WorldWideScience

Sample records for biomass energy utilization

  1. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  2. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  3. Clean energy and agriculture. 5. ; Utilization of biomass for energy. Clean energy to nogyo. 5. ; Biomass energy no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Haga, K. (National Institute of Agro-Environmental Sciences, Tsukuba (Japan))

    1992-10-01

    This paper reviews characteristics of biomass energy, which is regarded as renewable and clean, and present features of its utilization as well as their problems. Biomass energy resources are substantially such cultivated plants as saccharine crops, fatty and oily crops, petroleum plants, and aquatic plants. In addition, organic waste including agricultural and livestock waste is also the other important resource. Utilization of biomass for energy can be realized through applying such conversion technologies as methane fermentation, alcoholic fermentation, and thermal decomposition to the biomass resources. For the utilization, it is most important to make much of the viewpoints such as durable utilization corresponding to reproduction, competitive relation with food crops, and environmental protection. Biomass energy should be thought to be strictly limited to small-sized and regionally distributed energy. Therefore, it will be said that agriculture is appropriate to utilize biomass energy because it can practice both production and utilization of the biomass. 22 refs., 2 figs., 4 tabs.

  4. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    Science.gov (United States)

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  5. An overview of biomass energy utilization in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS); Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Golusin, Mirjana T. [Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS)

    2010-01-15

    The Autonomous Province of Vojvodina is an autonomous province in Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. Energy plays a pivotal role in socio-economic development by raising the standard of living. Biomass has been used by mankind as an energy source for thousands of years. Traditional fuels like firewood, dung and crop residues currently contribute a major share in meeting the everyday energy requirements of rural and low-income urban households in Vojvodina. Contribution of the renewable energy sources in the total consumption of energy in Vojvidina is less than 1%, i.e. it amounts to 280 KWh/year. Production of biodiesel in the year 2008 was 0.07 million tons, what is for 133% higher with respect to the production in the year 2007 (0.03 million tons). In Vojvodina, as the raw materials for bioethanol production are seen primarily sugar beet, corn, wheat surpluses, potato surpluses and waste potato, as well as the raw materials intended for these purposes grown on the uncultivated soils, such as hybrid broomcorn, Jerusalem artichoke and triticale. With introduction of new technologies for cultivation and collecting of biomass production of the electrical energy could be raised to 6.4 GWh/m{sup 2} year, what, with retention of the contemporary consumption, would represent the significant 9% of the total consumption in the province. According to programme of realisation of energy strategy of Vojvodina/Serbia in the field of the renewable energy sources for to period till the year 2010 and its completion, till the year 2015, in Vojvodina could be created conditions for the employment of about 24,000 workers, i.e. 4000 employed for maintenance of the newly constructed plants, 17,000 employed on designing and manufacturing of plants and 3000 employed in auxiliary activities. (author)

  6. Biomass Energy Utilization in Northeast Badia of Jordan

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Smairan

    2015-08-01

    Full Text Available Biogas systems can contribute to rural development, utilization of renewable energy, climate change mitigation, as well as environmental protection. Due to its multiple benefits, the Jordan Government must made great efforts to promote the development of biogas systems in rural areas, especially household biogas plants and medium scale biogas plants for intensive livestock and poultry farms. In order to better promote and improve biogas systems in rural Jordan, a comprehensive literature review of the various sources was undertaken for this research. This study aimed at exploring weaknesses in the biogas value chain that hinder wider dissemination of the technology in Jordan. The methodology used is holistic, combing literature review with interviews with farmers and observations of processes across the value chain in Jordan Badia regions, where biogas technology has no any history in Badia. It was revealed that wider dissemination of biogas is hampered by weaknesses in the processes and linkages among the actors. Many potential users are not aware of the technology and therefore the market remains slim. All these, coupled with inadequate policy environment, lack of stakeholder development, missing linkage to finance and few technicians, render the market unattractive to entrepreneurs who would have invested in the dissemination of the technology. The government should conduct awareness campaigns through media, translate current policies into actions to development key stakeholders, set the required institutional framework and programmes to support biogas dissemination activities. It should also train more technicians and concentrate on research and development.

