to project lithium supply. The Case 1 URR scenario indicates sufficient lithium for a 77% maximum penetration of lithium battery electric vehicles in 2080 whereas supply is adequate to beyond 2200 in the Case 3 URR scenario. Global lithium demand approached a maximum of 857 kt Li/y, with a 100% penetration of lithium vehicles, 3.5 people per car and 10 billion population.

  10. U.S. hydropower resource assessment for New York

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  11. U.S. hydropower resource assessment for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

  12. U.S. hydropower resource assessment for Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-02-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

  13. U.S. hydropower resource assessment for Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-12-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  14. U.S. hydropower resource assessment for Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1996-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Minnesota.

  15. U.S. hydropower resource assessment for Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  16. U.S. hydropower resource assessment for South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Conner, A.M.; Francfort, J.E.

    1997-06-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. To assist in providing this estimate, the Idaho National Engineering Laboratory developed the Hydropower Evaluation Software (HES) computer model. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of South Carolina.

  17. U.S. hydropower resource assessment for Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  18. Atlantic bluefin tuna: a novel multistock spatial model for assessing population biomass.

    Directory of Open Access Journals (Sweden)

    Nathan G Taylor

    Full Text Available Atlantic bluefin tuna (Thunnus thynnus is considered to be overfished, but the status of its populations has been debated, partly because of uncertainties regarding the effects of mixing on fishing grounds. A better understanding of spatial structure and mixing may help fisheries managers to successfully rebuild populations to sustainable levels while maximizing catches. We formulate a new seasonally and spatially explicit fisheries model that is fitted to conventional and electronic tag data, historic catch-at-age reconstructions, and otolith microchemistry stock-composition data to improve the capacity to assess past, current, and future population sizes of Atlantic bluefin tuna. We apply the model to estimate spatial and temporal mixing of the eastern (Mediterranean and western (Gulf of Mexico populations, and to reconstruct abundances from 1950 to 2008. We show that western and eastern populations have been reduced to 17% and 33%, respectively, of 1950 spawning stock biomass levels. Overfishing to below the biomass that produces maximum sustainable yield occurred in the 1960s and the late 1990s for western and eastern populations, respectively. The model predicts that mixing depends on season, ontogeny, and location, and is highest in the western Atlantic. Assuming that future catches are zero, western and eastern populations are predicted to recover to levels at maximum sustainable yield by 2025 and 2015, respectively. However, the western population will not recover with catches of 1750 and 12,900 tonnes (the "rebuilding quotas" in the western and eastern Atlantic, respectively, with or without closures in the Gulf of Mexico. If future catches are double the rebuilding quotas, then rebuilding of both populations will be compromised. If fishing were to continue in the eastern Atlantic at the unregulated levels of 2007, both stocks would continue to decline. Since populations mix on North Atlantic foraging grounds, successful rebuilding

  19. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and

  20. A Web Site that Provides Resources for Assessing Students' Statistical Literacy, Reasoning and Thinking

    Science.gov (United States)

    Garfield, Joan; delMas, Robert

    2010-01-01

    The Assessment Resource Tools for Improving Statistical Thinking (ARTIST) Web site was developed to provide high-quality assessment resources for faculty who teach statistics at the tertiary level but resources are also useful to statistics teachers at the secondary level. This article describes some of the numerous ARTIST resources and suggests…

  1. Water Resource Inventory and Assessment (WRIA) - Great River NWR and Clarence Cannon NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report describes current hydrologic information, provides an assessment of water resource needs and...

  2. Fort Stewart integrated resource assessment. Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Larson, L.L.; Keller, J.M.

    1993-10-01

    The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

  3. Assessing the Wave Energy Resource Using Remote Sensed Data

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, M.T.; Bruck, M. [INETI/DER, Lisboa (Portugal); Lehner, S. [DLR- German Aerospace Centre, Oberpfaffenhofen, Wessling (Germany)

    2009-07-01

    The use of accurate remote sensed wave data in the coastal area (water depth up to 80m) will enable a high quality characterization of the wave energy resource. Work has been carried out with this objective for a number of years namely assessing the quality of the radar altimeter and SAR sensors data. In this paper a summary of the quality of wave period estimates from the NASA/CNES Jason radar altimeter is presented, showing that the analytical models that have been proposed in recent years provide already accurate results. This paper also includes a verification of ESA ENVISAT SAR data (height, period and direction parameters in addition to the shape of frequency spectra) against NDBC buoy data, which has shown good accuracy for wave energy resource assessment. However, the long Exact-Repeat-Period of NASA (10 days) and of ESA satellites (35 days) poses serious limitation to the usefulness of their wave measurements except for long-term wave climate assessment. These shortcomings are expected to be overcome by the new high spatial-resolution TerraSAR-X satellite that is obtaining reliable data for nearshore areas, being able to provide data at 2 - 3 day interval.

  4. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Mars, John L.; Miller, Robert J.

    2012-01-01

    The U.S. Geological Survey collaborated with the China Geological Survey to conduct a mineral-resource assessment of resources in porphyry copper deposits on the Tibetan Plateau in western China. This area hosts several very large porphyry deposits, exemplified by the Yulong and Qulong deposits, each containing at least 7,000,000 metric tons (t) of copper. However, large parts of the area are underexplored and are likely to contain undiscovered porphyry copper deposits.

  5. The Physical Activity Resource Assessment (PARA) instrument: Evaluating features, amenities and incivilities of physical activity resources in urban neighborhoods

    OpenAIRE

    Regan Gail; Reese-Smith Jacqueline Y; Booth Katie M; Lee Rebecca E; Howard Hugh H

    2005-01-01

    Abstract Background Neighborhood environment factors may influence physical activity (PA). The purpose of this study was to develop and test a brief instrument to systematically document and describe the type, features, amenities, quality and incivilities of a variety of PA resources. Method The one-page Physical Activity Resource Assessment (PARA) instrument was developed to assess all publicly available PA resources in thirteen urban lower income, high ethnic minority concentration neighbor...

  6. Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands

    International Nuclear Information System (INIS)

    Biomass is considered one of the most important options in the transition to a sustainable energy system with reduced greenhouse gas (GHG) emissions and increased security of enegry supply. In order to facilitate this transition with targeted policies and implementation strategies, it is of vital importance to understand the economic benefits, uncertainties and risks of this transition. This article presents a quantification of the economic impacts on value added, employment shares and the trade balance as well as required biomass and avoided primary energy and greenhouse gases related to large scale biomass deployment on a country level (the Netherlands) for different future scenarios to 2030. This is done by using the macro-economic computable general equilibrium (CGE) model LEITAP, capable of quantifying direct and indirect effects of a bio-based economy combined with a spread sheet tool to address underlying technological details. Although the combined approach has limitations, the results of the projections show that substitution of fossil energy carriers by biomass, could have positive economic effects, as well as reducing GHG emissions and fossil energy requirement. Key factors to achieve these targets are enhanced technological development and the import of sustainable biomass resources to the Netherlands. - Highlights: • We analyse large scale production of bioenergy and biochemicals in the Netherlands. • The scenarios include up to 30% substitution of fossil fuels by biomass in 2030. • Resulting in strong greenhouse gas savings and positive macro-economic effects. • Large amounts of imported biomass are required to meet the domestic demand. • This requires high rates of technological change and strict sustainability criteria

  7. Geothermal resource assessment of Ranger Warm Spring, Colorado, Resources Series 24

    Science.gov (United States)

    Zacharakis, T. G.; Pearl, R. H.; Ringrose, C. D.

    The delineation of the geological features controlling the occurrence of geothermal resources in Colorado are discussed. The program consists of literature search, reconnaissance geological and hydrogeologic mapping and geophysical and geochemistry surveys. During 1980 and 1981 geothermal resource assessment were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger. The temperature of both springs is 77 to 790F and the discharge ranges from 60 to 195 gallons per minute. Electrical resistivity and soil mercury surveys were conducted at Ranger Warm Springs. The bedrock of the area consists of sedimentary rocks ranging in age from precambrian to recent. Several faults with displacements of up to 3000 ft are found and one of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicates that the water of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  8. Initial Market Assessment for Small-Scale Biomass-Based CHP

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.; Mann, M.

    2008-01-01

    The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

  9. The Resource Handbook on DOE Transportation Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. Y.; Kapoor, A. K.

    2003-02-27

    In an attempt to bring forth increased efficiency and effectiveness in assessing transportation risks associated with radioactive materials or wastes, the U.S. Department of Energy's (DOE's) National Transportation Program (NTP) published a resource handbook in 2002. The handbook draws from the broad technical expertise among DOE national laboratories and industry, which reflects the extensive experience gained from DOE's efforts in conducting assessments (i.e., environmental impact assessments) within the context of the National Environmental Policy Act (NEPA) in the past 20 years. The handbook is intended to serve as a primary source of information regarding the approach and basis for conducting transportation risk assessments under normal or accidental conditions that are associated with shipping radioactive materials or wastes. It is useful as a reference to DOE managers, NEPA assessors, technical analysts, contractors, and also stakeholders. It provides a summary of pertinent U.S. policies and regulations on the shipment of radioactive materials, existing guidance on preparing transportation risk assessments, a review of previous transportation risk assessments by DOE and others, a description of comprehensive and generally accepted transportation risk assessment methodologies, and a compilation of supporting data, parameters, and assumptions. The handbook also provides a discussion paper on an issue that has been identified as being important in the past. The discussion paper focuses on cumulative impacts, illustrating the ongoing evolution of transportation risk assessment. The discussion may be expanded in the future as emerging issues are identified. The handbook will be maintained and periodically updated to provide current and accurate information.

  10. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R., Jr.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  11. Performance Assessment Of Local Biomass Powered Cereal Drier Used By Small-Scale Kenyan Farmers

    OpenAIRE

    Madaraka F. Mwema; Kimayu S. Musau; Ngugi J. Mburu

    2015-01-01

    Abstract Recent studies have revealed that drying maize using biomass driers increase the quality of grains delays insect infestation mold and aflatoxin contamination in relation to direct sunlight drying. Most importantly biomass drying takes shorter time. It is therefore important to undertake performance of these driers to investigate the possibility of empirical control of such systems in remote areas. In this paper we present results of thermal performance of typical biomass-powered drie...

  12. Geothermal resource assessment in Honduras: How we got to Platanares

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, A.W.; Frank, J.A.; Flores, W.

    1988-01-01

    The initial phase of a geothermal resource assessment of Honduras is essentially complete. Reconnaissance scale geological and geochemical investigations were performed at six previously identified sites to determine relative potentials for electricity generation or direct heat use. Two of the six sites were eliminated because of low potential for the production of electricity and detailed geological and geochemical work was concentrated at the remaining four sites. After an evaluation of new data, two sites (Platanares and San Ignacio) were selected for detailed geophysical surveys and one (Platanares) for gradient drilling. Very encouraging results were obtained from the drilling and it is apparent that a feasibility phase investigation is warranted at Platanares.

  13. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay;

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...... description in order to calculate the mean wind climate at different levels up to 100 m. Time series from coarser-resolution satellite wind products i.e. the Special Sensor Microwave Imager (SSM/I) data are used to calculate the long-term temporal variability of the wind climate. This can be used...

  14. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  15. Metallic Mineral Resources Assessment and Analysis System Design

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents the aim and the design structure of the metallic mineral resources assessment and analysis system. This system adopts an integrated technique of data warehouse composed of affairs-processing layer and analysis-application layer. The affairs-processing layer includes multiform databases (such as geological database, geophysical database, geochemical database),while the analysis application layer includes data warehouse, online analysis processing and data mining. This paper also presents in detail the data warehouse of the present system and the appropriate spatial analysis methods and models. Finally, this paper presents the prospect of the system.

