WorldWideScience

Sample records for biomass fuel smoke

  1. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru

    Science.gov (United States)

    Peña, Melissa Burroughs; Romero, Karina M.; Velazquez, Eric J.; Davila-Roman, Victor G.; Gilman, Robert H.; Wise, Robert A; Miranda, J. Jaime; Checkley, William

    2015-01-01

    Household air pollution from biomass fuel use affects three billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity (FVC) were conducted to evaluate for effect modification. Data from 1004 individuals (mean age 55.3 years, 51.7% female) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio 5.0, 95% CI 2.6 to 9.9) and hypertension (adjusted relative risk ratio 3.5, 95% CI 1.7 to 7.0). Biomass fuel users had a higher SBP (7.01 mmHg, 95% CI 4.4 to 9.6) and a higher DBP (5.9 mmHg, 95% CI 4.2 to 7.6) when compared to nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted FVC for either SBP or DBP. Biomass fuel use was associated with an increased risk of hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention. PMID:25753976

  2. Oxidative potential of smoke from burning wood and mixed biomass fuels.

    Science.gov (United States)

    Kurmi, O P; Dunster, C; Ayres, J G; Kelly, F J

    2013-10-01

    More than half the world's population still rely on burning biomass fuels to heat and light their homes and cook food. Household air pollution, a common component of which is inhalable particulate matter (PM), emitted from biomass burning is associated with increased vulnerability to respiratory infection and an enhanced risk of developing chronic obstructive pulmonary disease. In the light of an emerging hypothesis linking chronic PM exposure during childhood and increased vulnerability to respiratory diseases in adulthood, in a chain of events involving oxidative stress, reduced immunity and subsequent infection, the aim of this study was to characterise the oxidative potential (OP) of PM collected during the burning of wood and mixed biomass, whilst cooking food in the Kathmandu Valley, Nepal. Our assessments were based on the capacity of the particles to deplete the physiologically relevant antioxidants from a validated, synthetic respiratory tract lining fluid (RTLF). Incubation of mixed biomass and wood smoke particles suspensions with the synthetic RTLF for 4 h resulted in a mean loss of ascorbate of 64.76 ± 16.83% and 83.37 ± 14.12% at 50 μg/ml, respectively. Reduced glutathione was depleted by 49.29 ± 15.22% in mixed biomass and 65.33 ± 13.01% in wood smoke particles under the same conditions. Co-incubation with the transition metal chelator diethylenetriaminepentaacetate did not inhibit the rate of ascorbate oxidation, indicating a negligible contribution by redox-active metals in these samples. The capacity of biomass smoke particles to elicit oxidative stress certainly has the potential to contribute towards negative health impacts associated with traditional domestic fuels in the developing world. PMID:23926954

  3. Does smoke from biomass fuel contribute to anemia in pregnant women in Nagpur, India? A cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Charlotte M Page

    Full Text Available Anemia affects upwards of 50% of pregnant women in developing countries and is associated with adverse outcomes for mother and child. We hypothesized that exposure to smoke from biomass fuel--which is widely used for household energy needs in resource-limited settings--could exacerbate anemia in pregnancy, possibly as a result of systemic inflammation.To evaluate whether exposure to smoke from biomass fuel (wood, straw, crop residues, or dung as opposed to clean fuel (electricity, liquefied petroleum gas, natural gas, or biogas is an independent risk factor for anemia in pregnancy, classified by severity.A secondary analysis was performed using data collected from a rural pregnancy cohort (N = 12,782 in Nagpur, India in 2011-2013 as part of the NIH-funded Maternal and Newborn Health Registry Study. Multinomial logistic regression was used to estimate the effect of biomass fuel vs. clean fuel use on anemia in pregnancy, controlling for maternal age, body mass index, education level, exposure to household tobacco smoke, parity, trimester when hemoglobin was measured, and receipt of prenatal iron and folate supplements.The prevalence of any anemia (hemoglobin < 11 g/dl was 93% in biomass fuel users and 88% in clean fuel users. Moderate-to-severe anemia (hemoglobin < 10 g/dl occurred in 53% and 40% of the women, respectively. Multinomial logistic regression showed higher relative risks of mild anemia in pregnancy (hemoglobin 10-11 g/dl; RRR = 1.38, 95% CI = 1.19-1.61 and of moderate-to-severe anemia in pregnancy (RRR = 1.79, 95% CI = 1.53-2.09 in biomass fuel vs. clean fuel users, after adjusting for covariates.In our study population, exposure to biomass smoke was associated with higher risks of mild and moderate-to-severe anemia in pregnancy, independent of covariates.ClinicalTrials.gov NCT 01073475.

  4. Characterization and Mutagenicity of Biomass Smoke from Peat and Red Oak Fuel under Smolder and Flame Combustions

    Science.gov (United States)

    Although wildfire smoke is known to cause adverse health effects, less is known about the relative effects of wildfire smoke from different fuel types or combustion conditions. In this study, we describe a novel in-tandem application of controlled combustion and cryo-trapping tec...

  5. Biomass fuel combustion and health*

    OpenAIRE

    de Koning, H. W.; Smith, K. R.; Last, J. M.

    1985-01-01

    Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect health—such as suspended particulate matter and polycyclic organic matter which includes a number of known carc...

  6. Clean fuels from biomass

    Science.gov (United States)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  7. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  8. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J.

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  9. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  10. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  11. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  12. Altered Lung Function Test in Asymptomatic Women Using Biomass Fuel for Cooking

    Science.gov (United States)

    2014-01-01

    Background: One third of the world’s population use biomass fuel like wood, dung or charcoal for cooking. The smoke from these organic materials increases the incidence of respiratory illness including chronic obstructive pulmonary disease and lung cancer. Aim: To evaluate forced expiratory lung volumes in asymptomatic women previously exposed to biomass fuel smoke. Materials and Methods: The study was done in 74 healthy asymptomatic women divided into two age matched groups of 37 each. Pulmonary function tests (PFT) were assessed by computerised spirometry and statistical comparisons done on women using biomass fuel (study group) and women using other sources of fuel (LPG/ electric stove) for cooking (control group). Results: The PFT results showed significant reduction in forced expiratory lung volumes like Forced Vital Capacity (FVC), Forced Expiratory Volume in 1st sec (FEV1), Forced Expiratory Flow between 25-75% (FEF 25-75%) and Forced Expiratory Volume percentage (FEV1%) in biomass fuel users as compared to those not exposed to biomass fuel smoke. Conclusion: The results of this study suggest that biomass fuel smoke may produce definite impairment in lung function, especially with regard to the smaller airways. PMID:25478331

  13. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    The carbon-based chemicals and fuels that are necessary to meet the energy demand for our society originate presently almost exclusively from inexpensive fossil resources – coal, oil and natural gas. The forecast of diminishing and more expensive petroleum reserves has, however, engaged the...... chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...... chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...

  14. Raw material and market for biomass fuel

    International Nuclear Information System (INIS)

    The report from a conference deals with raw material and market relations for biomass fuel in Norway. The proceedings cover themes like requirements concerning quality and purity, supply of raw materials, supply and production of chips, supply and market for industrial waste and wood waste, supply of raw materials and market relations for pellets, practical experience from a pelletizing plant, use of source selected paper as a biomass fuel, use of bio-carbon in the ferro-alloy industry, biomass fuel and waste in the cement industry - technical requirements and experience of utilization, processed biomass fuel from wastes - possible niches of marketing, and evaluation of a bio-energy project. 9 figs., 12 tabs

  15. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  16. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  17. When smoke comes to town - effects of biomass burning smoke on air quality down under

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; (C. P) Meyer, Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2014-05-01

    Annually, biomass burning results in the emission of quantities of trace gases and aerosol to the atmosphere. Biomass burning emissions have a significant effect on atmospheric chemistry due to the presence of reactive species. Biomass burning aerosols influence the radiative balance of the earth-atmosphere system directly through the scattering and absorption of radiation, and indirectly through their influence on cloud microphysical processes, and therefore constitute an important forcing in climate models. They also reduce visibility, influence atmospheric photochemistry and can be inhaled into the deepest parts of the lungs, so that they can have a significant effect on human health. Australia experiences bushfires on an annual basis. In most years fires are restricted to the tropical savannah forests of Northern Australia. However in the summer of 2006/2007 (December 2006 - February 2007), South Eastern Australia was affected by the longest recorded fires in its history. During this time the State of Victoria was ravaged by 690 separate bushfires, including the major Great Divide Fire, which devastated 1,048,238 hectares over 69 days. On several occasions, thick smoke haze was transported to the Melbourne central business district and PM10 concentrations at several air quality monitoring stations peaked at over 200 µg m-3 (four times the National Environment Protection Measure PM10 24 hour standard). During this period, a comprehensive suite of air quality measurements was carried out at a location 25 km south of the Melbourne CBD, including detailed aerosol microphysical and chemical composition measurements. Here we examine the chemical and physical properties of the smoke plume as it impacted Melbourne's air shed and discuss its impact on air quality over the city. We estimate the aerosol emission rates of the source fires, the age of the plumes and investigate the transformation of the smoke as it progressed from its source to the Melbourne airshed. We

  18. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  19. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    Science.gov (United States)

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  20. Discrimination of Biomass Burning Smoke and Clouds in MAIAC Algorithm

    Science.gov (United States)

    Lyapustin, A.; Korkin, S.; Wang, Y.; Quayle, B.; Laszlo, I.

    2012-01-01

    The multi-angle implementation of atmospheric correction (MAIAC) algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel) and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the smoke test to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 micrometers as compared to 0.47-0.67 micrometers due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  1. Discrimination of biomass burning smoke and clouds in MAIAC algorithm

    Directory of Open Access Journals (Sweden)

    A. Lyapustin

    2012-07-01

    Full Text Available The multi-angle implementation of atmospheric correction (MAIAC algorithm makes aerosol retrievals from MODIS data at 1 km resolution providing information about the fine scale aerosol variability. This information is required in different applications such as urban air quality analysis, aerosol source identification etc. The quality of high resolution aerosol data is directly linked to the quality of cloud mask, in particular detection of small (sub-pixel and low clouds. This work continues research in this direction, describing a technique to detect small clouds and introducing the "smoke test" to discriminate the biomass burning smoke from the clouds. The smoke test relies on a relative increase of aerosol absorption at MODIS wavelength 0.412 μm as compared to 0.47–0.67 μm due to multiple scattering and enhanced absorption by organic carbon released during combustion. This general principle has been successfully used in the OMI detection of absorbing aerosols based on UV measurements. This paper provides the algorithm detail and illustrates its performance on two examples of wildfires in US Pacific North-West and in Georgia/Florida of 2007.

  2. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  3. When smoke comes to town: The impact of biomass burning smoke on air quality

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; Meyer, C. P. Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2015-11-01

    Biomass burning aerosols influence the radiative balance of the earth-atmosphere system. They also reduce visibility and impact human health. In addition, trace gases and aerosols emitted to the atmosphere during large biomass burning episodes may have a significant effect on atmospheric chemistry due to the presence of reactive species. Six hundred and ninety wildfires burned more than one million hectares in Victoria, Australia between December 2006 and February 2007. Thick smoke haze was transported to Melbourne (population 3.9 million) on several occasions, causing PM10 (particulate mass less than 10 μm in diameter) concentrations to exceed 200 μg m-3. The presence of elevated total secondary organic aerosol (SOA) and speciated SOA compounds (including pinene and cineole oxidation products), O3, and the larger aerosol mode diameter during smoke impacted periods indicated the presence of photochemical oxidation within the plume. The presence of organosulfate compounds and nitro-oxy organosulfate compounds indicated oxidation may have occurred in the presence of acidic seed aerosol and that oxidation may also have occurred at night. Older smoke plumes (aged 30 h) displayed higher concentrations of a number of gaseous and aerosol species relative to the younger smoke plumes (aged 3 h). SOA compounds made up a greater fraction of speciated organic mass in the old plume than in the young plume where speciated biomass burning compounds dominated. Cineole oxidation products made up a greater fraction of the speciated SOA compounds in the old plume while pinene oxidation products made up a greater fraction of the total SOA speciated mass in the samples from the young plume. This may be a result of the slower reaction rate of cineole with OH. Organosulfate compounds and nitro-oxy organosulfate compounds made up greater fractions of the speciated SOA mass in the old plume consistent with the production of nitro-oxy organosulfate compounds under night time conditions in

  4. Energetic and economical comparison for biomass fuel

    International Nuclear Information System (INIS)

    The common agricultural biomass, such as wheat straw, rape straw, wheat small corn, wheat forage, rape oil cakes and other, we can use as fuel for heat production. The biomass application for burning depends on economical situation on agriculture and fuel market. Energetic and economical parameters of agricultural biomass are estimated and compared to wooden grain. As parameters for comparison used the biomass heat value Q (MJ/kg), specific cost per 1 kWh heat production C0 (Ls/kWh) and the fuel consumption per 1 kWh heat production M0 (kg/kWh). The rape oil cakes have best heat value (20.82 MJ/kg), but cheapest heat energy we can get from rape straw (0.0046 Ls/kWh). Expenses of heat production for forge wheat corn (0.011 Ls/kWh) are alike to wooden chip (0.0103 Ls/kWh) and wooden grain (0.0122 Ls/kWh) (authors)

  5. Biomass-fueled power plants in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, M. [IVO Power Engineering Ltd., Vantaa (Finland); Hulkkonen, S. [Imatran Voima Oy, Vantaa (Finland)

    1997-07-01

    Combined heat and power production (CHP) from biomass is a commercially viable alternative when district heat or process steam is needed in small towns or in a process industry. The high nominal investment cost of a small power plant that uses local biomass fuels is compensated by the revenues from the heat. The price of the district heat or the steam generated in the CHP-plant can be valued at the same price level as the heat from a mere steam boiler. Also, the price of heat produced by a small-generation-capacity plant is local and higher, whereas electricity has a more general market price. A typical small Finnish CHP-plant consists of a bubbling fluidized bed boiler and a simplified steam turbine cycle generating 4 to 10 MW of electricity and 10 to 30 MW of district heat or process steam. There are about 10 power plants of this type in commercial operation in Finland. As a whole, biomass, which is used in more than 200 plants, provides about 20% of the primary energy consumption in Finland. Roughly half of these produce only heat but the rest are combined heat and power plants. The majority of the plants is in pulp and paper industry applications. Imatran Voima Oy (IVO) is the biggest energy producer in Finland. IVO builds, owns and operates several biomass-fired power plants and carries out active R and D work to further develop the biomass-fueled small power plant. This paper discusses the experiences of the biomass-fueled power plants. (author)

  6. Identifying biomass fuel shortages in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Michael (Sussex Univ., Brighton (UK). Inst. of Development Studies)

    1989-01-01

    This paper analyses data from the Sri Lankan Forestry Master Plan and other sources, to explore the causes of biomass shortages, and to identify the areas where interventions are likely to have most impact. Five districts, concentrated in the wet lowland and hill country zones, are found to be in overall biomass fuel deficit whilst in a further five, which include dry zone locations, fuelwood consumption exceeds potential supply, Within the area of overall deficit, poorer urban groups and rural families with no home gardens - who together comprise 15% of all households nationally - are affected most severely. Another 10% of households are likely to suffer to a lesser extent. (author).

  7. Electricity from biomass fuels, it is off

    International Nuclear Information System (INIS)

    The 15 projects of biomass and biogas-fueled power plants retained by the French ministry of industry after the public call for bids will lead to 450 million euros of investment. The fifteen projects represent a total capacity of 232 MW (216 MW for the biomass and 16 MW for biogas). The candidates will sign a 15 years contract with Electricite de France, the French electric utility, which is under the obligation of purchasing the electricity produced by these facilities. (J.S.)

  8. The economics of transport fuels from biomass

    International Nuclear Information System (INIS)

    This project was undertaken to provide a consistent and thorough review of complete processes for producing conventional liquid fuels from biomass from biomass feed at the factory gate to final product storage. It was carried out to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. The processes covered are indirect liquefaction by thermal gasification and liquid fuel synthesis; direct thermal liquefaction and catalytic upgrading; and biochemical conversion through hydrolysis and fermentation. Feedstocks include wood, straw and refuse. The liquid products considered include gasoline and diesel hydrocarbons that in some cases would require minor refining to convert them into marketable products; conventional alcohol fuels of methanol which has established opportunities and fuel alcohol which is as yet unproven in the market place; and bioethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. Generally the alcohol fuels are more attractive in comparing costs and prices, but the advantage is lost in absolute terms. (17 figures; 15 tables) (Author)

  9. Application and Development of Biomass Fuels for Transportation in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jianxin; SHUAI Shijin; CHEN Hu

    2007-01-01

    Biomass fuels have become a big concern due to the large increase in green house gases and the rapid rise of petroleum prices around the world. This paper reviews recent developments in biomass fuels,such as ethanol and biodiesel, in China. Ethanol-gasoline mixture (E10) for vehicles is currently distributed in nine provinces while biodiesel is under development. One way to extend the application of ethanol is to burn it in diesel engines to lower soot emissions. The effects of the different methods blending ethanol with fossil diesel, and blending biodiesel with fossil diesel and ethanol-diesel on the combustion and emissions are investigated. The test results show that ethanol and biodiesel can be mixed with fossil diesel to greatly reduce particulate matter and soot emissions from diesel engines. But the application of ethanol blending with fossil diesel is more difficult than that of ethanol blending with gasoline, and biodiesel blending with fossil diesel. The dual-fuel injection of ethanol and diesel systems has the highest smoke reduction effect for a high ethanol fraction.

  10. Determination of biomass fraction for partly renewable solid fuels.

    OpenAIRE

    Ariyaratne, Hiromi Wijesinghe; Melaaen, Morten Christian; Tokheim, Lars-André

    2014-01-01

    Biomass-based waste fuels are used in many industrial applications since combustion of biomass gives no net emissions of carbon dioxide. Some waste fuels, e.g. RDF (refuse derived fuels), contain not only biomass, but also some fossil material, hence can be classified as partially CO2 neutral fuels. The biomass fraction of a mixed solid fuel is an essential parameter for the determination of net CO2 emissions. It is also important to know the accuracy of the different biomass frac...

  11. Upgrading Fuel Properties of Biomass by Torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Holm, Jens Kai

    Torrefaction is a mild thermal (200 – 300 ÛC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and...... hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss...... heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three...

  12. Synthesis of Fuels from Biomass Derived Oxygenates

    OpenAIRE

    Cesak, Ondrej

    2013-01-01

    Direct conversion of wooden biomass to liquid fuels is performed in two-step process. First step is to transform cellulose, hemicelluloses and lignin into to basic chemical compounds which they are assembled of (mainly basic sugars, cyclic C6 and C5 oxygenated hydrocarbons). These compounds are then further transformed to polyethylene glycol and polypropylene glycol.Nevertheless, this project is focuses on testing of catalysts for second step, which is transformation of obtained C2 and C3 pol...

  13. Air Quality and Acute Respiratory Illness in Biomass Fuel using homes in Bagamoyo, Tanzania

    Directory of Open Access Journals (Sweden)

    Satoshi Nakai

    2007-03-01

    Full Text Available Respiratory Diseases are public health concern worldwide. The diseases have been associated with air pollution especially indoor air pollution from biomass fuel burning in developing countries. However, researches on pollution levels and on association of respiratory diseases with biomass fuel pollution are limited. A study was therefore undertaken to characterize the levels of pollutants in biomass fuel using homes and examine the association between biomass fuel smoke exposure and Acute Respiratory Infection (ARI disease in Nianjema village in Bagamoyo, Tanzania. Pollution was assessed by measuring PM10, NO2, and CO concentrations in kitchen, living room and outdoors. ARI prevalence was assessed by use of questionnaire which gathered health information for all family members under the study. Results showed that PM10, NO2, and CO concentrations were highest in the kitchen and lowest outdoors. Kitchen concentrations were highest in the kitchen located in the living room for all pollutants except CO. Family size didn’t have effect on the levels measured in kitchens. Overall ARI prevalence for cooks and children under age 5 making up the exposed group was 54.67% with odds ratio (OR of 5.5; 95% CI 3.6 to 8.5 when compared with unexposed men and non-regular women cooks. Results of this study suggest an association between respiratory diseases and exposure to domestic biomass fuel smoke, but further studies with improved design are needed to confirm the association.

  14. Effects of biomass smoke on pulmonary functions: a case control study

    Science.gov (United States)

    Balcan, Baran; Akan, Selcuk; Ugurlu, Aylin Ozsancak; Handemir, Bahar Ozcelik; Ceyhan, Berrin Bagcı; Ozkaya, Sevket

    2016-01-01

    Background Biomass smoke is the leading cause of COPD in developing countries such as Turkey. In rural areas of Turkey, females are more exposed to biomass smoke because of traditional lifestyles. Aim The aim of this study was to determine the adverse effects of biomass smoke on pulmonary functions and define the relationship between duration in years and an index (cumulative exposure index) with altered pulmonary function test results. Participants and methods A total of 115 females who lived in the village of Kağizman (a borough of Kars located in the eastern part of Turkey) and were exposed to biomass smoke were included in the study. The control group was generated with 73 individuals living in the same area who were never exposed to biomass smoke. Results Twenty-seven (23.8%) females in the study group and four (5.5%) in the control group had small airway disease (P=0.038). Twenty-two (19.1%) females in the study group and ten (13.7%) in the control group had obstruction (P=0.223). Twenty (17.3%) females in the study group who were exposed to biomass smoke had restriction compared with ten (13%) in the control group (P=0.189). The duration needed for the existence of small airway disease was 16 years, for obstructive airway disease was 17 years, and for restrictive airway disease was 17 years. The intensity of biomass smoke was defined in terms of cumulative exposure index; it was calculated by multiplying hours per day, weeks per month, and total years of smoke exposure and dividing the result by three. Conclusion Exposure to biomass smoke is a serious public health problem, especially in rural areas of developing countries, because of its negative effects on pulmonary functions. As the duration and the intensity of exposure increase, the probability of having altered pulmonary function test results is higher. PMID:27486318

  15. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  16. Green energy. Biomass fuels and the environment

    International Nuclear Information System (INIS)

    The United Nations Environment Programme has been concerned with energy/environment issues since it was first set up after the United Nations Conference on the Human Environment held in Stockholm in 1972. In the late 1970s, UNEP compiled three comprehensive reports on the the environmental impacts of the production and use of fossil fuels, nuclear energy and renewable energy sources. In 1987 it was decided to update the volume on renewable energy since knowledge of biofuels and their effects on the environment had greatly improved. Among many innovations, Brazil's decision to embark on a major, and now successful, programme to produce ethanol from sugarcane as a substitute vehicle fuel is one of the most significant. At the same time, energy tree crops, agroforestry systems and the use of plantations for environmental improvement have become issues of key importance to sustainable development in developing countries. Biomass fuels, of course, have always been important in terms of the numbers of people who use them; the significant change during the 1980s was that the potential advantages of these fuels took on a new significance in the light of environmental degradation and related issues such as greenhouse warming. The biomass fuels began to be considered as attractive energy sources in their own right - not simply as 'last resort' fuels for developing countries with only limited energy options. While this development may solve some environmental problems, it certainly raises others - the improper utilization of biomass fuels in the past has been responsible for deforestation, desertification and the ill health of many millions of the women in developing countries who use biomass fuels in unventilated huts. These issues currently affect about half of the world population. The new UNEP study was intended to provide an up-to-date evaluation of the environmental issues raised by the use of biomass fuels, and hence to reduce or eliminate their adverse impacts while

  17. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    Science.gov (United States)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  18. Peat classified as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    thousands of years. The report states also that peat should be classified as biomass fuel instead of biofuels, such as wood, or fossil fuels such as coal. According to the report peat is a renewable biomass fuel like biofuels, but due to slow accumulation it should be considered as slowly renewable fuel. The report estimates that bonding of carbon in both virgin and forest drained peatlands are so high that it can compensate the emissions formed in combustion of energy peat

  19. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  20. Characterization of organic compounds and molecular tracers from biomass burning smoke in South China I: Broad-leaf trees and shrubs

    Science.gov (United States)

    Wang, Zhenzhen; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Biomass burning smoke constituents are worthy of concern due to its influence on climate and human health. The organic constituents and distributions of molecular tracers emitted from burning smoke of six natural vegetations including monsoon evergreen broad-leaf trees and shrubs in South China were determined in this study. The gas and particle samples were collected and analyzed by gas chromatography-mass spectrometry. The major organic components in these smoke samples are methoxyphenols from lignin and saccharides from cellulose. Polycyclic aromatic hydrocarbons (PAHs) are also present as minor constituents. Furanose, pyranose and their dianhydrides are the first reported in the biomass burning smoke. Some unique biomarkers were detected in this study which may be useful as specific tracers. The corresponding tracer/OC ratios are used as indicators for the two types of biomass burning. U/ R (1.06-1.72) in the smoke samples may be used as parameters to distinguish broad-leaf trees and shrubs from fossil fuel. Other useful diagnostic ratios such as methylphenanthrene to phenanthrene (MPhe/Phe), phenanthrene to phenanthrene plus anthracene (Phe/(Phe + Ant)) and fluoranthene to fluoranthene plus pyrene (Flu/(Flu + Pyr)) and octadecenoic acid/OC are also identified in this study. These results are useful in efforts to better understand the emission characterization of biomass burning in South China and the contribution of regional biomass burning to global climate change.

  1. Mapping continental-scale biomass burning and smoke palls from the space shuttle

    Science.gov (United States)

    Lulla, Kamlesh; Helfert, Michael

    1992-01-01

    Space shuttle photographs have been used to map the areal extent of Amazonian smoke palls associated with biomass burning. Areas covered with smoke have increased from approximately 300,000 sq km to continental-size smoke palls of approximately 3,000,000 sq km. The smoke palls interpreted from the STS-48 data indicate that this phenomenon is persistent. Astronaut observations of such dynamic and vital environmental phenomena indicate the possibility of intergrating the earth observation capabilities of all space platforms in future modeling of the earth's dynamic processes.

  2. Biomass Conversion into Solid Composite Fuel for Bed-Combustion

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The purpose of this research is the conversion of different types of biomass into solid composite fuel. The subject of research is the heat conversion of biomass into solid composite fuel. The research object is the biomass of the Tomsk region (Russia: peat, waste wood, lake sapropel. Physical experiment of biomass conversion is used as method of research. The new experimental unit for thermal conversion of biomass into carbon residue, fuel gas and pyrolysis condensate is described. As a result of research such parameters are obtained: thermotechnical biomass characteristics, material balances and product characteristics of the heat-technology conversion. Different methods of obtaining solid composite fuel from the products of thermal technologies are considered. As a result, it is established: heat-technology provides efficient conversion of the wood chips and peat; conversion of the lake sapropel is inefficient since the solid composite fuel has the high ash content and net calorific value.

  3. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and envi

  4. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  5. Converting Biomass and Waste Plastic to Solid Fuel Briquettes

    Directory of Open Access Journals (Sweden)

    F. Zannikos

    2013-01-01

    Full Text Available This work examines the production of briquettes for household use from biomass in combination with plastic materials from different sources. Additionally, the combustion characteristics of the briquettes in a common open fireplace were studied. It is clear that the geometry of the briquettes has no influence on the smoke emissions. When the briquettes have a small amount of polyethylene terephthalate (PET, the behavior in the combustion is steadier because of the increase of oxygen supply. The smoke levels are between the 3rd and 4th grades of the smoke number scale. Measuring the carbon monoxide emission, it was observed that the burning of the plastic in the mixture with biomass increases the carbon monoxide emissions from 10% to 30% as compared to carbon monoxide emission from sawdust biomass emissions which was used as a reference.

  6. Exposure Assessment for Biomass Smoke among “Rice in the Bamboo”

    Directory of Open Access Journals (Sweden)

    Tanongsak Yingratanasuk

    2009-07-01

    Full Text Available This study focuses on comparing different measurements of biomass smoke exposure among “rice in the bamboo” producing workers in Thailand. Repeated measurements of PM2.5, levoglucosan, and urinary methoxyphenols concentrations from a subsample of the exposed workers were analyzed. The analyses of variance components and variance ratios were calculated using ANOVA, and t-tests comparison on the before and after exposure levels. The results of the study revealed that levoglucosan measurement in the personal breathing zone was the most suitable measure of exposure to biomass smoke in this group of population. Urinary methoxyphenols offered no great advantage over environmental monitoring in this study. PM2.5 did poorly for a choice of biomass smoke measurement.

  7. Evolution of biomass burning smoke particles in the dark

    Science.gov (United States)

    Li, Chunlin; Ma, Zhen; Chen, Jianmin; Wang, Xinming; Ye, Xingnan; Wang, Lin; Yang, Xin; Kan, Haidong; Donaldson, D. J.; Mellouki, Abdelwahid

    2015-11-01

    The evolution in the dark of physiochemical properties and chemical composition of smoke particles emitted from wheat straw burning, as well as the effect of relative humidity (RH) on these properties, was investigated in an aerosol chamber. The smoke particles are composed primarily of carbonaceous materials and a considerable amount of inorganic salts (˜25 wt.%). During aging, the fraction of inorganic salts in smoke PM1.0 increases, mainly due to the formation of more sulfate and nitrate at the expense of chloride; this heterogeneous conversion is facilitated at high RH. The hygroscopicity parameter κH of fresh smoke particles is 0.27 and this is estimated to decrease by 0.01 after 4 h dark aging. Both aging and high RH lead to increases of particle size and density. The effective densities of smoke PM2.5 and PM1.0 deduced from concurrent mass and volume concentration measurements gradually increase from about 1.18 to 1.44 g/m3 within 4 h aging at 45%-55% RH, in line with the results obtained both from size-resolved particle density analysis using an aerosol particle mass analyzer (APM) and from estimation using composition-weighted bulk densities. The density of smoke particle is size-, RH-, and aging extent-dependent; the size effect becomes less pronounced with aging.

  8. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels

  10. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  11. Sources, Sinks and Cycling of Acetyl Radicals in Tobacco Smoke: A Model for Biomass Burning Chemistry

    Science.gov (United States)

    Hu, N.; Green, S. A.

    2012-12-01

    Smoke near the source of biomass burning contains high concentrations of reactive compounds, with NO and CH3CHO concentrations four to six orders of magnitude higher than those in the ambient atmosphere. Tobacco smoke represents a special case of biomass burning that is quite reproducible in the lab and may elucidate early processes in smoke from other sources. The origins, identities, and reactions of radical species in tobacco smoke are not well understood, despite decades of study on the concentrations and toxicities of the relatively stable compounds in smoke. We propose that reactions of NO2 and aldehydes are a primary source for transient free radicals in tobacco smoke, which contrasts with the long-surmised mechanism of reaction between NO2 and dienes. The objective of this study was to investigate the sources, sinks and cycling of acetyl radical in tobacco smoke. Experimentally, the production of acetyl radical was demonstrated both in tobacco smoke and in a simplified mixture of air combined with NO and acetaldehyde, both of which are significant components of smoke. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). The dynamic nature of radical cycling in smoke makes it impossible to define a fixed concentration of radical species; 2.15×e13-3.18×e14 molecules/cm3 of acetyl radicals were measured from different cigarette samples and smoking conditions. Matlab was employed to simulate reactions of NO, NO2, O2, and a simplified set of organic compounds known to be present in smoke, with a special emphasis on acetaldehyde and the acetyl radical. The NO2/acetaldehyde mechanism initiates a cascade of chain reactions, which accounts for the most prevalent known carbon-centered radicals found in

  12. Sulfur balance in biomass-fueled plants

    International Nuclear Information System (INIS)

    The aim of this project has been to establish a standard deduction for sulphur retained in the ash. This is accomplished by establishing sulphur balances for biomass plants in order to document the in- and outgoing flows. The ingoing flow is the sulphur in the input fuel while the outgoing flows are different ash fractions and sulphur dioxide measured in the stack. Four balances have been established for straw fired units, three balances for wood chip fired units, and two balances for wood pellet fired units. Two previous projects provide further data on both straw and wood fired units. The main conclusions and recommendations are: For wood pellets the sulphur tax should be removed as the sulphur content in the pellets is extremely low and the emitted fraction very small. For pellets manufactured with a binder containing sulphur, the taxation should continue but with a standard deduction of 60 to 70%. Also, the rate should be reduced as the sulphur content in pellets produced with a binder containing sulphur is lower than the estimated 0,2% of the fuel. Statistics indicate that 0,1% reflects the true sulphur content in these pellets; For wood chips the tax should be removed as the sulphur content based on the fuel is considerably lower than the limit in the law (0,034% versus 0,05%). Furthermore, the emission from these plants are only between 20 and 32%. It is recommended that the plants keep the ph-value in the scrubber water above 7 as it is believed that this improves the absorption of SO2 greatly; For straw the tax should remain, but a standard deduction of 35-40% should be made. Technologies for improving the sulphur retentions should be developed. This could be scrubbers as they are very efficient towards removing especially sulphur in the form of SO2, which is by far the largest source of sulphur emission from straw fired plants. (au) 11 refs

  13. Central American biomass burning smoke can increase tornado severity in the U.S.

    Science.gov (United States)

    Saide, P. E.; Spak, S. N.; Pierce, R. B.; Otkin, J. A.; Schaack, T. K.; Heidinger, A. K.; Silva, A. M.; Kacenelenbogen, M.; Redemann, J.; Carmichael, G. R.