  7. Advanced system demonstration for utilization of biomass as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  8. Assessment of industrial activity in the utilization of biomass for energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  9. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  10. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  11. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source

    NARCIS (Netherlands)

    Leemans, R; vanAmstel, A; Battjes, C; Kreileman, E; Toet, S

    1996-01-01

    The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenho

  12. Progress and Development Strategy of Biomass Energy Utilization Technologies in China

    Institute of Scientific and Technical Information of China (English)

    Wu Chuangzhi; Chen Yong

    2001-01-01

    @@ I. Preface Biomass includes the residues of agriculture, forest and stock breeding, as well as straw, algae and energy crops. In its broad meaning, biomass is a kind of organic matter produced by the photosynthesis of plants, which is not only renewable, but also contains plentiful energy.

  13. Advanced system demonstration for utilization of biomass as an energy source. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M.

    1979-01-01

    The conclusions and findings of extensive analyses undertaken to assess the environmental impacts and effects of the proposal to assist in an Advanced System Demonstration for Utilization of Biomass as an Energy Source by means of a wood-fueled power plant. Included are a description of the proposed project, a discussion of the existing environment that the project would affect, a summary of the project's impacts on the natural and human environments, a discussion of the project's relationships to other government policies and plans, and an extensive review of the alternatives which were considered in evaluating the proposed action. All findings of the research undertaken are discussed. More extensive presentations of the methods of analysis used to arrive at the various conclusions are available in ten topical technical appendices.

  14. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  15. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  16. Individual biomass facility reports. Supplement to some employment and earnings implications of regional biomass energy utilization: New England and the Cornbelt States

    Science.gov (United States)

    Little, J. R.; Bell, S. E.; Blair, L. M.; Gove, R. M.; Stevenson, W.; Tamura, R. F.

    1981-08-01

    Research was conducted to determine the direct employment and earnings implications of regional biomass energy utilization. Details of the primary data collected during the course of the investigation are provided. A case studies approach was used to observe and analyze various biomass energy systems. Visits were made to existing biomass facilities and data on their operation and employment requirements were collected. Information on planned or potential future facilities was also obtained. When this information was analyzed, a fairly accurate picture of the current situation as well as the rate and direction of future development in biomass was attained. Separate descriptions are included for each facility visited or for each interview obtained. The facility reports are organized according to fuel cycle (wood-fuel, alcohol-fuel, municipal solid waste facilities, others).

  17. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.

  18. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  1. EERC Center for Biomass Utilization 2006

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Aulich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Strege, Joshua R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Patel, Nikhil [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Shockey, Richard E. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  2. Energy from Biomass.

    Science.gov (United States)

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  3. Phytotechnological purification of water and bio energy utilization of plant biomass

    Science.gov (United States)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.

    2017-01-01

    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  4. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  5. Energetic evaluation of the biomass utilization. Use of biomass under the changing framework conditions within the energy policy turnaround; Energetische Bewertung der Bioabfallverwertung. Nutzung der Biomasse unter den veraenderten Rahmenbedingungen innerhalb der Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Oldhafer, Nils [umwelttechnik und ingenieure GmbH, Hannover (Germany)

    2013-03-01

    The contribution under consideration reports on the energetic evaluation of waste biomass from two pints of view. The first point of view corresponds to the necessary critical questioning of the possible growth rates of the plant-specific efficiency. The second point of view corresponds to the necessary alteration of power generating plants in the light of the energy policy turnaround. The author presents three theses for power generation plants within the range of renewable energy sources: (a) The utilization of biomass as well as the power generation plants resulting from this work in the base load. These plants must have a grid relieving effect and have to supply control energy; (b) Due to the requirements of the volatile market of renewable energy sources, the power generation plants biomass fermentation and biomass-fired cogeneration plants have to achieve a more rapid load change behaviour between maximal and minimal behaviour of a plant; (c) Supplementary to the first two thesis, correlative primary and secondary storages should be designed.