  16. Integrative assessment of hydrological, ecological, and economic systems for water resources management at river basin scale

    Institute of Scientific and Technical Information of China (English)

    Xianglian LI; Xiusheng YANG; Qiong GAO; Yu LI; Suocheng DONG

    2009-01-01

    This study presents a basin-scale integrative hydrological, ecological, and economic (HEE) modeling system, aimed at evaluating the impact of resources management, especially agricultural water resources management, on the sustainability of regional water resources. The hydrological model in the modeling system was adapted from SWAT, the Soil and Water Assessment Tool, to simulate the water balance in terms of soil moisture, evapotranspiration, and streamflow. An ecologi-cal model was integrated into the hydrological model to compute the ecosystem production of biomass production and yield for different land use types. The economic model estimated the monetary values of crop production and water productivity over irrigated areas. The modeling system was primarily integrated and run on a Windows platform and was able to produce simulation results at daily time steps with a spatial resolution of hydrological response unit (HRU). The modeling system was then calibrated over the period from 1983 to 1991 for the upper and middle parts of the Yellow River basin, China.Calibration results showed that the efficiencies of the modeling system in simulating monthly streamflow over 5hydrological stations were from 0.54 to 0.68 with an average of 0.64, indicating an acceptable calibration.Preliminary simulation results from 1986 to 1995 revealed that water use in the study region has largely reduced the streamflow in many parts of the area except for that in the riverhead. Spatial distribution of biomass production, and crop yield showed a strong impact of irrigation on agricultural production. Water productivity over irrigated cropland ranged from 1 to 1640 USD/(ha.mm 1), indicat-ing a wide variation of the production conditions within the study region and a great potential in promoting water use efficiency in low water productivity areas. Generally,simulation results from this study indicated that the modeling system was capable of tracking the temporal and spatial

  17. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R., Jr.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  18. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Science.gov (United States)

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  19. Scenario uncertainties in estimating direct land-use change emissions in biomass-to-energy life cycle assessment

    International Nuclear Information System (INIS)

    The use of biomass for energy production has increasingly been encouraged in the United States, in part motivated by the potential to reduce greenhouse gas (GHG) emissions relative to fossil fuels. However, the GHG-intensity of biomass-derived energy is highly dependent on how the biomass is obtained and used. We explore scenario uncertainty in GHG estimates in the Calculating Uncertainty in Biomass Emissions (CUBE) model and find that direct land-use change emissions that result during the biomass production often dominate the total “farm-to-hopper” GHGs. CUBE represents each land-use change decision as a conversion of land from one of four specified baseline ecosystem to produce one of seven feedstock crops, both distinct by geographic region, and then determines the implied changes in soil organic carbon, root carbon, and above-ground biomass. CUBE therefore synthesizes and organizes the existing literature to represent direct land-use change emissions in a way that can be more readily incorporated into life cycle assessment. Our approach to representing direct land-use change literature has been applied to a specific set of data and offers immediate implications for decisionmakers, but it can also be generalized and replicated in the future, making use of improved scientific data on the magnitude and rates of direct land-use change emissions as it becomes available. -- Highlights: ► The GHG-intensity of bioenergy depends on how the biomass is obtained and used. ► Total GHG emissions may be dominated by direct land-use change emissions. ► There is significant scenario uncertainty in emissions based on the location of production. ► Emissions vary based on time elapsed since land-use change conversions. ► Our approach can be generalized to use improved scientific data in the future.

  20. Renewing Rock-Tenn: A Biomass Fuels Assessment for Rock-Tenn's St. Paul Recycled Paper Mill.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Carl

    2007-03-31

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) develop the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.

  1. Uncertainty Estimate in Resources Assessment: A Geostatistical Contribution

    International Nuclear Information System (INIS)

    For many decades the mining industry regarded resources/reserves estimation and classification as a mere calculation requiring basic mathematical and geological knowledge. Most methods were based on geometrical procedures and spatial data distribution. Therefore, uncertainty associated with tonnages and grades either were ignored or mishandled, although various mining codes require a measure of confidence in the values reported. Traditional methods fail in reporting the level of confidence in the quantities and grades. Conversely, kriging is known to provide the best estimate and its associated variance. Among kriging methods, Ordinary Kriging (OK) probably is the most widely used one for mineral resource/reserve estimation, mainly because of its robustness and its facility in uncertainty assessment by using the kriging variance. It also is known that OK variance is unable to recognize local data variability, an important issue when heterogeneous mineral deposits with higher and poorer grade zones are being evaluated. Alternatively, stochastic simulation are used to build local or global uncertainty about a geological attribute respecting its statistical moments. This study investigates methods capable of incorporating uncertainty to the estimates of resources and reserves via OK and sequential gaussian and sequential indicator simulation The results showed that for the type of mineralization studied all methods classified the tonnages similarly. The methods are illustrated using an exploration drill hole data sets from a large Brazilian coal deposit

  2. Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Hope; Hewitt, C.N. [Institute of Environmental and Natural Sciences, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Bunce, R.G.H. [Centre for Ecology and Hydrology, Merlewood, Grange-over-Sands, Cumbria LA11 6JU, (United Kingdom)

    2008-09-15

    This study has quantitatively mapped the distributions and peak above-ground foliar biomass of the 1000 most prevalent plant and tree species in Great Britain (GB) on a 1 x 1 km{sup 2} grid. Each 1 x 1 km{sup 2} grid cell was assigned to one of 56 land classes on the basis of environmental and land cover attributes. The mean occurrence and cover area of specific plant species within each land class was derived from the results of the Countryside Survey 1990 [Barr CJ, Bunce RGH, Clarke RT, Fuller RM, Furse MT, Gillespie MK, et al. Countryside Survey 1990 Main Report. HMSO, 1993]. Species-specific biomass conversion factors, relating above-ground living plant biomass (excluding tree timber) to a unit of ground area, were used to convert cover areas into species biomass. British totals of species cover area and biomass were then calculated. Lolium perenne (perennial rye grass), Triticum aestivum (wheat) and Calluna vulgaris Ling (heather) covered the greatest areas of GB (26,811, 25,378 and 14,359 km{sup 2}, respectively). During summer (prior to harvest), L. perenne contributed 20% of the peak standing biomass in Britain (25.6 Mt), followed by T. aestivum (18.8 Mt) and Hordeum vulgare (barley) (15.5 Mt). Picea sitchensis (Sitka spruce) was the dominant tree species in GB with the fourth highest peak foliar biomass (7.3 Mt). In total, 70 species accounted for 90% of the estimated summer biomass of GB. P. sitchensis and C. vulgaris dominated winter biomass. Predictive biomass distributions can be plotted for each species and examples of lowland and upland species are given. The predictions correspond well with known habitat preferences. Monthly variations in total biomass have also been plotted. (author)

  3. Effect of stand structure on models for volume and aboveground biomass assessment (Castelfusano pinewood, Roma

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The main purpose of this research was to analyse the effects of stand structure on biomass allocation and on the accurancy of estimation models for volume and aboveground biomass of Italian stone pine (Pinus pinea L.. Although the species is widely distributed on Mediterranean coasts, few studies on forest biomass estimation have focused on pinewoods. The research was carried out in the Castelfusano’s pinewood (Rome and concerned the two most common structural types: (a 50 years-old pinewood originated by broadcast seeding; and (b 62 years-old pinewood originated by partial seeding alternating worked strips to firm strips. Some 83 sample trees were selected for stem volume estimation and a subset of 32 trees used to quantify the total epigeous biomass, the wooden biomass compartment, including stem and big branches (diameter > 3 cm and the photosynthetic biomass, including thin branches (diameter < 3 cm and needles. Collected data were used to elaborate allometric relations for stem volume, total biomass and specific relations for both compartments, based on one (d2 or two (d2h indipendent variables, for both structural types. Furthermore, pinewood specific biomass expansion factors (BEF - indexes used to estimate carbon stocks starting from stem biomass data - were obtained. The achieved estimation models were subjected to both parallelism and coincidence tests, showing significant effects of stand structure on the accurancy of the allometric relations. The effects of stand structure and reliability of tree height curves on the accurancy of estimation models for volume and aboveground biomass and on biomass allocation in different compartments are analysed and discussed.

  4. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan

    International Nuclear Information System (INIS)

    This paper discusses the use of agricultural residue in Japan as an energy resource, based on the amounts produced and availability. The main agricultural residues in Japan are rice straw and rice husk. Based on a scenario wherein these residues are collected as is the rice product, we evaluate the size, cost, and CO2 emission for power generation. Rice residue has a production potential of 12 Mt-dry year-1, and 1.7 kt of rice straw is collected for each storage location. As this is too small an amount even for the smallest scale of power plant available, 2-month operation per year is assumed. Assuming a steam boiler and turbine with an efficiency of 7%, power generation from rice straw biomass can supply 3.8 billion(kW)h of electricity per year, or 0.47% of the total electricity demand in Japan. The electricity generated from this source costs as much as 25 JPY (kW h)-1 (0.21 US$ (kW h)-1, 1 US$=120 JPY), more than double the current price of electricity. With heat recovery at 80% efficiency, the simultaneous heat supplied via cogeneration reaches 10% of that supplied by heavy oil in Japan. Further cost incentives will be required if the rice residue utilization is to be introduced. It will also be important to develop effective technologies to achieve high efficiency even in small-scale processes. If Japanese technologies enable the effective use of agricultural residue abroad as a result of Japanese effort from the years after 2010, the resulting reduction of greenhouse gas emission can be counted under the framework of the Kyoto Protocol

  5. Biomass and Soil Carbon Stocks in Wet Montane Forest, Monteverde Region, Costa Rica: Assessments and Challenges for Quantifying Accumulation Rates

    Directory of Open Access Journals (Sweden)

    Lawrence H. Tanner

    2016-01-01

    Full Text Available We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.

  6. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  7. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory. 17 refs.

  8. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. PMID:24360916

  9. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with carbo

  10. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction

    International Nuclear Information System (INIS)

    This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas

  11. Water Resources Vulnerability Assessment Accounting for Human Influence

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.

    2014-12-01

    Reservoirs are one of the main infrastructures that provide resilience against extremes (e.g., floods and droughts) and they play a key role in water resources management. Based on International Commission of Large Dams (ICOLD 2003) records, the total volume of reservoirs is over 6200 km3, which is twice larger than the global annual water use estimated as 3000 km3. Just a simple comparison of the two numbers indicates the importance of reservoirs and their role in providing resilience for water security. On the other hand, man-made reservoirs change the water distribution throughout the year. Most climate change impact studies ignore the role of reservoirs in water availability studies. However, water availability cannot be properly assessed without a thorough assessment of reservoir conditions. By combining classical methods for climate variability assessment (top-down approach) and influence assessment (bottom-up approach), this study offers a hybrid framework that integrates different drivers of water storage vulnerability. Final index is termed as the Multivariate Standardized Reliability and Resilience Index (MSRRI). This index investigates the adaptive capacity of the reservoir and exposure of the system to variable conditions. MSRRI has been investigated over several major reservoirs in Australia and California, United States. This presentation reviews recent findings and discusses reservoir conditions in Australia and California using MSRRI under different climatic change scenarios.

  12. An ecological and economic assessment of absorption-enhanced-reforming (AER) biomass gasification

    International Nuclear Information System (INIS)

    Highlights: • Analysis of biomass gasification with new absorption enhanced reforming technology. • Energy- and mass balances for three different process configurations to produce heat, SNG and/or hydrogen. • Ecological (based on LCA) and economic (based on production costs) assessment of the technology. • Comparison of results with existing operational plants producing similar products. - Abstract: Biomass gasification with absorption enhanced reforming (AER) is a promising technology to produce a hydrogen-rich product gas that can be used to generate electricity, heat, substitute natural gas (SNG) and hydrogen (5.0 quality). To evaluate the production of the four products from an ecological and economic point of view, three different process configurations are considered. The plant setup involves two coupled fluidized beds: the steam gasifier and the regenerator. Subsequently the product gas can be used to operate a CHP plant (configuration one), be methanised (configuration two) or used to produce high-quality hydrogen (configuration three). Regarding ecological criteria, the global warming potential, the acidification potential and the cumulative energy demand of the processes are calculated, based on a life-cycle assessment approach. The economic analysis is based on the levelized costs of energy generation (LCOE). The AER-based processes are compared to conventional and renewable reference processes, which they might stand to substitute. The results show that the AER processes are beneficial from an ecological point of view as they are less carbon intensive (mitigating up to 800gCO2-eq.kW-1hel-1), require less fossil energy input (only about 0.5kWhfossilkW-1hel-1) and have a comparable acidification potential (300–900mgSO2-eq.kW-1hel-1) to most reference processes. But the results depend heavily on the extent to which excess heat can be used to replace conventional heating processes, and hence on the exact location of the plant. The economic results

  13. Biomass energy in Central America

    International Nuclear Information System (INIS)

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  14. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    PM10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM10 concentrations were 1830 and 280 microg/m3 and geometric mean home concentrations were 280 and 440 microg/m3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h-1m-3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  15. Assessing the Role of Particles in Radiative Heat Transfer during Oxy-Combustion of Coal and Biomass Blends

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2015-01-01

    Full Text Available This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs of combusting particles in Computational Fluid Dynamics (CFD investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.