    2015-02-01

    Tornadoes in the Southeast and central U.S. are episodically accompanied by smoke from biomass burning in central America. Analysis of the 27 April 2011 historical tornado outbreak shows that adding smoke to an environment already conducive to severe thunderstorm development can increase the likelihood of significant tornado occurrence. Numerical experiments indicate that the presence of smoke during this event leads to optical thickening of shallow clouds while soot within the smoke enhances the capping inversion through radiation absorption. The smoke effects are consistent with measurements of clouds and radiation before and during the outbreak. These effects result in lower cloud bases and stronger low-level wind shear in the warm sector of the extratropical cyclone generating the outbreak, two indicators of higher probability of tornadogenesis and tornado intensity and longevity. These mechanisms may contribute to tornado modulation by aerosols, highlighting the need to consider aerosol feedbacks in numerical severe weather forecasting.

  14. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  15. Biomass Characterization and its Use as Solid Fuel for Combustion

    Directory of Open Access Journals (Sweden)

    Bharat Gami

    2012-01-01

    Full Text Available The power industry is confronting challenges with seemingly conflicting goals. They provide the economy of scale needed to minimize the cost of production. Consumers, including industry, rely on affordable, dependable electrical energy. It’s an important part of our economy and our daily lifestyle. However, reducing emission levels and conserving our finite resources are key components for achieving a sustainable environment. Biomass is a resource that can be substituted for coal, in varying degrees for existing pulverized coal plants. New, large power plants are being designed to utilize biomass as the primary fuel. Biomass is available now and biomass based new products and sources are being developed, as the market unfolds. However, fuel properties and characteristics are important to boiler design and operation. Different boilers have unique design and fuel requirements. Heating value, percent volatiles, total ash and moisture content, ash constituents, and particle size are all key parameters considered by the boiler designer. Some biomass products have unique utilization issues. The chemical fraction behavior of biomass materials is quite different from that of typical coals. For co-firing applications, the properties of biomass and coal can be blended as a designer fuel. The objective is to best meet boiler, combustion, emission, and economic requirements. Fuel degradation and spontaneous combustion are more important concerns for biomass fuel products. This is a moisture-dependent issue. Dry biomass can be stored for longer periods. High moisture levels become a concern for degradation and spontaneous combustion. Therefore the paper deals with the biomass characterization in terms of its physico-chemical properties which can be useful to understand biomass combustion related issues.

  16. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  17. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    The depletion of fossil fuels and the need to reduce green house gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in...

  18. Energy generation from biomass with the aid of fuel cells; Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    To provide an opportunity for information exchange at the interface between biomass use for energy generation and developers of fuel cells, the workshop 'Energy generation from biomass with the aid of fuel cells' was held by the Fachagentur Nachwachsende Rohstoffe on 9 and 10 December 1998. The lectures and discussions permit to assess better the opportunities and restraints resulting from the use of biogenous fuel gas in fuel cells. (orig.) [German] Um an der Schnittstelle zwischen der energetischen Nutzung von Biomasse und den Entwicklern von Brennstoffzellen einen Informationsaustausch zu ermoeglichen, wurde am 9. und 10. Dezember 1998 der Workshop 'Energetische Nutzung von Biomasse mit Brennstoffzellenverfahren' von der FNR veranstaltet. Die Vortraege und die Diskussion erlauben eine bessere Einschaetzung der Moeglichkeiten und Restriktionen, die sich bei dem Einsatz von biogenen Brenngasen in Brennstoffzellen ergeben. (orig.)

  19. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  20. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo;

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...... their potential to find broad use in the conversion of biomass. In this perspective we review and discuss the developments that have taken place in the field of biomass conversion using zeolites. Emphasis is put on the conversion of lignocellulosic material to fuels using conventional zeolites as well...

  1. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  2. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  3. Commercialization analysis for fuels from Pinyon-Juniper biomass

    International Nuclear Information System (INIS)

    Pinyon-Juniper (P-J) is a predominant forest type in the Southwestern US, and in many areas it is considered a hinderance to optimal land use management. There is only limited commercial demand for the traditional products that are produced from PJ biomass, like Christmas trees, fence poles, and firewood, and their production does not always promote overall land-management goals. This research effort, which is supported by the DOE through the Western Regional Biomass Energy Program, identifies commercially feasible energy markets to promote sustainable land clearing operations for alternative land uses of P-J woodlands in Eastern Nevada. All of the woodlands under consideration are federal lands managed by the U.S. Bureau of Land Management, which is supportive of our concept. Three possible markets are available or could reasonably be developed to use fuels derived from PJ biomass in Nevada: (1) The existing market for biomass power-plant fuels in California. (2) The emerging market for fuels for residential pellet-burning stoves. (3) The development of a biomass-fired power plant in the Eastern Nevada Area. The study analyzes the cost of harvesting, processing, transporting, and delivering fuels derived from P-J biomass, and identifies commercialization strategies for bringing these fuels to market. The best opportunity for near term commercial conversion of P-J biomass to fuel lies in the area of entering the pellet-stove fuel market, establishing a 10,000 ton per year pelletizing facility in Lincoln County. Such a facility would have excellent access to markets in Las Vegas, Phoenix, Denver, and Salt Lake City

  4. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Science.gov (United States)

    2013-08-14

    ....\\2\\ \\1\\ 76 FR 38844. \\2\\ 77 FR 59458. Petitioners, the American Fuel & Petrochemical Manufacturers... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume Final Rule AGENCY: Environmental... entitled Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume....

  5. Transport and supply logistics of biomass fuels: Vol. 2. Biomass and strategic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.; Browne, M.; Cook, A.; Wicks, N.; Palmer, H.; Hunter, A.; Boyd, J.

    1996-10-01

    This document forms part of the United Kingdom Department of Trade and Industry project ''Transport and Logistics of Biomass Fuels'', which aimed to describe the distribution of existing and potential biomass resources in terms of their supply potential for power stations. Fixed areas of supply, or catchments, have been identified on colour maps of Britain showing the distribution of forest fuel, short rotation coppices, and various types of straw and animal slurry, using a specially written strategic modelling program. Adequate supplies of biomass resources are shown to exist in Britain, but siting of power stations to exploit these resources, will depend on transport and economic considerations appropriate at the time of construction. Biomass power stations in the megawatt capacity range could be resourced. (UK)

  6. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  7. Energy from waste. Utilization of biomass and substitute fuels; Energie aus Abfall. Biomasse- und Ersatzbrennstoffverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R. (eds.)

    2008-07-01

    Within the 69th symposium of ANS e.V. (Braunschweig, Federal Republic of Germany) with the title 'Energy from waste - utilization of biomass and refuse-derived fuels' at 16th and 17th September, 2008, the following lectures were held: (1) Resource efficient operation in waste management (Klaus Fricke, Tobias Bahr, Timo Thiel, Oliver Kugelstadt); (2) A contribution of the waste management to a sustainable energy supply (principle lecture by Helge Wendenburg and Claus-Gerhard Bergs); (3) Energy from waste - Potentials and possibilities of utilization (Rainer Wallmann, Thomas Fritz); (4) Attempts of optimisation for the supply of secondary fuels and energy by waste incinerators (Bernhard Gallenkemper); (5) Supply of power by thermal waste treatment facilities (Arnd I. Urban); (6) Updating a fermentation compound in the compost heap Goettingen (Ottomar Ruehl); (7) An innovative concept for the utilization of waste biomass as an energy resource (Jens-Kai Wegener, Wolfgang Luecke); (8) A future orientated technological conversion of the energetical utilization of biomass (Achim Loewen); (9) Synergistic effects of a co-fermentation with clarification sludge and liquid manure (Norbert Dichtl, Wiebke Rand); (10) Further Development of anaerobic technology from microbiology to utilization of gas (Frank Scholwin, Michael Nelles); (11) Dry fermentation of biomass from waste (Rolf Lieberneiner, Ulf Theilen); (12) Solid-Liquid separation of municipal waste - an experience report VM press (Gregor Stadtmueller); (13) A cost effective total solution of the treatment of biological wastes with partial flow fermentation (Martin Mayer); (14) An exemplary economical optimisation in the composting of wastes by means of a preinstalled fermentation technology with utilization of waste heat (Peter Lutz); (15) Secondary fuels - processing and utilization (Thomas Pretz); (16) Sewage sludge - waste or substitute fuel? (Armin Uhrig); (17) Utilisation of substitute fuels in the paper

  8. Archaebacterial Fuel Production: Methane from Biomass.

    Science.gov (United States)

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  9. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems

    International Nuclear Information System (INIS)

    Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air-steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.

  10. Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo

    Directory of Open Access Journals (Sweden)

    C. S. Zender

    2011-11-01

    Full Text Available Land clearing for crops and plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR since 2001. Our modeling studies show this smoke increases atmospheric heating, and reduces regional SST and dry-season precipitation, causing a potential feedback that increases drought-stress and air quality problems during El Niño years. Here we analyze the size, shape, optical properties, and age of fire-generated plumes in Borneo from 2001–2009. Most smoke flows with the prevailing southeasterly surface winds at 3–4 m s−1, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 ± 1.4 (mean ± std. error km, 708 ± 13 m, and 27 ± 0.75% of the plume length, respectively. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are nearly three times longer than previously studied plumes, possibly due to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 ± 15 km2 varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere albedo peak about halfway down-plume, at values about 3% and 10% greater than at the origin, respectively. The initially oblong plumes become brighter and more circular with time, increasingly resembling smoke clouds. Wind speed does not explain a significant fraction of the variation in plume geometry. We provide

  11. Optimal process design for thermochemical production of fuels from biomass

    OpenAIRE

    Gassner, Martin; Maréchal, François

    2008-01-01

    Transport applications are a major global source of greenhouse gas emissions and the production of fuels that are renewable and neutral in CO2 is an important issue in chemical process research and development. Contrary to the biological routes that produce bioethanol and -diesel on industrial scale through fermentation or esterification, 2nd generation biofuels obtained through thermochemical processing of lignocellulosic and waste biomass by means of gasification and fuel reforming are expe...

  12. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  13. Solid fuels/biomass. Section 2: Products and services

    International Nuclear Information System (INIS)

    This is a directory of companies providing products and services in the area of solid fuels and biomass. The subheadings of the directory include developers and owner operators, equipment manufacturers, measuring instruments and controls, consulting services, engineering and construction, operation and maintenance, project management, repair, and financial and legal services

  14. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  15. Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability

    International Nuclear Information System (INIS)

    The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

  16. Biomass fuel leaching for the control of fouling, slagging, and agglomeration in biomass power generation

    Science.gov (United States)

    Bakker, Robert Reurd

    The use of straws and other herbaceous biomass as boiler fuel is limited because of rapid formation of boiler deposits (i.e. fouling and slagging), which results in high boiler operating costs. The removal of troublesome elements in biomass that lead to slagging and fouling was tested by washing (leaching) biomass fuels in water. Potassium, sodium, and chlorine are easily removed from rice straw and other biomass in both tap and distilled water. Simple water leaching leads to considerable changes in combustion properties and ash transformation in biomass. In general, leaching elevates the sintering and melting temperatures, improves ash fusibility, and reduces the volatilization of inorganic species. Leaching leads to a notable decline in the alkali index, a broad indicator of the fouling potential of a biomass fuel. Bench-scale combustion tests at 800-1000°C furnace gas temperatures confirm that leaching dramatically changes the combustion behavior of rice straw. Full-scale combustion tests indicate that leached rice straw is technically suitable under normal boiler operating conditions. Two potential strategies to accomplish leaching of rice straw include leaching under controlled circumstances, and leaching by natural precipitation. Under controlled conditions, substantial amounts of K and Cl can be leached from rice straw with water at ambient temperatures, and without extensive particle size reduction. Leaching straw in a full-scale process is estimated to add approximately $15 to 18 Mg-1 to the fuel costs of a combustion facility. Leaving rice straw in the field and exposed to rainy weather leads to similar improvements in combustion behavior as observed with biomass that is leached under controlled circumstances. Collection of naturally leached rice straw in the Sacramento Valley through delayed harvesting is technically feasible, however its commercial implementation is dependent on harvest practices, rainfall distribution, and field-specific factors. The

  17. Mapping continental-scale biomass burning and smoke palls over the Amazon basin as observed from the Space Shuttle

    Science.gov (United States)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1990-01-01

    Space Shuttle and Skylab-3 photography has been used to map the areal extent of Amazonian smoke palls associated with biomass burning (1973-1988). Areas covered with smoke have increased from approximately 300,000 sq km in 1973 to continental-size smoke palls measuring approximately 3,000,000 sq km in 1985 and 1988. Mapping of these smoke palls has been accomplished using space photography mainly acquired during Space Shuttle missions. Astronaut observations of such dynamic and vital environmental phenomena indicate the possibility of integrating the earth observation capabilities of all space platforms in future Global Change research.

  18. Role of Central American biomass burning smoke in increasing tornado severity in the US

    Science.gov (United States)

    Saide, P. E.; Spak, S.; Pierce, R.; Otkin, J.; Rabin, R.; Schaack, T.; Heidinger, A. K.; da Silva, A.; Kacenelenbogen, M. S.; Redemann, J.; Carmichael, G. R.

    2013-12-01

    Violent tornadoes in the Southeast and Central US during spring are often accompanied by smoke from biomass burning in Central America. We analyzed the effect of smoke on a historic severe weather outbreak that occurred 27 April 2011 using a coupled aerosol, chemistry and weather model (WRF-Chem) and a suite of satellite and ground-based observations. Smoke from Central American biomass burning was present in the boundary layer and lower free troposphere before and during the storm outbreak. Simulations show that adding smoke to the environment already conducive to severe thunderstorm development increases the likelihood of significant tornado occurrence, which is assessed by analyzing effects of smoke on meteorological conditions (tornado parameters) used by prediction centers to forecast tornado occurrence and severity. Smoke effects generate slightly lower rain rates and cloud top heights, indicating no evidence of storm invigoration for these storms and instead pointing towards convection inhibition. Further analysis shows that there are two mechanisms responsible for the parameter intensification: First, through indirect effects, stratiform clouds present during and before the outbreak became optically thicker, which reduced the amount of solar radiation reaching the ground and produced more stable conditions and higher low-level shear in the mixed layer. Second, through semi-direct effects, soot contained in the smoke heated the aerosol layer stabilizing the atmosphere and enhancing cloud cover below the aerosol layer, producing a more stable boundary layer and conditions leading to higher probability of violent tornadoes. The inclusion of aerosol-cloud-radiation interactions in weather forecasts may help improve the predictability of these extreme events, which can improve the timeliness and accuracy of severe weather alerts within future operational forecast systems. Left panel: Back trajectories from the beginning of violent tornado tracks, with circles

  19. Oxy-fuel combustion of coal and biomass blends

    International Nuclear Information System (INIS)

    The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in the temperature of ignition and a decrease in the burnout value. When the O2 concentration was increased to 30 and 35%, the temperature of ignition was lower and the burnout value was higher than in air conditions. A significant reduction in ignition temperature and a slight increase in the burnout value was observed after the addition of biomass, this trend becoming more noticeable as the biomass concentration was increased. The emissions of NO during oxy-fuel combustion were lower than under air-firing. However, they remained similar under all the oxy-fuel atmospheres with increasing O2 concentrations. Emissions of NO were significantly reduced by the addition of biomass to the bituminous coal, although this effect was less noticeable in the case of the semi-anthracite. -- Highlights: ► Coal and biomass blends combustion behaviour evaluated under oxy-fuel conditions. ► Biomass addition had a greater effect on the ignition temperature than on burnout. ► Lower NO emissions by blending olive waste with a bituminous coal.

  20. Production of New Biomass/Waste-Containing Solid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration

  1. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  2. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Science.gov (United States)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-12-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at -32 °C suggested activation of ~0.03-0.07% of the particles with diameters greater than 500 nm.

  3. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-06-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment – Layer Clouds (ICE-L in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07 % of the particles with diameters greater than 500 nm.

  4. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershöfer

    2007-08-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa, respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.

  5. Gasification of fuel blends from biomass and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Arne [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    2000-04-01

    Pressurized air-blown fluidized-bed gasification of biomass and biomass-based fuel blends were carried out at LTH. The operation was stable and smooth. The fluidized-bed functioned well in keeping a stable gasification and homogeneous conditions along the reactor. Parameters, such as the equivalent ratio, the bed temperature and the freeboard temperature were studied. It was found that the equivalent ratio was the dominant factor when the carbon conversion was complete. The energy content of the fuel gas, the fuel gas production, and the amount of tar and LHCs increased with decreasing equivalent ratio. Low freeboard and bed temperatures can lead to low carbon conversion and low gasification efficiency. Below 100% carbon conversion, the fuel-N conversion to ammonia increased with increasing reactor temperature. The tendency was similar for the carbon conversion to gas, but it was more pronounced. A high reactor temperature helped to reduce the amount of LHCs and tar in the fuel gas. Fuel blends with plastic or carton waste in biomass were successfully gasified. A waste fraction of 20% was found practical. Higher ratio may cause blocking in the feeding system for carton and demand special care to control the equivalent ratio for plastics. No melting problem was observed for plastics. The product gas quality was not much affected by adding the wastes. No clear increase of the chlorine content in the fuel gas was observed. However mixing of plastics greatly increased the amounts of LHCs and tar in the fuel gas. In general, introducing a small amount of plastic and carton wastes into biomass gasification will not require much change in the gasification system. This gives rise to the possibility of co-gasifying wastes in an ordinary biomass gasifier. From lab-scale experiments, a model for ammonia decomposition was proposed. A Ni-based catalyst was chosen to be applied for the fuel gas from the gasifier. At 800-900 deg C, and 3-sec space-time, 65-95% ammonia removal and

  6. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.

    Science.gov (United States)

    Alonso, David Martin; Wettstein, Stephanie G; Dumesic, James A

    2012-12-21

    Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C(6) and C(5) sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts. PMID:22872312

  7. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  8. Pectin-rich biomass as feedstock for fuel ethanol production

    OpenAIRE

    Edwards, Meredith C.; Doran-Peterson, Joy

    2012-01-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most stu...

  9. Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests

    OpenAIRE

    Hiroshi Koseki

    2011-01-01

    Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF), wood chips, coal-wood mixtures, etc . However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materia...

  10. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  11. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  12. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Moses, C A; Bernstein, H [Southwest Research Inst., San Antonio, TX (United States)

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  13. Integration of Biomass Gasification with High Temperature Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Baxter, D.; Hunter, Ch.

    České Budějovice: Energy Consulting, 2003, s. 145-155. ISBN 80-239-1142-2. [International Conference of Central European Energy , Efficiency and Renewable Energy Sources CEEERES'03 /2./. Prague (CZ), 10.11.2003-11.11.2003] Institutional research plan: CEZ:AV0Z4072921 Keywords : biomass * gasification * fuel cells Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Is biomass always a renewable fuel as guaranteed?

    International Nuclear Information System (INIS)

    Full text: In official EU documents the terms biomass, biofuels, renewable energy resources have not yet been defined unambiguously. In the respective statistical reports peat falls, according to earlier classification traditions, under the subdivision NACE 10 together with coal and lignite (fossil fuels). No NACE classification has been applied in the renewable energy industry. This is probably why no unanimity has been achieved in classifying peat as a renewable fuel. Besides wind, solar, geothermal and water energy, biomass belongs to renewable energy sources as well. The situation is also regrettably equivocal because the terms biomass and biofuel (biological fuel) were used only recently and are continuously used as a wholly dry mass of animal or plant population (kg/m2 or kg/m3) and as manure or other organic waste as a source of heat delivered in an anaerobic decay in greenhouses, respectively. This uncertainty in using the terms under consideration leads sometimes to a nonsense in official documents. For example, in paragraph 2 of the Energy Act, the provision concerning fuel does not apply to wood, peat and biofuel. According to this statement wood and peat are not classified as biofuels (the correct statement is: wood, peat and other biofuels). Another statement of the Act (paragraph 281 The obligation to purchase alternatively produced electric power) declares that an energy trader dominating the market is required to purchase electric power from traders connected to its network and who produce such power from water, wind or solar energy, biomass, waste gases or waste material. According to this statement waste material is not classified as biomass either. As wood and peat are not classified as biofuel in Paragrapg 2 (4) and paragraph 281, an energy trader dominating the market must not purchase electricity produced from wood and peat. By way of a remark: almost 99 % of Estonia's electric energy was produced from oil shale. It means that in Estonia

  15. Biomass burning fuel consumption rates: a field measurement database

    Directory of Open Access Journals (Sweden)

    T. T. van Leeuwen

    2014-06-01

    Full Text Available Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. These fuel consumption (FC rates depend on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC rates are either modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC rates for various biomes and fuel categories to better understand FC rates and variability, and to provide a~database that can be used to constrain biogeochemical models with fire modules. We compiled in total 76 studies covering 10 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter ha−1, tropical forest (n = 19, FC = 126, temperate forest (n = 11, FC = 93, boreal forest (n = 16, FC = 39, pasture (n = 6, FC = 28, crop residue (n = 4, FC = 6.5, chaparral (n = 2, FC = 32, tropical peatland (n = 4, FC = 314, boreal peatland (n = 2, FC = 42, and tundra (n = 1, FC = 40. Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only 3 measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences were found within the defined biomes: for example FC rates of temperate pine forests in the USA were 38% higher than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC rates, not only between biomes but also within biomes and fuel classes. This implies that care should be taken with using averaged values, and our comparison with FC rates from GFED3 indicates that also modeling studies have difficulty in representing the dynamics governing FC.

  16. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  17. Pathways for Biomass-Derived Lignin to Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Dhrubojyoti; Yang, Bin; Wang, Huamin; Lee, Guo-Shuh J.

    2013-09-01

    Production of hydrocarbon fuel from biomass-derived lignin sources with current version of biorefinery infrastructure would significantly improve the total carbon use in biomass and make biomass conversion more economically viable. Thus, developing specialty and commodity products from biomass derived-lignin has been an important industrial and scientific endeavor for several decades. However, deconstruction of lignin’s complex polymeric framework into low molecular weight reactive moieties amenable for deoxygenation and subsequent processing into hydrocarbons has been proven challenging. This review offers a comprehensive outlook on the existing body of work that has been devoted to catalytic processing of lignin derivatives into hydrocarbon fuels, focusing on: (1) The intrinsic complexity and characteristic structural features of biomass-derived lignin; (2) Existing processing technologies for the isolation and depolymerization of bulk lignin (including detailed mechanistic considerations); (3) Approaches aimed at significantly improving the yields of depolymerized lignin species amenable to catalytic upgrading, and; (4) Catalytic upgrading, using aqueous phase processes for transforming depolymerized lignin to hydrocarbon derivatives. Technical barriers and challenges to the valorization of lignin are highlighted throughout. The central goal of this review is to present an array of strategies that have been reported to obtain lignin, deconstruct it to reactive intermediates, and reduce its substantial oxygen content to yield hydrocarbon liquids. In this regard, reaction networks with reference to studies of lignin model compounds are exclusively surveyed. Special attention is paid to catalytic hydrodeoxygenation, hydrogenolyis and hydrogenation. Finally, this review addresses important features of lignin that are vital to economic success of hydrocarbon production.

  18. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Lauren M.; Kahn, Ralph; Cubison, Michael J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Yutaka; McFarquhar, Greg; Nenes, Athanasios; Thornhill, K. L.; Wisthaler, Armin; Zelenyuk, Alla; Ziemba, L. D.

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North 24 America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud 1 microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~50% smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol cloud interactions (ACI, where ACI = (1/3)* d ln(Nliq)/d ln(BBt)) to be ~0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2-4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles

  19. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  20. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    International Nuclear Information System (INIS)

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM10 and PM2.5, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM10 and PM2.5 levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on cardiovascular health was

  1. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  2. Fuel substitution - poverty impacts on biomass fuel suppliers (Uganda, Kenya and Ethiopia)

    International Nuclear Information System (INIS)

    Many sub Saharan countries view the increasing use of traditional fuels (primarily charcoal and, to a lesser extent, wood) in urban areas as a major cause of environmental degradation. Governments are concerned about the effects of perceived rising costs of traditional fuels on poor households and seek to reduce those costs. Many are also concerned with the health impacts that using traditional fuels may have in households. In response to this, many governments have prompted a shift from traditional fuels for cooking to kerosene, gas and electricity as substitutes, and to energy-efficient charcoal and wood stoves to reduce these impacts. Such interventions can have major impacts on the livelihoods of people engaged in the production, transport and sale of traditional biomass supplies due to the decline in demand for wood-based fuels. This project will quantify the impact that fuel substitution will have on people engaged in traditional fuel supply, distribution and trade and develop a set of recommendations for Kenya, Ethiopia and Uganda that will recommend ways to mitigate the negative effects of fuel substitution on traditional biomass fuel suppliers. At the same time, it will address how this can be accomplished while mitigating the environmental and health impacts of continued use of traditional fuels. (author)

  3. Fuel substitution - poverty impacts on biomass fuel suppliers (Uganda, Kenya and Ethiopia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Many sub Saharan countries view the increasing use of traditional fuels (primarily charcoal and, to a lesser extent, wood) in urban areas as a major cause of environmental degradation. Governments are concerned about the effects of perceived rising costs of traditional fuels on poor households and seek to reduce those costs. Many are also concerned with the health impacts that using traditional fuels may have in households. In response to this, many governments have prompted a shift from traditional fuels for cooking to kerosene, gas and electricity as substitutes, and to energy-efficient charcoal and wood stoves to reduce these impacts. Such interventions can have major impacts on the livelihoods of people engaged in the production, transport and sale of traditional biomass supplies due to the decline in demand for wood-based fuels. This project will quantify the impact that fuel substitution will have on people engaged in traditional fuel supply, distribution and trade and develop a set of recommendations for Kenya, Ethiopia and Uganda that will recommend ways to mitigate the negative effects of fuel substitution on traditional biomass fuel suppliers. At the same time, it will address how this can be accomplished while mitigating the environmental and health impacts of continued use of traditional fuels. (author)

  4. Biomass smoke in Burkina Faso: what is the relationship between particulate matter, carbon monoxide, and kitchen characteristics?

    Science.gov (United States)

    Yamamoto, S S; Louis, V R; Sié, A; Sauerborn, R

    2014-02-01

    In Burkina Faso where cooking with biomass is very common, little information exists regarding kitchen characteristics and their impact on air pollutant levels. The measurement of air pollutants such as respirable particulate matter (PM10), an important component of biomass smoke that has been linked to adverse health outcomes, can also pose challenges in terms of cost and the type of equipment needed. Carbon monoxide could potentially be a more economical and simpler measure of air pollution. The focus of this study was to first assess the association of kitchen characteristics with measured PM10 and CO levels and second, the relationship of PM10 with CO concentrations, across these different kitchen characteristics in households in Nouna, Burkina Faso. Twenty-four-hour concentrations of PM10 (area) were measured with portable monitors and CO (area and personal) estimated using color dosimeter tubes. Data on kitchen characteristics were collected through surveys. Most households used both wood and charcoal burned in three-stone and charcoal stoves. Mean outdoor kitchen PM10 levels were relatively high (774 μg/m(3), 95 % CI 329-1,218 μg/m(3)), but lower than indoor concentrations (Satterthwaite t value, -6.14; p kitchens were negatively associated with PM10 (OR = 0.06, 95 % CI 0.02-0.16, p value kitchens (Spearman's r = 0.82, p < 0.0001), indoor stove use (Spearman's r = 0.82, p < 0.0001), and the presence of a smoker in the household (Spearman's r = 0.83, p < 0.0001). Weak correlations between area PM10 and personal CO levels were observed with three-stone (Spearman's r = 0.23, p = 0.008) and improved stoves (Spearman's r = 0.34, p = 0.003). This indicates that the extensive use of biomass fuels and multiple stove types for cooking still produce relatively high levels of exposure, even outdoors, suggesting that both fuel subsidies and stove improvement programs are likely necessary to address this problem. These

  5. Synthesis gas from biomass for fuels and chemicals

    International Nuclear Information System (INIS)

    Making H2 and CO (syngas) from biomass is widely recognised as a necessary step in the production of various second generation biofuels. There are two major ways to produce a biosyngas: fluidised bed gasification with catalytic reformer or entrained flow gasification. The latter option requires extensive pre-treatment such as flash pyrolysis, slow pyrolysis, torrefaction, or fluidized bed gasification at a low temperature. Cleaned and conditioned biosyngas can be used to synthesize second generation biofuels such as Fischer-Tropsch fuels, methanol, DME, mixed alcohols, and even pure hydrogen. The report describes the different technical options to produce, clean and condition bio-syngas. Furthermore, issues related to scale and biomass transport are covered shortly

  6. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...... power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen...... with a straw share of 50 wt% has added valuable understanding to the trends in ash and deposits chemistry for coal/straw co-firing. Recirculation of untreated flue gas in oxyfuel plants will increase the in-boiler levels of NO and SO2 significantly. Experiments with simulated recirculation of NO and SO2 have...

  7. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  8. Biomass co-firing under oxy-fuel conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.;

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found to...... have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate deposition formation in real furnaces. Co-firing CO2-neutral biomass with coals under oxy-fuel conditions...... can achieve a below-zero CO2 emission if the released CO2 is captured and sequestered. The model-predicted burnout and gaseous emissions were compared against the experimental results. A very good agreement was observed, the differences in a range of ± 5–10% of the experimental values, which indicates...

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies-Task 1; (2) Perform re-burn experiments-Task 2; (3) Fabricate fixed bed gasifier/combustor-Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels-Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.-Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report-Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code

  10. Estimating externalities of biomass fuel cycles, Report 7

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  11. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2% (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75% pass through 150(micro)m sieve while for coal 75% pass through 60(micro)m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70-90% reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH(sub 3); (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4

  12. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern

  13. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; Zelenyuk, A.; Ziemba, L. D.

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 % over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ˜ 40-60 % smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ˜ 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content ( ˜ 0.02 g m-3) and very high aerosol concentrations (2000-3000 cm-3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W m-2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly explore evidence suggesting that numerous northern

  14. Fuel characteristics and trace gases produced through biomass burning

    OpenAIRE

    BAMBANG HERO SAHARJO; SHIGETO SUDO; SEIICHIRO YONEMURA; HARUO TSURUTA

    2010-01-01

    Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010) Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of ...

  15. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  16. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  17. Simulation Biomass Effecting On Microbial Fuel Cell Electricity Properties and Substrate Degradation

    OpenAIRE

    Jinxiang Fu; Xiangxin Xue; Yulan Tang; Jiao Wang; Xingguan Ma

    2013-01-01

    Microbial fuel cell (MFC) mathematical model was established with suspended microorganisms, biomass on the electrode material, soluble chemical substrates and intermediary. By simulating the process of the substrate degradation, biomass growth and the electric current production process, With different initial biomass concentration, suspended microbial biomass and biomass attaching on electrode varing with time,current and charge varing with time,substrate concentration varing with time and m...

  18. Self-deconstructing algae biomass as feedstock for transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Biomass Science and Conversion Technologies

    2014-09-01

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydrate and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.

  19. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  20. Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001–2009 MISR imagery of Borneo

    Directory of Open Access Journals (Sweden)

    C. S. Zender

    2012-04-01

    Full Text Available Land clearing for crops, plantations and grazing results in anthropogenic burning of tropical forests and peatlands in Indonesia, where images of fire-generated aerosol plumes have been captured by the Multi-angle Imaging SpectroRadiometer (MISR since 2001. Here we analyze the size, shape, optical properties, and age of distinct fire-generated plumes in Borneo from 2001–2009. The local MISR overpass at 10:30 a.m. misses the afternoon peak of Borneo fire emissions, and may preferentially sample longer plumes from persistent fires burning overnight. Typically the smoke flows with the prevailing southeasterly surface winds at 3–4 m s−1, and forms ovoid plumes whose mean length, height, and cross-plume width are 41 km, 708 m, and 27% of the plume length, respectively. 50% of these plumes have length between 24 and 50 km, height between 523 and 993 m and width between 18% and 30% of plume length. Length and cross-plume width are lognormally distributed, while height follows a normal distribution. Borneo smoke plume heights are similar to previously reported plume heights, yet Borneo plumes are on average nearly three times longer than previously studied plumes. This could be due to sampling or to more persistent fires and greater fuel loads in peatlands than in other tropical forests. Plume area (median 169 km2, with 25th and 75th percentiles at 99 km2 and 304 km2, respectively varies exponentially with length, though for most plumes a linear relation provides a good approximation. The MISR-estimated plume optical properties involve greater uncertainties than the geometric properties, and show patterns consistent with smoke aging. Optical depth increases by 15–25% in the down-plume direction, consistent with hygroscopic growth and nucleation overwhelming the effects of particle dispersion. Both particle single-scattering albedo and top-of-atmosphere reflectance peak about halfway down-plume, at

  1. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  2. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. PMID:22695801

  3. Renewable energies. Vol. 2. Surrogate fuels, biomass and biogas, solar and wind energy; Erneuerbare Energien. Bd. 2. Ersatzbrennstoffe, Biomasse und Biogas, Solar- und Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J.; Beckmann, Michael

    2009-07-01

    The book on renewable energies, vol.2, surrogate fuels, biomass and biogas, solar and wind energy, covers the following chapters: analytics and sampling concerning the biogenic carbon content of surrogate fuels; processing of surrogate fuels for the energetic utilization; energetic utilization of surrogate fuels; energetic utilization of biomass; fermentation and biogas; solar energy (solar thermal power plant, photovoltaics); wind energy.