  6. Energy from Biomass for Conversion of Biomass

    Science.gov (United States)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  7. Comprehensive evaluation of biomass resources using SD method-aided world energy/land utilization model; SD shuho no sekai energy tochi riyo model ni yoru

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Yamaji, K. [The University of Tokyo, Tokyo (Japan)

    1996-02-01

    For the evaluation of the world-wide conflict between the utilization of biomass resources and the restrictions on land utilization, analysis was made using the system dynamics method. In the advanced area, there is scarcely any changes in land utilization, thanks to stable demand for biomass and perfect forestry protection. On the other hand, in the developing area, demand for biomass is increasing and areas of mature forests are decreasing due to imperfect forestry protection. In 2050 and after when the forests will be enjoying the same protection as that in practice in the advanced area, the forest area will stabilize. Mature forests, however, will not stop shrinking, and there will be only 400-million ha of mature forests remaining in 2100. There will be serious food shortage in the developing area because there will be a huge demand for food for livestock. Accordingly, there will be no room at all for the production of energy making crops. Both in advanced and developing areas, the potential is high of cereal residue, livestock`s dung, raw material timber residue, by-products, and refuse energy resources. On the contrary, the potential is low of kitchen refuse, paper, and chemical industry products refuse. 7 refs., 7 figs., 2 tabs.

  8. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  9. Central Africa Energy: Utilizing NASA Earth Observations to Explore Flared Gas as an Energy Source Alternative to Biomass in Central Africa

    Science.gov (United States)

    Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt

    2014-01-01

    Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a

  10. Present Situation of Biomass Energy Utilization in China%我国生物质能源利用现状

    Institute of Scientific and Technical Information of China (English)

    徐丽华; 罗鹏; 严明

    2016-01-01

    发展储量巨大的可再生生物质能可以帮助缓解世界能源危机,扭转由于大量化石燃料使用造成全球环境恶化的趋势。对生物质进行了分类,介绍了现代生物至能的3种生产转化方式、相应产品及其应用情况,分析各种生物燃料的优缺点和所面临的挑战,进一步指出生物质能的开发利用,对于我国能源结构调整、能源安全以及环境保护具有十分重要的意义。%Developing renewable clean biofuels using wildly available bioenergy can help alleviate the worsening world energy crisis and reverse the trend of deteriorating global environment caused prmiarily by the ever-increasing use of fossil. Three kinds of conversion routes, their corresponding products, and the scale of bio-fuel production and application worldwide were reviewed. The pros and cons of biofuels were analyzed, and the challenges for the development of biofuels were discussed. Development and utilization of biomass energy was significance to Chinese resource structure adjustment, resource safety and environmental protection were further pointed out.

  11. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  12. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  13. BIOMASS ENERGY AND ENERGY FORESTRY

    Directory of Open Access Journals (Sweden)

    Fahrettin Tilki

    2003-04-01

    Full Text Available Biomass fuels account for nearly 14% of the world’s energy. Energy forestry has been investigated since the mid-1960s to produce fiber for the paper and pulp industry. In the 1970s, following the oil crises, the emphasis switched to producing woody biomass for energy using fast-growing trees. Fastgrowing broadleaved trees, such as poplars and willows are grown at close spacing and under intensive management systems more akin to agriculture practice than forestry. In Turkey, rehabilitation studies in especially oak coppice stands are thought to be a part of the energy forestry, but the areas coppice stands grow on and species common in those areas are not suitable for modern energy forestry used in developed countries.

  14. Switchgrass for biomass energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum) is a native warm-season grass and is the model herbaceous perennial biomass energy feedstock for the USA. More than 75-years of experience confirm that switchgrass will be productive and sustainable on rain-fed marginally-productive cropland east of the 100th meridian....

  15. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  16. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  17. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy.

  18. Socio-economic impact of wood biomass utilization for energy production and its impact on small communities in Northwestern Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sanzida Baten, C.; Pulkki, R. (Lakehead Univ., Thunder Bay, ON (Canada), Faculty of Natural Resources Management), e-mail: csanzida@lakeheadu.ca, e-mail: rpulkki@lakehaedu.ca

    2010-07-01

    Bioenergy refers to all forms of renewable energy that are derived from plant materials produced by photosynthesis. Biomass fuels can be derived from wood, agricultural crops and other organic residues. These fuels can be obtained from many sources in Canada, including sawmills, woodworking shops, forest operations and farms. This study deals with the socio-economic aspects of bioenergy development. Normally, the socio-economic impact of bioenergy can be measured in terms of economic indices, such as employment, monetary gains, etc. Recently some pulp and paper mills in northwestern Ontario have initiated bioenergy plants to generate heat and electricity for their use. The Ontario Ministry of Energy and Infrastructure is investigating the possibility of replacing coal with renewable forest biomass as feedstock for the Atikokan Power Generating Station (APGS) located in northwestern Ontario. The APGS has already successfully tested 100 % wood biomass feedstock instead of coal. This study evaluates the socio-economic impacts of wood biomass utilization for energy production in small communities in northwestern Ontario Canada. (orig.)