  16. Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China

    International Nuclear Information System (INIS)

    Interests in biomass-based fuel ethanol (BFE) have been re-boosted due to oil shortage and environmental deterioration. Biomass-based fuel ethanol is renewable and, apparently, environmentally friendly. Biomass-based E10 (a blend of 10% ethanol and 90% gasoline by volume) is a promising conventional gasoline substitute, because vehicle engines require no modifications to run on E10 and vehicle warranties are unaffected. This paper presented life cycle assessments (LCAs) of energy efficiency of wheat-based E10 from central China, corn-based E10 from northeast China, and cassava-based E10 from southwest China. The respective energy flow-based evaluation model of wheat-, corn-, and cassava-based E10 was built based on data from pilot BFE plants. Monte Carlo method is applied to deal with the uncertain parameters and input and output variables of the evaluation model because of its wide application and easy development of statistical dispersion of calculated quantities. According to the assessment results, the average energy input/output ratio of wheat-based fuel ethanol (WFE), corn-based fuel ethanol (CFE), and cassava-based fuel ethanol (KFE) is 0.70, 0.75, and 0.54, respectively, and biomass-based E10 vehicle can have less fossil energy demand than gasoline-fueled ones.

  17. Benthos and demersal fishery resources assessment in the shelf region of Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.

    The potential of exploitable demersal fishery resources is estimated to be 0.4 million metric tones per year (m.m.t.y.) and 0.25 m.m.t.y. respectively based on benthic biomass production and the food pyramid concept, in the shelf region of Indian...

  18. A Natural Resource Condition Assessment for Rocky Mountain National Park

    Science.gov (United States)

    Theobald, D.M.; Baron, J.S.; Newman, P.; Noon, B.; Norman, J. B., III; Leinwand, I.; Linn, S.E.; Sherer, R.; Williams, K.E.; Hartman, M.

    2010-01-01

    We conducted a natural resource assessment of Rocky Mountain National Park (ROMO) to provide a synthesis of existing scientific data and knowledge to address the current conditions for a subset of important park natural resources. The intent is for this report to help provide park resource managers with data and information, particularly in the form of spatially-explicit maps and GIS databases, about those natural resources and to place emerging issues within a local, regional, national, or global context. With an advisory team, we identified the following condition indicators that would be useful to assess the condition of the park: Air and Climate: Condition of alpine lakes and atmospheric deposition Water: Extent and connectivity of wetland and riparian areas Biotic Integrity: Extent of exotic terrestrial plant species, extent of fish distributions, and extent of suitable beaver habitat Landscapes: Extent and pattern of major ecological systems and natural landscapes connectivity These indicators are summarized in the following pages. We also developed two maps of important issues for use by park managers: visitor use (thru accessibility modeling) and proportion of watersheds affected by beetle kill. Based on our analysis, we believe that there is a high degree of concern for the following indicators: condition of alpine lakes; extent and connectivity of riparian/wetland areas; extent of exotic terrestrial plants (especially below 9,500’); extent of fish distributions; extent of suitable beaver habitat; and natural landscapes and connectivity. We found a low degree of concern for: the extent and pattern of major ecological systems. The indicators and issues were also summarized by the 34 watershed units (HUC12) within the park. Generally, we found six watersheds to be in “pristine” condition: Black Canyon Creek, Comanche Creek, Middle Saint Vrain Creek, South Fork of the Cache la Poudre, Buchanan Creek, and East Inlet. Four watersheds were found to have

  19. The Physical Activity Resource Assessment (PARA instrument: Evaluating features, amenities and incivilities of physical activity resources in urban neighborhoods

    Directory of Open Access Journals (Sweden)

    Regan Gail

    2005-09-01

    Full Text Available Abstract Background Neighborhood environment factors may influence physical activity (PA. The purpose of this study was to develop and test a brief instrument to systematically document and describe the type, features, amenities, quality and incivilities of a variety of PA resources. Method The one-page Physical Activity Resource Assessment (PARA instrument was developed to assess all publicly available PA resources in thirteen urban lower income, high ethnic minority concentration neighborhoods that surrounded public housing developments (HDs and four higher income, low ethnic minority concentration comparison neighborhoods. Neighborhoods had similar population density and connectivity. Trained field coders rated 97 PA resources (including parks, churches, schools, sports facilities, fitness centers, community centers, and trails on location, type, cost, features, amenities, quality and incivilities. Assessments typically took about 10 minutes to complete. Results HD neighborhoods had a mean of 4.9 PA resources (n = 73 with considerable variability in the type of resources available for each neighborhood. Comparison neighborhoods had a mean of 6 resources (n = 24. Most resources were accessible at no cost (82%. Resources in both types of neighborhoods typically had about 2 to 3 PA features and amenities, and the quality was usually mediocre to good in both types of neighborhoods. Incivilities at PA resources in HD neighborhoods were significantly more common than in comparison neighborhoods. Conclusion Although PA resources were similar in number, features and amenities, the overall appearance of the resources in HD neighborhoods was much worse as indicated by substantially worse incivilities ratings in HD neighborhoods. The more comprehensive assessment, including features, amenities and incivilities, provided by the PARA may be important to distinguish between PA resources in lower and higher deprivation areas.

  20. Economic approach to assess the forest carbon implications of biomass energy.

    Science.gov (United States)

    Daigneault, Adam; Sohngen, Brent; Sedjo, Roger

    2012-06-01

    There is widespread concern that biomass energy policy that promotes forests as a supply source will cause net carbon emissions. Most of the analyses that have been done to date, however, are biological, ignoring the effects of market adaptations through substitution, net imports, and timber investments. This paper uses a dynamic model of forest and land use management to estimate the impact of United States energy policies that emphasize the utilization of forest biomass on global timber production and carbon stocks over the next 50 years. We show that when market factors are included in the analysis, expanded demand for biomass energy increases timber prices and harvests, but reduces net global carbon emissions because higher wood prices lead to new investments in forest stocks. Estimates are sensitive to assumptions about whether harvest residues and new forestland can be used for biomass energy and the demand for biomass. Restricting biomass energy to being sourced only from roundwood on existing forestland can transform the policy from a net sink to a net source of emissions. These results illustrate the importance of capturing market adjustments and a large geographic scope when measuring the carbon implications of biomass energy policies. PMID:22515911

  1. Wind power in Eritrea, Africa: A preliminary resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Garbesi, K.; Rosen, K. [San Jose State Univ., CA (United States); Van Buskirk, R. [Dept. of Energy, Eritrea (Ethiopia)

    1997-12-31

    The authors preliminary assessment of Eritrean wind energy potential identified two promising regions: (1) the southeastern Red Sea coast and (2) the mountain passes that channel winds between the coastal lowlands and the interior highlands. The coastal site, near the port city of Aseb, has an exceptionally good resource, with estimated average annual wind speeds at 10-m height above 9 m/s at the airport and 7 m/s in the port. Furthermore, the southern 200 km of coastline has offshore WS{sub aa} > 6 m/s. This area has strong potential for development, having a local 20 MW grid and unmet demand for the fishing industry and development. Although the highland sites contain only marginal wind resources ({approximately} 5 m/s), they warrant further investigation because of their proximity to the capital city, Asmera, which has the largest unmet demand and a larger power grid (40 MW with an additional 80 MW planned) to absorb an intermittent source without storage.

  2. Wind resource assessment and siting analysis in Italy

    International Nuclear Information System (INIS)

    Recently, the wind power industry has matured; consequently, in many countries a lot of wind energy applications have been programmed. Many of them are already realized and running. As such, there is a direct necessity to identify a sizeable number of wind power plant sites. Choosing the right sites to match specific Wind Energy Conversion Systems (WECS) is also needed to harness this clean energy from the points of view of industrial viability and project financing. As a pre-requisite to install a wind turbine at a particular site, it is necessary to have knowledge of the theoretical available wind energy at the site, as well as, of the practicability of the design in matching the characteristics of the WECS. In this paper, ENEA (Italian National Agency for New Technology, Energy and Environment) wind siting and resource assessment activities, currently on-going in different regions in Italy, along with the present status and future prospects of the wind power industry

  3. 78 FR 40425 - Draft Environmental Assessment for the J. Phil Campbell, Senior, Natural Resource Conservation...

    Science.gov (United States)

    2013-07-05

    ...; ] DEPARTMENT OF AGRICULTURE Draft Environmental Assessment for the J. Phil Campbell, Senior, Natural Resource... Environmental Assessment for the J. Phil Campbell, Senior, Natural Resource Conservation Center Land Transfer... of land at the J. Phil Campbell, Senior (JPC), Natural Resource Conservation Center (NRCC) from...

  4. Life Cycle Assessment of Selected Biomass and Fossil Fuel Energy Systems in Denmark and Ghana - with a focus on greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    The aim of the present project has been to establish an LCA methodology for assessing different biomass energy systems in Denmark and Ghana in relation to their emission of greenhouse gases. The biomass systems which have been studied are willow chips, surplus straw and biogas from manure for Den...

  5. Quantitative Assessment of Microalgae Biomass and Lipid Stability Post-Cultivation

    OpenAIRE

    Napan, Katerine; Christianson, Tyler; Voie, Kristen; Quinn, Jason C.

    2015-01-01

    Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism, resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperatu...

  6. Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty

    OpenAIRE

    Henry, Matieu; Cifuentes Jara, Miguel; Réjou-Méchain, Maxime; Piotto, Daniel; Michel Fuentes, José María; Wayson, Craig; Alice Guier, Federico; Castañeda Lombis, Héctor; Castellanos López, Edwin; Cuenca Lara, Ruby; Cueva Rojas, Kelvin; Del Águila Pasquel, Jhon; Duque Montoya, Álvaro; Fernández Vega, Javier; Jiménez Galo, Abner

    2015-01-01

    Key message[br/] Three options are proposed to improve the accuracy of national forest biomass estimates and decrease the uncertainty related to tree model selection depending on available data and national contexts.[br/] [br/] Introduction[br/] Different tree volume and biomass equations result in different estimates. At national scale, differences of estimates can be important while they constitute the basis to guide policies and measures, particularly in the context of cli...

  7. Distributed Wind Resource Assessment: State of the Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tinnesand, Heidi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    In support of the U.S. Department of Energy (DOE) Wind and Water Power Technologies Office (WWPTO) goals, researchers from DOE's National Renewable Energy Laboratory (NREL), National Wind Technology Center (NWTC) are investigating the Distributed Wind Resource Assessment (DWRA) process, which includes pre-construction energy estimation as well as turbine site suitability assessment. DWRA can have a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that will help the distributed wind industry follow a similar trajectory to the low-wind-speed designs in the utility-scale industry sector. By understanding the wind resource better, the industry could install larger rotors, capture more energy, and as a result, increase deployment while lowering the LCOE. a direct impact on the Wind Program goals of maximizing stakeholder confidence in turbine performance and safety as well as reducing the levelized cost of energy (LCOE). One of the major components of the LCOE equation is annual energy production. DWRA improvements can maximize the annual energy production, thereby lowering the overall LCOE and improving stakeholder confidence in the distributed wind technology sector by providing more accurate predictions of power production. Over the long term, one of the most significant benefits of a more defined DWRA process could be new turbine designs, tuned to site-specific characteristics that

  8. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  9. Analysis of the Economic Impact of Large-Scale Deployment of Biomass Resources for Energy and Materials in the Netherlands. Macro-economics biobased synthesis report

    International Nuclear Information System (INIS)

    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in this report

  10. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    Science.gov (United States)

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully. PMID:27107341

  11. Water Resource Inventory and Assessment (WRIA): Erwin National Fish Hatchery, Unicoi County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Erwin National Fish Hatchery (NFH) summarizes available and relevant information for hatchery water resources...

  12. 75 FR 67993 - Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

    Science.gov (United States)

    2010-11-04

    ... Bureau of Reclamation Hydropower Resource Assessment at Existing Reclamation Facilities--Draft Report... Bureau of Reclamation has made available for public review and comment the ``Hydropower Resource... and technical potential for hydropower development at existing Bureau of Reclamation...

  13. Assessment of species and quantity of biomass in Serbia and guidelines of usage

    Directory of Open Access Journals (Sweden)

    Brkić Miladin J.