  4. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  5. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    Science.gov (United States)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio

  6. Development of biomass as an alternative fuel for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

    1991-04-01

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  7. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.

    Science.gov (United States)

    Phanphanich, Manunya; Mani, Sudhagar

    2011-01-01

    Thermal pretreatment or torrefaction of biomass under anoxic condition can produce an energy dense and consistent quality solid biomass fuel for combustion and co-firing applications. This paper investigates the fuel characteristics and grindability of pine chips and logging residues torrefied at temperatures ranging from 225 °C to 300 °C and 30 min residence time. Grinding performance of torrefied biomass evaluated by determining energy required for grinding, particle size distribution and average particle size were compared with raw biomass and coal. Specific energy required for grinding of torrefied biomass decreased significantly with increase in torrefaction temperatures. The grinding energy of torrefied biomass was reduced to as low as 24 kW h/t at 300 °C torrefaction temperature. The gross calorific value of torrefied chips increased with increase in torrefaction temperature. Torrefaction of biomass clearly showed the improved fuel characteristics and grinding properties closer to coal. PMID:20801023

  8. Linking biomass fuel consumption and improve cooking stove: A study from Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sohel, Md. Shawkat Islam; Rana, Md. Parvez; Akhter, Sayma

    2010-09-15

    The study determines the biomass fuel consumption pattern and environmental consequences of biomass fuel usage in the traditional and improve cooking stove. The introduction of improved cooking stove minimizes people's forest dependence by reducing the amount of fuelwood required to meet their household needs. Firewood was the most frequently used biomass fuel. It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. While improve cooking stove help to reduce such consequences.

  9. A fundamental study of biomass oxy-fuel combustion and co-combustion

    OpenAIRE

    Farrow, Timipere Salome

    2013-01-01

    While oxy-fuel combustion research is developing and large scale projects are proceeding, little information is available on oxy-biomass combustion and cocombustion with coal. To address this knowledge gap, this research conducted has involved comprehensive laboratory based fundamental investigation of biomass firing and co-firing under oxy-fuel conditions and compared it to conventional air firing conditions. First, TGA was employed to understand the fundamental behaviour of biomass devolati...

  10. Fuel efficiency and CO2 emissions of biomass based haulage in Ireland - A case study

    OpenAIRE

    Devlin, Ger; Klvac, Radomir; McDonnell, Kevin

    2013-01-01

    The purpose of this study was to analyse how biomass based haulage in Ireland performed as a measure of efficiency under 4 main criteria; distance travelled, fuel consumption, fuel consumption per unit of biomass hauled and diesel CO2 emissions. The applicability of truck engine diagnostic equipment was tested to analyse the schedule of engine data that could be recorded in real-time from a 5 axle articulated biomass truck. This identified how new on board truck technology in Ireland could be...

  11. Successful test for mass production of high-grade fuel from biomass

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ To address the current energy crisis, people are exploring new ways of synthesizing fuels with biomass. As biomass contains nearly 50% of oxygen in addition to hydrogen and carbon in its composition, the key to turning it into high-grade fuel for an internal-combustion engine lies in the technology that could liquefy biomass via deoxidation by making the best use of its contents of hydrogen and carbon without adding additional hydrogen or generating water.

  12. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  13. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  14. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3)

  15. Characterization of Melaleuca biomass as a fuel for direct combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Huffman, J.B.; Littel, R.C.

    1981-01-01

    Selected properties of Melaleuca quinquenervia biomass were determined to evaluate its quality as a fuel. Ten trees were sampled from 2 areas (Lee and Dade Counties) in Florida. Test materials were sampled from: stem discs at 4 different heights; terminal branches; and foliage. Average heat values (cal/g) were 4400, 6160, 4610 and 4810 for wood and bark, terminal branches and foliage, respectively. Average densities (g/cubic centimeters) of wood and bark were 0.51 and 0.19 respectively. Average green m.c. was 114% for wood and 131% for bark, with maximum values of 178% and 265% respectively. Under the test conditions, average rate of moisture loss was 2.6% and 2.2% per day for wood samples in 3-cm cubes and 5-cm cubes, and 8.8% per day for 2X4X6-cm bark specimens (radial, tangential and longitudinal dimensions respectively).

  16. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  17. The regional effects of a biomass fuel industry on US agriculture

    International Nuclear Information System (INIS)

    This study looks at the potential competitiveness of the emerging biomass-based biofuel industry in the current economic environment. A simulation model suggests that a mature biomassbased biofuel industry is potentially competitive with gasoline, and capable of filling a significant fraction of motor fuel supplies. However, the existing land policy has a narrow definition of agricultural land for a biomass-based fuel industry. A broader definition of agricultural land suitable for biomass inputs would reduce biofuel processing costs, relieve the food versus fuel conflict, and increase the net gain to fuel consumers, food consumers, and producers of food and fuel. - Highlights: • We look at the potential competitiveness of a mature biomass fuel (BF) industry in the US. • We model a land policy that allows BF-cattle competition for forage, crop residues, and pasture. • We estimate the cost reductions and welfare gains associated with modifying the land use policy

  18. Indirect thermal liquefaction process for producing liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-01-01

    A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

  19. The advantages of cubes, a non-traditional biomass fuel

    International Nuclear Information System (INIS)

    Problems facing many co-generation facilities range from transportation to fugitive combustion to emissions and dust control. Briefly this paper addresses these problems. With many biomass fuels (planer shavings, sander dust, cotton gin trash, shredded newsprint, dried sewage sludge, bark, wheat straw and turkey shavings) transportation costs become prohibitive at weights of four to twelve pounds per cubic foot. Densification in the cube form usually results in weights of twenty-eight to thirty-two pounds per cubic foot, bulk density, thereby increasing the payload for transportation up to seven times. Nearly all the above mentioned fuels create fugitive combustion problems in fluidized bed, traveling grate or spreader stoker type boilers. Harmful emissions can be greatly reduced - to below detectable limits set by the EPA - with the addition of calcium hydroxide as a binder. Results of tests conducted by the EPA at Argonne National Lab on coal and waste paper densified together with CaOH as a binder have been published by the University of North Texas and are extremely encouraging in the problem areas of sulfur dioxide, tetra-chlorinated dioxins, tetra-chlorinated furans, polyaromatic hydrocarbons and polychlorinated biphenyls

  20. China - Biomass Cogeneration Development Project : Fuel Supply Handbook for Biomass-Fired Power Projects

    OpenAIRE

    World Bank

    2010-01-01

    This handbook provides an overview of the main topics that need consideration when managing the supply of biomass to large biomass power plants. It will help investors in China to develop, with assistance of local biomass supply experts, their own solutions. The focus is on biomass residues, in particular agricultural residues (mainly straw and stalks) and forestry residues (mainly residue...

  1. Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic: Insights from Multiple In-Situ Datasets

    Science.gov (United States)

    Zamora, L. M.; Kahn, R. A.; Anderson, B. E.; McFarquhar, G. M.; Wisthaler, A.; Zelenyuk, A.

    2014-12-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200- 300% over the next 50-100 years. In some cases, local and long-range smoke transported to the Arctic has already increased aerosol concentrations twofold, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly understood, in part due to the confounding influence of varying meteorological and surface conditions. Here, we use data from several aircraft campaigns in the Arctic and subarctic (the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites-B campaign (ARCTAS-B), the Indirect and Semi-Direct Aerosol Campaign (ISDAC), and the First ISCCP Regional Experiment Arctic Clouds Experiment (FIRE.ACE)) to compare cloud microphysics in liquid, ice, and mixed-phase clouds sampled at similar temperature and pressure in the presence and absence of biomass burning smoke. Care is taken to place findings in context of meteorological conditions. Preliminary data from the ARCTAS-B campaign suggest a noticeable impact of smoke on cloud properties in the liquid phase, consistent with the Twomey effect (smaller cloud droplet radius), and greater liquid water path and estimated cloud optical depth. Continuing work involves using the combination of field cases and satellite data from MISR, MODIS, CALIPSO, and other sources to more fully characterize the impact of smoke on Arctic clouds.

  2. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke.

    Science.gov (United States)

    Armah, Frederick A; Odoi, Justice O; Luginaah, Isaac

    2015-06-01

    Most countries in Sub-Saharan Africa including Ghana still depend extensively on unprocessed solid cooking fuels with many people exposed on a daily basis to harmful emissions and other health risks. In this study, using complementary log-log multivariate models, we estimated the health effects of exposure to smoke from unprocessed wood in four regions of Ghana while controlling for socio-environmental and socio-demographic factors. The results show that the distribution of self-reported exposure to smoke was highest among participants in the Northern region, rural dwellers, the 25-49 age groups, individuals with no education, and married women. As expected, exposure to smoke was higher in crowded households and in communities without basic social amenities. Region, residential locality, housing quality (type of roofing, floor and exterior materials), self-reported housing condition, and access to toilet facilities were associated with self-reported exposure to solid fuel smoke. Participants living in urban areas were less likely (OR = 0.82, ρ ≤ 0.01) to be exposed to solid fuel smoke compared to their rural counterparts. An inverse relationship between self-reported housing condition and exposure to solid fuel smoke was observed and persisted even after adjustments were made for confounding variables in the demographic model. In Ghana, the cost and intermittent shortages of liquefied petroleum gas and other alternative fuel sources hold implications for the willingness of the poor to shift to their use. Thus, the poorest rural populations with nearly no cash income and electricity, but with access to wood and/or agricultural waste, are unlikely to move to clean fuels or use significantly improved stoves without large subsidies, which are usually not sustainable. However, there appears to be large populations between these extremes that can be targeted by efforts to introduce improved stoves. PMID:24136388

  3. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ. (Sweden). Arrhenius Laboratory

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment ('Biobraenslen, Haelsa, Miljoe' - BHM). The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM{sub 10}. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and

  4. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels cannot compete effectively in the current market without tax credits, subsidies and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions which favor and create market pull for biomass and waste fuel energy. Using the final results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, direct combustion in dedicated mass burn, stoker and fluidized bed boilers, and wood gasification/combined cycle-power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this approach is economically feasible only when the fuel is delivered at a deep discount relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. (author)

  5. Social cost pricing of fossil fuels used in the production of electricity: implications to biomass feasibility

    International Nuclear Information System (INIS)

    The primary objective of this study is to investigate full social pricing for fossil fuels and the subsequent effect on biomass quantities in the state of Tennessee. The first step is to estimate the full social costs and then to estimate the effects of their internalization. Other objectives are (1) investigate whether or not market imperfections exist, (2) if they exist, how should full social cost pricing be estimated, (3) what other barriers help fossil fuels stay economically attractive and prevent biomass from competing, (4) estimating the demand for biomass, and (5) given this demand for biomass, what are the implications for farmers and producers in Tennessee. (author)

  6. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    Suárez París, Rodrigo

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  7. Multi-Criteria Optimization Concept for the Selection of Optimal Solid Fuels Supply Chain from Wooden Biomass

    OpenAIRE

    Vasković, Srđan; Halilović, Velid; Gvero, Petar; Medaković, Vlado; Musić, Jusuf

    2015-01-01

    Production of solid fuels from wooden biomass is defined with appropriate energy chain of supply. Production procedure of solid fuels from wooden biomass, starting with technology for gathering wood residues and residues from logging up by the system of fuel production (system for milling, crushing, chopping, drying and pressing of wood residues), represents the energy chain of supply of solid fuel from biomass. Every single energy chain of supply and production of certain form of solid fuel ...

  8. Exploring links between biomass burning smoke and tornado likelihood: From regional to large-eddy scale simulations

    Science.gov (United States)

    Saide, P. E.; Thompson, G.; Eidhammer, T.; da Silva, A. M., Jr.; Pierce, R. B.; Carmichael, G. R.

    2015-12-01

    Biomass burning smoke from Central America can have the potential to enhance the likelihood of tornado occurrence and intensity in the SE US by changing the environment where tornadic storms form (Saide et al., GRL 2015). In this presentation we build over this study to further our understanding of these interactions on multiple dimensions: 1) Biomass burning smoke emissions are constrained using an inverse modeling technique to improve the representation of smoke loads and its impacts, 2) The representation of these smoke-tornado interactions are assessed when using a simplified aerosol scheme with the intent of introducing these feedbacks into numerical weather prediction in the future, 3) The occurrence of these interactions is investigated for other tornado outbreaks on the record to learn about their frequency and under what conditions they occur, and 4) Multi-scale simulations are performed from regional to tornado-resolving scales to assess the impact of smoke on the number of tornadoes formed and their EF intensity. Future steps will also be discussed. The image below shows MODIS-Aqua satellite products for 27 April 2011 over the southeast US, Central America and the Gulf of Mexico (GoM), along with tornado tracks (red solid lines, thickness indicates the magnitude of the tornado reports , thickest=5, thinnest=1) for the period from April 26-28. The background is a true color image of the surface, clouds, and smoke, with yellow markers indicating fire detections and an iridescent overlay showing aerosol optical depth (AOD). Red, green and purple colors show high (1.0), medium (0.6) and low (0.1) AOD values. The article by Saide et al. (2015) shows that the increase in aerosol loads in the GoM is produced by fires in Central America, and this smoke is further transported to the southeast US where it can interact with clouds and radiation producing environmental conditions more favorable to significant tornado occurrence for the historical outbreak on 27

  9. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  10. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  11. Renewable energy. Part 6. Biomass and biogas, substitute fuels, wind power; Erneuerbare Energien. Bd. 6. Biomasse und Biogas, Ersatzbrennstoffe, Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J.; Beckmann, Michael

    2011-07-01

    The authors of the book under consideration report on the technical implementation of projects to produce electricity and heat from renewable energies. In particular, the issues biomass, production and utilization of biogas, materials recycling and energy recovery of substitute fuels and wind energy are discussed.

  12. Potential Fuel Loadings, Fire Ignitions, and Smoke Emissions from Nuclear Bursts in Megacities

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    We consider the effects of "small" nuclear detonations in modern "megacities," focusing on the possible extent of fire ignitions, and the properties of corresponding smoke emissions. Explosive devices in the multi-kiloton yield range are being produced by a growing number of nuclear states (Toon et al., 2006), and such weapons may eventually fall into the hands of terrorists. The numbers of nuclear weapons that might be used in a regional conflict, and their potential impacts on population and infrastructure, are discussed elsewhere. Here, we estimate the smoke emissions that could lead to widespread environmental effects, including large-scale climate anomalies. We find that low-yield weapons, which emerging nuclear states have been stockpiling, and which are likely to be targeted against cities in a regional war, can generate up to 100 times as much smoke per kiloton of yield as the high-yield weapons once associated with a superpower nuclear exchange. The fuel loadings in modern cities are estimated using a variety of data, including extrapolations from earlier detailed studies. The probability of ignition and combustion of fuels, smoke emission factors and radiative properties, and prompt scavenging and dispersion of the smoke are summarized. We conclude that a small regional nuclear war might generate up to 5 teragrams of highly absorbing particles in urban firestorms, and that this smoke could initially be injected into the middle and upper troposphere. These results are used to develop smoke emission scenarios for a climate impact analysis reported by Oman et al. (2006). Uncertainties in the present smoke estimates are outlined. Oman, L., A. Robock, G. L. Stenchikov, O. B. Toon, C. Bardeen and R. P. Turco, "Climatic consequences of regional nuclear conflicts," AGU, Fall 2006. Toon, O. B., R. P. Turco, A. Robock, C. Bardeen, L. Oman and G. L. Stenchikov, "Consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism," AGU, Fall

  13. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels can not compete effectively in the current market without tax credits, subsidies, and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions that favor and create market pull for biomass and waste fuel energy. Using the interim results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires, and tire-derived fuel, scrap tires, and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, and wood gasification/combined cycle power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. In order to increase future use of biomass and waste fuels, a joint initiative, involving government, industry, and fuel suppliers, transporters, and users, is needed to develop low-cost and efficient energy crop production and power technology

  14. Chemical comparisons of liquid fuel produced by thermochemical liquefaction of various biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.A.; Molton, P.M.; Landsman, S.D.

    1980-12-01

    Liquefaction of biomass in aqueous alkali at temperatures up to 350/sup 0/C is an effective way to convert solid wastes into liquid fuels. The liqefaction oils of several forms of biomass differing in proportions of cellulose, hemi-cellulose, lignin, protein, and minerals were studied and their chemical composition compared. It was that the proportions of chemical components varied considerably depending on the type of biomass liquefied. However, all the oils, even those produced from cellulose, had similar chemical characteristics due to the presence of significant quantities of phenols. These phenols are at least partially responsible for the corrosivity and viscosity commonly associated with biomass oils. The differences in chemical component distribution in the various biomass oils might successfully be exploited if the oil is to be used as a chemical feedstock. If the oil is to be used as a fuel, however, then reaction conditions will be a more important consideration than the source of biomass.

  15. Cellulosic biomass could help meet California’s transportation fuel needs

    OpenAIRE

    Wyman, Charles E; Yang, Bin

    2009-01-01

    Cellulosic biomass, which includes agricultural and forestry residues and woody and herbaceous plants, is the only low-cost resource that can support the sustainable production of liquid fuels on a large enough scale to significantly address our transportation energy needs. The biological conversion of cellulosic biomass to ethanol could offer high yields at low costs, but only if we can improve the technology for releasing simple sugars from recalcitrant biomass. We review key aspects of cel...

  16. Association between biomass fuel use and maternal report of child size at birth - an analysis of 2005-06 India Demographic Health Survey data

    Directory of Open Access Journals (Sweden)

    Sathiakumar Nalini

    2011-05-01

    Full Text Available Background Observational epidemiological studies and a systematic review have consistently shown an association between maternal exposure to biomass smoke and reduced birth weight. Our aim was to further test this hypothesis. Methods We analysed the data from 47,139 most recent singleton births during preceding five years of 2005-06 India Demographic Health Survey (DHS. Information about birth weight from child health card and/or mothers' recall was analysed. Since birth weight was not recorded for nearly 60% of the reported births, maternal self-report of child's size at birth was used as a proxy. Fuel type was classified as high pollution fuels (wood, straw, animal dung, and crop residues kerosene, coal and charcoal, and low pollution fuels (electricity, liquid petroleum gas (LPG, natural gas and biogas. Univariate and multivariable logistic regression models were developed using SURVEYLOGISTIC procedure in SAS system. We used three logistic regression models in which child factors, maternal factors and demographic factors were added step-by-step to the main exposure variable. Adjusted Odds Ratios (AORs and their 95% CI were calculated. A p-value less than 0.05 was considered as significant. Results Child's birth weight was available for only 19,270 (41% births; 3113 from health card and 16,157 from mothers' recall. For available data, mean birth weight was 2846.5 grams (SD = 684.6. Children born in households using high pollution fuels were 73 grams lighter than those born in households using low pollution fuels (mean birth weight 2883.8 grams versus 2810.7 grams, p Conclusions Use of biomass fuels is associated with child size at birth. Future studies should investigate this association using more direct methods for measurement of exposure to smoke emitted from biomass fuels and birth weight.

  17. Raw material and market for biomass fuel; Raastoff og marked for biobrensel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report from a conference deals with raw material and market relations for biomass fuel in Norway. The proceedings cover themes like requirements concerning quality and purity, supply of raw materials, supply and production of chips, supply and market for industrial waste and wood waste, supply of raw materials and market relations for pellets, practical experience from a pelletizing plant, use of source selected paper as a biomass fuel, use of bio-carbon in the ferro-alloy industry, biomass fuel and waste in the cement industry - technical requirements and experience of utilization, processed biomass fuel from wastes - possible niches of marketing, and evaluation of a bio-energy project. 9 figs., 12 tabs.

  18. Development of practical stirling engine for co-generation system using woody biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Akira; Sasaki, Seizi [Ichinoseki National Coll. of Tech., Iwate (Japan); Tezuka, Nobutoshi [Stirling Engine Co., Ltd., Kawasaki-City (Japan); Fujimoto, Isao [Kansai Electric Power Co., Inc., Hyogo (Japan); Yamada, Noboru [Nagaoka Univ. of Technology (Japan)

    2008-07-01

    In recent years, fossil fuels such as petroleum, coal, and natural gas have become limited resources. In addition, global warming due to carbon dioxide (CO{sub 2}) emission has become a serious environmental issue. Since current living and economical standards depend strongly on fossil energy sources, it is necessary to realize a new society that utilizes biomass as a source of energy. With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel such as sawdust, firewood, and wood pellets. A burner uses the woody biomass fuel to heat the air in the expansion room to about 650 C and a water cooling system cools the air in the compression room to about 40 C. Under these operating conditions, the new engine generated about 3kW of electricity. (orig.)

  19. Solid fuel smoke exposure and risk of obstructive airways disease.

    Science.gov (United States)

    Qorbani, Mostafa; Yunesian, Masud

    2012-01-01

    This study was designed to investigate whether there is an association between Obstructive Airways Disease (OAD) and indoor exposure to baking home-made bread smoke (BHBS) in ground oven at home. In this hospital-based case-control study, 83 patients with OAD (cases) were compared with 72 patients without any known pulmonary diseases from the surgical ward (controls) who were frequently matched with cases on age. The interview was performed using the modified questionnaire recommended by the "American Thoracic Society". The questionnaire comprised of demographic information, occupational history, cigarette smoking and indoor exposure to BHBS in ground oven at home. The exposure to BHBS was considered both as a dichotomous and quantitative variable (number of years being exposed to smoke) and the population attributable fraction (PAF) was estimated due to BHBS exposure. The percentage of indoor exposure to BHBS was measured as 51.8% and 30.6% in the cases and the controls, respectively. The average years of exposure to BHBS was 20.46 years (SD: 11.60) for the cases and 15.38 years (SD: 13.20) for the controls. The univariate analysis comparing the cases and the controls showed that exposure to BHBS (as a binary variable) and occupational exposure to dust was significantly associated with OAD. In the multivariate model, only exposure to BHBS was associated with OAD (OR=2.22, 95%CI = 1.14-4.35). Duration of exposure to BHBS (as a quantitative variable) was significantly associated with OAD in the univariate model. In the multivariate model, only the duration of exposure to BHBS (years) showed a significant association with OAD (OR=1.04, 95% CI=1.01-1.08). Population attributable risk due to BHBS exposure was equal to 28.5%. PMID:23369551

  20. Solid Fuel Smoke Exposure and Risk of Obstructive Airways Disease

    Directory of Open Access Journals (Sweden)

    Masud Yunesian

    2012-10-01

    Full Text Available This study was designed to investigate whether there is an association between Obstructive Airways Disease (OAD and indoor exposure to baking home-made bread smoke (BHBS in ground oven at home. In this hospital-based case–control study, 83 patients with OAD (caseswere compared with 72 patients without any known pulmonary diseases from the surgical ward (controls who were frequently matched with cases on age. The interview wasperformed using the modified questionnaire recommended by the "American Thoracic Society". The questionnaire comprised of demographic information, occupational history,cigarette smoking and indoor exposure to BHBS in ground oven at home. The exposure toBHBS was considered both as a dichotomous and quantitative variable (number of years being exposed to smoke and the population attributable fraction (PAF was estimated due to BHBS exposure. The percentage of indoor exposure to BHBS was measured as 51.8% and30.6% in the cases and the controls, respectively. The average years of exposure to BHBS was 20.46 years (SD: 11.60 for the cases and 15.38 years (SD: 13.20 for the controls. The univariate analysis comparing the cases and the controls showed that exposure to BHBS (as a binary variable and occupational exposure to dust was significantly associated with OAD. In the multivariate model, only exposure to BHBS was associated with OAD (OR=2.22, 95%CI= 1.14-4.35. Duration of exposure to BHBS (as a quantitative variable was significantly associated with OAD in the univariate model. In the multivariate model, only the duration of exposure to BHBS (years showed a significant association with OAD (OR=1.04, 95% CI=1.01-1.08. Population attributable risk due to BHBS exposure was equal to 28.5%.

  1. Solid fuel smoke exposure and risk of obstructive airways disease

    Directory of Open Access Journals (Sweden)

    Qorbani Mostafa

    2012-10-01

    Full Text Available Abstract This study was designed to investigate whether there is an association between Obstructive Airways Disease (OAD and indoor exposure to baking home-made bread smoke (BHBS in ground oven at home. In this hospital-based case–control study, 83 patients with OAD (cases were compared with 72 patients without any known pulmonary diseases from the surgical ward (controls who were frequently matched with cases on age. The interview was performed using the modified questionnaire recommended by the "American Thoracic Society". The questionnaire comprised of demographic information, occupational history, cigarette smoking and indoor exposure to BHBS in ground oven at home. The exposure to BHBS was considered both as a dichotomous and quantitative variable (number of years being exposed to smoke and the population attributable fraction (PAF was estimated due to BHBS exposure. The percentage of indoor exposure to BHBS was measured as 51.8% and 30.6% in the cases and the controls, respectively. The average years of exposure to BHBS was 20.46 years (SD: 11.60 for the cases and 15.38 years (SD: 13.20 for the controls. The univariate analysis comparing the cases and the controls showed that exposure to BHBS (as a binary variable and occupational exposure to dust was significantly associated with OAD. In the multivariate model, only exposure to BHBS was associated with OAD (OR=2.22, 95%CI = 1.14-4.35. Duration of exposure to BHBS (as a quantitative variable was significantly associated with OAD in the univariate model. In the multivariate model, only the duration of exposure to BHBS (years showed a significant association with OAD (OR=1.04, 95% CI=1.01-1.08. Population attributable risk due to BHBS exposure was equal to 28.5%.

  2. Sulphur capture by co-firing sulphur containing fuels with biomass fuels - optimization

    International Nuclear Information System (INIS)

    Previous results concerning co-firing of high sulphur fuels with biomass fuels have shown that a significant part of the sulphur can be absorbed in the ash by formation of harmless sulphates. The aim of this work has been to (i) determine the maximum reduction that can be obtained in a bench scaled fluidized bed (5 kW); (ii) determine which operating conditions will give maximum reduction; (iii) point out the importance and applicability of experimental designs and multivariate methods when optimizing combustion processes; (iv) determine if the degree of sulphur capture can be correlated to the degree of slagging, fouling or bed sintering; and (v) determine if further studies are desired. The following are some of the more important results obtained: - By co-firing peat with biomass, a total sulphur retention of 70 % can be obtained. By co-firing coal with energy-grass, the total SO2 emissions can be reduced by 90 %. - Fuel feeding rate, amount of combustion air and the primary air ratio were the most important operating parameters for the reduction. Bed temperature and oxygen level seem to be the crucial physical parameters. - The NO emissions also decreased by the sulphur reducing measures. The CO emissions were relatively high (130 mg/MJ) compared to large scale facilities due to the small reactor and the small fluctuations in the fuel feeding rate. The SO2 emissions could however be reduced without any increase in CO emissions. - When the reactor was fired with a grass, the bed sintered at a low temperature (2SO4 and KCl are formed no sintering problems were observed. (27 refs., 41 figs., 9 tabs., 3 appendices)

  3. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  4. Source of Biomass Cooking Fuel Determines Pulmonary Response to Household Air Pollution

    OpenAIRE

    Thomas E Sussan; Ingole, Vijendra; Kim, Jung-Hyun; McCormick, Sarah; Negherbon, Jesse; FALLICA, JONATHAN; Akulian, Jason; Yarmus, Lonny; Feller-Kopman, David; Wills-Karp, Marsha; Maureen R. Horton; Breysse, Patrick N; Agrawal, Anurag; Juvekar, Sanjay; Salvi, Sundeep

    2014-01-01

    Approximately 3 billion people—half the worldwide population—are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate...

  5. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershoefer

    2008-07-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa, respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass and 1.56−0.010i (musasa (λ=0.55 μm. The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa fractions (8 to 15% obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  6. Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine

    International Nuclear Information System (INIS)

    Highlights: • A solution to use the de-oiled cakes disposed from oil industries. • Biogas produced from Karanja de-oiled cakes contains about 73% methane. • Simultaneous reduction of NO and smoke is possible with KME–biogas dual fuel operation. • Up to 30% replacement of KME is possible with induction of biogas at 0.9 kg/h. • Improved part load performance and emission with KME–biogas dual fuel. - Abstract: This paper presents the results of an experimental investigation conducted on a compression ignition (CI) engine, modified to run on dual fuel mode, using biogas as a primary fuel and KME (Karanja methyl ester) as a pilot fuel. The biogas was produced by anaerobic digestion of Pongamia pinnata (Karanja) seed cakes. In dual fuel mode, the biogas was inducted at four different flow rates, viz. 0.3 kg/h, 0.6 kg/h, 0.9 kg/h and 1.2 kg/h through the intake manifold of the engine. The biogas flow rate of 0.9 kg/h gave a better performance and lower emissions, than those of the other flow rates. The NO and smoke emissions were found to be lower by about 34% and 14%, than those of KME operation, at full load. The ignition delay was longer by about 1–2 °CA in the dual fuel operation, than that of KME at full load. The part load performance was found to be better in dual fuel operation, with reduced emissions of NO and smoke, in comparison with KME. The ignition delay at part load in dual fuel operation was also lower than that of KME operation

  7. Ash related behaviour in staged and non-staged combustion of biomass fuels and fuel mixtures

    International Nuclear Information System (INIS)

    The fate of selected elements (with focus on the important players in corrosion i.e. Na, K, Pb, Zn, Cl and S) are investigated for three biomasses (wood, demolition wood and coffee waste) and six mixtures of these as pellets both with and without air staging in a laboratory reactor. In order to get a complete overview of the combustion products, both online and offline analytical methods are used. Information is collected about: flue gas composition, particle (fly ash) size distribution and composition, bottom ash composition and melting properties. The main findings are: (1) complex interactions are taking place between the mixed fuels during combustion; (2) the mode of occurrence of an element as well as the overall structure of the fuel are important for speciation; (3) the pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation; (4) staging and mixing might simultaneously have positive and negative effects on operation; (5) staging affects the governing mechanisms of fly ash (aerosols) formation. -- Highlights: ► Complex interactions are taking place between the mixed fuels during combustion. ► The mode of occurrence of an element as well as the overall structure of the fuel are important for speciation. ► The pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation. ► Staging and mixing might simultaneously have positive and negative effects on operation. ► Staging affects the governing mechanisms of fly ash (aerosols) formation.

  8. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. PMID:25283435

  9. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  10. Evaluation of next generation biomass derived fuels for the transport sector

    International Nuclear Information System (INIS)

    This paper evaluates next generation biomass derived fuels for the transport sector, employing the Analytic Hierarchy Process. Eight different alternatives of fuels are considered in this paper: bio-hydrogen, bio-synthetic natural gas, bio-dimethyl ether, bio-methanol, hydro thermal upgrading diesel, bio-ethanol, algal biofuel and electricity from biomass incineration. The evaluation of alternative fuels is performed according to various criteria that include economic, technical, social and policy aspects. In order to evaluate each alternative fuel, one base scenario and five alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all alternative scenarios. It is concluded that synthetic natural gas and electricity from biomass incineration are the most suitable next generation biomass derived fuels for the transport sector. -- Highlights: •Eight alternative fuels for the transport sector have been evaluated. •The method of the AHP was used. •The evaluation is performed according to economic, technical, social and policy criteria. •Bio-SNG and electricity from biomass incineration are the most suitable fuels

  11. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  12. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  13. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  14. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL

    Science.gov (United States)

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  15. Biomass for transportation fuels-A cost-effective option for the German energy supply?

    International Nuclear Information System (INIS)

    The introduction of biofuels from biomass for transport purposes in an energy system model shows that bioethanol and vegetable oil can compete with oil products without subsidies provided prices of imported energy carriers are high, i.e. crude oil prices around $ 100/bbl. About half of the biomass will be used for motor fuel substitutes, whose share of the final energy in the transportation sector will increase to 10% in 2030. This gives rise to a nearly 9% drop in CO2 emissions in the transportation sector as compared to an emission balance where all real local emissions are fully counted. Despite a strong enhancement of biomass and biomass fuels and quite high prices for oil and gas up to 2030, BtL products like synthetic gasoline and diesel from biomass do not play an important part in the model results unless fairly high penalties are set for CO2 emissions. In the case of global CO2 penalties below Euro 300/tCO2, the use of biomass will even shift away from vehicle fuel production to biomass power plants and CHP. A CO2 penalty above Euro 100/tCO2 in the transportation sector only, will, however, trigger the production of liquids and synthesis gases from biomass for use as BtL.