  19. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  20. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  1. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  2. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Bertjens, Steve; Wright, Angie; Lieurance, Mike; berguson, bill; Buchman, Dan

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices and

  3. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  4. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.H. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Li, Z.F. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Taishan Academy of Science and Technology, Tai' an, Shandong 271000 (China); Feng, S.F.; Wu, G.L.; Li, Y.; Li, C.H. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Lucas, M. [Rheinisch-Westfalisch Technische Hochschule, Aachen University, Aachen 52070 (Germany); Jiang, G.M. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China)

    2010-12-15

    A biomass energy exploration experiment was conducted in Jiangjiazhuang, a typical agro-village in Shandong, China from 2005 to 2009. The route of this study was designed as an agricultural circulation as: crops {yields} crop residues {yields} ''Bread'' forage {yields} cattle {yields} cattle dung {yields} biogas digester {yields} biogas/digester residues {yields} green fertilizers {yields} crops. About 738.8 tons of crop residues are produced in this village each year. In 2005, only two cattle were fed in this village and 1.1% of the crop residues were used as forage. About 38.5% crop residues were used for livelihood energy, 24.5% were discarded and 29.7% were directly burned in the field. Not more than three biogas digesters were built and merely 2250 m{sup 3} biogas was produced a year relative to saving 1.6 tons standard coal and equivalent to reducing 4.3 tons CO{sub 2} emission. A total of US$ 4491 profits were obtained from cattle benefit, reducing fossil energies/chemical fertilizer application and increasing crop yield. After 5 years experiment, cattle capita had raised gradually up to 146 and some 62.3% crop residues were used as forage. The percentages used as livelihood energy, discarded and burned in the field decreased to 16.3%, 9.2% and 9.8%, respectively. Biogas digesters increased to 123 and 92,250 m{sup 3} biogas was fermented equal to saving 65.9 tons standard coal and reducing 177.9 tons CO{sub 2} emission. In total US$ 60,710 profits were obtained in 2009. In addition, about 989.9 tons green fertilizers were produced from biogas digesters and applied in croplands. The results suggested that livestock and biogas projects were promising strategies to consume the redundant agricultural residues, offer livelihood energy and increase the villagers' incomes. Biogas production and utilization could effectively alleviate energy crisis and CO{sub 2} emission, which might be a great contribution to reach the affirmatory carbon

  5. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  6. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  7. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix J: alternatives studies. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M. [ed.

    1979-01-01

    A comprehensive review of a wide range of alternatives to the proposed action, the commercial demonstration of an industrial cogenerating facility fired with wood fuels is provided. An extensive effort has been devoted to the evaluation of all reasonable alternatives to this project. A number of possible actions were also briefly considered, but, for various reasons, they were found not to be appropriate at present for a commercial-scale demonstration of an alternative energy source. The critical characteristics of the wood-fueled commercial demonstration project at Westbrook are considered to be: industrial cogeneration of power; the production of 510,000 pounds per hour of industrial process steam; the production of approximately twenty-five megawatts of electric generating capacity, some of which would be available to a public utility in southern Maine; and the consumption of 2,000 tons of wood fuel per day. Each of the alternatives examined in this appendix offers a different option for one or several of the characteristics of the project listed above. As a whole, the appendix describes the range of possible actions that the US Department of Energy and its contractors have considered.

  8. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, Irena; Doucha, Jiri; Zachleder, Vilem [Laboratory of Cell Cycles of Algae, Department of Autotrophic Microorganisms, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novohradska 237, 379 81 Trebon - Opatovicky mlyn (Czech Republic); Kastanek, Frantisek; Maleterova, Ywette [Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic, Rozvojova 135, 16502 Prague 6 - Suchdol (Czech Republic); Kastanek, Petr [Biocen, Ltd., Ondrickova 1246/13, 13000 Praha - Zizkov (Czech Republic)

    2010-03-15

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D{sup -0.8} (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of

  9. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  10. Energy from biomass and wastes: 1979 update

    Energy Technology Data Exchange (ETDEWEB)

    Klass, D.L.