    2012-01-01

    Full Text Available The motivation for this study is the disagreement of statistical and literature data about potential quantities of biomass in Serbia. This difference is mainly caused by changed status in practice due to several reasons: changes in ownership caused by transition, different application of technologies in practices, organization of work and economic reasons. The main aim is to precisely establish sorts and amounts of organic biomass in Serbia that can be transformed into heat and electricity. So far, data about the quantities of biomass residues in agriculture, forestry and communal services have been collected and published. Data collection methods are different and generally based on statistical data. The paper explains in detail methods of data collection and processing of crop production, fruit growing and viticulture, livestock, forestry and communal services. On the basis of precise data collection, it has been established that there are 26.3 million tons of biomass residue in Serbia every year. The total amount of biomass is reduced by 20-30% in relation to the period of 10 and more years ago. On the basis of the situation in agriculture and forest production in Serbia, it is estimated that out of the total amount of biomass, some 30-40% can be used for the production of heat energy, electricity and biofuel. The remaining biomass can be used in order to increase soil fertility, as cattle spread, for vegetable production, means for polishing in metal industry, for insulation in civil engineering, in cosmetics industry, production of animal feed, and so on.

  14. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page

    2014-09-01

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass imports and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.

  15. Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India.

    Science.gov (United States)

    Kushwaha, S P S; Nandy, S; Gupta, Mohini

    2014-09-01

    Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi--the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km(2) of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m(3)/ha) while A. pendula forest with moderate density had the lowest (3.6 m(3)/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m(3) while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R(2) = 0.84)/biomass (R(2) = 0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data. PMID:24859859

  16. Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation

    International Nuclear Information System (INIS)

    Biomass CCHP (combined cooling heating and power) systems based on biomass combustion have already demonstrated their benefits in some operating conditions. However, their environmental and energy performance might not always be better than that of conventional stand-alone generation systems. In order to assess the possible benefits, these plants are evaluated by means of Life Cycle Assessment (LCA) methodology to provide some guidelines regarding their environmental feasibility. A thermodynamic model, which considers the integration of different sizes of cogeneration and cooling units, was developed to contribute to properly defining the life cycle inventory stage. Moreover, the model outputs were used to develop a primary energy savings ratio (PESR) analysis and compare its results with those of the LCA. The LCA results show that, whereas small plant cooling-to-heating ratios cause CCHP plants based on biomass combustion to be environmentally feasible (they imply environmental benefits compared to conventional average stand-alone generation), high plant cooling-to-heating ratios in fact cause them to be environmentally unfeasible. Results also allow us to state that the use of the PESR by itself might not be adequate to assess the steady-state performance of this type of plant because, in some circumstances, it might limit the plant's feasibility when environmental benefits could still be achieved. - Highlights: ► LCA of biomass CCHP systems based on prime movers and chillers integration. ► High C values cause bio-fuelled CCHP plants to be environmentally unfeasible. ► PESR alone might be inadequate to draw conclusions about the plant feasibility

  17. An integrated model for the assessment of global water resources – Part 2: Applications and assessments

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2008-07-01

    Full Text Available To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3 and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to

  18. Wave energy resource assessment based on satellite observations around Indonesia

    Science.gov (United States)

    Ribal, Agustinus; Zieger, Stefan

    2016-06-01

    A preliminary assessment of wave energy resource around Indonesian's ocean has been carried out by means of analyzing satellite observations. The wave energy flux or wave power can be approximated using parameterized sea states. Wave power scales with significant wave height, characteristic wave period and water depth. In this approach, the significant wave heights were obtained from ENVISAT (Environmental Satellite) data which have been calibrated. However, as the characteristic wave period is rarely specified and therefore must be estimated from other variables when information about the wave spectra is unknown. Here, the characteristic wave period was calculated with an empirical model that utilizes altimeter estimates of wave height and backscatter coefficient originally proposed. For the Indonesian region, wave power energy is calculated over two periods of one year each and was compared with the results from global hindcast carried out with a recent release of wave model WAVEWATCH III. We found that, the most promising wave power energy regions around the Indonesian archipelago are located in the south of Java island and the south west of Sumatera island. In these locations, about 20 - 30 kW/m (90th percentile: 30-50 kW/m, 99th percentile: 40-60 kW/m) wave power energy on average has been found around south of Java island during 2010. Similar results have been found during 2011 at the same locations. Some small areas which are located around north of Irian Jaya (West Papua) are also very promising and need further investigation to determine its capacity as a wave energy resource.

  19. The Giant Knotweed (Fallopia sachalinensis var. Igniscum) as a new plant resource for biomass production for bioenergy

    Science.gov (United States)

    Lebzien, S.; Veste, M.; Fechner, H.; Koning, L.; Mantovani, D.; Freese, D.

    2012-04-01

    The cultivation of bioenergy crop for energetic biomass production and biogas will increase in the next decades in Europe and the world. In Germany maize is the most commonly used energy crops for biogas. To optimize the sustainability of bioenergy crop production new land management systems and crop species are needed. Herbaceous perennials have a great potential to fulfill this requirement. A new species for bioenergy production is the Giant Knotweed or Sakhalin Knotweed (Fallopia sachalinensis F. Schmidt ex Maxim., Fam. Polygonaceae) The knotweed is originated from Sakhalin, Korea and Japan .The plant is characterized by a high annual biomass production and can reach heights up to 3-4 m. As a new bioenergy crop the new cultivars IGNISCUM Basic (R) and IGNISCUM Candy (R) were cultured from the wild form and commercially used. Important is that both cultivars are not invasive. IGNISCUM Basic is used for combined heat and power plants. IGNISCUM Candy can be harvested 2-3 times during the growing season and the green biomass can be used for biogas production. Comprehensive test series are carried out to analyze the biogas. First results from lab investigations and experiments in biogas plants show that fresh matter of IGNISCUM Candy can well substitute maize as substrate in biogas power plants. Yields per hectare and the amount of biogas per ton of organic dry matter can be considered as almost equal to maize. Concerning the wooden biomass of IGNISCUM Basic values of combustion can be compared with wood chips from forest trees. For a sustainable and optimal production of biomass we develop cultivation technology for this species. Field experiments are arranged under different climatic and soil conditions across Germany from Schleswig-Holstein to southern Germany to investigate the plant growth and biomass production on the field scale. Physiological parameters are determined for the relations between growth stages, chlorophyll content, photosynthesis and plant

  20. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  1. Multilanguage Web application to assess biomass energy production: economic and energetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berruto, Remigio; Busato, Patrizia; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: remigio.berruto@unito.it

    2008-07-01

    One of the main difficulties in the development of biomass supply chains is the lack of reliable and complete information, which is needed to carry out a correct feasibility study. The aim of the research is contributing to knowledge which can be exploited in designing and evaluating biomass supply chains, within a standardized system approach. For this purpose has been implemented by DEIAFA a Web application - www.energyfarm.unito.it - to investigate the biomass supply chains under the technical, economic and energetic aspects. The first set of procedures allow the evaluation of field and logistic operations related to biomass cultivation, harvest and transport to the point of use. Another set of procedures refers to the feasibility study of biomass power plant. All procedures share a common database, ensuring their proper integration. EnergyFarm{sup R} represents a step toward the standardization of data and calculation procedures. In the future, it will be possible to foresee also in the same application the computing of the results with different standards (ASAE, EU, etc.). The interface to the application is provided in English and Italian languages. (author)

  2. Assessment of energy wood resources in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, Y. email: yuri.gerasimov@metla.fi; Karjalainen, T.

    2009-07-01

    The energy wood procurement possibilities for the eight regions making up Northwest Russia were assessed. Wood byproducts from roundwood harvesting and sawmilling were considered for energy production based on actual harvesting, sawmill and plywood production figures for 2006. Of the total calculated potential of 31 million solid m3 (62 TWh), nearly 70% (21.8 million m3) is from harvesting. The remainder (9 million m3) is from saw and plywood milling. The approximate available energy wood by region would be: 2.3 million m3 from the Republic of Karelia, 2.7 million m3 from the Republic of Komi, 5.4 million m3 from Arkhangelsk, 4.6 million m3 from Vologda, 3.8 million m3 from Leningrad, 2.0 million m3 from Novgorod, 0.8 million m3 from Pskov, and 41,000 m3 from the Murmansk regions. There are large differences in the potentials between and within the regions. This is due to the differences in their forest resources; differences in their utilisation of these resources; the available intrastructures; some limitations on wood harvesting. A part of this calculated potential is already utilised, since some non-industrial roundwood from central processing yards sawmills and plywood mills are currently used in energy production. Nearly 65% of all the potential energy wood from roundwood harvesting is non-industrial roundwood, 19% is spruce stumps removed after final felling, 8% is unused branches and tops, and 8% is defective wood resulting from logging. About 58% of the total potential energy wood from roundwood harvesting is coniferous. However, there are large differences between the regions and within the regions in the species proportions. Currently about 40% of the allowable cut is used. This means that it would be possible to intensify the utilisation of the forest resources and thereby also to increase the use of wood for energy production. Full implementation of the allowable cut could provide 73.5 million m3 of energy wood (147 TWh). In addition, if the technical

  3. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  4. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium

    International Nuclear Information System (INIS)

    Dedicated energy crop cultivation is expected to be the prevalent form of biomass production for reaching renewable energy targets set by the European Union. However, there are some concerns with regard to its sustainability. This study demonstrates how this problem can be evaded by applying phytoremediation, i.e. the use of plants to remove pollutants from moderately contaminated soils. By selecting the appropriate plants a considerable biomass flow is produced without taking in scarce agricultural land, while simultaneously remediating the soil to levels of contamination below threshold values. Since phytoremediation is only applicable within a limited range of soil pollutant concentrations, the outer values of this range have to be determined at first. Subsequently, a Geographic Information System (GIS) is needed to perform further analyses. The contamination in the region is predicted using GIS, after which the agricultural area is determined that can be committed to energy crop cultivation. This way, the biomass potential and the resulting bioenergy potential from phytoremediation can be assessed. In this paper the Campine region in Belgium, a region diffusely contaminated with heavy metals like cadmium (Cd), is examined. It is illustrated that more than 2000 ha of agricultural land hold Cd concentrations exceeding guide values set by the Flemish Government. However, a large majority of these soils can be remediated by phytoremediation within a reasonable time span of 42 years. Concurrently, a significant amount of biomass is supplied for renewable energy production. -- Highlights: → More than 2000 ha of agricultural land have elevated Cd concentrations. → 87% can be remediated within 42 years by phytoremediation. → Annual biomass flow of 19 067 Mg for 21 years.

  5. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty

    International Nuclear Information System (INIS)

    Four configurations of a novel solar-heated biomass gasification facility and one configuration of conventional biomass gasification are analyzed through financial and policy scenarios. The purpose of this study is to determine the potential financial position for varying configurations of a novel technology, as compared to the current state-of-the-art gasification technology. Through the use of project finance and policy scenario development, we assess the baseline breakeven syngas price (normalized against natural gas prices and based upon annual feedstock consumption), the sensitivity of major cost components for the novel facilities, and the implications of policy levers on the economic feasibility of the solar facilities. Findings show that certain solar configurations may compete with conventional facilities on a straightforward economic basis. However, with renewable energy policy levers in place the solar technologies become increasingly attractive options. - Highlights: • We model four solar and one conventional biomass gasification systems. • We assess economic feasibility of these systems with and without policy incentives. • Solar facilities compete with the conventional system in certain scenarios. • Feedstock costs are the largest contributor to system cost sensitivity. • Policy incentives create an economically favorable scenario for solar facilities

  6. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Science.gov (United States)

    Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.; Chapin, F. Stuart, III; Bowden, William B.; Syndonia Bret-Harte, M.; Epstein, Howard E.; Flannigan, Michael D.; Harms, Tamara K.; Hollingsworth, Teresa N.; Mack, Michelle C.; McGuire, A. David; Natali, Susan M.; Rocha, Adrian V.; Tank, Suzanne E.; Turetsky, Merritt R.; Vonk, Jorien E.; Wickland, Kimberly P.; Aiken, George R.; Alexander, Heather D.; Amon, Rainer M. W.; Benscoter, Brian W.; Bergeron, Yves; Bishop, Kevin; Blarquez, Olivier; Bond-Lamberty, Ben; Breen, Amy L.; Buffam, Ishi; Cai, Yihua; Carcaillet, Christopher; Carey, Sean K.; Chen, Jing M.; Chen, Han Y. H.; Christensen, Torben R.; Cooper, Lee W.; Cornelissen, J. Hans C.; de Groot, William J.; DeLuca, Thomas H.; Dorrepaal, Ellen; Fetcher, Ned; Finlay, Jacques C.; Forbes, Bruce C.; French, Nancy H. F.; Gauthier, Sylvie; Girardin, Martin P.; Goetz, Scott J.; Goldammer, Johann G.; Gough, Laura; Grogan, Paul; Guo, Laodong; Higuera, Philip E.; Hinzman, Larry; Hu, Feng Sheng; Hugelius, Gustaf; Jafarov, Elchin E.; Jandt, Randi; Johnstone, Jill F.; Karlsson, Jan; Kasischke, Eric S.; Kattner, Gerhard; Kelly, Ryan; Keuper, Frida; Kling, George W.; Kortelainen, Pirkko; Kouki, Jari; Kuhry, Peter; Laudon, Hjalmar; Laurion, Isabelle; Macdonald, Robie W.; Mann, Paul J.; Martikainen, Pertti J.; McClelland, James W.; Molau, Ulf; Oberbauer, Steven F.; Olefeldt, David; Paré, David; Parisien, Marc-André; Payette, Serge; Peng, Changhui; Pokrovsky, Oleg S.; Rastetter, Edward B.; Raymond, Peter A.; Raynolds, Martha K.; Rein, Guillermo; Reynolds, James F.; Robards, Martin; Rogers, Brendan M.; Schädel, Christina; Schaefer, Kevin; Schmidt, Inger K.; Shvidenko, Anatoly; Sky, Jasper; Spencer, Robert G. M.; Starr, Gregory; Striegl, Robert G.; Teisserenc, Roman; Tranvik, Lars J.; Virtanen, Tarmo; Welker, Jeffrey M.; Zimov, Sergei

    2016-03-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  7. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Science.gov (United States)

    Benjamin W. Abbott; Jeremy B. Jones; Edward A.G. Schuur; F.S. Chapin, III; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Michael D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle Mack; McGuire, Anthony; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merrit R. Turetsky; Jorien E. Vonk; Wickland, Kimberly P.; Aiken, George R.