  16. Biomass for transportation fuels. A cost-effective option for the German energy supply?

    International Nuclear Information System (INIS)

    The introduction of biofuels from biomass for transport purposes in an energy system model shows that bioethanol and vegetable oil can compete with oil products without subsidies provided prices of imported energy carriers are high, i.e. crude oil prices around 100/bbl. About half of the biomass will be used for motor fuel substitutes, whose share of the final energy in the transportation sector will increase to 10% in 2030. This gives rise to a nearly 9% drop in CO2 emissions in the transportation sector as compared to an emission balance where all real local emissions are fully counted. Despite a strong enhancement of biomass and biomass fuels and quite high prices for oil and gas up to 2030, BtL products like synthetic gasoline and diesel from biomass do not play an important part in the model results unless fairly high penalties are set for CO2 emissions. In the case of global CO2 penalties below EUR300/tCO2, the use of biomass will even shift away from vehicle fuel production to biomass power plants and CHP. A CO2 penalty above EUR100/tCO2 in the transportation sector only, will, however, trigger the production of liquids and synthesis gases from biomass for use as BtL. (author)

  17. Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and tosupport the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en vironment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.

  18. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure......Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...

  19. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment......Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....

  20. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  1. Development of an efficient catalyst for the pyrolytic conversion of biomass into transport fuel

    NARCIS (Netherlands)

    Nguyen, Tang Son

    2014-01-01

    Fast pyrolysis is a promising technique to convert biomass into a liquid fuel/fuel precursor, known as bio-oil. However, compared to conventional crude oil, bio-oil has much higher oxygen content which results in various detrimental properties and limits its application. Thus the first part of this

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  3. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R. [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P.; Nylund, N.O. [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  4. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  5. Biomass for fuel cells: A technical and economic assessment. Paper no. IGEC-1-Keynote-Peppley

    International Nuclear Information System (INIS)

    Fuel cells can be highly efficient energy conversion devices. However, the environmental benefit of utilising fuel cells for energy conversion is completely dependent on the source of the fuel. Hydrogen is the ideal fuel for fuel cells but the current most economical methods of producing hydrogen also result in the production of significant amounts of CO2. Utilising biomass to produce the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with CO in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells. It is, however, extremely difficult to assess the economic feasibility of biomass-fuelled fuel cell systems because of a lack of published cost information and uncertainty in the predicted cost per kW of the various types of fuel cells for large volume production methods. From the scant information available it appears that the current cost for fuel-cell systems operating on anaerobic digester gas is about US$2500 per kW compared to a target price of US$1200 required to compete with conventional technologies. (author)

  6. Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part II: sensitivity studies

    Directory of Open Access Journals (Sweden)

    G. Luderer

    2006-01-01

    Full Text Available The Chisholm forest fire that burned in Alberta, Canada, in May 2001 resulted in injection of substantial amounts of smoke into the lower stratosphere. We used the cloud-resolving plume model ATHAM (Active Tracer High resolution Atmospheric Model to investigate the importance of different contributing factors to the severe intensification of the convection induced by the Chisholm fire and the subsequent injection of biomass smoke into the lower stratosphere. The simulations show strong sensitivity of the pyro-convection to background meteorology. This explains the observed coincidence of the convective blow-up of the fire plume and the passage of a synoptic cold front. Furthermore, we performed model sensitivity studies to the rate of release of sensible heat and water vapor from the fire. The release of sensible heat by the fire plays a dominant role for the dynamic development of the pyro-cumulonimbus cloud (pyroCb and the height to which smoke is transported. The convection is very sensitive to the heat flux from the fire. The emissions of water vapor play a less significant role for the injection height but enhance the amount of smoke transported beyond the tropopause level. The aerosol burden in the plume has a strong impact on the microphysical structure of the resulting convective cloud. The dynamic evolution of the pyroCb, however, is only weakly sensitive to the abundance of cloud condensation nuclei (CCN from the fire. In contrast to previous findings by other studies of convective clouds, we found that fire CCN have a negative effect on the convection dynamics because they give rise to a delay in the freezing of cloud droplets. Even in a simulation without fire CCN, there is no precipitation formation within the updraft region of the pyroCb. Enhancement of convection by aerosols as reported from studies of other cases of convection is therefore not found in our study.

  7. Peat is regarded as slowly renewable biomass fuel

    International Nuclear Information System (INIS)

    The Finnish Ministry of Trade and Industry commissioned an investigation on the role of peat in Finnish greenhouse gas balance in 1999. An international scientist group, consisting of Dr. Patrick Crill from USA, Dr. Ken Hargreaves from United Kingdom and docent Atte Korhola from Finland conducted the investigation. The scientist group made the proposition that peat should be classified as a slowly renewable biomass fuel, which is significant from the peat industry's point of view. An interesting detail of the investigation was the calculations, which showed that ditching of peatlands, have decreased the methane emissions from peatlands. Virgin peatlands bind carbon dioxide from the air, but simultaneously they emit methane, which is more harmful than CO2 emissions. The carbon sink effect of Finnish peatlands is based on the CO2 binding of virgin and ditched peatlands in Finland. The CO2 emissions of peat production and combustion are smaller than the CO2 binding. Virgin peatlands form a relative large source of methane. The investigation shows that when reviewing the effects of all the greenhouse gases on climate, the virgin peatlands may accelerate the greenhouse effect due to the methane emissions. The final conclusion is that ditching of virgin peatlands has reduced the radiation enforcement in Finland in some extent. When a virgin peatland is ditched the methane emissions from it are reduced significantly, and simultaneously more CO2 is bound into vegetation. According to the investigation the net emissions of greenhouse gases in Finland exceed 10 million tonnes calculated as CO2. Of this the share of virgin peatlands is 8.4 million tonnes, which is of the same magnitude as the emissions from peat combustion. The life cycle analysis has shown that peat production should be directed to swampy fields removed from agricultural production. In most of the cases the combination of reforestation and repaludification into a functional peatland ecosystem could generate

  8. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    Science.gov (United States)

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  9. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  10. Preliminary correlation of organic molecular tracers in residential wood smoke with the source of fuel

    Science.gov (United States)

    Standley, Laurel J.; Simoneit, Bernd R. T.

    Polar cyclic di- and triterpenoids were analyzed in the extracts of residential wood combustion aerosols collected in suburban sections of Eugene, Oakridge and Corvallis, Oregon. Additional samples collected included alder wood, smoke from two wood stoves burning only alder or pine as fuel, soot from a stove burning alder and a fireplace where oak was the predominant fuel. Due to the relatively cooler temperatures present under the smoldering conditions of residential wood combustion, as compared to the active burning of forest fires and slash burns, incomplete combustion resulted in the preservation of high levels of the natural products. There were three distinct signatures which could be used to trace relative input from coniferous, alder and oak combustion products, i.e. diterpenoids, lupane-derived triterpenoids and friedelin, respectively. Conifer combustion products dominated the suburban smoke aerosols.

  11. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NOx emission are higher for biomass fuel

  12. Fuels made from agricultural biomass - (biogas) alternative types(Alternativne vrste goriva iz poljoprivredne biomase - biogas)

    OpenAIRE

    Jovanovska, Vangelica; Jovanovski, Nikola; Sovreski, Zlatko; Pop-Andonov, Goran; Sinani, Feta

    2013-01-01

    Biogas is a typical "product" of urban discharges, which has a great negative environmental impact. To avoid this negative effect, it can be burnt at very high temperatures, producing smoke emissions composed of CO2. A useful alternative is to use biogas as fuel to feed co-generation plants, producing electricity. At the moment biogas is used as fuel, introducing it directly in the combustion chamber. Nevertheless the heterogeneity of the gas stresses the engine, reducing its life. The new te...

  13. WRF fire simulation coupled with a fuel moisture model and smoke transport by WRF-Chem

    CERN Document Server

    Kochanski, Adam K; Mandel, Jan; Kim, Minjeong

    2012-01-01

    We describe two recent additions to WRF coupled with a fire spread model. Fire propagation is strongly dependent on fuel moisture, which in turn depends on the history of the atmosphere. We have implemented a equilibrium time-lag model of fuel moisture driven by WRF variables. The code allows the user to specify fuel parameters, with the defaults calibrated to the Canadian fire danger rating system for 10-hour fuel. The moisture model can run coupled with the atmosphere-fire model, or offline from WRF output to equilibrate the moisture over a period of time and to provide initial moisture conditions for a coupled atmosphere-fire-moisture simulation. The fire model also inserts smoke tracers into WRF-Chem to model the transport of fire emissions. The coupled model is available from OpenWFM.org. An earlier version of the fire model coupled with atmosphere is a part of WRF release.

  14. Slow-pyrolysis and -oxidation of different biomass fuel samples.

    Science.gov (United States)

    Haykiri-Acma, Hanzade; Yaman, Serdar

    2006-01-01

    Pyrolysis and oxidation characteristics of some biomass samples such as almond shell, walnut shell, hazelnut shell, tobacco waste, and rapeseed were investigated using Thermogravimetric Analysis (TGA) technique under slow heating conditions (20 K/min) from ambient to 1173 K. Pyrolysis experiments were carried out under dynamic nitrogen atmosphere of 40 mL/min. Dry air was used at the same rate in the oxidation experiments. The rates of mass losses from the biomass samples regarding temperature were obtained from the Differential Thermogravimetric Analysis (DTG) curves, and these rates were interpreted according to the pyrolysis and oxidation characteristics of the biomass samples. Since the heating rate was relatively very slow, individual peaks on the DTG curves resulting from the pyrolysis or oxidation of the major constituents that forming the complex structure of the biomass samples could be survived and distinguished from the thermograms. The maximum rates of mass losses (dm/dt)max from the oxidation experiments were determined to be higher than those from the pyrolysis experiments. On the other hand, the (dm/dt)max values were determined at about 550 K for pyrolysis, whereas they were below 500 K in case of oxidation irrespective of the type of the biomass samples. PMID:16849135

  15. Development and demonstration of a Lagrangian dispersion modeling system for real-time prediction of smoke haze pollution from biomass burning in Southeast Asia

    Science.gov (United States)

    Hertwig, Denise; Burgin, Laura; Gan, Christopher; Hort, Matthew; Jones, Andrew; Shaw, Felicia; Witham, Claire; Zhang, Kathy

    2015-12-01

    Transboundary smoke haze caused by biomass burning frequently causes extreme air pollution episodes in maritime and continental Southeast Asia. With millions of people being affected by this type of pollution every year, the task to introduce smoke haze related air quality forecasts is urgent. We investigate three severe haze episodes: June 2013 in Maritime SE Asia, induced by fires in central Sumatra, and March/April 2013 and 2014 on mainland SE Asia. Based on comparisons with surface measurements of PM10 we demonstrate that the combination of the Lagrangian dispersion model NAME with emissions derived from satellite-based active-fire detection provides reliable forecasts for the region. Contrasting two fire emission inventories shows that using algorithms to account for fire pixel obscuration by cloud or haze better captures the temporal variations and observed persistence of local pollution levels. Including up-to-date representations of fuel types in the area and using better conversion and emission factors is found to more accurately represent local concentration magnitudes, particularly for peat fires. With both emission inventories the overall spatial and temporal evolution of the haze events is captured qualitatively, with some error attributed to the resolution of the meteorological data driving the dispersion process. In order to arrive at a quantitative agreement with local PM10 levels, the simulation results need to be scaled. Considering the requirements of operational forecasts, we introduce a real-time bias correction technique to the modeling system to address systematic and random modeling errors, which successfully improves the results in terms of reduced normalized mean biases and fractional gross errors.

  16. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  17. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    International Nuclear Information System (INIS)

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Aktser473 and p-Aktthr308) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM10 and PM2.5), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass increases cancer risk in the

  18. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan, E-mail: manasrray@rediffmail.com

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  19. Recent standardisation work in Sweden related to measurement of biomass fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Maansson, Margret [Swedish National Testing and Research Inst., Boraas (Sweden)

    1998-06-01

    Work on Swedish standards for peat and biofuels started close to fifteen years ago. The same technical committee that has the responsibility for peat and solid biofuels is also handling the standardisation work on solid mineral fuels. Its counterpart within the ISO is TC 27 Solid mineral fuels. A number of the Swedish analysis standards are structured such that they define methods for all of the solid fuels in the same standard, with specific requirements for the type of fuel if necessary. By now, twenty Swedish biomass standards have been prepared and adopted, half of them already revised at least once. There are dedicated biofuel standards for terminology, sampling and sample preparation and for determination of parameters such as moisture, ash, size distribution, bulk density and mechanical strength. Solid fuels standards that include biomass and peat in their range of application exist for the determination of volatile matter, sulfur chlorine and calorific value. Solid fuel ash methods have been specifically developed for the determination of unburned material and sulfur content. At the present time, standard methods are being defined for the determination of total amounts of heavy metals in ash, and also methods for measuring the availability (leaching properties) of certain elements in ash, in particular ash from combustion of biomass. Ash methods are of interest because of the focus on the possibilities of returning biomass-origin ash to forest soil as a fertilizer and also to prevent depletion of trace elements caused by the increase in the utilisation of the forest growth

  20. Trees and biomass energy: carbon storage and/or fossil fuel substitution?

    International Nuclear Information System (INIS)

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some key issues which arise. This paper assesses various forestry strategies and examines land availability, forest management, environmental sustainability, social and political factors, infrastructure and organisation, economic feasibility, and ancillary benefits associated with biomass for energy. (author)

  1. Development of tubular hybrid direct carbon fuel cell and pyrolysis of biomass for production of carbon fuel

    OpenAIRE

    Bonaccorso, Alfredo Damiano

    2013-01-01

    This study involved two avenues of investigation: a new concept of Direct Carbon Fuel Cell (DCFC) and the production of carbon from biomass. The new concept of DCFC merges a solid oxide electrolyte and a molten carbonate electrolyte called the “hybrid direct carbon fuel cell” using tubular geometry. The tubular cell was chosen for several reasons, such as sealing process, reduction of stress during the sintering process and reduction of the final size of the stack. In addition, it makes th...

  2. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    for biomass transportation. Traditional decentralized CHP plants suffer from low net electrical efficiencies compared to central power stations, though. Especially small-scale and dedicated biomass CHP plants have poor electrical power yield. Improving the electrical power yield from small-scale CHP...... plants based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP...... plants. The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  3. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  4. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  5. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    Science.gov (United States)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  8. Solid oxide fuel cell and biomass gasification systems for better efficiency and environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Colpan, C. Ozgur [Carleton Univ., Ottawa, ON (Canada). Mechanical and Aerospace Engineering Dept.; Hamdullahpur, Feridun [Waterloo Univ., ON (Canada). Mechanical and Mechatronics Engineering Dept.; Dincer, Ibrahim [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2010-07-01

    In this paper, a conventional biomass fueled power production system is compared with a SOFC and biomass gasification system in terms of efficiency and greenhouse gas emissions. A heat transfer model of the SOFC and thermodynamic models for the other components of the systems are used to find the performance assessment parameters of the systems. These parameters are taken as electrical and exergetic efficiencies. In addition, specific greenhouse gas emissions are calculated to evaluate the impact of these systems on the environment. The results show that the SOFC and biomass gasification system has higher electrical and exergetic efficiencies and lower greenhouse gas emissions. (orig.)

  9. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  10. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  11. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  12. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  13. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  14. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  15. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour

    International Nuclear Information System (INIS)

    With respect to the use of densified biomass fuels in fully automatic heating systems for the residential sector a high quality of these fuels is required. Several European countries already have implemented standards for such fuels. In other countries such standards are in preparation or planned. Furthermore, in some countries also standards from associations are existing (e.g. from the Austrian Pellets Association). In addition to these national standards, European standards for solid biomass fuels are under development. For producers of densified biomass fuels, especially for pellet producers, it is therefore very important to produce high-quality fuels keeping the limiting values of the standards addressed. However, in this context it has to be considered that as a high fuel quality as is necessary for the combustion of densified biomass fuels in automatic small-scale furnaces is not necessary if these fuels are used in larger industrial furnaces as they are equipped with more sophisticated flue gas cleaning, combustion and process control systems. Two pellet qualities, one for industrial and one for small-scale consumers seem to be more meaningful. Within the framework of the EU-ALTENER-project 'An Integrated European Market for Densified Biomass Fuels (INDEBIF)' a questionnaire survey of European producers of densified biomass fuels was performed. In this connection the possibility was offered to the producers to participate in an analysis programme with their fuels. An overview was obtained of the qualities of densified biomass fuels offered in the European market, covering pellets and briquettes from Austria, Italy, Sweden, Spain, Norway and the Czech Republic. The parameters analysed were the dimensions of the fuels, the bulk and the particle density, the water and the ash content, the gross and the net calorific value, the abrasion, the content of starch (as an indication for the use of biological binding agents), the concentrations of C, H, N, S, Cl, K

  16. Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, S.; Imou, K. [Univ. of Tokyo (Japan). Dept. of Biological and Environmental Engineering; Jonouchi, K. [Yanmar Co. Ltd., Osaka (Japan). Dept. of Human Resources

    2008-07-01

    Global warming has become one of the most serious environmental problems. To cope with the problem, it is necessary to substitute renewable energy for nonrenewable fossil fuel. Biomass, which is one of the renewable energies, is considered to be carbon-neutral, meaning that the net CO{sub 2} concentration in the atmosphere remains unchanged provided the CO{sub 2} emitted by biomass combustion and that fixed by photosynthesis are balanced. Biomass is also unique because it is the only organic matter among renewable energies. In other words, fuels and chemicals can be produced from biomass in addition to electricity and heat. Marine biomass has attracted less attention than terrestrial biomass for energy utilization so far, but is work considering especially for a country like Japan which has long available coastlines. This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. The authors estimated energy output, energy supply potential, and CO{sub 2} mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02 x 10{sup 9} kWh/yr at nine available sites. Total CO{sub 2} mitigation was estimated to be 1.04 x 10{sup 6} tonnes per annum at the nine sites. However, the CO{sub 2} emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO{sub 2} mitigation is equivalent to about 0.9% of the required CO{sub 2} mitigation for Japan per annum under the Kyoto Protocol framework.

  17. Modeling Biomass and Canopy Fuel Attributes Using LIDAR Technology

    OpenAIRE

    Mitchell, Brent

    2011-01-01

    Within the last decade LIDAR technology has been increasingly utilized as a tool for resource management by the U.S. Forest Service. The agency has been engaged in a wide variety of lidar projects and applications ranging from the development and exploration of basic LIDAR derivatives to pursuing advanced modeling of forest inventory parameters based on lidar canopy metrics. This presentation will provide an overview of how LIDAR technology can be used for modeling forest biomass and c...

  18. An atlas of thermal data for biomass and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, S.; Reed, T.B. [Colorado School of Mines, Golden, CO (United States)

    1995-06-01

    Biomass is recognized as a major source of renewable energy. In order to convert biomass energy to more useful forms, it is necessary to have accurate scientific data on the thermal properties of biomass. This Atlas has been written to supply a uniform source of that information. In the last few decades Thermal analysis (TA) tools such as thermogravimetry, differential thermal analysis, thermo mechanical analysis, etc. have become more important. The data obtained from these techniques can provide useful information in terms of reaction mechanism, kinetic parameters, thermal stability, phase transformation, heat of reaction, etc. for gas-solid and gas-liquid systems. Unfortunately, there are no ASTM standards set for the collection of these types of data using TA techniques and therefore, different investigators use different conditions which suit their requirements for measuring this thermal data. As a result, the information obtained from different laboratories is not comparable. This Atlas provides the ability to compare new laboratory results with a wide variety of related data available in the literature and helps ensure consistency in using these data.

  19. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    OpenAIRE

    Zhang, Junfeng; SMITH, KIRK R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidat...

  20. Co-firing fossil fuels and biomass: combustion, deposition and modelling

    OpenAIRE

    Khodier, Ala H. M.

    2011-01-01

    The application of advanced technologies employing combustion/co-firing of coal and biomass is seen as a promising approach to minimising the environmental impact and reducing CO2 emissions of heat/power production. The existing uncertainties in the combustion behaviour of such fuel mixes and the release of alkali metals with other elements during the combustion (or co-firing) of many bio-fuels are some of the main issues that are hindering its application. The potential presen...

  1. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    OpenAIRE

    Kunio Yoshikawa; Guangwen Xu; Hongfang Chen; Yin Wang

    2012-01-01

    In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to ...

  2. Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests

    Directory of Open Access Journals (Sweden)

    Hiroshi Koseki

    2011-04-01

    Full Text Available Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF, wood chips, coal-wood mixtures, etc. However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materials and proposed evaluation methods for these new developing materials in Japan are introduced, which are consistent with measurements using highly sensitive calorimeters such as C80, or TAM, and gas emission tests. The highly sensitive calorimeters can detect small heat generation between room temperature and 80 °C, due to fermentation or other causes. This heat generation sometimes initiates real fires, and also produces combustible gases which can explode if fuel is stored in silos or indoor storage facilities.

  3. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays m

  4. One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels

    NARCIS (Netherlands)

    Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.; Ford, Peter C.

    2011-01-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a

  5. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    Biomass sources as Woodchips – Wood pellets, Straw – Bio pellets, animal manure, farm-by products and new cropping systems are integrated in our society’s needs. The mindset for shifting from fossil fuels based economies into sustainable energy economies already exist. Bioenergy utilization systems...

  6. Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen;

    2007-01-01

    shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes of...

  7. A study of bonding and failure mechanisms in fuel pellets from different biomass resources

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.;

    2011-01-01

    Pelletization of biomass reduces its handling costs, and results in a fuel with a greater structural homogeneity. The aim of the present work was to study the strength and integrity of pellets and relate them to the quality and mechanisms of inter-particular adhesion bonding. The raw materials used...

  8. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  9. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  10. Thermal Plasma Gasification of Biomass for Fuel Gas Production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Hlína, Michal; Konrád, Miloš; Kopecký, Vladimír; Kavka, Tetyana; Chumak, Oleksiy; Mašláni, Alan

    2009-01-01

    Roč. 13, č. 3-4 (2009), s. 299-313. ISSN 1093-3611 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma gasification * syngas * biomass Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,5cbc272245f24168,0ac09d02537962cf.html

  11. Straw pellets as fuel in biomass combustion units

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, P.; Larsen, M.G. [Danish Technological Inst., Aarhus (Denmark)

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  12. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    Science.gov (United States)

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. PMID:25891778

  13. Physical properties of solid fuel briquettes from bituminous coal waste and biomass

    Institute of Scientific and Technical Information of China (English)

    ZARRINGHALAM-MOGHADDAM A; GHOLIPOUR-ZANJANI N; DOROSTIS; VAEZ M

    2011-01-01

    Biomass and bituminous coal fines from four different coalfields were used to produce fuel briquettes.Two physical properties of briquettes,water resistance index and compressive strength were analyzed.The influence of type and quantity of biomass on physical properties was also studied.The results reveal that depending on the mineral content of the coal,the physical properties of the briquettes differ noticeably.The comparison of briquettes with and without biomass showed that the presence of the beet pulp increased CS in all types of coal samples.Samples containing beet pulp had better physical properties than sawdust.Mezino Ⅱ coal briquettes had highest CS and WRI than the other ones.Calorific value of biomass/Mezino Ⅱ coal briquettes was lessened in comparison with raw coal,but it remained in an acceptable range.

  14. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  15. Oxy-fuel combustion of coal and biomass blends

    OpenAIRE

    Riaza Benito, Juan; Gil Matellanes, María Victoria; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2012-01-01

    The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in t...

  16. Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; YU Sui-ran; FANG Fang; DAI Du; WANG Cheng-tao

    2005-01-01

    The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy.

  17. Characteristics of smoke emissions from biomass fires of the Amazon region - BASE-A experiment

    Science.gov (United States)

    Ward, Darold E.; Setzer, Alberto W.; Kaufman, Yoram J.; Rasmussen, Rei A.

    1991-01-01

    The Biomass Burning Airborne and Spaceborne Experiment-Amazonia was designed for study of both aerosol and gaseous emissions from fires using an airborne sampling platform. The emission factors for combustion products from four fires suggest that the proportion of carbon released in the form of CO2 is higher than for fires of logging which has been burned in the western U.S. Combustion efficiency was of the order of 97 percent for the Amazonian test fire and 86-94 percent for deforestation fires. The inorganic content of particles from tropical fires are noted to be different from those of fires in the U.S.

  18. CALORIFIC VALUE DETERMINATION OF SOLID BIOMASS FUEL BY SIMPLIFIED METHOD

    Directory of Open Access Journals (Sweden)

    Giuseppe Toscano

    2009-09-01

    Full Text Available The gross calorific value (GCV and, in particular, the net calorific value (NCV are fundamental physical parameters in the use of energetic biomass. The method of measurement and the calculation of the GCV, defined by CEN/TS 14918, is rather complex and, in many cases, has a time and cost importance. In literature there are some studies in which the empirical correlations between GCV and the element composition have been calculated. In these contribution some of the most significant correlations in literature are tested and compared to others obtained from statistical processing of data from analysis on 200 samples of biomass carried out in the laboratory and with standard CEN methods. The study shows how the very simplified correlations based on the calculation of carbon and hydrogen content have performances that are similar to those of more complex ones based on the greater number of parameters. In particular, the empirical correlation (GCV = 297.6 + 389.7C produced from this work has errors that are comparable to those of the better correlation highlighted by literature (GCV = 5.22C2-319C - 1647H + 38.6C·H + 133N + 21028.

  19. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  20. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  1. Technological constraints to the use of biomass fuels

    International Nuclear Information System (INIS)

    The author discusses the constraints on the development of advanced biomass technologies in the US. He states that bioenergy must increase from the present level of use of 3.3 quads if it is to have a significant effect on mitigation of global warming. Future use of bioenergy will require more efficient technologies, with large-scale facilities. Since locations where enough feedstock is available for large facilities is limited, it may be necessary to accept higher price projections by choosing smaller conversion facilities. More research is needed on harvesting, conversion and production, and the associated environmental issues. These environmental issues include: land use practices; soil conservation; local traffic impacts; emission of gaseous and aqueous effluents; and disposal of solid wastes

  2. Reduction of fuel side costs due to biomass co-combustion.

    Science.gov (United States)

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k€ yr(-1) (0.09 €M Wh(-1)). PMID:21514049

  3. Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system

    International Nuclear Information System (INIS)

    Highlights: ► Method to determine the optimal location and size of biomass power plants. ► The proposed approach is a hybrid of PSO algorithm and optimal power flow. ► Comparison among the proposed algorithm and other methods. ► Computational costs are enough lower than that required for exhaustive search. - Abstract: This paper addresses generation of electricity in the specific aspect of finding the best location and sizing of biomass fueled gas micro-turbine power plants, taking into account the variables involved in the problem, such as the local distribution of biomass resources, biomass transportation and extraction costs, operation and maintenance costs, power losses costs, network operation costs, and technical constraints. In this paper a hybrid method is introduced employing discrete particle swarm optimization and optimal power flow. The approach can be applied to search the best sites and capacities to connect biomass fueled gas micro-turbine power systems in a distribution network among a large number of potential combinations and considering the technical constraints of the network. A fair comparison among the proposed algorithm and other methods is performed.

  4. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  5. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  6. Deposit Probe Measurements in Large Biomass-Fired Grate Boilers and Pulverized-Fuel Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    2014-01-01

    build-up increased with the K-content of the fuel ash and fly ash for grate-fired boilers. For suspension-fired boilers, deposition rates are comparatively low for wood-firing and increase with increasing fuel straw shares. Shedding of deposits occurs by melting during straw-firing on a grate at high......A number of full-scale deposit probe measuring campaigns conducted in grate-fired and suspension-fired boilers, fired with biomass, have been reviewed and compared. The influence of operational parameters on the chemistry of ash and deposits, on deposit build-up rates, and on shedding behavior has...... been examined. The firing technology and the fuel utilized influence the fly ash and deposit chemical composition. In grate-firing, K, Cl, and S are enriched in the fly ash compared to the fuel ash, while the fly ash in suspension-firing is relatively similar to the fuel ash. The chemical composition...

  7. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    Science.gov (United States)

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-). PMID:27455126

  8. Biomass yield and fuel characteristics of short-rotation coppice (willow, poplar, empress tree)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, J.; Vetter, R. [Institute for Land Management Compatible to Environmental Requirements, Muellheim (Germany)

    2004-07-01

    In two pedo-climatic different regions in the state of Baden-Wuerttemberg three shortrotation coppices willow, poplar and empress tree were tested with regard to their biomass productivity on arable land and to their properties for energetic use. Between 8 and 13 tons of dry matter per hectare and year could be produced under extensive cultivation conditions, over 15 tons with irrigation. Due to their composition, it can be assumed that their use as solid fuel in a biomass combustor is just as unproblematic as with forest timber. (orig.)

  9. Carbon sequestration from fossil fuels and biomass - long-term potentials

    International Nuclear Information System (INIS)

    Carbon sequestration and disposal from fossil fuels combustion is gaining attraction as a means to deal with climate change. However, CO2 emissions from biomass combustion can also be sequestered. If that is done, biomass energy with carbon sequestration (BECS) would become a net negative carbon sink that would at the same time deliver carbon free energy (heat, electricity or hydrogen) to society. Here we estimate some global technoeconomical potentials for BECS, and we also present some rough economics of electricity generation with carbon sequestration

  10. A Supply-Chain Analysis Framework for Assessing Densified Biomass Solid Fuel Utilization Policies in China

    Directory of Open Access Journals (Sweden)

    Wenyan Wang

    2015-07-01

    Full Text Available Densified Biomass Solid Fuel (DBSF is a typical solid form of biomass, using agricultural and forestry residues as raw materials. DBSF utilization is considered to be an alternative to fossil energy, like coal in China, associated with a reduction of environmental pollution. China has abundant biomass resources and is suitable to develop DBSF. Until now, a number of policies aimed at fostering DBSF industry have been proliferated by policy makers in China. However, considering the seasonality and instability of biomass resources, these inefficiencies could trigger future scarcities of biomass feedstocks, baffling the resilience of biomass supply chains. Therefore, this review paper focuses on DBSF policies and strategies in China, based on the supply chain framework. We analyzed the current developing situation of DBSF industry in China and developed a framework for policy instruments based on the supply chain steps, which can be used to identify and assess the deficiencies of current DBSF industry policies, and we proposed some suggestions. These findings may inform policy development and identify synergies at different steps in the supply chain to enhance the development of DBSF industry.

  11. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3

    OpenAIRE

    A. M. Ortega; Day, D. A.; M. J. Cubison; Brune, W. H.; D. Bon; J. A. de Gouw; Jimenez, J. L.

    2013-01-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A "potential aerosol mass" (PAM) flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer-reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days of aging i...

  12. Aquatic biomass as a source of fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, L.P.

    1983-09-01

    The Aquatic Species Program (ASP) addresses the development of technologies that produce and utilize plant biomass species which naturally inhabit wetlands or submerged areas. Processes being developed through this program take advantage of the rapid growth rates, high yields, and extraordinary chemical compositions inherently associated with aquatic species. Emphasis is placed on salt tolerant species for cultivation on poorly utilized, low-value lands, where conventional agriculture is not economic. Candidate species are identified from: (1) microalgae-unicellular plants that are natural factories for converting sunlight into high quality oils; (2) macroalgae-large, chemically unique plants that can be easily fermented to methane gas or alcohols; and (3) emergents-plants that grow rooted in waterways and bogs, but are partially exposed above water. Within the next five years, the conditions and resources necessary for sustained systems operations are to be defined, design parameters examined, and experimental facilities developed. Succeeding years are planned to focus on resolving major technical hurdles in systems operations, integration, and component performance. This paper updates the technical progress in this program, describes several aspects of evolving systems concepts, and attempts to provide some perspectives based on potential economics. 16 references, 4 figures, 4 tables.