    2016-01-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  8. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Benjamin; Jones, Jeremy B.; Schuur, Edward A.; Chapin, F. S.; Bowden, William B.; Bret-Harte, M. Syndonia; Epstein, Howard E.; Flannigan, Michael D.; Harms, Tamara K.; Hollingsworth, Teresa N.; Mack, Michelle; McGuire, A. David; Natali, Susan M.; Rocha, Adrian; Tank, Suzanne E.; Turetsky, Merritt; Vonk, Jorien E.; Wickland, Kimberly P.; Aiken, George R.; Alexander, Heather D.; Amon, Rainer M.; Benscoter, Brian W.; Bergeron, Yves; Bishop, Kevin; Blarquez, Olivier; Bond-Lamberty, Benjamin; Breen, Amy L.; Buffam, Ishi; Cai, Yihua; Carcaillet, Christopher; Carey, Sean K.; Chen, Jing Ming; Chen, Han Y.; Christensen, Torben R.; Cooper, Lee W.; Cornelissen, J Hans C.; de Groot, William J.; DeLuca, Thomas H.; Dorrepaal, Ellen; Fetcher, Ned; Finlay, Jacques C.; Forbes, Bruce C.; French, Nancy H.; Gauthier, Sylvie; Girardin, Martin P.; Goetz, Scott J.; Goldammer, Johann G.; Gough, Laura; Grogan, Paul; Guo, Laodong; Higuera, Philip E.; Hinzman, Larry; Hu, Feng S.; Hugelius, Gustaf; Jafarov, Elchin E.; Jandt, Randi; Johnstone, Jill F.; Karlsson, J.; Kasischke, Eric S.; Kattner, Gerhard; Kelly, Ryan; Keuper, Frida; Kling, George; Kortelainen, Pirkko; Kouki, Jari; Kuhry, Peter; Laudon, Hjalmar; Laurion, Isabelle; Macdonald, Robie W.; Mann, Paul J.; Martikainen, Pertti; McClelland, James W.; Molau, Ulf; Oberbauer, Steven F.; Olefeldt, David; Pare, David; Parisien, Marc-Andre; Payette, Serge; Peng, Changhui; Pokrovesky, Oleg S.; Rastetter, Edward B.; Raymond, Peter A.; Raynolds, Martha K.; Rein, Guillermo; Reynolds, James F.; Robards, Martin; Rogers, Brendan M.; Schadel, Christina; Schaefer, Kevin; Schmidt, Inger K.; Shvidenko, Anatoly; Sky, Jasper; Spencer, Robert G.; Starr, Gregory; Striegl, Robert G.; Teisserenc, Roman; Tranvik, Lars J.; Virtanen, Tarmo; Welker, Jeffrey M.; Zimov, Sergei

    2016-03-07

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  9. Competency Assessment and Human Resource Management of County Extension Chairs.

    Science.gov (United States)

    Lindner, James R.

    The purpose of this descriptive and correlational study was to examine perceptions of Ohio State University Extension county chairs regarding their human resource management competencies and performance of human resource management activities. The study also sought to describe the relationship between human resource management competencies and…

  10. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-23

    Production of chemicals from biomass offers a promising opportunity to reduce U.S. dependence on imported oil, as well as to improve the overall economics and sustainability of an integrated biorefinery. Given the increasing momentum toward the deployment and scale-up of bioproducts, this report strives to: (1) summarize near-term potential opportunities for growth in biomass-derived products; (2) identify the production leaders who are actively scaling up these chemical production routes; (3) review the consumers and market champions who are supporting these efforts; (4) understand the key drivers and challenges to move biomass-derived chemicals to market; and (5) evaluate the impact that scale-up of chemical strategies will have on accelerating the production of biofuels.

  11. Exposure Assessment for Biomass Smoke among “Rice in the Bamboo”

    Directory of Open Access Journals (Sweden)

    Tanongsak Yingratanasuk

    2009-07-01

    Full Text Available This study focuses on comparing different measurements of biomass smoke exposure among “rice in the bamboo” producing workers in Thailand. Repeated measurements of PM2.5, levoglucosan, and urinary methoxyphenols concentrations from a subsample of the exposed workers were analyzed. The analyses of variance components and variance ratios were calculated using ANOVA, and t-tests comparison on the before and after exposure levels. The results of the study revealed that levoglucosan measurement in the personal breathing zone was the most suitable measure of exposure to biomass smoke in this group of population. Urinary methoxyphenols offered no great advantage over environmental monitoring in this study. PM2.5 did poorly for a choice of biomass smoke measurement.

  12. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  13. Bioenergy options for New Zealand : the role of residual biomass and forestry resources in national energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Hall, P. [Scion, Rotorua (New Zealand)

    2010-07-01

    This paper reported on a study that was conducted to determine bioenergy options for New Zealand. The study showed that current biomass residuals had the potential to contribute approximately 57 PJ per annum between 2005 and 2010. New Zealand has the potential to grow forest biomass on a greater scale from land that is currently providing low economic returns from sheep and cattle grazing. Four afforestation scenarios of 0.8, 1.8, 3.3, and 4.9 million ha were then analyzed in order to determine their production potential as well as economic and environmental impacts. The study showed that the 1.8 m ha scenario provided the highest volumes of biomass in relation to economic and environmental outcomes. The use of chip log technologies resulted in the production of 200 PJ, or nearly two thirds of the country's domestic liquid fuel consumption. Existing forest stands in New Zealand were able to supply 12 million m{sup 3}, or 83 PJ of primary energy. Results demonstrated that New Zealand has the capacity to obtain most of its transport fuel needs from forest biomass.

  14. Forests: future fibre and fuel values : Woody biomass for energy and materials: resources, markets, carbon flows and sustainability impacts

    NARCIS (Netherlands)

    Sikkema, R.

    2014-01-01

    From energy outlooks, it becomes clear that global bioenergy consumption is expected to grow further; specifically the demand for wood for electricity and heating, together with agricultural biomass for liquid biofuels. The EU has an ambitious and integrated policy in order to address climate change

  15. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  16. Griffiss AFB integrated resource assessment. Volume 2, Electric baseline detail

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  17. State of the Art and Trends in Wind Resource Assessment

    Directory of Open Access Journals (Sweden)

    Oliver Probst

    2010-06-01

    Full Text Available Given the significant rise of the utilization of wind energy the accurate assessment of the wind potential is becoming increasingly important. Direct applications of wind assessment techniques include the creation of wind maps on a local scale (typically 5 20 km and the micrositing of wind turbines, the estimation of vertical wind speed variations, prospecting on a regional scale (>100 km, estimation of the long-term wind resource at a given site, and forecasting. The measurement of wind speed and direction still widely relies on cup anemometers, though sonic anemometers are becoming increasingly popular. Moreover, remote sensing by Doppler techniques using the backscattering of either sonic beams (SODAR or light (LIDAR allowing for vertical profiling well beyond hub height are quickly moving into the mainstream. Local wind maps are based on the predicted modification of the regional wind flow pattern by the local atmospheric boundary layer which in turn depends on both topographic and roughness features and the measured wind rose obtained from one or several measurement towers within the boundaries of the planned development site. Initial models were based on linearized versions of the Navier-Stokes equations, whereas more recently full CFD models have been applied to wind farm micrositing. Linear models tend to perform well for terrain slopes lower than about 25% and have the advantage of short execution times. Long-term performance is frequently estimated from correlations with nearby reference stations with concurrent information and continuous time series over a period of at least 10 years. Simple methods consider only point-to-point linear correlations; more advanced methods like multiple regression techniques and methods based on the theory of distributions will be discussed. Both for early prospecting in regions where only scarce or unreliable reference information is available, wind flow modeling on a larger scale (mesoscale is becoming

  18. Wind Resource Assessment in Abadan Airport in Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Nedaei

    2012-11-01

    Full Text Available Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Wind speed is the most important parameter in the design and study of wind energy conversion systems. Probability density functions such as Weibull and Rayleigh are often used in wind speed and wind energy analyses. This paper presents an assessment of wind energy at three heights during near two years based on Weibull distribution function in Abadan Airport. Extrapolation of the 10 m and 40 m data, using the power law, has been used to determine the wind speed at height of 80 m. According to the results wind speed at 80 m height in Abadan is ranged from 5.8 m/s in Nov to 8.5 m/s in Jun with average value of 7.15 m/s. In this study, different parameters such as Weibull parameters, diurnal and monthly wind speeds, cumulative distribution and turbulence intensity have been estimated and analyzed. In addition Energy production of different wind turbines at different heights was estimated. The results show that the studied site has good potential for Installation of large and commercial wind turbines at height of 80 m or higher. Keywords: Abadan, Iran, wind energy, wind resource, wind turbine, Weibull

  19. A transportable system of models for natural resource damage assessment

    International Nuclear Information System (INIS)

    A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs

  20. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  1. Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve

    2011-01-01

    The U.S. Geological Survey does regional, national, and global assessments of resources (mineral, energy, water, biologic) to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources that may be present in undiscovered deposits.

  2. Assessment and Monitoring of Siberian Forest Resources in the Framework of the Eu-Russia ZAPÁS Project

    Science.gov (United States)

    Schmullius, C. C.; Thiel, C. J.; Bartalev, S.; Emelyanov, K.; Korets, M.; Shvidenko, A.

    2011-12-01

    SUMMARY ZAPÁS investigates and cross validates methodologies using both Russian and European Earth observation data to develop procedures and products for forest resource assessment and monitoring. Products include biomass change maps for the years 2007-2008-2009 on a local scale, a biomass and improved land cover map on the regional scale, and a 1 km land cover map as input to a carbon accounting model. The geographical focus of research and development is Central Siberia, which contains two administrative districts of Russia, namely Krasnoyarsk Kray and Irkutsk Oblast. The overall concept of the ZAPÁS project is described in Fig. 1. The left column presents the required input data for methodological development and product delineation. The coarse scale products (> 300 m x 300 m) as well as the results of the terrestrial ecosystem full carbon accounting are addressed to the Federal Forest Agency as federal instance. Besides the input data (left column) also preliminary and final products are depicted in Fig. 1 (pale green and light green boxes, second and third column). In terms of scale in general two lines of products can be distinguished. The high resolution products feature one line (the lower half of the sketch) and comprise biomass and change maps for selected local sites. These products are addressed to support the UN FAO Forest Resources Assessment as well as the requirements of the local forest inventories. The other line comprises the medium to low scale products based on medium scale EO data: METEOR-M1, MERIS, and ASAR WS. The land cover map will be improved by means of a knowledge based merging process which combines the information of the biomass and land cover maps. The improved land cover map has to be implemented into the IIASA GIS (scale 1:500,000), which contains all required information for carbon accounting, including information on the land cover. Eventually, terrestrial ecosystem full carbon accounting will be accomplished. These coarse

  3. Biomass bale stack and field outlet locations assessment for efficient infield logistics

    Science.gov (United States)

    Harvested hay or biomass are traditionally baled for better handling and they are transported to the outlet for final utilization. For better management of bale logistics, producers often aggregate bales into stacks so that bale-hauling equipment can haul multiple bales for improved efficiency. Obje...