  13. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  14. Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investigation

    International Nuclear Information System (INIS)

    To validate the modeling of one-dimensional biomass smoldering and combustion, the effects of fuel type, moisture content and particle size on the natural downward smoldering of biomass powder have been investigated experimentally. A cylindrical reactor (inner size Φ26 cm × 22 cm) was constructed, and corn stalk, pine trunk, pyrolysis char and activated char from corn stalk were prepared as powders. The smoldering characteristics were examined for each of the four materials and for different moisture contents and particle sizes. The results revealed the following: 1) The maximum temperature in the fuel bed is only slightly affected by the fuel type and particle size. It increases gradually for original biomass and decreases slowly for chars with the development of the process. 2) The propagation velocity of the char oxidation front is significantly affected by the carbon density and ash content and nearly unaffected by moisture content and particle size. 3) The propagation velocity of the drying front is significantly affected by the moisture content, decreasing from over 10 times the propagation velocity of char oxidation front to about 3 times as the moisture content increased from 3 to 21%. - Highlights: • Natural downward smoldering of four materials, different moisture contents, and different particle sizes were investigated. • Propagation velocity of the char oxidation front differs significantly from that of the drying front. • Carbon density and ash content of fuel significantly affect propagation velocity of the char oxidation front

  15. Forest biomass flow for fuel wood, fodder and timber security among tribal communities of Jharkhand.

    Science.gov (United States)

    Islam, M A; Quli, S M S; Rai, R; Ali, Angrej; Gangoo, S A

    2015-01-01

    The study investigated extraction and consumption pattern of fuel wood, fodder and timber and forest biomass flow for fuel wood, fodder and timber security among tribal communities in Bundu block of Ranchi district in Jharkhand (India). The study is based on personal interviews of the selected respondents through structured interview schedule, personal observations and participatory rural appraisal tools i.e. key informant interviews and focus group discussions carried out in the sample villages, using multi-stage random sampling technique. The study revealed that the total extraction of fuel wood from different sources in villages was 2978.40 tons annum(-1), at the rate of 0.68 tons per capita annum(-1), which was mostly consumed in cooking followed by cottage industries, heating, community functions and others. The average fodder requirement per household was around 47.77 kg day(-1) with a total requirement of 14227.34 tons annum(-1). The average timber requirement per household was computed to be 0.346 m3 annum(-1) accounting for a total timber demand of 282.49 m3 annum(-1), which is mostly utilized in housing, followed by agricultural implements, rural furniture, carts and carriages, fencing, cattle shed/ store house and others. Forest biomass is the major source of fuel wood, fodder and timber for the primitive societies of the area contributing 1533.28 tons annum(-1) (51.48%) of the total fuel wood requirement, 6971.55 tons annum(-1) (49.00%) of the total fodder requirement and 136.36 m3 annum(-1) (48.27%) of the total timber requirement. The forest biomass is exposed to enormous pressure for securing the needs by the aboriginal people, posing great threat to biodiversity and environment of the region. Therefore, forest biomass conservation through intervention of alternative avenues is imperative to keep pace with the current development and future challenges in the area. PMID:26536796

  16. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Science.gov (United States)

    Hosseini, S.; Urbanski, S. P.; Dixit, P.; Qi, L.; Burling, I. R.; Yokelson, R. J.; Johnson, T. J.; Shrivastava, M.; Jung, H. S.; Weise, D. R.; Miller, J. W.; Cocker, D. R.

    2013-09-01

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as well as SE vegetation types: 1 year, 2 year rough, pocosin, chipped understory, understory hardwood, and pine litter. The SW fuels burned at higher modified combustion efficiency (MCE) than the SE fuels resulting in lower particulate matter mass emission factor. Particle mass distributions for six fuels and particle number emission for all fuels are reported. Excellent mass closure (slope = 1.00, r2 = 0.94) between ions, metals, and carbon with total weight was obtained. Organic carbon emission factors inversely correlated (R2 = 0.72) with average MCE, while elemental carbon (EC) had little correlation with average MCE (R2 = 0.10). The EC/total carbon ratio sharply increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total polycyclic aromatic hydrocarbon (PAH) emissions factors ranged from 25 to 1272 mg/kg fuel and 1.8 to 11.3 mg/kg fuel, respectively. No correlation between average MCE and emissions of PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be poor indicators of biomass burning. Large fuel type and regional dependency were observed in the emission rates of ammonium, nitrate, chloride, sodium, and potassium.

  17. Development of biomass fueled stirling engine; Udvikling af biomassefyret stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, H.; Bovin, J.

    2001-04-01

    The report treats the development of a stirling engine with an electric effect of 35 kW for small local cogeneration plants, which use wood chips as fuel. The development of the stirling engine, which is named SM3B, is based on the results from an earlier project, where a stirling engine (SM3A) with the same fundamental construction was developed and tested. The report treats the whole development with focus on the activities relating to the further development of the SM3A-engine to SM3B. The developed stirling engines have four double-acting cylinders. The four heat exchangers, to which the heat from the combustion of wood chips is supplied, make a quadratic combustion chamber above the engine. The heat exchangers are constructed in taking into account that solid fuels are used, and they are therefore made of strong pipes and narrow passages are avoided, so that particles in the flue gasses do not clog the heat exchangers. The stirling engine itself is constructed as a hermetic unity, where the generator is built into a pressurized crankcase in the same way as the electricity engine is built into a hermetic refrigeration compressor. Thus the leakage of work gas being helium these engines can be reduced to a minimum. The maximal electric effect for the first stirling engine, SM3A, was 28 kW, which was a little less than expected. The efficiency was about 18% depending on moisture content of the fuel. This engine has run for over 1400 hours with wood chip as fuel, but not without problems. In relation to the first stirling engine for biofuels (SM3A) the following have been obtained by the development of the new 35 kW-engine (SM3B): Electric-effect is improved from 28 kW to 34 kW by the same temperatures in heater and cooling water; The engine has ran satisfactorily for about 800 hours without mechanical problems; More noiseless; Better distribution of the thermic loading of the heater; Piston rods and crosshead connections are strengthened; The piston rod

  18. Biomass fuels - effects on the carbon dioxide budget

    International Nuclear Information System (INIS)

    It is highly desirable that the effects on the carbon dioxide balance of alternative energy sources are evaluated. Two important alternatives studied in Sweden are the extraction of logging residues left in the forest and willow production on farmland. Considered in isolation, a conversion from stem-wood harvest to whole-tree harvest has a negative effect on the carbon dioxide balance, because the amount of soil organic matter decreases. With the assumption that it takes 20 years for the logging residues to decompose, the net decrease in emissions that would result from the replacement of fossil fuels by logging residues appear moderate after 20 years. However, it will grow significantly as time passes. After 100 years with an annual combustion of logging residues the emissions are 12% of those associated with the production of an equivalent amount of energy through oil combustion. Corresponding values for 300 and 500 years are 4% and 2.5% respectively. In less than 100 years there should be a considerable reduction in the Swedish CO2-C emissions even if only every second new logging residue-produced TWH replaces a fossil-fuel-produced TWh. From a long-term perspective, effects on carbon reservoirs in Sweden, caused by conversions to whole-tree harvesting in forestry and to willow production on redundant farmland, can be considered negligible in terms of their influence on the carbon dioxide budget of Sweden. The orders of magnitude of influencing fluxes is exemplified in the following: The annual production of 50 TWh, whereof 40 TWh from logging residues, 8 TWh from willow and 2 TWh from annual crops is estimated to cause a total net decrease of the carbon reservoirs within Sweden corresponding to 32 Tg CO2-C, whereas the annual production of 50 TWh from oil combustion should emit 1200 Tg CO2-C in 300 years, 2000 Tg CO2-C in 500 years and so on. (au). 17 refs., 4 tabs

  19. Coming on stream: Financing biomass and alternative-fuel projects in the 1990s

    International Nuclear Information System (INIS)

    Biomass-energy and alternative-fuels projects make environmental sense, but do they make economic sense? In the current project-finance environment, moving ideas off the drawing board and transforming them into reality takes more than vision and commitment; it takes the ability to understand and address the financial markets' perception of risk. This paper examines the state of the project-finance market, both as it pertains to biomass and alternative-fuels projects and in more general terms, focusing on what project sponsors and developers need to dot to obtain both early-state and construction/term financing, and the role a financial adviser can play in helping ensure access to funds at all stages

  20. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt;

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However......, continuous catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  1. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria

    International Nuclear Information System (INIS)

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 x 103 ha (kilohectare, or kha) and 200 x kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125,561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. 9 tabs., 44 refs

  2. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2009-02-11

    Lignocellulosic biomass is a plentiful and renewable resource for fuels and chemicals. Despite this potential, nearly all renewable fuels and chemicals are now produced from edible resources, such as starch, sugars, and oils; the challenges imposed by notoriously recalcitrant and heterogeneous lignocellulosic feedstocks have made their production from nonfood biomass inefficient and uneconomical. Here, we report that N,N-dimethylacetamide (DMA) containing lithium chloride (LiCl) is a privileged solvent that enables the synthesis of the renewable platform chemical 5-hydroxymethylfurfural (HMF) in a single step and unprecedented yield from untreated lignocellulosic biomass, as well as from purified cellulose, glucose, and fructose. The conversion of cellulose into HMF is unabated by the presence of other biomass components, such as lignin and protein. Mechanistic analyses reveal that loosely ion-paired halide ions in DMA-LiCl are critical for the remarkable rapidity (1-5 h) and yield (up to 92%) of this low-temperature (energy and chemical industries. PMID:19159236

  3. Feasibility of biomass as a fuel for electric power generation in the Netherlands

    International Nuclear Information System (INIS)

    Based on data from a study of the Netherlands Agency for Energy and the Environment (NOVEM) on the feasibility of biomass for the Dutch energy economy and on data from a literature study, a sensitivity analysis was carried out to determine the dependency of the energetic efficiency and the cost price on the starting points of the NOVEM study.Conclusions are drawn regarding the maximal capacity on the basis of biomass. Also attention is paid to the height of the carbon levy on the use of fossil fuels, by which the price of bio-electricity can be made competitive. It appears that electric power generation from biomass by means of an integrated biomass gasification combined cycle (IBGCC) is energetic efficient for the considered energy crops. However, the carbon levy on the use of fossil fuels must be 100% to make bio-energy competitive. It also must be taken into consideration that, next to the favourable characteristic of renewability, bio-energy bears a number of potential environmental loads

  4. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    Science.gov (United States)

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  5. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  6. Biomass fueled fluidized bed combustion: atmospheric emissions, emission control devices and environmental regulations

    International Nuclear Information System (INIS)

    Fluidized bed combustors have become the technological choice for power generation from biomass fuels in California. Atmospheric emission data obtained during compliance tests are compared for five operating 18 to 32 MW fluidized bed combustion power plants. The discussion focuses on the impact of fuel properties and boiler design criteria on the emission of pollutants, the efficiency of pollution control devices, and regulations affecting atmospheric emissions. Stack NOx emission factors are shown not to vary substantially among the five plants which burn fuels with nitrogen concentrations between 0.3 and 1.1% dry weight. All facilities use at least one particular control device, but not all use limestone injection or other control techniques for sulfur and chlorine. The lack of control for chlorine suggests the potential for emission of toxic species due to favorable temperature conditions existing in the particulate control devices, particularly when burning fuels containing high concentrations of chlorine. (Author)

  7. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and lab studies

    Directory of Open Access Journals (Sweden)

    M. J. Cubison

    2011-04-01

    Full Text Available Biomass burning (BB is a large source of primary and secondary organic aerosols (POA and SOA. This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ±0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass =−0.01 to ~0.07, with a mean ΔOA/POA ~25%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~9 Tg OA yr−1 is estimated, of the order of 5% of recent total OA source estimates. Further field data following BB plume advection should be a

  8. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies

    Directory of Open Access Journals (Sweden)

    M. J. Cubison

    2011-12-01

    Full Text Available Biomass burning (BB is a large source of primary and secondary organic aerosols (POA and SOA. This study addresses the physical and chemical evolution of BB organic aerosols. Firstly, the evolution and lifetime of BB POA and SOA signatures observed with the Aerodyne Aerosol Mass Spectrometer are investigated, focusing on measurements at high-latitudes acquired during the 2008 NASA ARCTAS mission, in comparison to data from other field studies and from laboratory aging experiments. The parameter f60, the ratio of the integrated signal at m/z 60 to the total signal in the organic component mass spectrum, is used as a marker to study the rate of oxidation and fate of the BB POA. A background level of f60~0.3% ± 0.06% for SOA-dominated ambient OA is shown to be an appropriate background level for this tracer. Using also f44 as a tracer for SOA and aged POA and a surrogate of organic O:C, a novel graphical method is presented to characterise the aging of BB plumes. Similar trends of decreasing f60 and increasing f44 with aging are observed in most field and lab studies. At least some very aged BB plumes retain a clear f60 signature. A statistically significant difference in f60 between highly-oxygenated OA of BB and non-BB origin is observed using this tracer, consistent with a substantial contribution of BBOA to the springtime Arctic aerosol burden in 2008. Secondly, a summary is presented of results on the net enhancement of OA with aging of BB plumes, which shows large variability. The estimates of net OA gain range from ΔOA/ΔCO(mass = −0.01 to ~0.05, with a mean ΔOA/POA ~19%. With these ratios and global inventories of BB CO and POA a global net OA source due to aging of BB plumes of ~8 ± 7 Tg OA yr−1 is estimated, of the order of 5 % of recent total OA source estimates. Further field data

  9. Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels

    DEFF Research Database (Denmark)

    Lucassen, Arnas; Zhang, Kuiwen; Warkentin, Julia;

    2012-01-01

    . For this, thermochemical values for a number of intermediates had to be determined from quantum chemistry calculations. Also, specific sets of reactions were incorporated for the two fuels. While many trends seen in the experiments can be successfully reproduced by the simulations, additional efforts......Laminar premixed flames of the two smallest isomeric amines, dimethylamine and ethylamine, were investigated under one-dimensional low-pressure (40mbar) conditions with the aim to elucidate pathways that may contribute to fuel-nitrogen conversion in the combustion of biomass. For this, identical...... flames of both fuels diluted with 25% Ar were studied for three different stoichiometries (Φ=0.8, 1.0, and 1.3) using in situ molecular-beam mass spectrometry (MBMS). Quantitative mole fractions of reactants, products and numerous stable and reactive intermediates were determined by electron ionization...

  10. Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; Nimlos, Mark; Liu, Haichao

    2016-07-01

    The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.

  11. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  12. Integrated Process for the Catalytic Conversion of Biomass-Derived Syngas into Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier, Vanessa M.; Smith, Colin D.; Flake, Matthew D.; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-04-19

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  13. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    Science.gov (United States)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  14. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    Science.gov (United States)

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. PMID:15207293

  15. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, S.N. [Istanbul University (Turkey). Forestry Faculty; Imamura, Y. [Kyoto University (Japan). Wood Research Institute; Tsuchiya, F.; Ohsato, K. [JGC Corporation, Yokohama (Japan)

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Formitopsis palustris. However the filtrates from sugi wood processed at 270{sup o}C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. (author)

  16. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  17. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis

    Directory of Open Access Journals (Sweden)

    Mengshi Chen

    2014-12-01

    Conclusions: Passive smoking, cooking with solid fuel, and polymorphisms of MBL (rs7096206 and MASP-2 (rs6695096 genes were associated with susceptibility to TB in non-smokers, and there were gene–environment interactions among them. Further studies are needed to explore details of the mechanisms of association.

  18. Food and fuel from plant biomass - will there be enough to go around?

    Science.gov (United States)

    DeLucia, E. H.; Gomez-Casanovas, N.; Greenberg, J. A.; Hudiburg, T. W.; Kantola, I. B.; Long, S.; Parton, W. J.; Miller, A. D.

    2013-12-01

    The ever-growing need for food and renewable energy is increasing the demand for biomass from wild and cultivated plants. The annual production of carbon in biomass - net primary production (NPP) - from terrestrial ecosystems globally is 57 Gt; of this total, humans currently appropriate 23-40%. Recent estimates suggest that the amount of plant biomass available for bioenergy is too small to significantly reduce our reliance on fossil fuels, and increasing biomass allocated to fuel would compete with the food supply. These estimates assume that maximum sustainable NPP is represented by that location's native vegetation. We invalidate this assumption by comparing NPP from native and cultivated crops at several locations globally. We also estimate the theoretical maximum biomass production (NPPmax) and the maximum biomass production that can be sustained by local water availability (NPPwater). Across six unfertilized, non-irrigated ecoregions, NPP from cultivated and non-native wild plants surpassed that of native vegetation by up to 500%. Using the rain-fed Midwestern US as an example agricultural region, we estimate NPPmax from the theoretical solar conversion efficiency of 6% to be 137 tonnes/ha, i.e. 6.8x current maize yields. This value drops to 3.8x current maize yields when constrained by local plant-available water (NPPwater) or when using an empirically observed solar conversion efficiency of 3.7%. Our analysis of terrestrial NPPwater using the highest observed solar conversion efficiency for C3 and C4 was approximately 10x greater than current estimates. These global results provide an upper bound for NPP at any given location. Crop improvement aimed at increasing solar conversion efficiency has the potential to dramatically increase NPP, and incorrect assumptions guiding current models may lead to underestimates of biomass production. However, our findings indicate that the limiting factor to plant production in rain-fed agro-ecosystems is plant

  19. Fossil fuel and biomass burning effect on climate - heating or cooling?

    International Nuclear Information System (INIS)

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO2 molecules as SO2 molecules, each SO2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO2 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs

  20. Combustion and emission formation in a biomass fueled grate furnace - measurements and modelling

    International Nuclear Information System (INIS)

    A study of turbulent combustion with special emphasis on the formation of nitrous oxide emissions in a biomass fueled grate furnace has been conducted with the aid of measurements, literature studies and CFD-computations. The literature study covers nitrous oxide formation and the pyrolysis, gasification and combustion of biomass fuel. The measurements were conducted inside the furnace and at the outlet, and temperature and some major species were measured. A tool for the treatment of the bed processes (pyrolysis, gasification and combustion) has been developed. The measurements show significantly higher concentrations of oxygen above the fuel bed than expected. The gas production in the bed was shown to be very unevenly distributed over the width of the furnace. The measured temperatures were relatively low and in the same order as reported from other, similar measurements. The computational results are in good quantitative agreement with the measurements, even for the nitrous oxide emissions. It was necessary to include tar as one of the combustible species to achieve reasonable results. The computations point out that the fuel-NO mechanism is the most important reaction path for the formation of nitrous oxide in biomass combustion in grate furnaces. The thermal NO mechanism is responsible for less than 10% of the total amount of NO-emissions. Although the results are quantitatively in good agreement with the measurements, a sensitivity study showed that the fuel-NO model did not respond to changes in the distribution of secondary air as the measurements indicate. The results from this work have lead to some guidelines on how the furnace should be operated to achieve minimum NO-emissions. Some proposals of smaller changes in the construction are also given. 33 refs, 37 figs, 7 tabs

  1. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  2. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES; FINAL

    International Nuclear Information System (INIS)

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  3. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  4. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels

    OpenAIRE

    Climent Olmedo, María José; Corma Canós, Avelino; Iborra Chornet, Sara

    2014-01-01

    In this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives from cellulose, hemicellulose and triglycerides derived platform molecules are discussed. Thus, it is shown that a series of platform molecules such as levulinic acid, furans, fatty acids and polyols can be converted into a variety of fuel additives through catalytic transformations that include reduction, esterification, etherification, and acetalization reactions. Moreover, we...

  5. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  6. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  7. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  8. Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    2012-01-01

    formation rates. Suspension fired boilers generate more fly ash, while grate boilers form a fly ash with a higher fraction of melt formation (and thereby a higher sticking probability) at similar temperatures. For suspension fired units it is observed that wood with a lower ash content than straw gives rise....... Corresponding samples of fuels, ash deposits and fly ash have provided information on the transformation of inorganics in the boiler. Generally, grate fired boilers provide a fly ash containing high contents of K, Cl and S compared to the fuel ash, while suspension fired boilers fly ash has a composition nearly...... similar to the fuel ash. Inner most biomass deposits are always salt-rich, while thicker deposit layers also contain some Si and Ca. Deposit probe formation rate measurements have been performed in different ways on several boilers. Grate and suspension fired boilers seems to cause similar deposit...

  9. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  10. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  11. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    Science.gov (United States)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  12. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  13. The Swedish Ash Programme 2002-2008. Biomass, wastes, peat - any solid fuel but coal

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Herbert, Roger

    2009-07-15

    In Sweden, producers of combustion residues have since 2002 implemented a collaborative applied RandD programme aimed at the utilisation of combustion residues (ash). The fuels are biomass, wastes, peat - any solid fuel but coal. In this report, the main lines of the programme are described: Covers for landfills and mine tailings; Civil works, e.g. road-buildings, where both geotechnical and environmental questions have been addressed; Cement and concrete applications; Compensating soils for removing biomass and the mineral nutrients in the biomass. The emphasis of the Programme is on environmental questions, even if technical questions have been treated. The time perspective in this context is much longer than the 3-5 years that are usual in an applied RandD programme, i.e. decades after ash has been placed on a site, e.g. in a road, or spread to forest soil. New test fields have been created in the programme and old test fields have been evaluated in order to gather available information

  14. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    Science.gov (United States)

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. PMID:26272710

  15. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  16. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, SeyedEhsan; Urbanski, Shawn; Dixit, P.; Qi, L.; Burling, Ian R.; Yokelson, Robert; Johnson, Timothy J.; Shrivastava, ManishKumar B.; Jung, H.; Weise, David; Miller, J. Wayne; Cocker, David R.

    2013-09-09

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. 17 fuel types during 77 controlled laboratory burns are presented. The fuels include SW 18 vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, 19 manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland as 20 well as SE vegetation types: 1-year, 2-year rough, pocosin, chipped understory, 21 understory hardwood, and pine litter. The SW fuels burned at a higher Modified 22 Combustion Efficiency (MCE) than the SE fuels resulting in lower particulate matter 23 (PM) mass emission factor (EF). Particle size distributions for six fuels and particle 24 number emission or all fuels are reported. Excellent mass closure (slope = 1.00, r2=0.94) 25 between ions, metals, and carbon with total weight was obtained. Organic carbon 26 emission factors inversely correlated (= 0.72) with MCE, while elemental carbon (EC) 27 had little correlation with MCE (=0.10). The EC/total carbon (TC) ratio sharply 28 increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total Poly 29 Aromatic Hydrocarbons (PAH) emissions factors ranged from 25-1272 mg/kg fuel and 30 1790-11300 μg/kg fuel, respectively. No correlation between MCE and emissions of 31 PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be 32 poor indicators of biomass burning. Large fuel-type and regional dependency was 33 observed in the emission rates of ammonium, nitrate, fluoride, chloride, sodium, and

  17. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  18. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals. PMID:26598400

  19. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  20. Toxic and hazardous air pollutants from co-firing biomass fuels, fossil fuels, MSW and RDF

    International Nuclear Information System (INIS)

    Toxic and hazardous pollutants are defined and then are considered from the perspective of pollutants which enter the combustion process with the fuel (principally the metals and metallic compounds) and pollutants which are formed as products of incomplete combustion. Control strategies are reviewed through the entire process including fuel preparation and storage, combustion control and the application of air pollution control devices. Measurement techniques for specific toxic and hazardous air pollutants are discussed

  1. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  2. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  3. Use of biomass for producing liquid fuel: Current state and innovations

    Science.gov (United States)

    Chernova, N. I.; Korobkova, T. P.; Kiseleva, S. V.

    2010-11-01

    Current matters relating to utilization of biomass for producing energy are discussed, including the most developed technologies of biopower engineering and innovative developments, as well as the possibilities of using nonfood raw materials as second-generation biofuel. It is shown that microalgae can be considered as prospective sources of different kinds of renewable biofuel, such as methane, biohydrogen, bioethanol, biobutanol, pyrolysis biofuel, biodiesel, and renewable diesel fuel, and can serve as an alternative to the traditional cultures used for power-generating purposes.

  4. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  5. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken...

  6. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  7. Panorama 2007: Potential biomass mobilization for bio-fuel production worldwide, in Europe and in France

    International Nuclear Information System (INIS)

    One key factor in ensuring the success of bio-fuel technologies, which are expected to see high growth, is the availability of biomass resources. Although the targets set in Europe and France for the replacement of petroleum products in the transport sector by 2010 can be met by converting farm surpluses into biofuels, in order to proceed further, it will be necessary to mobilize a resource that is more abundant and potentially less costly: ligno-cellulosic materials, i.e. wood or straw. The future of biofuels depends on establishing the much-awaited 'second generation' bio-fuel pathways able to convert ligno-cellulosic materials to ethanol, bio-diesel and bio-kerosene. (author)

  8. Volumetric combustion of torrefied biomass for large percentage biomass co-firing up to 100% fuel switch

    OpenAIRE

    Li, Jun

    2014-01-01

    The co-firing of biomass and coal plays an important role in increasing the biomass power capacity and reducing greenhouse gas (GHG) emissions. The challenges of the large percentage biomass co-firing (over 20% on energy basis) in existing pulverized coal boilers are keeping the same steam parameters and having a high boiler efficiency and a stable operating. The primary goal of this thesis is to develop a combustion concept for coal-fired boilers to enablea large percentage of biomass co-fir...

  9. Evaluation of mucociliary clearance among women using biomass and clean fuel in a periurban area of Chennai: A preliminary study

    Directory of Open Access Journals (Sweden)

    Johnson Priscilla

    2011-01-01

    Full Text Available Background: Nasal mucociliary clearance (NMC plays a crucial role in the defense of the airways against inhaled substances and is affected by various factors. The effect of particulate matter on NMC in women using biomass fuel has not been well studied. Aim: This cross-sectional study was conducted to assess the NMC time in biomass fuel users and compare it with that of clean fuel users. Materials and Methods: NMC time and Peak Expiratory Flow Rate (PEFR were determined in women of age ranging from 18 to 45 years using biomass fuel (n=30 and clean fuel (n=30. The time taken to perceive the sweet taste, following placement of saccharin 1 cm behind the anterior end of inferior turbinate was recorded as NMC time. PEFR was measured using mini-Wright peak flow meter. Comparison between groups was analyzed using t-test and ANOVA in R statistical software. Results: NMC time was significantly prolonged in biomass fuel users (765.8 ± 378.16 s in comparison to clean fuel users (545.4 ± 215.55 s. PEFR was significantly reduced (319.3 l/min in biomass fuel users compared to clean fuel users (371.7 l/min. Women from lower socioeconomic status, lower literacy status, older undernourished women and women cooking for >15 years had prolonged Saccharin Transit Time (STT and reduced PEFR. Conclusions: This study highlights the effects of indoor air pollution on respiratory defense mechanism. This simple noninvasive, inexpensive, screening test can be used as an early indicator of respiratory damage caused by exposure to air pollutants.

  10. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  11. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  12. Preparation and characterization of solid biomass fuel made from rice straw and rice bran

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chuen-Shii; Lu, Wen-Chung [Powder Technology R and D Laboratory, Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 1, Hseuh Fu Road, Nei-Pu Hsiang, Pingtung 91201 (China); Lin, Sheau-Horng [Department of Wood Science and Design, National Pingtung University of Science and Technology, Pingtung 1, Hseuh Fu Road, Nei-Pu Hsiang, Pingtung 91201 (China)

    2009-07-15

    This study investigated the preparation and characterization of the solid fuel briquette, which was made from rice straw and rice bran. This work included: (1) developing a machine to smash the rice straw into pieces; (2) compressing the smashed rice straws and the rice bran into the biomass briquette; and (3) characterizing the properties of the briquette (such as the percentage of change in briquette volume, the percentage of loss of briquette mass, the air-dry density, the compressive strength, and the heating value) at room temperature. The hot-pressing temperature strongly affects the compressive strength of the briquette. As the percentage of the rice bran increases, the compressive strength and the heating value of the biomass briquette increase. Most interestingly, the thermo-energy, which is used to compress the briquette of the rice straw, will be minimized if a certain percentage of the binder (such as rice bran, sawdust, or the other biomass waste) is mixed with the smashed rice straw. (author)

  13. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    International Nuclear Information System (INIS)

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  14. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Wendell O Khunjar

    Full Text Available The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.

  15. Biomass as a fuel and a profitable investment: the Euro-ASEAN COGEN program

    International Nuclear Information System (INIS)

    The COGEN Program (''Cogen'') is an economic cooperation program between the European Commission and ASEAN (Association of Southeast Asian Nations). A pioneering initiative in the field of biomass energy. Cogen is coordinated by and from AIT (Asian Institute of Technology, Bangkok, Thailand). Its main objective is to accelerate the implementation of proven technologies generating heat and/or power from wood and agro-residues through partnerships between European and ASEAN companies. ASEAN now offers the biggest potential for energy solutions, including waste-based fuels. Within Cogen, a number of demonstration projects have been implemented in different ASEAN industries. These projects have generated over 100 million US dollars in direct investment and represent showcases of proven technology in biomass energy equipment around the region. Some biomass energy projects have been highly profitable. The success of Cogen can also be explained by an emphasis on market intelligence, i.e., information sources, channels and business opportunities rarely achieved in public-private initiatives. (author)

  16. Process, cost modeling and simulations for integrated project development of biomass for fuel and protein

    International Nuclear Information System (INIS)

    The construction of the models for biomass project development are described. These models, first constructed using QPRO electronic spread sheet for Windows, are now being developed with the aid of visual and object oriented program as tools using DELPHI V.1 for windows and process simulator SUPERPRO, V.2.7 Intelligent Inc. These models render the process development problems with economic objectives to be solved very rapidly. The preliminary analysis of cost and investments of biomass utilisation projects which are included for this study are: steam, ammonia, carbon dioxide and alkali pretreatment process, methane gas production using anaerobic digestion process, aerobic composting, ethanol fermentation and distillation, effluent treatments using high rate algae production as well as cogeneration of energy for drying. The main project under developments are the biomass valuation projects with the elephant (Napier) grass, sugar cane bagasse and microalgae, using models for mass balance, equipment and production cost. The sensibility analyses are carried out to account for stochastic variation of the process yield, production volume, price variations, using Monte Carlo method. These models allow the identification of economical and scale up problems of the technology. The results obtained with few preliminary project development with few case studies are reported for integrated project development for fuel and protein using process and cost simulation models. (author)

  17. STORAGE OF COMMINUTED AND UNCOMMINUTED FOREST BIOMASS AND ITS EFFECT ON FUEL QUALITY

    Directory of Open Access Journals (Sweden)

    Muhammad T. Afzal

    2010-02-01

    Full Text Available White birch was stored in the form of bundles, wood chips, and loose slash for a period of one year to examine the changes in biomass fuel properties. The samples were collected at regular quarterly intervals to measure moisture content, CNS content, ash content, and calorific value. Data loggers were also placed into the stored woody biomass to measure the temperature change inside the piles. After the first quarter of the storage period and continuing into the next three months of storage, the moisture content showed the most significant change. The moisture content of the biomass bundles increased from 29 % to above 80 % (db. The moisture content of the pile of wood chips covered with a tarp decreased from 51% to 26% and showed a continuous decline in moisture content to the end of storage period to an average range of 16.5% (db. However, the moisture content of uncovered wood chip pile was observed to continuously increase throughout the storage period, resulting in more than double in magnitude from 59% to 160% (db. The dry matter loss was higher in wood chip piles (8~27% than in bundles (~3%. Among the other properties, there was slightly higher loss of calorific value in wood chips (~1.6% as compared to bundles (~0.7% at the end of one year.

  18. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  19. 77 FR 59457 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ...\\ 75 FR 14670. A. Purpose of This Action While CAA section 211(o)(2)(B) specifies the volumes of... biomass-based diesel for 2013 would be 1.28 billion gal.\\2\\ \\2\\ 76 FR 38844. In a final rulemaking... be met with biodiesel and imported sugarcane ethanol. \\5\\ 77 FR 1320. Recent market...

  20. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  1. Cardboard/sawdust briquettes as biomass fuel: Physical-mechanical and thermal characteristics.

    Science.gov (United States)

    Lela, B; Barišić, M; Nižetić, S

    2016-01-01

    This paper elaborates experimental analysis of cardboard/sawdust briquettes as a viable option for biomass fuel. Physical-mechanical and thermal characteristics of cardboard/sawdust briquettes were investigated. The influence of the main parameters on heating content was also examined through an ANOVA and regression analysis, i.e. pressure influence (that was applied in a punch-and-die process), cardboard/sawdust ratio influence and finally drying temperature influence. In order to find the maximum heating value, minimum ash content and maximum compressive strength optimization were done. The optimal values obtained for the studied briquetting process parameters are a compression force of 588.6 kN, a sawdust mass of 46.66% and a drying temperature of 22°C. According to the mathematical model obtained, these optimal values give a maximum higher heating value of 17.41 MJ/kg, a minimum ash content of 6.62% and a maximum compressive strength of 149.54 N/mm. Finally, Cardboard/sawdust briquettes showed potential for application as viable biomass fuel. PMID:26560808

  2. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    Science.gov (United States)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  3. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    Science.gov (United States)

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass. PMID:25710678

  4. Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2015-12-01

    Full Text Available As a relatively mature technology, biomass molded fuel (BMF is widely used in distributed and centralized heating in China and has received considerable government attention. Although many BFM incentive policies have been developed, decreased domestic traditional fuel prices in China have caused BMF to lose its economic viability and new policy recommendations are needed to stimulate this industry. The present study built a regionalized net present value (NPV model based on real production process simulation to test the impacts of each policy factor. The calculations showed that BMF production costs vary remarkably between regions, with the cost of agricultural briquette fuel (ABF ranging from 86 US dollar per metric ton (USD/t to 110 (USD/t, while that of woody pellet fuel (WPF varies from 122 USD/t to 154 USD/t. The largest part of BMF’s cost composition is feedstock, which accounts for up 50%–60% of the total; accordingly a feedstock subsidy is the most effective policy factor, but in consideration of policy implementation, it would be better to use a production subsidy. For ABF, the optimal product subsidy varies from 26 USD/t to 57 USD/t among different regions of China, while for WPF, the range is 36 USD/t to 75 USD/t. Based on the data, a regional BMF development strategy is also proposed in this study.