  4. Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments

    International Nuclear Information System (INIS)

    Highlights: • We assess the sustainability of electricity production from winter cereals biomass. • Productivity ranks are generated from different genotypes cultivated in real farms. • GHG and energy balances show better performance compared to natural gas electricity. • Cereals yields below 8 odt/ha do not accomplish objective 60% of GHG savings. • Marginal yields and sustainability criteria are discussed suggesting optimization. - Abstract: The goal of this paper is to assess the sustainability of electricity production from winter cereals grown in one of the most important Spanish agricultural areas, Castilla y León Region, situated in central-northern Spain. This study analyses greenhouse gases (GHG) emissions and energy balances of electricity production in a 25 MWe power plant that was powered using straw biomass from three annual winter cereals (rye, triticale and oat) grown as dedicated energy crops. The results of these analyses were compared with those of electricity produced from natural gas in Spanish power plants. Assessments were performed using a wide range of scenarios, mainly based on the biomass yield variability obtained in demonstration plots of twelve different winter cereal genotypes. Demonstration plots were established in two different locations (provinces of Soria and León) of the Castilla y León Region during two crop seasons (2009/2010 and 2010/2011) using common management practices and input rates for rain-fed agriculture in these regions. Our results suggest that production of electricity from winter cereals biomass combustion yielded considerable reductions in terms of GHG emissions when compared to electricity from natural gas. Nevertheless, the results show that low biomass yields that are relatively frequent for Spanish farmers on low productivity lands may produce no significant reductions in GHG in comparison with electricity from natural gas. Consequently, the agronomic management of winter cereals should be re

  5. Water Resource Inventory and Assessment (WRIA) - Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Cypress Creek NWR (CCNWR) describes current hydrologic information, provides an assessment of...

  6. Water Resource Inventory and Assessment (WRIA) - Iowa Corridor Project Area (Port Louisa NWR)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment WRIA Summary Report for Iowa Corridor Project Area describes current hydrologic information, provides an assessment of...

  7. Circum-Arctic Resource Appraisal (north of the Arctic Circle) Assessment Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Assessment Unit is the fundamental unit used in the World Petroleum Resources Project. The Assessment Unit is defined within the context of the higher-level...

  8. Estimation of forest resources from a country wide laser scanning survey and national forest inventory data

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Schumacher, Johannes

    2012-01-01

    Airborne laser scanning may provide a means for assessing local forest biomass resources. In this study, national forest inventory (NFI) data was used as reference data for modeling forest basal area, volume, aboveground biomass, and total biomass from laser scanning data obtained in a countrywide...

  9. Forests: future fibre and fuel values : Woody biomass for energy and materials: resources, markets, carbon flows and sustainability impacts

    OpenAIRE

    Sikkema, R.

    2014-01-01

    From energy outlooks, it becomes clear that global bioenergy consumption is expected to grow further; specifically the demand for wood for electricity and heating, together with agricultural biomass for liquid biofuels. The EU has an ambitious and integrated policy in order to address climate change and security of energy supply towards 2020.Proposed policies with more stringent goals for the 2030 horizon are: 40% greenhouse gas emission (GHG) reduction, and further increase of Renewable Ener...

  10. 78 FR 42755 - Proposed Information Collection; Comment Request; Natural Resource Damage Assessment Restoration...

    Science.gov (United States)

    2013-07-17

    ... collection is to assist state and federal Natural Resource Trustees in more efficiently carrying out the restoration planning phase of Natural Resource Damage Assessments (NRDA), in compliance with the National... information will be used by the Natural Resource Trustees to develop potential restoration alternatives...

  11. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature.

    Science.gov (United States)

    Shekh, Ajam Yakub; Shrivastava, Preeti; Gupta, Ankit; Krishnamurthi, Kannan; Devi, Sivanesan Saravana; Mudliar, Sandeep N

    2016-02-01

    In this study, the concentrations of MgSO4, salinity and light intensity were optimised for maximum biomass productivity and lipid content in Chlorella sp. Lipid synthesized at varied experimental conditions was also assessed in detail for biodiesel properties through FAME analysis. FAMEs mainly composed of C16:0, C16:1(9), C16:3(7, 10, 13), C18:0, C18:1(11), C18:2(9, 12), C18:3(9, 12, 15). The optimum biomass productivity (372.50mgL(-1)d(-1)) and lipid content (32.57%) was obtained at MgSO4-150ppm; salinity-12.5ppm, and light intensity-25μmolm(-2)s(-1). However, at this condition the cetane number, a major biodiesel property was not complying with worldwide biodiesel standard. Therefore, further optimisations were done to check the suitability of biodiesel fuel. The optimum biomass productivity (348.47mgL(-1)d(-1)) and lipid content (12.43%) with suitable biodiesel fuel properties was obtained at MgSO4-50ppm, salinity-25ppm and light intensity-100μmolm(-2)s(-1). The validation experiments confirmed the closeness of predicted and measured response values. PMID:26679050

  12. The role of natural resource and environmental economics in determining the trade-offs in consumption and production of energy inputs: The case of biomass energy crops

    International Nuclear Information System (INIS)

    Natural resource economics issues deal with flows and funds of renewable and nonrenewable resources over time. These issues include topics concerned with management of fisheries, forests, mineral, energy resources, the extinction of species and the irreversibility of development over time. Environmental economics issues deal with regulation of polluting activities and the valuation of environmental amenities. In this study we outline a framework for studying both natural resource and environmental economics issues for any renewable or nonrenewable resource. Valuation from both the cost and benefit sides are addressed as they relate to the valuation of environmental programs or policies. By using this top-down approach to analyze and determine the costs and benefits of using renewable or nonrenewable resources, policy-makers on the global, national and local scales may be better informed as to the probable nonmarket and market ramifications of their natural resource and environmental policy decisions. The general framework for analysis is then focused to address biomass energy crops and their usage as inputs to energy production. As with any energy technology, a complete analysis must include an examination of the entire fuel cycle; specifically both production and consumption sides. From a production standpoint, market valuation issues such as crop management techniques, inputs to production, and community economics issues must be addressed as well as nonmarket valuation issues such as soil erosion, ground water effects and carbon sequestration. On the consumption side, market valuation considerations such as energy fuel efficiency and quality, cost of conversion and employment of labor are important factors while the critical nonmarket valuation factors are ambient air visibility, greenhouse gas release, and disposal of the by-products of conversion and combustion

  13. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  14. Assessment of human resources management practices in Lebanese hospitals

    Directory of Open Access Journals (Sweden)

    Jamal Diana

    2009-11-01

    Full Text Available Abstract Background Sound human resources (HR management practices are essential for retaining effective professionals in hospitals. Given the recruitment and retention reality of health workers in the twenty-first century, the role of HR managers in hospitals and those who combine the role of HR managers with other responsibilities should not be underestimated. The objective of this study is to assess the perception of HR managers about the challenges they face and the current strategies being adopted. The study also aims at assessing enabling factors including role, education, experience and HR training. Methods A cross-sectional survey design of HR managers (and those who combine their role as HR manager with other duties in Lebanese hospitals was utilized. The survey included a combination of open- and close-ended questions. Questions included educational background, work experience, and demographics, in addition to questions about perceived challenges and key strategies being used. Quantitative data analysis included uni-variate analysis, whereas thematic analysis was used for open-ended questions. Results A total of 96 respondents from 61 hospitals responded. Respondents had varying levels of expertise in the realm of HR management. Thematic analysis revealed that challenges varied across respondents and participating hospitals. The most frequently reported challenge was poor employee retention (56.7%, lack of qualified personnel (35.1%, and lack of a system for performance evaluation (28.9%. Some of the strategies used to mitigate the above challenges included offering continuing education and training for employees (19.6%, improving salaries (14.4%, and developing retention strategies (10.3%. Mismatch between reported challenges and strategies were observed. Conclusion To enable hospitals to deliver good quality, safe healthcare, improving HR management is critical. There is a need for a cadre of competent HR managers who can fully

  15. Assessment of natural resources and the policy of subsidies in grain production

    Institute of Scientific and Technical Information of China (English)

    Bai Wei; Hao Jinmin; Zhang Qiuping

    2006-01-01

    Based on the analysis on the status quo of natural resources input in grain production and on the policy of grain subsidies, this paper puts forward a new idea - establishing grain subsidies through assessing the value of the natural resources in grain production. The assessment of the natural resources in grain production provides rationale and reference standard for the policy of grain subsidies, which will promote the sustainable use of natural resources accordingly. This paper concludes: (1) it is necessary for the grain subsidies to assess the full value of natural resources,including economic value, ecological value and social value; (2) the government should give farmers direct subsidies or environment subsidies according to the economic and ecological value of natural resources in grain production; (3) the social value of natural resources can be realized by establishing the country social security system, taking the social value as the criterion for the payment for part of farmers insurance.

  16. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    Science.gov (United States)

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  17. Assessing genetic resources of summer truffle in Slovakia

    Directory of Open Access Journals (Sweden)

    Ján Gažo

    2013-12-01

    Full Text Available A study of summer truffle genetic resources, their description and evaluation of economically important traits in Slovak natural truffiéres started since 2005. Draft of national descriptor list has been developed to manage truffle genetic resources collected in the information system "Tuber Aestivum/ Uncinatum Phenotype Data" (TAUPD. Revision was performed in TAUPD to increase effectiveness of truffle breeding process.

  18. The Use of Analytic Network Process for Risk Assessment in Production of Renewable Energy from Agriculture Biomass in Latvia

    Directory of Open Access Journals (Sweden)

    Sandija Rivza

    2013-02-01

    Full Text Available Risk assessment is an important factor for successful and sustainable entrepreneurship of bioenergy production that has become one of the priorities in energy sector of Latvia. Promotion of the use of renewable energy is included as one of the strategic goals for European Union (EU and Latvia. As this field of energy production in Latvia is rather new and scantily explored there are many risk factors arising in different stages of production, starting with planning and building of a bioreactor and ending with production and further use and distribution of energy. The present research focuses on risk assessment in renewable energy production form biomass as this kind of energy is seen as a perspective source for renewable energy under the conditions of Latvia. A risk assessment module for renewable energy production made by using the Analytic Network Process (ANP software is described in the paper.

  19. NREL Solar Radiation Resource Assessment Project: Status and outlook. Annual progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy`s Resource Assessment Program.

  20. Lao PDR - Investment Climate Assessment : Policies to Promote Growth in the Non-Resource Sectors

    OpenAIRE

    World Bank

    2011-01-01

    The second Lao PDR investment climate assessment identifies the key constraints of the country's non-resource sector firms. This Assessment summarizes the results of a national survey conducted in late-2009 and draws on extensive interviews with policymakers and practitioners. Survey results reveal the nature of constraints that various non-resource sector firms in Lao PDR currently face. ...

  1. Assessment of Gas Hydrate Resources on the North Slope, Alaska, 2008

    Science.gov (United States)

    Collett, Timothy S.; Agena, Warren F.; Lee, Myung W.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy; Houseknect, David W.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2008-01-01

    The U.S. Geological Survey (USGS) recently completed the first assessment of the undiscovered technically recoverable gas-hydrate resources on the North Slope of Alaska. Using a geology-based assessment methodology, the USGS estimates that there are about 85 trillion cubic feet (TCF) of undiscovered, technically recoverable gas resources within gas hydrates in northern Alaska.

  2. United States Geological Survey uranium and thorium resource assessment and exploration research program, fiscal year 1980

    International Nuclear Information System (INIS)

    Research is being conducted by the USGS for the NURE program in six fields: geochemistry and mineralogy, sedimentary environments, igneous and metamorphic environments, geophysical exploration techniques, U resource assessment, and Th resource assessment. Some FY 1979 research results are reported and discussed

  3. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  4. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    Science.gov (United States)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  5. Assessment of biomass functionalities in a biofilm membrane bioreactor (BF-MBR) targeting biological nutrient removal

    OpenAIRE

    Kjørlaug, Oda Marie

    2013-01-01

    High concentrations of nutrients such as nitrogen, phosphorus and organicmatter can cause serious eutrophication in receiving water bodies. In biologicalwastewater treatment microorganisms remove nutrients from thewastewater and ensure that these components in the final effluent stay atacceptable levels.A biofilm membrane bioreactor (BF-MBR) removing nitrogen, phosphorusand carbon from municipal wastewater was operated for 85 days. Anassessment of the process focusing on the biomass in the va...