  5. Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China

    International Nuclear Information System (INIS)

    Interests in biomass-based fuel ethanol (BFE) have been re-boosted due to oil shortage and environmental deterioration. Biomass-based fuel ethanol is renewable and, apparently, environmentally friendly. Biomass-based E10 (a blend of 10% ethanol and 90% gasoline by volume) is a promising conventional gasoline substitute, because vehicle engines require no modifications to run on E10 and vehicle warranties are unaffected. This paper presented life cycle assessments (LCAs) of energy efficiency of wheat-based E10 from central China, corn-based E10 from northeast China, and cassava-based E10 from southwest China. The respective energy flow-based evaluation model of wheat-, corn-, and cassava-based E10 was built based on data from pilot BFE plants. Monte Carlo method is applied to deal with the uncertain parameters and input and output variables of the evaluation model because of its wide application and easy development of statistical dispersion of calculated quantities. According to the assessment results, the average energy input/output ratio of wheat-based fuel ethanol (WFE), corn-based fuel ethanol (CFE), and cassava-based fuel ethanol (KFE) is 0.70, 0.75, and 0.54, respectively, and biomass-based E10 vehicle can have less fossil energy demand than gasoline-fueled ones.

  6. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  7. Using Biomass as Fuel Substitute to Reduce Fuel Cost in Locomotive

    Directory of Open Access Journals (Sweden)

    Gunjan De

    2013-10-01

    Full Text Available The biological waste poses some characteristics which indicate that they have the calorific value up to some extent which can be used as a fuel. Jute sticks, Jute caddies, cow dung dust, Dhaincha stick, wood etc. can be used as a raw material. By application of proper technologies the potential of these materials can be exploited. The study will show that the one ton of any of these bio wastes can easily substitute coal and oil which will also reduce the fuel cost as well. The process implies supply of producer gas from gasifier to engine to generate power in space of diesel engine to run locomotives, in industries, in power generation, etc. This will result in utilization of green energy and cost effective operation.

  8. An overview of the effect of fuel properties on emissions from biomass fuels

    International Nuclear Information System (INIS)

    Biofuels are considered to be environmentally benign since they are composed primarily of carbon, hydrogen and oxygen. The emissions resulting from biofuel use are dependent, however, on the system employed and how key fuel properties interact with the system. Two case studies are presented to demonstrate this fact. First, gasification and combustion of urban waste wood to produce electric power is investigated. Second, ethanol and ethanol derivatives are examined as reformulated gasoline additives

  9. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  10. Foliage and Grass as Fuel Pellets–Small Scale Combustion of Washed and Mechanically Leached Biomass

    Directory of Open Access Journals (Sweden)

    Jan Hari Arti Khalsa

    2016-05-01

    Full Text Available The high contents of disadvantageous elements contained in non-woody biomass are known to cause problems during small and large scale combustion, typically resulting in a higher risk of slagging, corrosion, and increased emissions. Mechanically leaching the respective elements from the biomass through a sequence of process steps has proven to be a promising solution.The florafuel process used here is comprised of size reduction followed by washing and subsequent mechanical dewatering of the biomass. Densification of the upgraded biomass into standardized pellets (Ø 6mm enables an application in existing small-scale boilers. The presented combustion trials investigated the performance of pellets made from leached grass, foliage and a mixture of both in two small-scale boilers (<100 kWth with slightly different technology (moving grate versus water-cooled burner tube during a 4-h measurement period. Emissions were in accordance with German emissions standards except for NOx (threshold is 0.50 g/m3 in the case of pure grass pellets (0.51 g/m3 and particulate matter (PM in all but one case (foliage, 13–16 mg/m3. An electrostatic precipitator (ESP unit installed with one of the boilers successfully reduced PM emission of both the grass and mixture fuel below the threshold of 20 mg/m3 (all emission values refer to 13 vol.% O2, at standard temperature and pressure (STP. Bottom ash composition and grate temperature profiles were analyzed and discussed for one of the boilers.

  11. Preliminary Feasibility Study of a Forest Biomass Fueled Small-Scale District Heating Network in the Town of Marathon, Canada

    OpenAIRE

    Peiponen, Niko

    2015-01-01

    The objective of this thesis was to look into the possibility of constructing a forest biomass fueled district heating network in to the Town of Marathon, and to evaluate if it is feasible to carry on with a full-scale feasibility study. This thesis directly supported the Nipissing University’s Biomass Innovation Centre’s (BIC) Northern Ontario Biomass Initiatives – project. The base knowledge for the theory was gathered by using the internet, journal articles, e-books and other web docum...

  12. Increase of Performance and Smoke Emission by Increasing ERG Rate in IDI Diesel Engine using Jatropha Oil and Diesel Fuel Blends

    Directory of Open Access Journals (Sweden)

    Syaiful MSK Tony Suryo Utomo

    2013-01-01

    Full Text Available Recently, a study of biodiesel fuel use as a substitute of diesel fuel becomes an interesting topic due to critical fossil fuel availability. The use of biodiesel fuel directly into diesel engine without the change of fuel injector parameter causes the problems because of different properties of biodiesel fuel compared with that of diesel fuel. The aim of present study is to investigate experimentally the effect of exhaust gas recirculation (EGR on the diesel engine performance and smoke emissions by using jatropha oil and diesel fuel blends as the fuel. EGR is one of methods to increase the fuel efficiency of diesel engine. The use of EGR method on diesel engine may also reduce NOx emissions. In this research, EGR temperature is varied to study its effect on the diesel engine consumption and smoke emissions. Jatropha oil blend is in the range of 10 to 30 %. It is found that the high EGR rate expressed the low fuel consumption compared with that of the low EGR rate by using diesel fuel or jatropha oil - diesel fuel blends. The present paper also shows that the high EGR rate results the high smoke emissions for both cases.

  13. Liquid fuels production from biomass. Progress report No. 7, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Garcia-Martinez, D.V.; George, G.S.; Dillon, J.J.; Wise, D.L.

    1979-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression; (2) modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the ouput of the 300 liter fermenter. The accomplishments in this program are on schedule. Experimental results have shown that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels is already operating with a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential. 2-Bromoethanesulfonic acid, a coenzyme M analogue, has been shown to be an effective methane suppressor, and the program is being rapidly expanded to include biomass substrates other than marine algae. In addition, considerable effort has been directed toward refining the process design and economic analysis presented previously.

  14. African biomass burning plumes over the Atlantic: aircraft based measurements and implications for H2SO4 and HNO3 mediated smoke particle activation

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2011-04-01

    Full Text Available Airborne measurements of trace gases and aerosol particles have been made in two aged biomass burning (BB plumes over the East Atlantic (Gulf of Guinea. The plumes originated from BB in the Southern-Hemisphere African savanna belt. On the day of our measurements (13 August 2006, the plumes had ages of about 10 days and were respectively located in the middle troposphere (MT at 3900–5500 m altitude and in the upper troposphere (UT at 10 800–11 200 m. Probably, the MT plume was lifted by dry convection and the UT plume was lifted by wet convection. In the more polluted MT-plume, numerous measured trace species had markedly elevated abundances, particularly SO2 (up to 1400 pmol mol−1, HNO3 (5000–8000 pmol mol−1 and smoke particles with diameters larger than 270 nm (up to 2000 cm−3. Our MT-plume measurements indicate that SO2 released by BB had not experienced significant loss by deposition and cloud processes but rather had experienced OH-induced conversion to gas-phase sulfuric acid. By contrast, a significant fraction of the released NOy had experienced loss, most likely as HNO3 by deposition. In the UT-plume, loss of NOy and SO2 was more pronounced compared to the MT-plume, probably due to cloud processes. Building on our measurements and accompanying model simulations, we have investigated trace gas transformations in the ageing and diluting plumes and their role in smoke particle processing and activation. Emphasis was placed upon the formation of sulfuric acid and ammonium nitrate, and their influence on the activation potential of smoke particles. Our model simulations reveal that, after 13 August, the lower plume traveled across the Atlantic and descended to 1300 m and hereafter ascended again. During the travel across the Atlantic, the soluble mass fraction of smoke particles and their mean diameter increased sufficiently to allow the processed smoke particles to act as water vapor condensation nuclei already at very low water

  15. Natural organic compounds as tracers for biomass combustion in aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

    1995-08-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

  16. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  17. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  18. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

    1980-01-01

    The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

  19. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken...... to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam temperature range of 450...

  20. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/ m 2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria. © 2009 American Chemical Society.

  1. Routine prediction of smoke transport from fuel reduction burns in southwest Western Australia

    International Nuclear Information System (INIS)

    The Bureau of Meteorology Research Centre (BMRC) has recently developed a mesoscale numerical weather prediction system and, in collaboration wit NOAA/ARL, implemented a sophisticated Lagrangian dispersion/transport model for long-range air pollution applications. Linking these two systems provides a method of predicting the path taken by smoke from bushfires, and was applied daily over southwestern Western Australia during the spring/summer of 1996-7. This paper very briefly describes the NWP model and the dispersion models, demonstrates their application in a case of smoke pollution over Perth in November 1995, and then discusses the utility of the experimental daily smoke trajectory forecasts

  2. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe

    International Nuclear Information System (INIS)

    Liquid biofuels provide one of the few options for fossil fuel substitution in the short to medium-term and they are strongly being promoted by the European Union as transport fuel (such as ethanol) since they have the potential to offer both greenhouse gas (GHG) savings and energy security. A ''well to wheel'' analysis has been conducted for poplar based ethanol by means of the Life Cycle Assessment (LCA) approach. The aim of the analysis is to assess the environmental performance of three ethanol applications (E10, E85 and E100) in comparison with conventional gasoline. To compare the environmental profiles, the study addressed the impact potentials per kilometre driven by a middle size passenger car, taking into account the performance difference between ethanol blends and gasoline. According to the results of this study, fuel ethanol derived from poplar biomass may help to reduce the contributions to global warming, abiotic resources depletion and ozone layer depletion up to 62%, 72% and 36% respectively. Reductions of fossil fuel extraction of up to 80% could be achieved when pure ethanol is used. On the contrary, contributions to other impact categories would be increased, specifically to acidification and eutrophication. In both categories, ethanol based blends are less environmentally friendly than conventional gasoline due to the higher impact from the upstream activities. Research focussed on the reduction of the environmental impacts should be pointed forward poplar cultivation as well as ethanol conversion plant (enzyme manufacturing, energy production and distillation). In this study poplar cultivation was really intensive in order to obtain a high yield. Strategic planning according to the location of the crops and its requirements should help to reduce these impacts from its cultivation. (author)

  3. Renewing Rock-Tenn: A Biomass Fuels Assessment for Rock-Tenn's St. Paul Recycled Paper Mill.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Carl

    2007-03-31

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) develop the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.

  4. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    NARCIS (Netherlands)

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  5. Safety - a Neglected Issue When Introducing Solid Biomass Fuel in Thermal Power Plants? Some Evidence of an Emerging Risk

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Astad, John

    2013-01-01

    The paper examines recent evidence from Denmark and abroad with climate change projects that aim to reduce global carbon dioxide emissions by converting coal fired thermal power plants to solid biomass fuel. The paper argues that projects appear to be pursued narrow-mindedly with insufficient...

  6. The Effect of Bio-Fuel Blends and Engine Load on Diesel Engine Smoke Density for Sustainable Environment

    Directory of Open Access Journals (Sweden)

    Prof. R. K. Mandloi

    2010-10-01

    Full Text Available The diesel engine is a major contributor to air pollution especially within cities and along urban traffic routes. Therefore it has become very essential to develop the technology of IC engines, which will reduce the consumption of petroleum fuels and exhaust gas emissions. In fact, agricultural and transport sectors are almost diesel dependent. The various alternative fuel options researched for diesel are mainly biogas, producer gas, ethanol, methanol and vegetable oils. Out of all these, vegetable oils offer an advantage because of its comparable fuel properties with diesel and can be substituted between 20%-100%depending upon its processing. But as India stillimports huge quantity of edible oils, therefore, the use of non-edible oils of minor oilseeds like Karanji oil has been tested as a diesel fuel extender. The problems have been mitigated by developing vegetable oil derivatives that approximate the properties and performance and make them compatible with the hydrocarbon-based diesel fuels through the pyrolysis, micro emulsification, dilution and transesterification. The various fuel blends of karanji oil were tested on different engine loads to evaluate it smoke density.

  7. Optimization of an analytical methodology for the determination of alkyl- and methoxy-phenolic compounds by HS-SPME in biomass smoke

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Francisco J.; Afonso, Ana M.; Gonzalez, Venerando; Ayala, Juan H. [University of La Laguna, Campus de Anchieta, Department of Analytical Chemistry, Nutrition and Food Science, La Laguna (Spain)

    2006-08-15

    A sampling and analysis method for the determination of 21 phenolic compounds in smoke samples from biomass combustion has been developed. The smoke is used to make smoked foods, following an artisanal procedure used in some parts of the Canary Islands. The sampling system consists of a Bravo H air sampler, two impingers, each one containing an aqueous solution of sodium hydroxide 0.1 mol L{sup -1}, followed by a silica gel trap. The variables optimized to reach the best sampling conditions were volume of absorbent solution and sampling flow. Under the optimum conditions, 100 mL of absorbent solution of NaOH 0.10 mol L{sup -1} and 2 L min{sup -1} for the sampling flow, sampling efficiencies are higher than 80%. Analysis of phenolic compounds was carried out by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Five different fiber coatings were employed in this study. By means of a central composite design, extraction time, salt concentration, and pH of the solution were optimized: 65-{mu}m carbowax-divinylbenzene, extraction time 90 min, concentration in NaCl of 35% (m/v), and pH 2 yielded the highest response. Detection limits of phenol and their alkyl derivatives, guaiacol and eugenol, are between 1.13 and 4.60 ng mL{sup -1}. 3-Methoxyphenol, 2,6-dimethoxyphenol, and vanillin have detection limits considerably higher. Good linearity (R {sup 2}{>=}0.98) was observed for all calibration curves in the established ranges. The reproducibility of the method (RSD, relative standard deviation) was found to oscillate between 7 and 18% (generally close or lower than 10%). (orig.)

  8. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1993-12-01

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

  9. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z. A.

    2016-06-01

    This work deals with conversion of naphthalene (C10H8) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  10. NO formation during oxy-fuel combustion of coal and biomass chars

    DEFF Research Database (Denmark)

    Zhao, Ke; Jensen, Anker Degn; Glarborg, Peter

    2014-01-01

    pronounced at 850 °C than at 1050-1150 °C. The present work indicates that the effect of CO2 on NO formation in oxy-fuel combustion in fluidized beds can partly be attributed to heterogeneous reactions, whereas for high-temperature pulverized fuel combustion, CO2 mainly affects the volatile chemistry. © 2014......The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char...... preparation, the chars were generated by in situ pyrolysis at the reaction temperature. The NO yield clearly decreased and the CO yield increased when the atmosphere was altered from O2/N 2 to O2/CO2 at 850 °C, but only small differences in NO and CO yields were observed between the two atmospheres at 1050...

  11. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  12. Indoor pollution from solid biomass fuel and rural health damage: A micro-environmental study in rural area of Burdwan, West Bengal

    OpenAIRE

    Deep Chakraborty; Naba Kumar Mondal; Jayanta Kumar Datta

    2014-01-01

    Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. In this study, we assessed the effect of exposure to biomass smoke on various health status including blood pressure, gaseous component and ventilation pattern of kitchen and living room. For this investigation, a number of measurements were done to obtain indoor air quality (IAQ) data (indoor humidity, temperature, CO, CO2 and O...

  13. Techno-economic evaluation of alternative process configurations for the production of biomass-to-liquid (BTL) fuels and chemicals; Techno-oekonomische Bewertung alternativer Verfahrenskonfigurationen zur Herstellung von Biomass-to-Liquid (BtL) Kraftstoffen und Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Trippe, Frederik

    2013-11-01

    The aim of the present work is to identify, from a technical and economic point of view promising procedural configurations of a biomass-to-liquid (BTL) concept for the production of fuels and chemicals from biomass and to evaluate. The example of the process bioliq a techno-economic assessment model is developed, the process design parameters directly linked to their economic impact.

  14. Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: Promotion of hot-electron

    International Nuclear Information System (INIS)

    Highlights: • A novel reformer with porous ceramic tube circled by electric wire was designed. • The temperature uniformities along diameter and axial direction were measured. • The auto-thermal reforming of model and real biomass fuel gas was performed. • The hot electron promoted biomass fuel gas elimination mechanism was proposed. - Abstract: A novel reformer with porous ceramic oxygen distribution tube circled by electric wire for inspiring hot electron was designed for auto-thermal reforming of biomass raw fuel gas to produce syngas (H2 + CO). The temperature of auto-thermal reformer was nearly uniform due to the excellent performance of partial oxygenation reaction in the reformer with porous ceramic tube for oxygen partitioning. The hot-electron inspired by electric wire promoted the cracking of biomass tar to form radical species, which were converted effectively to syngas over nickel based catalyst. The hot-electron also played an essential role in decreasing coke deposition on the surface of nickel based catalyst, which prolonged the lifetime of the reforming catalyst

  15. Health effects of biomass exposure

    International Nuclear Information System (INIS)

    Biomass fuels such as coal, wood, crop residues, kerosene oil and dung-cakes meet the energy needs in the household sector in India and other developing countries. Crop residues and dung-cakes are largely used in rural areas, whereas wood forms the major source of fuel in urban as well as rural areas. Combustion of these fuels produces various kinds of poisonous gases such as CO, smoke, nitrogen dioxide, polycyclic aromatic hydrocarbons and respirable particulates. These gases are released in the domestic environment and they pollute the indoor air. The women and children are the one who suffer most from this air pollution. This results into a variety of health problems principally pertaining to respiratory system among the women and children. Studies on this aspect are reviewed. They point towards the positive relationship between biomass smoke and various health effects, particularly respiratory diseases. Need for research on the ways to prevent pollution due to biomass and resultant health hazards is emphasised. (M.G.B.). 25 refs., 2 tabs

  16. Chemical characterization of biomass burning deposits from cooking stoves in Bangladesh

    International Nuclear Information System (INIS)

    Biomass burning smoke deposits were characterized from cooking stoves in Brahmondi, Narsingdi, Bangladesh. Arjun, bamboo, coconut, madhabilata, mahogany, mango, rice husk coil, plum and mixed dried leaves were used as biomasses. Smoke deposits were collected from the ceiling (above the stove) of the kitchen on aluminum foil. Deposits samples were analyzed with X-ray fluorescence (XRF) spectroscopy for trace elements determination. UV–visible spectrophotometer was used for ions analysis. The surface morphology of the smoke deposits was studied with scanning electron microscope (SEM). Elevated concentrations of the trace elements were observed, especially for toxic metals (Pb, Co, Cu). The highest concentration of lead was observed in rice husk coil among the determined biomasses followed by mahogany and arjun, whereas the lowest concentration was observed in bamboo. Potassium has the highest concentration among the determined trace elements followed by calcium, iron and titanium. Trace elements such as potassium, calcium, iron showed significant variation among different biomass burning smoke deposits. The average concentrations of sulfate, nitrate, and phosphate were 38.0, 0.60, 0.73 mg kg−1, respectively. The surface morphology was almost similar for these biomass burning deposit samples. The Southeast Asian biomass burning smoke deposits had distinct behavior from European and USA wood fuels combustion. -- Highlights: •Elevated concentrations of trace elements were observed in biomass burning deposits. •Very high concentration of lead was observed in biomasses burring deposits •Elevated toxic trace elements concentrations in kitchens need further surveillance

  17. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes......, enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology....

  18. Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agro biomass; Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit

    Energy Technology Data Exchange (ETDEWEB)

    Tuula Maekinen, T.; Soimakallio, S.; Paappanen, T. [VTT, Espoo (Finland); Pahkala, K. [MTT Agrifood Research Finland, Jokioinen (Finland); Mikkola, H. [MTT, Agrifood Research Finland, Vihti (Finland)

    2006-12-19

    The aim of the project was to assess greenhouse gas balances and greenhouse gas reduction costs for biomass-based fuels used in transportation and combined heat and power production (CHP). New business opportunities were identified, and business plans for commercialisation of the most cost-effective technologies through research, development and demonstration were presented. Both the commercial technologies and the technologies under development were assessed. The main options were barley-based ethanol, biodiesel (RME), forest residue and reed canary grass-derived synthetic fuels, and forestry residues and reed canary grass as a fuel for CHP production. The whole utilisation chain from the fuel production to the end se was evaluated. The results indicated that e.g. the production and use of barley- based ethanol or rape seed-based biodiesel does not necessarily reduce greenhouse gas emissions, but can on the contrary increase the greenhouse gas emissions compared to fossil-based reference fuels. However, absolute emissions can be reduced by optimising cultivation and production chains, e.g. by utilisation straw in energy production. The second generation biofuels produced using forestry residues or reed canary grass as a raw material seems to be significantly more favourable in reducing greenhouse gases cost- effectively. (orig.)

  19. Evaluating energy efficiency and emissions of charred biomass used as a fuel for household cooking in rural Kenya

    OpenAIRE

    Achour, Nemer

    2015-01-01

    In sub-Saharan Africa a large share of the energy use utilize biomass as a fuel. In some countries more than 90 percent of the energy use is biomass. This energy is primarily used for cooking, heating and drying. Cooking food on an open fire or using a traditional stove will combust the firewood inefficiently and leads to pollution in the form of particulate matter, carbon monoxide and other hazardous pollutants. Indoor pollution has serious health effects and especially women and children ar...

  20. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  1. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Laurence; Gassner, Martin; Marechal, Francois [Industrial Energy Systems Laboratory, Ecole Polytechnique Federale de Lausanne, Station postale 9, CH-1015 Lausanne (Switzerland)

    2010-12-15

    A detailed thermo-economic model combining thermodynamics with economic analysis and considering different technological alternatives for the thermochemical production of liquid fuels from lignocellulosic biomass is presented. Energetic and economic models for the production of Fischer-Tropsch fuel (FT), methanol (MeOH) and dimethyl ether (DME) by means of biomass drying with steam or flue gas, directly or indirectly heated fluidized bed or entrained flow gasification, hot or cold gas cleaning, fuel synthesis and upgrading are reviewed and developed. The process is integrated and the optimal utility system is computed. The competitiveness of the different process options is compared systematically with regard to energetic, economic and environmental considerations. At several examples, it is highlighted that process integration is a key element that allows for considerably increasing the performance by optimal utility integration and energy conversion. The performance computations of some exemplary technology scenarios of integrated plants yield overall energy efficiencies of 59.8% (crude FT-fuel), 52.5% (MeOH) and 53.5% (DME), and production costs of 89, 128 and 113 EURMWh{sup -1} on fuel basis. The applied process design approach allows to evaluate the economic competitiveness compared to fossil fuels, to study the influence of the biomass and electricity price and to project for different plant capacities. Process integration reveals in particular potential energy savings and waste heat valorization. Based on this work, the most promising options for the polygeneration of fuel, power and heat will be determined in a future thermo-economic optimization. (author)

  2. Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels

    Science.gov (United States)

    Huang, Wei; Baumgartner, Jill; Zhang, Yuanxun; Wang, Yuqin; Schauer, James J.

    2015-03-01

    Particulate matter (PM) from different sources may differentially affect human health. Few studies have assessed the main sources of personal exposure to PM and their contributions among residents of developing countries, where pollution sources differ from those in higher-income settings. 116 daily (24-h) personal PM2.5 exposure samples were collected among 81 women cooking with biomass fuels in two villages in rural Yunnan, China. The PM samples were analyzed for mass and chemical composition, including water-soluble organic carbon (WSOC), black carbon (BC), and molecular markers. We found black carbon, n-alkanes and levoglucosan dominated the most abundant fractions of the total measured species and average personal PM2.5 exposure was higher in winter than that in summer in both villages. The composition data were then analyzed using a positive matrix factorization (PMF) receptor model to identify the main PM emission sources contributing to women's exposures and to assess their spatial (between villages) and seasonal variation in our study setting. The 6-factor solution provided reasonably stable profiles and was selected for further analysis. Our results show that rural Chinese women cooking with biomass fuels are exposed to a variety of sources. The identified factors include wood combustion (41.1%), a cooking source (35.6%), a mobile source (12.6%), plant waxes (6.7%), pyrolysis combustion (3.0%), and secondary organic aerosols (SOA; 1.0%). The mean source contributions of the mobile source, cooking source, and wood combustion factor to PM2.5 exposure were significantly different between women living in the two study villages, whereas the mean SOA, wood combustion, and plant waxes factors differed seasonally. There was no relationship between source contributions and questionnaire-based measurements of source-specific exposures, implying that the impacts of source contributions on exposure are affected by complex spatial, temporal and behavioral patterns

  3. Optimizing diesel combustion behaviour with tailor-made fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Florian; Heuser, Benedikt [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Klankermayer, Juergen [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie; Pischinger, Stefan

    2013-06-01

    Modem biofuels offer a vast potential to decrease engine out emissions while at the same time allowing a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence ''Tailor-Made Fuels from Biomass'' was installed at RWTH Aachen University. Since the start of the work in the cluster a whole variety of possible fuel candidates were identified and investigated, eventually leading to the definition of 2-methyltetrahydrofurane (2-MTHF) as a tailor-made biofuel for passenger car diesel engines. With 2-MTHF, a nearly soot-free combustion can be realized. This soot-free combustion behavior can partially be explained by the low self-ignition tendency and the therefore observed long ignition delays. Hereby, a good mixture preparation can be realized. This long ignition delay also results in high HC- and CO emissions, though, which are partially accompanied by increased noise emissions. In this work, the addition of di-n-butylether (DNBE) to 2-MTHF to reduce the described disadvantages will be analyzed. DNBE, a fuel that can be obtained via a reaction pathway defined in TMFB, is characterized by an extremely high Cetane number (CN- 100) and therefore very high self-ignitability. The effects of different mixtures of DNBE and 2-MTHF from 0% to 100% especially on the HC- and CO- and noise emissions will be carefully analyzed. In addition, the overall emission performance will be compared to standard EN590 Diesel as reference fuel. The results show that an adapted addition of DNBE to 2-MTHF can lead to a significant reduction of HC-, CO- and noise emissions while not sacrificing the benefits gained from the 2-MTHF's long ignition delays with regard to the particulate emissions. It can be proven that the use of two tailored biofuels with different self-ignitability such as 2-MTHF and DNBE allows to tailor the

  4. Ash chemistry and fuel design focusing on combustion of phosphorus-rich biomass

    OpenAIRE

    Skoglund, Nils

    2014-01-01

    Biomass is increasingly used as a feedstock in global energy production. This may present operational challenges in energy conversion processes which are related to the inorganic content of these biomasses. As a larger variety of biomass is used the need for a basic understanding of ash transformation reactions becomes increasingly important. This is not only to reduce operational problems but also to facilitate the use of ash as a nutrient source for new biomass production. Ash transformatio...

  5. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used

  6. Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler

    International Nuclear Information System (INIS)

    Highlights: • Physical parameters of the eight biomass fuels examined were all different. • Significant differences were found in Proximate, Ultimate and TGA results. • Energy outputs were not proportionate to dry matter energy content. • Highest flue ash production from fuels with highest fines content. • Flue gas emissions varied significantly, NOx levels correlated with fuel N content. - Abstract: This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (p < 0.05) were found in most of the raw fuel parameters examined using particle distribution, Thermogravimetric, Ultimate and Proximate analysis. Combustion tests in a 120 kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler

  7. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  8. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  9. Analysis of Indirectly Fired Gas Turbine for Wet Biomass Fuels Based on commercial micro gas turbine data

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2002-01-01

    The results of a study of a novel gas turbine configuration is being presented. In this power plant, an Indirectly Fired Gas Turbine (IFGT), is being fueled with very wet biomass. The exhaust gas is being used to dry the biomass, but instead of striving to recover as much as possible of the thermal...... turbines. The study shows that the novel configuration, in which an IFGT and a drying unit have been combined, has considerable merit, in that its performance exceeds that of the currently available methods converting wet biomass to electric power by a factor of five. The configuration also has clear...... energy, which has been the practice up to now, the low temperature exhaust gases after having served as drying agent, are lead out into the environment; a simple change of process integration that has a profound effect on the performance. Four different cycles have been studied. These are the Simple IFGT...

  10. Optimization of radial systems with biomass fueled gas engine from a metaheuristic and probabilistic point of view

    International Nuclear Information System (INIS)

    Highlights: ► Loads and distributed generation production are modeled as random variables. ► Distribution system with biomass fueled gas engines. ► Random nature of lower heat value of biomass and load. ► The Cornish–Fisher expansion is used for approximating quantiles of a random variable. ► Computational cost is low enough than that required for Monte Carlo simulation. - Abstract: This paper shows that the technical constraints must be considered in radial distribution networks, where the voltage regulation is one of the primary problems to be dealt in distributed generation systems based on biomass fueled engine. Loads and distributed generation production are modeled as random variables. Results prove that the proposed method can be applied for the keeping of voltages within desired limits at all load buses of a distribution system with biomass fueled gas engines. To evaluate the performance of this distribution system, this paper has developed a probabilistic model that takes into account the random nature of lower heat value of biomass and load. The Cornish–Fisher expansion is used for approximating quantiles of a random variable. This work introduces a hybrid method that utilizes a new optimization method based on swarm intelligence and probabilistic radial load flow. It is demonstrated the reduction in computation time achieved by the more efficient probabilistic load flow in comparison to Monte Carlo simulation. Acceptable solutions are reached in a smaller number of iterations. Therefore, convergence is more rapidly attained and computational cost is significantly lower than that required for Monte Carlo methods.

  11. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    PM10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM10 concentrations were 1830 and 280 microg/m3 and geometric mean home concentrations were 280 and 440 microg/m3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h-1m-3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  12. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...... University of Denmark. The SOFC converts the syngas more efficiently than the MGT, which is reflected by the energetic electrical efficiency of the gasifier and MGT system in opposition to the gasifier and SOFC configuration – η_el = 28.1% versus η_el = 36.4%. By combining the SOFC and MGT, the unconverted...... syngas from the SOFC is utilised in the MGT to produce more power and the SOFC is pressurised, which improves the efficiency to as much as η_el = 50.3%. Variation of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency...

  13. Emission of pollutants from a biomass stove

    International Nuclear Information System (INIS)

    It is important to know the mechanisms by which biomass combustion in a stove emits pollutants in order that appropriate remedial steps may be taken to protect the environment in general and to safeguard the health requirements of stove users who are predominantly in the Third World. In this paper, the levels of concentration of emissions have been investigated by use of a GC analyzer for CO and UHC, a chemiluminescent analyzer for NOx and a smoke detector for smoke density. The emissions can be categorised into two main groups: unburnt pollutants (CO, UHC, smoke) and oxidized pollutants (NOx, CO2). The former can be avoided by creating conditions in the stove conducive for complete combustion, while the same cannot be apply to NOx emission, since its source is the fuel bound nitrogen. Fuel nitrogen was converted to NO and NO2 with an overall conversion efficiency of 27.1 and 33.2% during charcoal and wood combustion, respectively. Because of the high emission of carbon monoxide, biomass stoves should be used where there is adequate ventilation. The smoke density of 80% during wood combustion, which was twice as high as that measured during charcoal combustion, renders wood fuel unsuitable for use in a stove. (author)

  14. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...

  15. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian;

    2013-01-01

    fuel cells (SOFC). Based on experimental data from a demonstrated 0.6 MWth two-stage gasifier, a model of the gasifier plant was developed and calibrated. Similarly, an SOFC model was developed using published experimental data. Simulation of a 3 MWth plant combining two-stage biomass gasification and...... SOFCs predicted a net electrical efficiency of 44.9% (LHV (lower heating value)) when 1.4 MWe power was produced. The work had significant focus on providing a highly accurate model of the complete plant. A sensitivity analysis revealed that the SOFC operating temperature, SOFC fuel utilization factor...

  16. Biomass co-firing under oxy-fuel conditions: A computational fluid dynamics modelling study and experimental validation

    OpenAIRE

    Álvarez González, Lucía; Yin, C.; Riaza Benito, Juan; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate dep...

  17. A Medium-Scale 50 MW fuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    OpenAIRE

    Ramiar Sadegh-Vaziri; Marko Amovic; Rolf Ljunggren; Klas Engvall

    2015-01-01

    Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MW fuel gasification system. The developed gas cleaning washing process is basically a modificatio...