  6. Vulnerability of assessing water resources by the improved set pair analysis

    OpenAIRE

    Yang Xiao-Hua; He Jun; Di Cong-Li; Li Jian-Qiang

    2014-01-01

    Climate change has tremendously changed the hydrological processes with global warming. There are many uncertainties in assessing water resources vulnerability. To assess the water resources vulnerability rationally under climate change, an improved set pair analysis model is established, in which set pair analysis theory is introduced and the weights are determined by the analytic hierarchy process method. The index systems and criteria of water resources ...

  7. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    OpenAIRE

    S. P. Bindra; Hamid, A; S. Abulifa; H.S. Al Reiani; Hammuda Khalifa Abdalla

    2014-01-01

    This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achi...

  8. A National Research Council Evaluation of the Department of Energy's Marine and Hydrokinetic Resource Assessments

    Science.gov (United States)

    Glickson, D.; Holmes, K. J.; Cooke, D.

    2012-12-01

    Marine and hydrokinetic (MHK) resources are increasingly becoming part of energy regulatory, planning, and marketing activities in the U.S. and elsewhere. In particular, state-based renewable portfolio standards and federal production and investment tax credits have led to an increased interest in the possible deployment of MHK technologies. The Energy Policy Act of 2005 (Public Law 109-58) directed the Department of Energy (DOE) to estimate the size of the MHK resource base. In order to help DOE prioritize its overall portfolio of future research, increase the understanding of the potential for MHK resource development, and direct MHK device and/or project developers to locations of greatest promise, the DOE Wind and Water Power Program requested that the National Research Council (NRC) provide an evaluation of the detailed assessments being conducted by five individual resource assessment groups. These resource assessment groups were contracted to estimate the amount of extractable energy from wave, tidal, ocean current, ocean thermal energy conversion, and riverine resources. Performing these assessments requires that each resource assessment group estimate the average power density of the resource base, as well as the basic technology characteristics and spatial and temporal constituents that convert power into electricity for that resource. The NRC committee evaluated the methodologies, technologies, and assumptions associated with each of these resource assessments. The committee developed a conceptual framework for delineating the processes used to develop the assessment results requested by the DOE, with definitions of the theoretical, technical, and practical resource to clarify elements of the overall resource assessment process. This allowed the NRC committee to make a comparison of different methods, terminology, and processes among the five resource assessment groups. The committee concluded that the overall approach taken by the wave resource and

  9. A framework for quantitative assessment of impacts related to energy and mineral resource development

    Science.gov (United States)

    Haines, Seth S.; Diffendorfer, James; Balistrieri, Laurie S.; Berger, Byron R.; Cook, Troy A.; Gautier, Donald L.; Gallegos, Tanya J.; Gerritsen, Margot; Graffy, Elisabeth; Hawkins, Sarah; Johnson, Kathleen; Macknick, Jordan; McMahon, Peter; Modde, Tim; Pierce, Brenda; Schuenemeyer, John H.; Semmens, Darius; Simon, Benjamin; Taylor, Jason; Walton-Day, Katie

    2013-01-01

    Natural resource planning at all scales demands methods for assessing the impacts of resource development and use, and in particular it requires standardized methods that yield robust and unbiased results. Building from existing probabilistic methods for assessing the volumes of energy and mineral resources, we provide an algorithm for consistent, reproducible, quantitative assessment of resource development impacts. The approach combines probabilistic input data with Monte Carlo statistical methods to determine probabilistic outputs that convey the uncertainties inherent in the data. For example, one can utilize our algorithm to combine data from a natural gas resource assessment with maps of sage grouse leks and piñon-juniper woodlands in the same area to estimate possible future habitat impacts due to possible future gas development. As another example: one could combine geochemical data and maps of lynx habitat with data from a mineral deposit assessment in the same area to determine possible future mining impacts on water resources and lynx habitat. The approach can be applied to a broad range of positive and negative resource development impacts, such as water quantity or quality, economic benefits, or air quality, limited only by the availability of necessary input data and quantified relationships among geologic resources, development alternatives, and impacts. The framework enables quantitative evaluation of the trade-offs inherent in resource management decision-making, including cumulative impacts, to address societal concerns and policy aspects of resource development.

  10. Genomic resources in fruit plants: an assessment of current status.

    Science.gov (United States)

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants. PMID:24649925

  11. South African uranium resources - 1997 assessment methodology and results

    International Nuclear Information System (INIS)

    The first commercial uranium production in South Africa started in 1953 to meet the demand for British/US nuclear weapons. This early production reached its peak in 1959 and began to decline with the reduced demand. The world oil crisis in the 1970s sparked a second resurgence of increased uranium production that peaked in 1980 to over 6,000 tonnes. Poor market condition allied with increasing political isolation resulted in uranium production declining to less than a third of the levels achieved in the early 1980s. South Africa is well endowed with uranium resource. Its uranium resources in the RAR and EAR-I categories, extractable at costs of less than $80/kg U, as of 1 January 1997, are estimated to 284 400 tonnes U. Nearly two thirds of these resources are associated with the gold deposits in the Witwatersrand conglomerates. Most of the remaining resources occur in the Karoo sandstone and coal deposits. (author)

  12. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  13. Social Audit – Assessment Instrument in Human Resources Management Quality

    OpenAIRE

    IULIA CHIVU

    2006-01-01

    Social audit is set up in human resources management field at the end of the XX-th century as activity of evaluation of human resources’ management participation on organization results. Its objective consists in improving the quality of human resources management. The professional character of the social audit devolves from using a rigorous methodology and a deep understanding of the analysed domain. The social audit area of action is very large due to the fact that all the problems of hum...

  14. Combined Sustainability Assessment and Techno-Economic Analysis for the Production of Biomass-Derived High-Octane Gasoline Blendstock

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    2015-11-13

    Conversion technologies for biomass to liquid hydrocarbon fuels are being actively developed. Converting biomass into advanced hydrocarbon fuels requires detailed assessments to help prioritize research; techno-economic analysis (TEA) is a long established tool used to assess feasibility and progress. TEA provides information needed to make informed judgments about the viability of any given conceptual conversion process; it is particularly useful to identify technical barriers and measure progress toward overcoming those barriers. Expansion of the cellulosic biofuels industry at the scale needed to meet the Renewable Fuel Standard goals is also expected to have environmental impacts. Hence, the success of the biofuels industry depends not only on economic viability, but also on environmental sustainability. A biorefinery process that is economically feasible but suffers from key sustainability drawbacks is not likely to represent a long-term solution to replace fossil-derived fuels. Overarching concerns like environmental sustainability need to be addressed for biofuels production. Combined TEA and environmental sustainability assessment of emerging pathways helps facilitate biorefinery designs that are both economically feasible and minimally impactful to the environment. This study focuses on environmental sustainability assessment and techno-economic analysis for the production of high-octane gasoline blendstock via gasification and methanol/dimethyl ether intermediates. Results from the conceptual process design with economic analysis, along with the quantification and assessment of the environmental sustainability, are presented and discussed. Sustainability metrics associated with the production of high-octane gasoline include carbon conversion efficiency, consumptive water use, life-cycle greenhouse gas emissions, fossil energy consumption, energy return on investment and net energy value.

  15. The role of biomass in climate change mitigation : Assessing the long-term dynamics of bioenergy and biochemicals in the land and energy systems

    OpenAIRE

    Daioglou, V.

    2016-01-01

    Scientific literature addressing climate change mitigation options have highlighted the potentially important role of biomass as a substitute for fossil fuels in the provision of energy and materials. However significant uncertainties remain concerning the drivers and constraints of the available biomass, the overall greenhouse gas (GHG) benefit, and the most effective supply and demand chains. This thesis builds on the IMAGE integrated assessment model in order to improve the representation ...

  16. Multi-Sensor Monitoring And Assessment Of Forest Resources: Supporting A Forest Observation System For Seiberia

    Science.gov (United States)

    Huttich, Christian; Eberle, Jonas; Schmullius, Christiane; Bartalev, Sergey; Emelyanov, Kirill; Korets, Mikhail; Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-12-01

    Above ground biomass - one of the considered Essential Biodiversity and Climate Variables (ECV, EBV) - is an important structural parameter describing the state and dynamics of the Boreal zone. More than 50 % of the Russian forest inventory has been updated more than 25 years ago. The consequence is that most of the existing forest inventory is obsolete. Moreover, human and environmental forest disturbances continuously affect changing forest cover and biomass levels. The magnitude and extent of ongoing environmental pressures (e.g. forest fragmentation and the impact of global climate change) and the loss rates of particular habitat types is not known so far. The ZAPÁS project and the Siberian Earth System Science Cluster (SIB- ESS-C) are aiming to provide standardized and validated forest resource geo-information products. In- situ and multi-agency satellite data are analysed in the framework of the EU-Russia Space Dialogue. At local scales biomass and forest cover change maps are generated and validated with up-to-date forest inventory data. At regional scales a synergy map of land cover and biomass information is developed to be used to improve a full terrestrial carbon accounting for Central Siberia.

  17. Energy Efficiency in Western Utility Resource Plans: Impacts onRegional Resources Assessment and Support for WGA Policies

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-08-01

    In the aftermath of the consumer price shocks and short-term power shortages of the 2000-01 electricity crisis, policymakers and regulators in Western states are placing increased emphasis on integrated resource planning (IRP), resource adequacy and assessment and a diversified portfolio of resources to meet the needs of electricity consumers. In some states, this has led to a resurgence in state and utility commitments to energy efficiency. Increasing interest in acquiring energy efficiency as a power-system resource is also driven by the desire to dampen high growth rates in electricity demand in some Western states, rapid increases in natural gas prices, concerns about the environmental impacts of electricity generation (e.g. water consumption by power plants, air quality), and the potential of energy efficiency to provide utility bill savings for households and businesses (WGA CDEAC 2006). Recognizing the cost-competitiveness and environmental benefits of energy efficiency, the Western Governor's Association (WGA) has set a high priority for energy efficiency, establishing a goal of reducing projected electricity demand by 20% across the West by 2020 in a policy resolution on Clean and Diversified Energy for the West (WGA 2004). Nationally, the need for improved tracking of demand-side resources in load forecasting is formalized in the North American Electric Reliability Council (NERC)'s recently adopted reliability standards, which utilities and regional reliability organizations will need to comply with (NERC 2005a and 2005b). In this study, we examine the treatment of energy efficiency in recent resource plans issued by fourteen investor-owned utilities (IOUs) in the Western United States and Canada. The goals of this study are to: (1) summarize energy-efficiency resources as represented in a large sample of recent resource plans prepared by Western utilities and identify key issues; (2) evaluate the extent to which the information provided in

  18. Impact Assessment of Abiotic Resources in LCA: Quantitative Comparison of Selected Characterization Models

    DEFF Research Database (Denmark)

    Rørbech, Jakob Thaysen; Vadenbo, Carl; Hellweg, Stefanie;

    2014-01-01

    Resources have received significant attention in recent years resulting in development of a wide range of resource depletion indicators within life cycle assessment (LCA). Understanding the differences in assessment principles used to derive these indicators and the effects on the impact assessment...... results is critical for indicator selection and interpretation of the results. Eleven resource depletion methods were evaluated quantitatively with respect to resource coverage, characterization factors (CF), impact contributions from individual resources, and total impact scores. We included 2247...... individual market inventory data sets covering a wide range of societal activities (ecoinvent database v3.0). Log–linear regression analysis was carried out for all pairwise combinations of the 11 methods for identification of correlations in CFs (resources) and total impacts (inventory data sets) between...

  19. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  20. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  1. Direct heat resource assessment and subsurface information systems for geothermal aquifers; the Dutch perspetive

    OpenAIRE

    Kramers, L.; Wees, van J.-D.; Pluymaekers, M.P.D.; A. Kronimus; Boxem, T.

    2012-01-01

    A resource assessment methodology has been developed to designate prospective high permeable clastic aquifers and to assess the amount of potential geothermal energy in the Netherlands. It builds from the wealth of deep subsurface data from oil and gas exploration and production which is publicly and digitally available. In the resource assessment various performance indicator maps have been produced for direct heat applications (greenhouse and spatial heating). These maps are based on detail...