  18. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation.

    Science.gov (United States)

    Lan, Rong; Tao, Shanwen

    2016-08-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respectively-is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required [Formula: see text] or [Formula: see text] ions for continuous operation. The dissolved [Formula: see text] ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  19. Effect of operating parameters on performance of an integrated biomass gasifier, solid oxide fuel cells and micro gas turbine system

    International Nuclear Information System (INIS)

    An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis. It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1. - Highlights: • One-dimension chemical kinetics model of biomass gasifier has been developed. • Un-reacted char have been predicted along the height of the reduction zone of gasifier. • Effects of process parameters on char flow rate and efficiencies of BG, SOFC and GT system have been examined. • Regarding entire char conversion and acceptable system efficiency, the operating condition has been proposed

  20. Process Integration and Optimization of a Solid Oxide Fuel Cell – Gas Turbine Hybrid Cycle fuelled with Hydrothermally Gasified Waste Biomass

    OpenAIRE

    Facchinetti, Emanuele; Gassner, Martin; D'Amelio, Matilde; Maréchal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio)fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673-773 K, whereas SOFC is characterized by ...

  1. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  2. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    Science.gov (United States)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  3. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass.

    Science.gov (United States)

    Trivedi, Nitin; Baghel, Ravi S; Bothwell, John; Gupta, Vishal; Reddy, C R K; Lali, Arvind M; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  4. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  5. Generation of Solid Recovered Fuel from the Separate Fraction of Pre-composted Materials (Sewage Sludge and Biomass Residues

    Directory of Open Access Journals (Sweden)

    Irina Kliopova

    2013-07-01

    Full Text Available The paper presents results of the research which was done when implementing one stage of the PF7 program project “Polygeneration of energy, fuels, and fertilizers from biomass residues and sewage sludge (ENERCOM” (No TREN/FP7/EN/218916 – the study on peat and / or sawdust substitution potential for the solid recovered fuel (SRF of compost. The compost is produced of pre-treated sewage sludge and biomass residuals in a “Soil-Concept” plant (Luxemburg. During ENERCOM project implementation the laboratory analysis of different compost fractions shows that fraction 10-40 of pre-composted materials can be used for SRF production. The equipment for SRF production in a pellet form was developed in pilot “Soil-Concept”. Pelleting press monitoring was carried out to evaluate real environmental indicators (EI. These EI were used for environmental impact assessment (EIA of generating SRF and its burning for heat energy production. The method of comparison analysis was chosen for the EIA. SRF was compared to the peat fuel and sawdust. Results of technical and environmental evaluations of SRF production and its burning, comparison analysis with peat fuel and sawdust, as well as conclusions and recommendations made are presented.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.4142

  6. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.;

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it does not contribute to CO2 accumulation in the atmosphere. Over the past 10-15 years, heat and electricity production from biomass has increased to almost 7% of all energy supply in the European Union and is...... with ammonia as reductant is the most common method to eliminate NOx from flue gases in stationary sources. Even though biofuels are considered as environmentally benign fuels, the reactions occurring inside the boilers during biomass combustion tend to be more “dirty”. Indeed, traditional V2O5-WO3-Ti...

  7. Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement

    International Nuclear Information System (INIS)

    Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.

  8. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL - PROJECT SUMMARY

    Science.gov (United States)

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  9. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hsien-Ho Lin

    2007-01-01

    Full Text Available BACKGROUND: Tobacco smoking, passive smoking, and indoor air pollution from biomass fuels have been implicated as risk factors for tuberculosis (TB infection, disease, and death. Tobacco smoking and indoor air pollution are persistent or growing exposures in regions where TB poses a major health risk. We undertook a systematic review and meta-analysis to quantitatively assess the association between these exposures and the risk of infection, disease, and death from TB. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis of observational studies reporting effect estimates and 95% confidence intervals on how tobacco smoking, passive smoke exposure, and indoor air pollution are associated with TB. We identified 33 papers on tobacco smoking and TB, five papers on passive smoking and TB, and five on indoor air pollution and TB. We found substantial evidence that tobacco smoking is positively associated with TB, regardless of the specific TB outcomes. Compared with people who do not smoke, smokers have an increased risk of having a positive tuberculin skin test, of having active TB, and of dying from TB. Although we also found evidence that passive smoking and indoor air pollution increased the risk of TB disease, these associations are less strongly supported by the available evidence. CONCLUSIONS: There is consistent evidence that tobacco smoking is associated with an increased risk of TB. The finding that passive smoking and biomass fuel combustion also increase TB risk should be substantiated with larger studies in future. TB control programs might benefit from a focus on interventions aimed at reducing tobacco and indoor air pollution exposures, especially among those at high risk for exposure to TB.

  10. Biotechnology for producing fuels and chemicals from biomass: recommendations for R and D. Volume I. Synopsis and executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R

    1979-12-01

    Areas of research and development judged to be crucial for establishing a biotechnology of biomass processing are identified. Two general avenues are recommended for R and D: (1) in the near term, revival of the older fermentation technology and improvement of processing efficiencies; and (2) in the longer term, the development of novel biotechnological processes, such as for the conversion of lignocellulosic biomass to fuels and chemicals. Recommended R and D ranges from work in moleular genetics to biochemical engineering aspects of plant design. It is recommended that the R and D strategy be designed as an integration of three disciplines: biochemical engineering, microbial genetics, and biochemistry. Applcations of gene-transfer methodology and developments in continuous fermentation should be pursued. Currently, economic incentive for the use of biological conversion processes for producing fuels and chemical feedstocks from biomass is marginal. But as the imported fraction of US oil supply grows and hydrocarbon costs mount, the market is beginning to motivate a quest for substitutes. The commercial potential for biotechnology for establishing a renewable resources chemicals industry appears similar to the potential of the computer and microelectronics field several decades ago.

  11. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    Energy Technology Data Exchange (ETDEWEB)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  12. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Ning; Bai, Yun; Liu, Chen-Guang; Zhao, Xin-Qing; Xu, Jian-Feng; Bai, Feng-Wu

    2014-03-01

    Whereas Saccharomyces cerevisiae uses the Embden-Meyerhof-Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner-Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ∼100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost-effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass. PMID:24357469

  13. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  14. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres

    International Nuclear Information System (INIS)

    The thermal reactivity and kinetics of five coal chars, a biomass char, and two coal/biomass char blends in an oxy-fuel combustion atmosphere (30%O2–70%CO2) were studied using the non-isothermal thermogravimetric method at three heating rates. Fuel chars were obtained by devolatilization in an entrained flow reactor at 1273 K under N2 and CO2 atmospheres. Three nth-order representative gas–solid models – the volumetric model (VM), the grain model (GM) and the random pore model (RPM) – were employed to describe the reactive behaviour of the chars. The RPM model was found to be the best for describing the reactivity of the high rank coal chars, while VM was the model that best described the reactivity of the bituminous coal chars, the biomass char and the coal-biomass blend char. The kinetic parameters of the chars obtained in N2 and CO2 in an oxy-fuel combustion atmosphere with 30% of oxygen were compared, but no relevant differences were observed. The behaviour of the blend of the bituminous coal (90%wt.) and the biomass (10%wt.) chars resembled that of the individual coal concealing the effect of the biomass. Likewise, no interaction was detected between the high rank coal and the biomass chars during oxy-fuel combustion of the blend. -- Highlights: ► Oxy-fuel reactivity and kinetics of coal and coal/biomass blends chars were determined. ► Kinetic parameters were essentially the same under N2 or CO2 devolatilization atmospheres. ► Best model for describing chars reactivity depended on the parent coal rank. ► Random pore model for low rank coal and biomass chars; volumetric model for high rank coal chars.

  15. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, T. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  16. Winter School 2011 of the North Rhine Westphalia Research School "Fuel production based on renewable resources" associated with the Cluster of Excellence "Tailor-Made Fuels from Biomass"

    CERN Document Server

    Pischinger, Stefan; Schröder, Wolfgang

    2015-01-01

    The book reports on the results of the BrenaRo Winterschool 2011, held on November 21-22 in Aachen, Germany. The different chapters cover a number of aspects of the topic of energy generation, with a particular focus on energy generation from biomass. They presents new findings concerning engine development, process engineering, and biological and chemical conversion of biomass to fuels, and highlight the importance of an interdisciplinary approach, combining chemistry, biology and engineering research, to the use of renewable energy sources. All in all, this book provides readers with a snapshot of the state-of-the-art in renewable energy conversion, and gives an overview of the ongoing work in this field in Germany.

  17. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems

    International Nuclear Information System (INIS)

    Gasification as a thermo-chemical process is defined and limited to combustion and pyrolysis. The gasification of biomass is a thermal treatment, which results in a high production of gaseous products and small quantities of char and ash. The solid phase usually presents a carbon content higher than 76%, which makes it possible to use it directly for industrial purposes. The gaseous products can be burned to generate heat or electricity, or they can potentially be used in the synthesis of liquid transportation fuels, H2, or chemicals. On the other hand, the liquid phase can be used as fuel in boilers, gas turbines or diesel engines, both for heat or electric power generation. However, the main purpose of biomass gasification is the production of low- or medium heating value gas which can be used as fuel gas in an internal combustion engine for power production. In addition to limiting applications and often compounding environmental problems, these technologies are an inefficient source of usable energy.

  18. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  19. Fine ash morphology and aerosol formation: A comparison of coal and biomass fuels

    Science.gov (United States)

    Chenevert, Blake Charles

    1998-12-01

    Modeling and experimental methods were used to investigate ash formation mechanisms of four industrially significant high-alkali biomass (sawdust/sanderdust) fuels. Alkali minerals tend to vaporize and recondense to form sub-micron aerosol, which poses health risks and causes special operational problems for industrial combustors. Sawdust/sanderdust was burned in a 15 kW natural gas-fired tunnel furnace. The resulting ash was collected by a water-cooled probe, and size sorted by cascade impaction and Electrical Aerosol Size Analysis. Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy techniques were used to determine morphology and composition by size cut. Three ash modes were present: (1) A residual mode composed primarily of porous calcium structures with a scale length of 8 microns and larger. This mode was likely the result of direct oxide and carbonate formation. (2) A secondary residual mode near 2 microns composed of fluxed and fragmented calcium, but also containing significant amounts of Si, Fe, Mn and Al. This mode appeared to be composed of eutectic melts separated from the parent ash particle. (3) An aerosol mode composed of Na and K with Cl anion, or sulfate anion when Cl was not present. The aerosol mode diameter was found to be a function of initial nucleate number density and coagulation time. Long coagulation time or high initial number density resulted in an aerosol mode diameter near 0.1 micron. Modeling was composed of three elements: (1) Equilibrium modeling---These calculations validated experimental evidence for alkali vaporization and condensation, predicting all alkali to enter the vapor phase as NaCl or KCl when Cl is available, or NaOH and KOH otherwise. (2) Condensation modeling---This model was used to determine the partitioning of alkali metal between homogeneous particulate matter formation (self-nucleation) and deposition on existing residual particles. It was shown that vaporized alkali can be collected on the

  20. Lignocellulosic Biomass Pretreatment: A Key to Its Successful Bioconversion to Fuel Ethanol

    Science.gov (United States)

    Native lignocellulosic biomass is very resistant to degradation by enzymes. Prior pretreatment is essential for efficient conversion of lignocellulosic feedstock to ethanol. In this presentation, various pretreatment options such as dilute acid, alkali, alkaline peroxide, wet oxidation, steam expl...

  1. A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    Science.gov (United States)

    Lan, Rong; Tao, Shanwen

    2016-01-01

    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required CO32− or CO42− ions for continuous operation. The dissolved O2− ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency. PMID:27540588

  2. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  3. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized...... CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and...

  4. Model performance of a biomass-fueled power station with variable furnace exit gas temperature to control fouling deposition

    Science.gov (United States)

    Yomogida, David Edwin

    A major problem associated with the utilization of any biomass fuel in direct-combustion energy production is fouling (ash deposition on boiler surfaces) and the related issue of slagging, resulting from transformations among the inorganic constituents of the fuel. These deposits reduce heat transfer from the fire- to water-side, reducing power plant efficiency and necessitating the design of more tolerant heat exchange equipment. Wood: currently serves as the major source of fuel in biomass conversion to energy because of its more general availability, and it suffers less from fouling and slagging than many other biomass fuels such as rice straw. To reduce fouling severity, furnace exit gas temperature (FEGT) may be decreased to solidify ash ahead of superheaters and other heat exchanger equipment. Thermal and economic computer models of a direct-combustion Rankine cycle power plant were developed to predict the impact of variable FEGT and overall heat transfer coefficient on power plant efficiency and economy. No attempt was made to model the fire-side processes leading to the formation of fouling deposits. A base case: operational and economic profile of a biomass power plant was established, and models, were executed using these parameters, approximating a power plant efficiency of 19.9% and a cost of electricity (COE) of 0.0636 kWh-1 (including capital costs). If no capital, costs are included, then COE is 0.0205 kWh-1. Sensitivity analyses were performed on power plant efficiency and COE. Changes in FEGT through variable excess air resulted in substantial sensitivity in power plant efficiency (plant efficiency of 21.4% for FEGT of 1030°C (5% excess air) and 18.7% for 924°C (55% excess air)). Plant efficiency was determined to be moderately sensitive to changes in overall heat transfer coefficient on the secondary superheater (18.7% for no heat transfer through secondary superheater and 19.9% for base case heat transfer). Fouling scenarios showed that FEGT

  5. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  6. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  7. One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels

    Science.gov (United States)

    Sen, Ayusman; Yang, Weiran

    2014-03-18

    The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.

  8. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m3 of fermentation broth with an average concentration of 12.5 kg m−3. A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  9. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    International Nuclear Information System (INIS)

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV). -- Highlights: → Combined two-stage gasification, solid oxide fuel cells and gas turbine technology. → Hybrid plant for efficient decentralized power and heat production from biomass. → Through modeling, energy and exergy analyses reveal inefficiencies. → Optimization efforts for increased plant efficiency. → Electrical efficiency reached 58% (LHV) producing 290 kW electricity.

  10. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH4, N2O, NOx, SO2, PM10 and corn-based E10 can has more emissions of CH4, N2O, NOx, SO, PM10.

  11. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    Science.gov (United States)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  12. Ignition and NO Emissions of Coal and Biomass Blends under Different Oxy-fuel Atmospheres

    OpenAIRE

    Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2013-01-01

    The effect of co-firing coal and biomass on the ignition behaviour and NO emissions was evaluated under both air and O2/CO2 (21-35% O2) atmospheres. The results showed a worsening of the ignition properties in the 21%O2/79%CO2 atmosphere in comparison with air. Furthermore, in order to obtain similar or better ignition properties, the oxygen concentration in the O2/CO2 mixture must be 30% or higher. A decrease of the ignition temperature was observed with the addition of biomass in air and ox...

  13. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  14. Exploring the Perspectives of Alternative Fuels Production. Towards alternative fuels with zero, or negative greenhouse gas emissions, considering coal, biomass and carbon capture and storage

    International Nuclear Information System (INIS)

    In this report it is shown that future improvements in the production process of Fischer-Tropsch fuels can reduce costs and produce CO2 neutral gasoline and diesel. Major benefits lie in the improvement of the overall temperature profile of the plant at higher temperatures and carbon capture and storage. Based on literature studies, it was found that future technologies can operate at higher temperatures, and thus a better integration of heating and cooling. It was found that the future model of a CBTL (Coal and Biomass To Liquids) plant can produce liquids at a break-even oil price (BEOP) of 58.60 USD/barrel at 100% coal, with similar greenhouse gas emissions compared to liquids produced by conventional means today. However, once biomass is introduced at a ratio of 33% - 67% biomass, a CBTL plant becomes neutral in terms of GHG emissions. The BEOP for this neutral scenario is 69.60 USD/barrel. Looking at the 100% biomass scenario, the BEOP becomes 82.77 USD/barrel. The greenhouse gas emissions at this point are negative, meaning that more CO2 is captured during the process than is needed to grow biomass. This in effect makes a CBTL plant a carbon sink. By introducing future technologies and improvements, such as membrane technology for CCS (Carbon dioxide Capture and Storage), higher FTS (Fischer-Tropsch Synthesis) catalyst selectivities and an overall better temperature profile, the BEOP for the 100% coal scenario drops from 58.60 to 45.27 USD/barrel. The BEOP for the neutral scenario drops from 69.60 to 57.99 USD/barrel. The BEOP for the 100% biomass scenario drops from 82.77 to 69.07 USD/barrel. For the neutral scenario, the BEOP drops from 69.60 to 57.99 USD/barrel. If one assumes that a BEOP of 60 USD/barrel is economically reasonable, one can calculate the level of a carbon tax, once a carbon tax regime is imposed. For SOTA (state-of-the-art) 100% coal, FS (Future Scenario) 100%, FS 50% coal and FS 33% coal, there is no need for a carbon tax to reach 60 USD

  15. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  16. The opportunities for woody biomass fuels in New Zealand produced in association with land disposal of effluent

    International Nuclear Information System (INIS)

    An assessment of the future New Zealand biomass resource has shown exotic forest arisings could supply 970 GWh/year by the year 2002; wood processing residues 280 GWh/year; and fuelwood plantations 2,060 GWh/year with potential to rise to 10,000 GWh/year by 2012. Currently annual electricity demand is around 30,000 GWh 70% of which is generated by hydro power. A further 25% stems from natural gas, a resource with estimated reserves of only approximately 14 years. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for 4.8--6 c/kWh; from residues for 2.4--4.8 c/kWh; and from plantations for 4.8--7.2 c/kWh. For comparison the current retail electricity price is around 4--5.5 c/kWh and estimates for wind power generation range from 5--10 c/kWh. Future hydro-power schemes will generate power between 4--9 c/kWh depending on site suitability. The link between land disposal of effluent and short rotation coppice production can reduce the biomass costs. A meatworks processing 1.6 million sheep annually has planted 90 ha in trees for flood irrigation of effluent and biomass fuel production for use on site. Similar schemes linking sewage disposal with wood-fired power generation are under evaluation

  17. Use of California biomass in the production of transportation-fuel oxygenates: Estimates for reduction in CO2 emissions and greenhouse gas potential on a life cycle basis

    International Nuclear Information System (INIS)

    A set of environmental flows associated with two disposal options for thee types of California biomass - forest biomass, rice straw, chaparral - over their life cycles were studied, the emphasis being on energy consumption and greenhouse gas emissions. The two options studied were: producing ethyl-tertiary-butyl ether (ETBE) from biomass and biomass burning, and producing methyl-tertiary-butyl ether (MTBE) from natural gas. Results showed a lower (by 40 to 50 per cent) greenhouse effect impact, lower net values for carbon dioxide and fossil fuel energy consumption, and higher net values for renewable energy consumption for the ETBE option. Based on these results, the deployment of the biomass-to-ethanol ETBE option is recommended as the one that contributes most to the reduction of GHG emissions. 12 refs., 2 tabs., 5 figs

  18. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, Februray 1, 1980-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.

    1980-01-01

    The project will result in two distinct products: (1) a biomass allocation model which will serve as a tool for the energy planner. (2) the experimental data is being generated to help compare and contrast the behavior of a large number of biomass material in thermochemical environments. Based on information in the literature, values have been developed for regional biomass costs and availabilities and for fuel costs and demands. This data is now stored in data banks and may be updated as better data become available. Seventeen biomass materials have been run on the small TGA and the results partially analyzed. Ash analysis has been performed on 60 biomass materials. The Effluent Gas Analyzer with its associated gas chromatographs has been made operational and some runs have been carried out. Using a computerized program for developing product costs, parametric studies on all but 1 of the 14 process configurations being considered have been performed. Background economic data for all the configuration have been developed. Models to simulate biomass gasifications in an entrained and fixed bed have been developed using models previously used for coal gasification. Runs have been carried out in the fluidized and fixed bed reactor modes using a variety of biomass materials in atmospheres of steam, O/sub 2/ and air. Check aout of the system continues using fabricated manufacturing cost and efficiency data. A users manual has been written.

  19. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  20. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    OpenAIRE

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.; Kustov, Arkadii

    2006-01-01

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it does not contribute to CO2 accumulation in the atmosphere. Over the past 10-15 years, heat and electricity production from biomass has increased to almost 7% of all energy supply in the European Union and is expected to increase further. The by far most efficient use of solid bio-resources in energy production is combustion in combined biomass and coal or oil-fired power plants. However, in such applica...

  1. Natural products and altered derivatives as tracers for biomass combustion in aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T. [Oregon State Univ., Corvallis, OR (United States); Radzi bin Abas, M. [Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [California Institute of Technology, Pasadena, CA (United States)] [and others

    1995-12-01

    Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Various molecular markers have been proposed for this process but additional specific tracers are needed. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by pyrolysis. Although the composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. Homologous compounds and biomarkers present in smoke are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers (e.g., lignin, cutin, suberin), wax, gum and resin. The component complexity is illustrated with examples from controlled bums of temperate and tropical biomass fuels. Conifer smoke contains characteristic tracers from diterpenoids as well as phenolics and other oxygenated species. These are recognizable in urban airsheds. The major organic components of smoke from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. Several compounds are potential key indicators for combustion of such biomass. The precursor to product approach of organic geochemistry can be applied successfully to provide molecular tracers for studying smoke plume chemistry and dispersion.

  2. 78 FR 11622 - Request for Proposals: 2013 Hazardous Fuels Woody Biomass Utilization Grant Program

    Science.gov (United States)

    2013-02-19

    ... that target and help remove economic and market barriers to using woody biomass for renewable energy... target market(s), extent of competition for supply and delivered costs and general characterization of... retained on a full-time equivalent basis). Also required in the economic analysis is a market...

  3. Development of processes and equipment for manufacture of fuel briquettes from the biomass

    OpenAIRE

    Трошин, Алексей Григорьевич; Моисеев, Виктор Фёдорович; Тельнов, Иван Алексеевич; Завинский, Сергей Иванович

    2010-01-01

    In the article the production of solid biofuel by briquetting of biomass waste is considered. The general analysis of the production technology of briquettes is carried out, its basic problem stages are revealed, and also the comparative analysis of the existing equipment is carried out.

  4. Quitting Smoking

    Medline Plus

    Full Text Available ... never smoked. If you quit smoking, you greatly reduce your risk, even if you have smoked for ... even a senior citizen is that when they reduce the carbon monoxide that comes with smoking, they ...

  5. Secondhand Smoke

    Science.gov (United States)

    ... Stress & Smoking Causes of Stress Quiz: What's Your Stress Level? Smoking & Depression Understanding Depression Quiz: Are You Depressed? Coping With ... Stress & Smoking Causes of Stress Quiz: What's Your Stress Level? Smoking & Depression Understanding Depression Quiz: Are You Depressed? Coping With ...

  6. Quit Smoking

    Science.gov (United States)

    ... Quit Smoking Print This Topic En español Quit Smoking Browse Sections The Basics Overview Secondhand Smoke How ... with It The Basics The Basics: Overview Quitting smoking is one of the most important things you ...

  7. Quitting Smoking

    Medline Plus

    Full Text Available ... the link between cancer and smoking. If you smoke, you are at much higher risk for lung ... life can also be affected by second-hand smoke, the smoke that non-smokers are exposed to ...

  8. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres

    OpenAIRE

    Gil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2012-01-01

    The thermal reactivity and kinetics of five coal chars, a biomass char, and two coal/biomass char blends in an oxy-fuel combustion atmosphere (30%O2–70%CO2) were studied using the non-isothermal thermogravimetric method at three heating rates. Fuel chars were obtained by devolatilization in an entrained flow reactor at 1273 K under N2 and CO2 atmospheres. Three nth-order representative gas–solid models – the volumetric model (VM), the grain model (GM) and the random pore model (RPM) – were em...

  9. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  10. Effect of phosphorus addition in combustion of biomass fuels; Effekter av fosfortillsats vid foerbraenning av biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Alejandro; Skoglund, Nils; Eriksson, Gunnar; Bostroem, Dan; Oehman, Marcus

    2010-11-15

    The results from this project show that phosphorous-rich additives could be of interest to reduce fouling and high temperature corrosion without causing increase in slagging and/or bed agglomeration tendency for typical biofuels. General results in this series of experiments show that in order to achieve a good potassium-binding effect the calcium and magnesium content should be low in the phosphorous-rich fuel and additive. If the content of Ca and Mg is high in the final fuel mixture (including both P-fuel/additive and the bulk fuel) the K-binding effect is reduced and more P needs to be added. Of course, this also means that the additive of choice (fuel or chemical) should have a low content of calcium and magnesium. It is therefore probable that the best results will be obtained when using a fuel mix where the final blend has a molar ratio of P/(K+Na+2/3Ca+2/3Mg) approaching 1. For instance, using monoammonium phosphate, this would be equivalent to a cost (autumn 2009) of about 9-14, 10-15 and 30-40 SEK in P-additive cost per MWh of added fuel to achieve this molar ratio for typical logging residue, salix and wheat straw biofuels.

  11. Production of biomass in wet peatlands (paludiculture). The EU-AID project 'Wetland energy' in Belarus. Solutions for the substitution of fossil fuels (peat briquettes) by biomass from wet peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Wichtmann, Wendelin [Michael Succow Stiftung fuer den Schutz der Natur, Greifswald (Germany); Haberl, Andreas; Tanneberger, Franziska

    2012-07-01

    In Belarus, a pilot project demonstrating site adapted management of wet peatlands for biomass production have started recently. In cooperation with local stakeholders, the currently environmentally unfriendly peat extraction for energy will be converted into a sustainable land use system. By replacing the peat briquettes with locally produced briquettes using biomass from rewetted peatlands the income situation of remote and rural areas will be improved. In various combustion trials of peatland biomass in Germany and Belarus the suitability of the material for energy production has been demonstrated. The EU-Aid funded project in Belarus is realized by the Michael Succow Foundation in cooperation with the International Sacharov Environmental University (ISEU) and the Institute for Nature Management of the National Academy of Sciences (IfNM). Applied, site-specific management concepts, employing site adapted machinery for reed and sedge vegetation on wet peatlands will not only result in avoidance of environmentally harmful peat extraction, but also in benefits for distinctive biodiversity. This site adapted peatlands management (paludiculture) comprises the reduction of greenhousegas (GHG) emissions by rewetting of drained peatlands and by the replacement of fossil fuels by biomass from these sites. Under favourable conditions additionally CO{sub 2} sequestration by new peat formation reestablished. The biomass will be harvested with site adapted machinery and processed to fuel briquettes. (orig.)

  12. Mapping Fire Fuels Through Detection of Canopy Biomass Loading In Juniper, Sagebrush, and Gambel Oak Communities

    OpenAIRE

    Hammond, Sean LaRoy

    2012-01-01

    Every year, millions of acres of forest and rangeland are burned in prescribed burns as well as wildfires. The costs associated with wildfires may be some of the largest we face as a society both in material goods and in life. The importance of managing fire fuels has increased with the development of the wildland-urban interface. With this increased emphasis has come the development of tools to assess, map, and simulate fuel maps at a landscape level. These fuel maps are then input into comp...

  13. Changes in RANKL and osteoprotegerin expression after chronic exposure to indoor air pollution as a result of cooking with biomass fuel.

    Science.gov (United States)

    Saha, Hirak; Mukherjee, Bidisha; Bindhani, Banani; Ray, Manas Ranjan

    2016-07-01

    The impact of indoor air pollution as a result of cooking with unprocessed biomass on membrane-bound and serum receptor activator of nuclear factor-kappa ligand 1 (RANKL), its soluble decoy receptor osteoprotegerin (OPG) and osteoclast precursor CD14(+) CD16(+) monocytes was investigated. Seventy-four pre-menopausal women from eastern India using biomass and 65 control women who cooked with cleaner liquefied petroleum gas were enrolled. PM10 and PM2.5 levels in their indoor air were measured with real-time aerosol monitors. The levels of membrane-bound RANKL on leukocytes and percentage CD14(+) CD16(+) monocytes in the subjects' blood were assayed by flow cytometry. Soluble RANKL and OPG in serum were measured by ELISA. The results showed that PM10 and PM2.5 levels were significantly higher in the indoor air of biomass-using households. Compared with the control women, the levels of CD4(+) and CD19(+) lymphocytes and circulating granulocytes with elevated levels of membrane-bound RANKL were higher in biomass users. The serum levels of RANKL were increased by 41% whereas serum OPG was reduced by 22% among biomass users. The absolute number of CD14(+) CD16(+) monocytes was significantly increased in biomass users than the control women. After controlling for potential confounders, PM10 and PM2.5 levels were found to be positively associated with leukocyte and serum RANKL and CD14(+) CD16(+) monocyte levels, but negatively with serum OPG. From these results, we can conclude that chronic exposure to biomass smoke increased membrane-bound and soluble RANKL and circulating osteoclast precursors but decreased OPG, suggesting an increased risk of bone resorption and consequent osteoporosis in biomass-exposed women of a child-bearing age. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26691826

  14. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  15. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  16. Biomass gasification and fuel cells: system with PEM fuel cell; Gaseificacao de biomassa e celula a combustivel: sistema com celula tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, Alexandre; Lobkov, Dmitri D.; Lopes, Daniel Gabriel; Rodrigues, Jean Robert Pereira [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica], e-mail: asordi@fem.unicamp.br, e-mail: lobkov@fem.unicamp.br, e-mail: danielg@fem.unicamp.br, e-mail: jrobert@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin], e-mail: Lh2ennio@ifi.unicamp.br

    2006-07-01

    The objective of this paper is to present the operation flow diagram of an electricity generation system based on the biomass integrated gasification fuel cell of the type PEMFC (Proton Exchange Membrane Fuel Cell). The integration between the gasification and a fuel cell of this type consists of the gas methane (CH4) reforming contained in the synthesis gas, the conversion of the carbon monoxide (CO), and the cleaning of the gaseous flow through a PSA (Pressure Swing Adsorption) system. A preliminary analysis was carried out to estimate the efficiency of the system with and without methane gas reforming. The performance was also analyzed for different gasification gas compositions, for larger molar fractions of hydrogen and methane. The system electrical efficiency was 29% respective to the lower heating value of the gasification gas. The larger the molar fraction of hydrogen at the shift reactor exit, the better the PSA exergetic performance. Comparative analysis with small gas turbines exhibited the superiority of the PEMFC system. (author)

  17. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst

    Directory of Open Access Journals (Sweden)

    Yujing Weng

    2015-12-01

    Full Text Available Aromatics and cyclic-hydrocarbons are the significant components of jet fuel with high energy-density. However, conventional technologies for bio-fuel production cannot produce these products without further aromatization and isomerization. In this work, renewable liquid fuel with high content of aromatics and cyclic-hydrocarbons was obtained through aqueous catalytic conversion of biomass sorbitol over Ni-HZSM-5/SBA-15 catalyst. Texture characteristics of the catalyst were determined by physisorption of N2, which indicated its bimodal pore structures were microporous (HZSM-5, pore width: 0.56 nm and mesoporous (SBA-15, pore width: 8 nm. The surface acidity included weak and strong acid sites, predominantly Lewis type, and was further confirmed by the NH3-TPD and Py-IR analysis. The catalytic performances were tested in a fixed-bed reactor under the conditions of 593 K, WHSV of 0.75 h−1, GHSV of 2500 h−1 and 4.0 MPa of hydrogen pressure, whereby oil yield of 40.4 wt. % with aromatics and cyclic-hydrocarbons content of 80.0% was obtained.

  18. Possibilities of graphitic slate utilization for mixed fuel production with biomass addition

    Czech Academy of Sciences Publication Activity Database

    Závada, J.; Nadkanská, H.; Smatanová, N.; Šašek, Petr; Bouchal, T.

    Volume 1, Book 4. Sofie: International Multidisciplinary Scientific GeoConference & EXPO SGEM, 2014, s. 393-400. ISBN 978-619-7105-15-5. ISSN 1314-2704. [International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2014. Albena (BG), 17.06.2014-26.06.2014] R&D Projects: GA MŠk(CZ) LO1219 Keywords : biomass * briquettes * pellets * graphitic slate Subject RIV: DM - Solid Waste and Recycling http://www.sgem.org/sgemlib/spip.php?article4670&lang=en

  19. Thermal plasma gasification of organic waste and biomass for fuel gas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    Patras : University of Patras Plasma Technology Lab, 2008. s. 3-3. ISBN N. [Biennial European Plasma Conference HTTP-10/10th./. 07.07.2008-11.07.2008, Patras] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * biomass * gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Combustion of single biomass particles in air and in oxy-fuel conditions

    OpenAIRE

    Riaza Benito, Juan; Khatami, Reza; Levendis, Yiannis A.; Álvarez González, Lucía; Gil Matellanes, María Victoria

    2014-01-01

    The combustion behaviors of four different pulverized biomasses were evaluated in the laboratory. Single particles of sugarcane bagasse, pine sawdust, torrefied pine sawdust and olive residue were burned in a drop-tube furnace, set at 1400 K, in both air and O2/CO2 atmospheres containing 21, 30, 35, and 50% oxygen mole fractions. High-speed and high-resolution images of single particles were recorded cinematographically and temperature–time histories were obtained pyrometrically. Combustion o...