  2. Improved methods for national water assessment, water resources contract: WR15249270

    Science.gov (United States)

    Thomas, Harold A., Jr.

    1981-01-01

    The purpose of our research is to develop methods to make National Water Assessment more useful in estimating water availability for economic growth and more helpful in determining the effect of water resource development upon the environmental quality of related land resources. There are serious questions pertaining to the 1975 Water Assessment and these amplify the significance of decisions made as to the planning and scheduling of the next assessment.

  3. Assessment of Undiscovered Petroleum Resources of Southern and Western Afghanistan, 2009

    Science.gov (United States)

    Wandrey, C.J.; Kosti, Amir Zada; Selab, Amir Mohammad; Omari, Mohammad Karim; Muty, Salam Abdul; Nakshband, Haidari Gulam; Hosine, Abdul Aminulah; Wahab, Abdul; Hamidi, Abdul Wasy; Ahmadi, Nasim; Agena, Warren F.; Charpentier, Ronald R.; Cook, Troy; Drenth, B.J.

    2009-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey--Afghanistan Ministry of Mines Joint Oil and Gas Resource Assessment Team estimated mean undiscovered resource volumes of 21.55 million barrels of oil, 44.76 billion cubic feet of non-associated natural gas, and 0.91 million barrels of natural gas liquids in the western Afghanistan Tirpul Assessment Unit (AU) (80230101).

  4. Temporal Assessment of Growing Stock, Biomass and Carbon Stock of Indian Forests

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, R.K.; Negi, J.D.S.; Chauhan, P.S. [Forest Ecology and Environment Division, Forest Research Institute, Dehradun, 248 006, Uttaranchal (India); Kumar, R. [Forest Survey of India, Dehradun, 248 001, Uttaranchal (India)

    2006-01-15

    The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry. In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm{sup 3}, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C/ha, followed by Mangrove forests, 28.24 t C/ha, Dipterocarp forests, 28.00 t C/ha, and Shorea robusta forests, 24.07 t C/ha. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C/ha. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984-1994 (10yrs) and 1991-1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984-1994 and 21.35 Mt C during 1991-94 at a rate of 2.48 Mt C/yr and 5.35 Mt C/yr respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual

  5. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact

    Science.gov (United States)

    Permadi, Didin Agustian; Kim Oanh, Nguyen Thi

    2013-10-01

    This paper presents an emission inventory (EI) for biomass open burning (OB) sources including forest, agro-residue and municipal solid waste (MSW) in Indonesia for year 2007. The EI covered toxic air pollutants and greenhouse gases (GHGs) and was presented as annual and monthly average for every district, and further on a grid of 0.25° × 0.25°. A rigorous analysis of activity data and emission factor ranges was done to produce the low, best and high emission estimates for each species. Development of EI methodology for MSW OB which, to our best knowledge, has not been presented in detail in the literature was a focus of this paper. The best estimates of biomass OB emission of toxic air pollutants for the country, in Gg, were: 9.6 SO2; 98 NOx; 7411 CO; 335 NMVOC; 162 NH3; 439 PM10; 357 PM2.5; 24 BC; and 147 OC. The best emission estimates of GHGs, in Gg, were: 401 CH4, 57,247 CO2; and 3.6 N2O. The low and high values of the emission estimates for different species were found to range from -86% to +260% of the corresponding best estimates. Crop residue OB contributed more than 80% of the total biomass OB emissions, followed by forest fire of 2-12% (not including peat soil fire emission) and MSW (1-8%). An inter-annual active fires count for Indonesia showed relatively low values in 2007 which may be attributed to the high rainfall intensity under the influence of La Niña climate pattern in the year. Total estimated net climate forcing from OB in Indonesia was 110 (20 year horizon) and 73 (100 year horizon) Tg CO2 equivalents which is around 0.9-1.1% of that reported for the global biomass OB for both time horizons. The spatial distribution showed higher emissions in large urban areas in Java and Sumatra Island, while the monthly emissions indicated higher values during the dry months of August-October.

  6. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    from iLUC was in the range 1.5-3.5 kg CO2-eq. kg-1 crop. Overall, bioenergy production from municipal solid waste and agricultural/industrial residues should be prioritized over cultivation of energy crops. This holds true as long as these residues are not today used as animal feed. Results also...... municipal solid waste. Four conversion pathways were considered: combustion, fermentation-to-ethanol, fermentation-to-biogas, and thermal gasification. A total of 80 bioenergy scenarios were assessed. Consequential life-cycle assessment (CLCA) was used to quantify the environmental impacts. CLCA aimed at...... generation biofuels produced from residual biomass promise important environmental savings. However, since these residues are today in-use for specific purposes (e.g., feeding), a detailed modelling of the consequences (e.g., on the feed-market) induced by their diversion to energy should be performed to...

  7. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    Science.gov (United States)

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.

    2015-01-01

    A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in the Tethys region of western and southern Asia was carried out as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The purpose of the study was to delineate geographic areas as permissive tracts for the occurrence of porphyry copper deposits at a scale of 1:1,000,000 and to provide probabilistic estimates of amounts of copper likely to be contained in undiscovered porphyry copper deposits in those tracts. The team did the assessment using the USGS three-part form of mineral resource assessment, which is based on (1) mineral deposit and grade-tonnage models constructed from known deposits as analogs for undiscovered deposits, (2) delineation of permissive tracts based on geoscientific information, and (3) estimation of numbers of undiscovered deposits.

  8. "It's Not Fair!": Assessing the Dynamics and Resourcing of Teamwork

    Science.gov (United States)

    Willcoxson, Lesley E.

    2006-01-01

    Team-based assessments are commonly used in management education, yet questions remain about how to adequately differentiate individuals' levels of input into team processes and project content when grading a team-based assessment. Following an overview of relevant research, this article describes an innovative self- and peer-assessment strategy…

  9. 76 FR 54195 - 2010 Resources Planning Act (RPA) Assessment Draft

    Science.gov (United States)

    2011-08-31

    ...) Assessment is available for review and comment at http://www.fs.fed.us/research/rpa/ . The RPA Assessment is... comment form on the Web site http://www.fs.fed.us/research/rpa/ . All comments, including names and... Assessment can be obtained on the Internet at http://www.fs.fed.us/research/rpa/ . Individuals who...

  10. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

    1980-01-01

    The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

  11. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  12. A new measure-correlate-predict approach for resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A.; Landberg, L. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Madsen, H. [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    In order to find reasonable candidate site for wind farms, it is of great importance to be able to calculate the wind resource at potential sites. One way to solve this problem is to measure wind speed and direction at the site, and use these measurements to predict the resource. If the measurements at the potential site cover less than e.g. one year, which most likely will be the case, it is not possible to get a reliable estimate of the long-term resource, using this approach. If long-term measurements from e.g. some nearby meteorological station are available, however, then statistical methods can be used to find a relation between the measurements at the site and at the meteorological station. This relation can then be used to transform the long-term measurements to the potential site, and the resource can be calculated using the transformed measurements. Here, a varying-coefficient model, estimated using local regression, is applied in order to establish a relation between the measurements. The approach is evaluated using measurements from two sites, located approximately two kilometres apart, and the results show that the resource in this case can be predicted accurately, although this approach has serious shortcomings. (au)

  13. Solar Resource Assessment for Sri Lanka and Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Marion, B.; Heimiller, D.; Gueymard, C.

    2003-08-01

    The countries of Sri Lanka and the Maldives lie within the equatorial belt, a region where substantial solar energy resources exist throughout much of the year in adequate quantities for many applications, including solar water heating, solar electricity, and desalination. The extent of solar resources in Sri Lanka has been estimated in the past based on a study of the daily total direct sunshine hours recorded at a number of weather and agricultural stations throughout the country. These data have been applied to the well-known Angstrom relationship in order to obtain an estimate of the distribution of monthly average daily total solar resources at these stations. This study is an effort in improve on these estimates in two ways: (1) to apply a gridded cloud cover database at a 40-km resolution to produce updated monthly average daily total estimates of all solar resources (global horizontal, DNI, and diffuse) for the country, and (2) to input hourly or three-hourly cloud cover observations made at nine weather stations in Sri Lanka and two in the Maldives into a solar model that produces estimates of hourly solar radiation values of the direct normal, global, and diffuse resource covering the length of the observational period. Details and results of these studies are summarized in this report.

  14. Drought assessment in the Dongliao River basin: traditional approaches vs. generalized drought assessment index based on water resources systems

    OpenAIRE

    B. S. Weng; Yan, D. H.; H. Wang; Liu, J H; Yang, Z. Y.; T. L. Qin; Yin, J.

    2015-01-01

    Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological mode...

  15. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Science.gov (United States)

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-01-01

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  16. Enterprise resource planning: An assessment for readiness to change

    Directory of Open Access Journals (Sweden)

    Ali Ashraf Nazari

    2014-01-01

    Full Text Available This paper presents an empirical investigation for the implementation of enterprise resource planning among 58 production units in province of Ilam, Iran. The proposed study of this paper considers the readiness in terms of six factors including human resources, financial resources, infrastructures, quality control, and information systems and communication technology. Using structural equation modeling, the study examines six hypotheses and the implementation is accomplished on LISREL software package. Cronbach alpha has been calculated as 0.91, which is well above the minimum desirable level. The results of the survey have indicated that all six mentioned factors influence positively on ERP implementation and for a successful implementation of ERP, it is suggested to consider these factors, seriously.

  17. Can DNA-Based Ecosystem Assessments Quantify Species Abundance? Testing Primer Bias and Biomass--Sequence Relationships with an Innovative Metabarcoding Protocol.

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    Full Text Available Metabarcoding is an emerging genetic tool to rapidly assess biodiversity in ecosystems. It involves high-throughput sequencing of a standard gene from an environmental sample and comparison to a reference database. However, no consensus has emerged regarding laboratory pipelines to screen species diversity and infer species abundances from environmental samples. In particular, the effect of primer bias and the detection limit for specimens with a low biomass has not been systematically examined, when processing samples in bulk. We developed and tested a DNA metabarcoding protocol that utilises the standard cytochrome c oxidase subunit I (COI barcoding fragment to detect freshwater macroinvertebrate taxa. DNA was extracted in bulk, amplified in a single PCR step, and purified, and the libraries were directly sequenced in two independent MiSeq runs (300-bp paired-end reads. Specifically, we assessed the influence of specimen biomass on sequence read abundance by sequencing 31 specimens of a stonefly species with known haplotypes spanning three orders of magnitude in biomass (experiment I. Then, we tested the recovery of 52 different freshwater invertebrate taxa of similar biomass using the same standard barcoding primers (experiment II. Each experiment was replicated ten times to maximise statistical power. The results of both experiments were consistent across replicates. We found a distinct positive correlation between species biomass and resulting numbers of MiSeq reads. Furthermore, we reliably recovered 83% of the 52 taxa used to test primer bias. However, sequence abundance varied by four orders of magnitudes between taxa despite the use of similar amounts of biomass. Our metabarcoding approach yielded reliable results for high-throughput assessments. However, the results indicated that primer efficiency is highly species-specific, which would prevent straightforward assessments of species abundance and biomass in a sample. Thus, PCR

  18. Characteristics of Composite Rice Straw and Coconut Shell as Biomass Energy Resources (Briquette(Case study: Muara Telang Village, Banyuasin of South Sumatra

    Directory of Open Access Journals (Sweden)

    Muhammad Yerizam

    2013-01-01

    Full Text Available Rice straw and coconut shell as Solid residues are, biomass residue materials that are not optimally used by farmers in Muara Telang and potentially become environmental pollutant. These residues are used as an alternative energy which are biomass briquettes. Post-harvest produced 114 tons yield of rice straw and 80 tons yield of coconut shell. Mostly these residues were burned and produced environmental gas pollutant such as  CO, CO2 and NOx emissions. Rice straw and coconut shell have carbon compound that contained in the fixed carbon (FC, which flammable and became energy resources. Rice straw has 15.61% of FC and coconut shell has 78.32% of FC. Rice straw fuel value is 1525.5 cal/gram while  coconut shell has 7283.5 cal/gram of fuel value. The fuel value of biobriquette in ratio 50:50 is 4354.50 cal / gram. This fuel value close to coal fuel value between 4000 - 8000 cal / gram.

  19. The 1980-1982 Geothermal Resource Assessment Program in Washington

    Energy Technology Data Exchange (ETDEWEB)

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  20. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.