  1. Biomass and Hydrogen: An Answer to the European Liquid Fuels Crisis in the 21st Century?

    OpenAIRE

    Messenger, M.

    1982-01-01

    The primary objective of this paper is to assess the resource potential and production costs involved in the large-scale collection and transformation of biomass to methanol. The energy collectible from wastes, agricultural energy crops, and wood energy farms is discussed on the basis of climate conditions, expected yields, and delivery costs to plant on national and regional levels. Estimates account for collection, transport, and opportunity costs but neglect potential environmental costs d...

  2. Thermal plasma gasification of organic waste and biomass for fuel gas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    Patras: University of Patras Plasma Technology Lab, 2008. s. 3-3. ISBN N. [Biennial European Plasma Conference HTTP-10/10th./. 07.07.2008-11.07.2008, Patras] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * biomass * gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Awareness of health effects of cooking smoke among women in the Gondar Region of Ethiopia: a pilot survey

    Directory of Open Access Journals (Sweden)

    Silverman M

    2008-07-01

    Full Text Available Abstract Background The burning of biomass fuels results in exposure to high levels of indoor air pollution, with consequent health effects. Possible interventions to reduce the exposure include changing cooking practices and introduction of smoke-free stoves supported by health education. Social, cultural and financial constraints are major challenges to implementation and success of interventions. The objective of this study is to determine awareness of women in Gondar, Ethiopia to the harmful health effects of cooking smoke and to assess their willingness to change cooking practices. Methods We used a single, administered questionnaire which included questions on household circumstances, general health, awareness of health impact of cooking smoke and willingness to change. We interviewed 15 women from each of rural, urban-traditional and middle class backgrounds. Results Eighty percent of rural women cooked indoors using biomass fuel with no ventilation. Rural women reported two to three times more respiratory disease in their children and in themselves compared to the other two groups. Although aware of the negative effect of smoke on their own health, only 20% of participants realised it caused problems in children, and 13% thought it was a cause for concern. Once aware of adverse effects, women were willing to change cooking practices but were unable to afford cleaner fuels or improved stoves. Conclusion Increasing the awareness of the health-effects of indoor biomass cooking smoke may be the first step in implementing a programme to reduce exposure.

  4. Ignition of suspensions of coal and biomass particles in air and oxy-fuel for Carbon Capture and Storage (CCS) and climate change mitigation

    OpenAIRE

    Trabadela Robles, Ignacio

    2015-01-01

    Carbon Capture and Storage (CCS) is a legitimate technology option that should be part of a balanced portfolio of mitigation technologies available Post-Kyoto Protocol framework after Paris 2015 and beyond the 2020s or the cost achieving 2 degrees Celsius stabilisation scenario will significantly increase. Oxy-fuel combustion as a CCS technology option increases fuel flexibility. Additionally, oxy-biomass as a bio-energy with CCS (BECCS) technology can achieve negative carbon d...

  5. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, August 1, 1979-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.C.; Nelson, E.T.; Stringer, R.P.

    1979-01-01

    Market analyses information now stored in the biomass feedstock data base includes for each species: feedstock amount by region and season in tons/year; heating values in Btu/lb for those feedstock for which published data are available, and; feedstock cost in $/mm Btu. Information now stored in the product data base includes for each product: product amount by region in mm Btu/year and product cost in $/mm Btu. Biomass characterization procedures have now been developed and these will be used to characterize approximately 100 biomass species. TGA analyses will be supplemented with a pyrogram and a pyrochromatogram to further characterize each biomass. Tests were run on the PDU in the fluidized bed mode to determine the effects of particle size on reaction time. Thirteen tests were run during this quarter to verify the results from previous testing. The PDU is being modified to accommodate future sustained runs. Allocation modeling program is now functional and being tested as data is provided to the feedstock and product data banks. A mathematical model has been developed by modifying the Texaco Entrained Bed Pilot Plant Gasifier Model to simulate biomass gasification in an Entrained Bed. Results are being evaluated. Models for other reaction modes are being evaluated. A biomass economic program has been developed to provide average product fuel costs using 15 thermochemical processes.

  6. Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations

    International Nuclear Information System (INIS)

    This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The optimum capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230--320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt

  7. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  8. Evaluation of research in plant biomass production for liquid fuel conversion: The case of India, Brazil and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.M. (Univ. of Sussex, Brighton (United Kingdom))

    1992-01-01

    The aims of this study were to identify research activities in the field of plant biomass production for liquid fuel conversion and to evaluate research in areas outside the USA and EEC. Results are presented for three countries: Japan, India and Brazil. Research groups were identified from a range of information sources. Data were collected by interview and related to funding, information access, staffing, publication policy and degree of awareness of other research groups in the field. Bibliometric analysis and peer review were used as indicators in an attempt to assess research output. The findings are discussed in relation to agro-industrial policy in Japan, the use of marginal land in India and the Proalcohol program in Brazil.

  9. Bio-flex obtained from pyrolysis of biomass as fuel; Bio-flex obtido da pirolise de biomassa como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Viltre Rodriguez, Roberto Alfonso; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Samaniego, Manuel Raul Pelaez [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Planejamento de Sistemas Energeticos; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    This paper describes the BIOWARE experience in the bio fuel production from biomass residues. Fast pyrolysis of a mixture of sugar cane trash and elephant grass carried out in a fluidized bed reactor with capacity of 200 kg/h dry feed (12% w/w). The co-products particulate charcoal, acid extract, and bio-oil were obtained. The fast pyrolysis pilot plant PPR-200 belonged to UNICAMP and is operated by BIOWARE personnel. This paper presents the chemical rote to bio-flex production (a kind of bio diesel from acid esterification) from pyrolytic carboxylic acids. Both ethanol and methanol were used as reactant but higher yields were found with methanol. (author)

  10. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. PMID:27393832

  11. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO2 and NOx emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  12. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  13. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    Science.gov (United States)

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  14. Stress analysis of biomass fuel molding machine piston type stamping forming cone

    Directory of Open Access Journals (Sweden)

    Wu Gaofeng

    2015-01-01

    Full Text Available It is established the ram biomass straw machine as the analysis object in this paper,the molding machine cones of stress in the forming process of the analysis of the system. We used pottery instead of Wear-resistant cast iron for improving the performance of forming sleeve. The structure of the forming sleeve was analyzed with the mechanical module of a soft named Pro/engineer in this paper. The result indicated that the program was feasible. With the sensitivity analysis we identified the suitable angle for the sleeve.

  15. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  16. Physical-chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass-fueled electrical production facility.

    Science.gov (United States)

    Cohn, Corey A; Lemieux, Christine L; Long, Alexandra S; Kystol, Jørgen; Vogel, Ulla; White, Paul A; Madsen, Anne Mette

    2011-05-01

    Biomass combustion is used in heating and electric power generation in many areas of the world. Airborne particulate matter (PM) is released when biomass is brought to a facility, stored, and combusted. Occupational exposure to airborne PM within biomass-fueled facilities may lead to health problems. In March and August of 2006, airborne PM was collected from a biomass-fueled facility located in Denmark. In addition, source-specific PM was generated from straw and wood pellets using a rotating drum. The PM was analyzed for polycyclic aromatic hydrocarbons (PAHs), metals, microbial components, mutagenic activity, and ability to generate highly reactive oxygen species (hROS) in cell-free aqueous suspensions. PM collected from the boiler room and the biomass storage hall had higher levels of mutagenic activity, PAHs and metals, and a higher hROS generating potential than the source specific PM. The mutagenic activity was generally more potent without S9 activation, and on the metabolically enhanced strain YG1041, relative to TA98. Significant correlations were found between mutagenicity on YG1041 (without S9) and PAH concentration and mutagenicity on YG1041 (with S9) and hROS generating ability. PM collected in March was more toxic than PM collected in August. Overall, airborne PM collected from the facility, especially that from the boiler room, were more toxic than PM generated from straw and wood chips. The results suggest that exposure to combustion PM in a biomass-fueled facility, which likely includes PM from biomass combustion as well as internal combustion vehicles, may contribute to an elevated risk of adverse health effects. PMID:20872826

  17. Traditional Homegardens and Domestic Biomass Fuel Consumption Pattern in the Developing World: The Case of a South-Central Rural Village of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mukul, S.A. (Dept. of Forestry and Environmental Science, School of Agriculture and Mineral sciences, Shahjalal Univ. of Science and Technology, Sylhet 3114 (Bangladesh)). E-mail: sharif_a_mukul@yahoo.com

    2008-10-15

    Peoples living in most developing countries meet majority of their biomass fuel requirements from the forest. However, this usual practice becomes difficult to maintain as the forest of this region decreases in an alarming rate. In such context, homegardens will have to play the key role in near future where in many forest poor regions it's already playing the vital role. An exploratory study was conducted in a south-central rural village of Bangladesh to realize this potential contribution of homegardens to households domestic biomass fuel supplies, which is as well a virtually forest poor region of the country. Households were grouped into three different land holding categories and a total of thirty respondents, 10 from each category were selected randomly to understand their domestic biomass fuel consumption pattern as well as the role of homegardens to meet this fuel supply. Study suggested that, majority (87%) of the households of the area rely extensively on their homegardens to meet their domestic cooking energy requirements. During the study 47 homestead species were identified having fuel value of which 12 were identified as the most preferred species in the area. The contribution of wood fuel in households domestic energy sharing was reported as 56% followed by dried leaves (21%), dung cake/sticks (14%), crop residues (6%) and others (3%). Study finally concluded for a rich homegarden system in forest near regions to conserve country's remaining forest by providing an alternative source of biomass fuel. A participatory management of governments' fallow and khas lands, public places including road, railway and canal banks for tree farming to benefit rural land-less and marginal people were also recommended

  18. Thermo-economic optimization of a Solid Oxide Fuel Cell – Gas turbine system fuelled with gasified lignocellulosic biomass

    International Nuclear Information System (INIS)

    Highlights: • Biomass gasification combined with SOFC–GT hybrid system was studied. • Syngas hot cleaning unit is used in order to improve the efficiency of the system. • Energy integration in order to recover the maximum heat available inside the process. • Multi-objective optimization maximizing the efficiency and minimizing the capital investment costs. - Abstract: Within the context of sustainable energy supply and CO2 emissions reduction a Solid Oxide Fuel Cell (SOFC) – gas turbine hybrid system, fuelled with gasified woody biomass is studied in detail for small and medium scale applications (100 kWth,BM and 8 MWth,BM of dry biomass input). The system consists of an air dryer unit, a gasifier, a hot cleaning section made of a particulate removal unit (cyclone and candle filter) and a two-stage tar removal unit, a SOFC and a gas turbine with optional CO2 capture. This modern technology has the advantage of using a renewable and CO2-neutral source and to be economically competitive at medium scales. The competitiveness of different process options is systematically compared by applying a coherent approach combining flowsheeting, energy integration and economic evaluation in a multi-objective optimization framework. This analysis reveals the importance of process integration maximizing the heat recovery and valorizing the waste heat, by cogeneration for example. The studied process options include direct and indirect circulating fluidized bed gasifier (using respectively oxygen or steam as gasification agent) and Viking gasifier, atmospheric or pressurized systems and optional pre-reforming in the hot gas cleaning. To close the thermal energy balance, a fraction of the produced syngas can be burnt. The energy integration results reveal that the steam production for the gasification and reforming are key parameters (S/B and S/C ratio) defining the process performance. A multi-objective optimization maximizing the efficiency and minimizing the capital

  19. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  20. Greenhouse gas and energy balances of biomass based transportation fuels in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Soimakallio, S.; Arasto, A. (VTT echnical Research Centre of Finland, Espoo (Finland))

    2007-07-01

    With increasing use of biofuels, sustainable production and utilisation of biofuels is becoming a key concern in the EU and is currently being considered as a possible requirement for the market access of biofuels or for subsidies. The growing production of biofuels may result in several negative impacts, such as environmental and socio economic impacts, changing land use patterns and even an increase of greenhouse gas (GHG) emissions. Energy and greenhouse gas balances of transportation biofuels suitable for a large scale production in Finland have been assessed by VTT Technical Research Centre of Finland and MTT Agrifood Research Finland. The overall auxiliary energy input per the energy content of fuel in biofuel production was 3 to 5 fold compared to that of fossil fuels. The results indicated that GHG emissions from production and use of barley based ethanol or biodiesel from turnip rape are very probably higher compared to emissions from fossil fuels they replace. Second generation biofuels produced from forestry residues or reed canary grass seem to be more favourable in reducing GHG emissions with the costs in the range of 30 100 euro/t CO{sub 2} eq. Significant uncertainties are involved in the results mainly due to the uncertainty in N{sub 2}0 emissions from fertilization, emissions from the production of the electricity consumed, as well as the price of raw material and reference fuels. (orig.)

  1. Biomass-derived Lignin to Jet Fuel Range Hydrocarbons via Aqueous Phase Hydrodeoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang; Ruan, Hao; Pei, Haisheng; Wang, Huamin; Chen, Xiaowen; Tucker, Melvin P.; Cort, John R.; Yang, Bin

    2015-09-14

    A catalytic process, involving the hydrodeoxygenation (HDO) of the dilute alkali extracted corn stover lignin catalysed by noble metal catalyst (Ru/Al2O3) and acidic zeolite (H+-Y), to produce lignin-substructure-based hydrocarbons (C7-C18), primarily C12-C18 cyclic structure hydrocarbons in the jet fuel range, was demonstrated.

  2. Danish Experiences with Deposit Probe Measurements in Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    2012-01-01

    grate- and suspension-firing, it is found that the rates of deposit formation are comparable, while the chemical composition of the fly ashes are quite different, even for the same type of fuel. The flue gas temperature is considered to be an important parameter in the deposit behavior. Increasing the...

  3. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper;

    2003-01-01

    showed that guaiacol formed significant amount of deposits. The structure observed was a lacquer type of deposit. It was determined that there was no distinct deposit formation due to phenol. Experiments were conducted with a 0.48 litre one-cylinder high compression ratio SI engine fueled by synthetic...

  4. COPROCESSING OF FOSSIL FUELS AND BIOMASS FOR CO2 EMISSION REDUCTION IN THE TRANSPORTATION SECTOR

    Science.gov (United States)

    The paper discusses an evaluation of the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat engines (turbines and int...

  5. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    Science.gov (United States)

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  6. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO2eq-reduction compared to the fossil reference fuel (83.8 g CO2eq/MJfuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO2eq-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H2) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H2). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H2-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO2eq-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO2eq-saving is between 72 (H2) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the thermochemical

  7. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    International Nuclear Information System (INIS)

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (th circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel

  8. Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agrobiomass in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Soimakallio, S. (VTT Technical Research Centre of Finland, Espoo (Finland)); Paappanen, T. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)); Pahkala, K. (MTT Agrifood Research Finland, Jokioinen (Finland)), email: katri.pahkala@mtt.fi; Mikkola, H. (MTT Agrifood Research Finland, Jokioinen (Finland))

    2009-07-01

    The aim of the project was to assess energy and greenhouse gas balances as well as greenhouse gas emission reduction costs for biomass-based fuels used in transportation and combined heat and power production (CHP) compared to selected reference fuels. New business opportunities were identified based on the results. Both commercial technologies and technologies under development were assessed. The most suitable large-scale technologies for Finnish conditions were selected for the evaluation. Technologies utilising field crops and forest biomass as raw materials were evaluated. The main options were barley-based ethanol, biodiesel (RME) from turnip rape, forest residue and reed canary grass-derived synthetic fuels. As a comparison, the use of forest residues and reed canary grass as a fuel for CHP production were considered. The whole utilisation chain from fuel production to end-use was evaluated. The overall energy input per output ratio was less than one for all assessed transportation biofuel chains, which means that more energy was produced than consumed. The auxiliary energy consumption per energy content of the fuels was, however, 3 to 5 fold compared to fossil fuel chains. Hence, the consumption of primary energy cannot be reduced by substituting fossil fuels by biofuels. Regardless, the consumption of petroleum based energy can be remarkably reduced as typically only a minor part of energy consumed in biofuel production is based on crude oil. The results indicated that the production and use of barley-based ethanol or biodiesel from turnip rape does not necessarily reduce greenhouse gas emissions, but can on the contrary increase the greenhouse gas emissions compared to fossil-based reference fuels, when the whole production and utilisation chain is considered. Use of fertilizers is significant compared to the energy content of the barley and turnip rape yield in Finland. Production and use of nitrogen fertilizers cause emissions of nitrous oxide, which may

  9. Electricity generation from woody biomass fuels compared with other renewable energy options

    International Nuclear Information System (INIS)

    Currently the annual electricity demand in New Zealand is around 30,000 GWh 70% of which is generated by hydro power. Natural gas, a resource with estimated reserves of approximately 14 years currently supplies 25% of generating capacity. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for (US)4.8-6 c/kWh; from residues for (US)2.4-4.8 c/kWh; and from plantations for (US)4.8-7.2 c/kWh. For comparison, the current retail electricity price is around (US)4-5.5 c/kWh and estimates for wind power generation range from (US)5-10 c/kWh. Future hydro power schemes will generate power between (US)4-9 c/kWh depending on site suitability. (author)

  10. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO2, CH4 and N2O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO2-equivalent has been estimated to be 533019 t y-1. - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  11. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Simoneit, B.R.T. (Oregon State Univ., Corvaleis, OR (United States)); Rogge, W.F.; Cass, G.R. (California Inst. of Technology, Pasadena, CA (United States)); Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Standley, L.J. (Academy of Natural Sciences, Avondale, PA (United States)); Hildemann, L.M. (Stanford Univ., CA (United States))

    1993-11-01

    Biomass smoke aerosols contain thermally unaltered and partially altered biomarker compounds from major vegetation taxa. These compounds range from C[sub 8] to C[sub 31] and include phytosterols, lignans, phenolic products from lignin, and diterpenoids from resins. Certain of the higher molecular weight biomarkers are vaporized from the parent plant material and subsequently condense unaltered into the particle phase. Other compounds undergo pyrolytic alteration and possibly dimerization. In both cases it is possible to assign many of these compounds to the plant taxa of the unburned fuel. The diterpenoids are good indicators for smoke from burning of gymnosperm wood. The relative distribution of the OH/OCH[sub 3] substituent patterns on the phenolic products indicates the plant class of the biomass that was burned. Application of these relationships to the interpretation of ambient smoke aerosols may permit further evaluation of the sources that contribute to regional biomass burning. 80 refs., 5 figs., 1 tab.

  12. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electric......An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  13. Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Thermal characteristics

    International Nuclear Information System (INIS)

    Highlights: • Jetting-fountain fluidized bed enables smooth co-firing of biomass and gaseous fuel. • Applying jetting-fountain configuration dampens greatly freeboard overheating. • Heat gain by bed greatly increases with jetting-fountain configuration. • Increasing gaseous fuel ratio causes more reduction in freeboard overheating. • Heat gain by bed considerably increases with increasing gaseous fuel ratio. - Abstract: Experimental study on co-combustion of rice straw and natural gas has been performed in a fluidized bed. The used combustor allows the novel, jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jetting-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The experiments show that smooth combustion of natural gas with rice straw can be performed in the jetting-fountain fluidized bed avoiding acoustic effects and explosions of burning bubbles that occurs in conventional operation. The jetting-fountain fluidized bed is shown to dampen greatly the freeboard overheating at particularly lower bed temperatures. This is because the fountain-particles absorb a great part of heat released in the freeboard and recover it back to the bed. It is confirmed by measuring the in-bed cooling load that was found to increase considerably at lower bed temperatures. The natural gas contribution is found to play a major role when applying the jetting-fountain configuration. Increasing the natural gas contribution enlarges the fountain zone that causes greater reduction in the freeboard overheating and recovers more heat back to the bed. Measuring the in-bed cooling also approves the later conclusion

  14. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    OpenAIRE

    Kluska Jacek; Klein Marek; Kazimierski Paweł; Kardaś Dariusz

    2014-01-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectromet...

  15. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Leppaemaeki, E.; Koponen, P.; Levander, J.; Tapola, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The main purpose of the study was to test the applicability of standard fuel oil methods developed for petroleum-based fuels to pyrolysis liquids. In addition, research on sampling, homogeneity, stability, miscibility and corrosivity was carried out. The standard methods have been tested for several different pyrolysis liquids. Recommendations on sampling, sample size and small modifications of standard methods are presented. In general, most of the methods can be used as such but the accuracy of the analysis can be improved by minor modifications. Fuel oil analyses not suitable for pyrolysis liquids have been identified. Homogeneity of the liquids is the most critical factor in accurate analysis. The presence of air bubbles may disturb in several analyses. Sample preheating and prefiltration should be avoided when possible. The former may cause changes in the composition and structure of the pyrolysis liquid. The latter may remove part of organic material with particles. The size of the sample should be determined on the basis of the homogeneity and the water content of the liquid. The basic analyses of the Technical Research Centre of Finland (VTT) include water, pH, solids, ash, Conradson carbon residue, heating value, CHN, density, viscosity, pourpoint, flash point, and stability. Additional analyses are carried out when needed. (orig.) 53 refs.

  16. Quitting Smoking

    Science.gov (United States)

    ... quality of life can also be affected by second-hand smoke, the smoke that non-smokers are exposed ... can tell me what's the worst thing about second-hand smoke? Boy: Well, it makes me cough and ...

  17. Quitting Smoking

    Medline Plus

    Full Text Available ... Cigarette smoking is the number one cause of lung cancer. Since the 1960s, scientists have reported on the ... smoke, you are at much higher risk for lung cancer than a person who has never smoked. If ...

  18. Secondhand Smoke

    Science.gov (United States)

    ... smoke-free. Some businesses might be afraid to ban smoking, but there’s no strong evidence that going ... Some states and cities even have laws that ban smoking in the car if carrying passengers under ...

  19. Quitting Smoking

    Medline Plus

    Full Text Available ... over 50 to help them quit smoking. I mean, one of the key areas that we try ... not smoke in rooms where children are. I mean, certainly we want everybody to quit smoking. But ...

  20. Quitting Smoking

    Medline Plus

    Full Text Available Announcer: Cigarette smoking is the number one cause of lung cancer. Since the 1960s, scientists have reported on the link between cancer and smoking. If you smoke, you are at much higher ...

  1. Quitting Smoking

    Medline Plus

    Full Text Available Announcer: Cigarette smoking is the number one cause of lung cancer. Since the 1960s, scientists have reported on the link between cancer and smoking. If you smoke, you are at much ...

  2. Quitting Smoking

    Medline Plus

    Full Text Available ... Cigarette smoking is the number one cause of lung cancer. Since the 1960s, scientists have reported on ... smoke, you are at much higher risk for lung cancer than a person who has never smoked. ...

  3. Quitting Smoking

    Medline Plus

    Full Text Available ... at much higher risk for lung cancer than a person who has never smoked. If you quit ... your risk, even if you have smoked for a long time. Dr. Scott Leischow: Quitting smoking is ...

  4. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    Science.gov (United States)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  5. Indoor pollution from solid biomass fuel and rural health damage: A micro-environmental study in rural area of Burdwan, West Bengal

    Directory of Open Access Journals (Sweden)

    Deep Chakraborty

    2014-12-01

    Full Text Available Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. In this study, we assessed the effect of exposure to biomass smoke on various health status including blood pressure, gaseous component and ventilation pattern of kitchen and living room. For this investigation, a number of measurements were done to obtain indoor air quality (IAQ data (indoor humidity, temperature, CO, CO2 and O3 concentration. Blood pressure was measured at baseline and one hour post-exposure. Results highlighted that a higher concentration of CO2 was released during burning of dry leaf, straw, cow dung compared to that from straw and LPG gas. Moreover, correlation study showed a strong negative relationship between CO and humidity (r = −0.609, p < 0.000. Symptoms like eye irritation, shortness of breath, cough and dizziness were highly prevalent among biomass users. Both systolic and diastolic blood pressure showed a strong positive (p < 0.05 relationship with age of biomass users. However, wood users suffer from high systolic pressure (p < 0.037. On the other hand, a very poor ventilation pattern was recorded in the studied population.

  6. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  7. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.;

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....

  8. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  9. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Highlights: • Review of state-of-the-art fast pyrolysis oil combustion in burner applications. • Fast pyrolysis oil has been found to be suitable for industrial scale utilization. • Curves for NOx-emissions for air-assisted atomization burners are presented. • Quality control, combined with standards and specifications is recommended. - Abstract: Fast pyrolysis bio-oils are completely different from petroleum fuels and other bio-fuels available in the market, as regards both to their physical properties and chemical composition. When the unusual properties of these bio-oils are carefully taken into account in system and burner design, their combustion without a pilot flame or support fuel is possible on an industrial scale. The aim of the paper is to review the work done on combustion of fast pyrolysis bio-oils and highlight the latest and most important findings of its combustion from laboratory fundamentals to industrial scale. The main focus of the paper is on the bio-oil burner applications. In recent industrial scale bio-oil combustion tests, bio-oil has been found to be technically suitable for replacing heavy fuel oil in district heating. In addition, it has also been found out that limited possibilities for further lowering particulate emissions exist, since the majority of the particulates are typically incombustible matter. Curves for NOx-emissions of fast pyrolysis bio-oil combustion for air-assisted atomization burners are presented in the paper. Current burner designs are quite sensitive to the changes in the quality of the bio-oil, which may cause problems in ignition, flame detection and flame stabilization. Therefore, in order to be able to create reliable bio-oil combustion systems that operate at high efficiency, bio-oil grades should be standardized for combustion applications. Careful quality control, combined with standards and specifications, all the way from feedstock harvesting through production to end-use is recommended in order to

  10. Handbook of smoke control engineering

    CERN Document Server

    Klote, John H; Turnbull, Paul G; Kashef, Ahmed; Ferreira, Michael J

    2012-01-01

    The Handbook of Smoke Control Engineering extends the tradition of the comprehensive treatment of smoke control technology, including fundamental concepts, smoke control systems, and methods of analysis. The handbook provides information needed for the analysis of design fires, including considerations of sprinklers, shielded fires, and transient fuels. It is also extremely useful for practicing engineers, architects, code officials, researchers, and students. Following the success of Principles of Smoke Management in 2002, this new book incorporates the latest research and advances in smoke control practice. New topics in the handbook are: controls, fire and smoke control in transport tunnels, and full-scale fire testing. For those getting started with the computer models CONTAM and CFAST, there are simplified instructions with examples. This is the first smoke control book with climatic data so that users will have easy-to-use weather data specifically for smoke control design for locations in the U.S., Can...

  11. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  12. Development and application of biomass briquette fuel in China%生物质成型燃料在我国的发展与应用

    Institute of Scientific and Technical Information of China (English)

    陈正宇; 张雷; 陆辛; 徐德民

    2012-01-01

    生物质成型燃料是一种高效的清洁能源,可以部分替代化石燃料,缓解人类面临的能源和环境危机.从生物质原料、成型设备与工艺和需求与效益要求3方面介绍了我国的发展优势.结果表明,我国发展生物质成型燃料产业的前景广阔.同时,提出产业发展面临的各种障碍,并建议继续成型燃料关键技术的研发和配套锅炉的设计,制定相关政策和加大宣传力度.%Biomass briquette fuel is a clean and efficient alternative energy of fossil fuels, which will contribute to alleviate the energy crisis and environment problems that faced by the human society. Many advantages , such as raw material resources, molding equipment and technology, demand and benefit etc. , were comprehensively introduced. The results show that it is promising to promote the industry development of biomass briquette fuel in our country. In view of the present various barriers, the suggestions lhat keeping on researching key technology of biomass briquette fuel, designing supporting boiler, making correlated policy measure and increasing foreign propaganda were put forward.

  13. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  14. Production of Briquetted Biomass Fuels Using a hand Operated Circular Piston Press Briquetter

    International Nuclear Information System (INIS)

    Research has shown that, the future of fossil based fuel is uncertain. Most of the developing countries have concentrated most on traditional fuels such as firewood and charcoal leading to over exploitation of available wood resources. The most appropriate technology for such recovery is simple briquetting. The objective of this study were to design and construct a circular and hand operated briquetter and determine the properties of the briquettes produced. A circular piston press was designed and fabricated. The materials used were; a circular steel plate 92 cm in diameter 10 mm thick, three circular steel plates 92 cm diameter 6 mm, fifty eight pipes 4 cm diameter and 8 cm long with similar fifty eight pipes 3.8 cm diameter 10 long, a square threaded screw 1.5 m long, a 10 mm diameter nut and two nut bearings. Charcoal fines and clay soil soil were used as energy and binder materials respectively. The binder and charcoal fines were mixed in a ratio of 1:20 by weight, poured into the moulds and they were then spread uniformly. The pressing was done by screwing the pistons downwards. After maximum pressure was applied, the formula P=w xr tan (A+ +)/12. Using the depth, the wet density and work done were determined. The production level was calculated followed by the determination of the cost of production after which the machine profitability was was calculated. The maximum pressure obtained was 197.5Nmm-2. Average depth obtained was 6.685 cm. The wet density varied from 1.47 gcm-3 at the machine centre to 1.44gcm3 at the periphery with an average work done per piston being 57.86 N. cm. The dry density varied from 0.96gcm-3 at the centre to 0.94 gcm-3 at the periphery resulting to the average density of 0.954. The machine produced 55.68 bags each of 35 kg per month with a payback period of 8 months. Statistical package (SPSS) showed no significant difference between dry density and work done per hole. However there was significant differences in depth and wet

  15. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  16. Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools

    Directory of Open Access Journals (Sweden)

    Amanda Sosa

    2015-10-01

    Full Text Available In Ireland, truck transport by road dominates and will remain the main transportation mode of biomass. Cost efficiency and flexibility of forest transport can be typically improved by optimising routes. It is important to know every process and attributes within the workflow of roundwood transport. This study aimed to analyse characteristics of timber trucking in Ireland, and to estimate the least-cost route for the distribution of biomass with the use of geographic information systems (GIS. Firstly, a tracking system that recorded the truck’s movements and fuel consumption was installed. A total of 152 trips were recorded, routes were chosen by the truck driver. The recorded information was used to analyse the distances and times travelled loaded and unloaded per road class, breaks, loading and unloading times as well as fuel consumption. Secondly, the routes taken by the truck where compared with routes created using Network Analyst (NA, an extension of ArcGIS. Four scenarios based on route selection criteria were selected: shortest distance (S1, shorted time (S2, and prioritising high-class roads with shortest distance (S3 and time (S4. Results from the analysis of the tracking system data showed that driving both loaded and unloaded occupied on average 69% of the driver’s working shift; with an average time driving loaded of 49%. The travel distance per trip varied from 112 km and 197 km, with the truck driver using mostly national and regional roads. An average 2% of the total distance and 11% of the total time was spent driving on forest roads. In general, the truck’s speed recorded on the different road classes was on average 30% lower than the legal maximum speed. The average fuel consumption was 0.64 L/km. In terms of the route comparison, the driving directions from the truck routes coincided with 77% of the directions of the routes based on shortest driving time (S2 and S4. All the routes chosen by the driver had 22% longer

  17. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    Directory of Open Access Journals (Sweden)

    Kluska Jacek

    2014-03-01

    Full Text Available The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  18. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    Science.gov (United States)

    Kluska, Jacek; Klein, Marek; Kazimierski, Paweł; Kardaś, Dariusz

    2014-03-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  19. Bed agglomeration in biomass fueled CFB-boilers; Sintring av baeddmaterial vid biobraensleeldning i CFB

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, F. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1997-02-01

    In fluidized-bed boilers fired with solid fuels operational problems caused by spontaneous defluidization are sometimes observed. This bed agglomeration can be caused by sintering phenomena where fuel components and/or bed material may be involved. In serious cases the problems can lead to expensive operation breaks. The objective in this project was to show whether this type of operational problems can be minimized by choice of other than conventional bed materials. The study was carried out as model experiments in a larger laboratory scale. In a fluidized bed fired with propane a number of both well known and more unusual bed materials were tried out. The choice of bed materials included some common sands (silver and quartz sand) and, as possible alternatives, olivine sand, zirconium sand, calcined dolomite and the synthetic materials sintered magnesite (MgO) and mullite (alumina silicate). The model experiments were started at about 700 deg C and the temperature then raised until an irreversible bed agglomeration was observed, or to a maximum of 1100 deg C. The most promising results were obtained with calcined dolomite, being an active bed material. With this material no irreversible agglomerations were observed at all. The expensive synthetic materials sintered magnesite and mullite and the zirconium sand turned out as the next best. Olivine sand, on the other hand, showed a clear sensitivity to physical agglomeration and some sensitivity also towards sintering. The common sand types based on silicon oxide clearly showed the worst results. 12 refs, 5 figs, 1 tab 12 refs, 5 figs, 1 tab

  20. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all