    1979-01-01

    The R and D activities in progress in the United States on the development of biomass and wastes as renewable energy sources have reached the point where all phases of the technology are under active investigation. Highlights of this effort are briefly reviewed from the standpoint of energy impact, funding, carbon dioxide build-up in the atmosphere, and biomass production and its conversion to energy and synthetic fuels. Special attention is given to alcohols because of the current interest in gasohol. Significant accomplishments were reported in 1979, and it is expected that commercial utilization of this information will begin to gather more momentum.

  11. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Science.gov (United States)

    2010-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work...

  12. Wind, biomass, hydrogen: renewable energies; Vent, biomasse, hydrogene: energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Rakotosson, V.; Brousse, Th.; Guillemet, Ph.; Scudeller, Y.; Crosnier, O.; Dugas, R.; Favier, F.; Zhou, Y.; Taberna, P.M.; Simon, P.; Toupin, M.; Belanger, D.; Ngo, Ch.; Djamie, B.; Guyard, Ch.; Tamain, B.; Ruer, J.; Ungerer, Ph.; Bonal, J.; Flamant, G

    2007-06-15

    This press kit gathers a series of articles about renewable energies: the compared availabilities of renewable energy sources (comparison at a given time); offshore wind turbines (projects under development, cost optimisation); hydrogen for transports: present day situation (production, transport and storage, hydrogen conversion into mechanical energy, indirect use in biomass conversion); biomass: future carbon source (resource potential in France, pyrolysis and fermentation, development of biofuels and synthetic fuels, stakes for agriculture); beneficial standards for the heat pumps market (market organization and quality approach); collecting solar energy (solar furnaces and future solar power plants, hydrogen generation). (J.S.)

  13. Biomass energy and marginal areas

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.P.

    1984-01-01

    The aim of this study was to analyze the conditions and effects of a possible development of the biomass energy upgrading in uneconomical or not rentable areas. The physical, social and economical characteristics of these regions (in France) are described; then the different types of biomass are presented (agricultural wastes, energetic cultures, forest and land products and residues, food processing effluents, municipal wastes) as well as the various energy process (production of alcohol, methane, thermochemical processes, vegetable oils). The development and the feasability of these processes in marginal areas are finally analyzed taking into account the accessibility of the biomass and the technical and commercial impacts.

  14. Swamp future. Energy for Western Pomerania Grid formation and potentials for the thermal utilization of biomass from paludi culture; MoorZukunft. Energie fuer Vorpommern. Netzwerkbildung und Potentiale fuer die thermische Verwertung von Biomasse aus Paludikultur

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Anke; Schroeder, Christian [Greifswald Univ. (Germany). Inst. fuer Botanik und Landschaftsoekologie; Schroeder, Philipp

    2013-10-01

    MoorZukunft aims to initiate pilot projects for utilisation biomass from ''wet'' peatland for energy purposes. Also alternative concepts of funding regional cooperations are to be developed. The implementation of paludiculture, the sustainable cultivation of rewetted peatland, needs innovative unions between farmers who produce primary material for paludi-products and biomass consumers for energy or material utilisation. Areas for implementing paludiculture are identified and potential partners for regional use and consumption are cross-linked. Business models will be developed with the parties of possible cooperations, i.g. between farmer and municipal energy supplier and functional attended until realisation. The procedure to initiate pilot projects will be explained. This expands from requests of areas and partners until possible forms of organisation locally shared utilisation partnerships. (orig.)

  15. Energy from biomass and waste

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2001-01-01

    Biomass, a broad term for all organic matter of plants, trees and crops, is currently regarded as a renewable energy source which can contribute substantially to the world's energy supply in the future. Various scenarios for the development of energy supply and demand, such as compiled by the World

  16. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  17. Utilization of biomass in the county of Vaesternorrland, Sweden. Optimization of energy flow to different demand categories; Biobraenslets utnyttjande i Vaesternorrland. Optimering av energifloeden till olika behovskategorier

    Energy Technology Data Exchange (ETDEWEB)

    Jelvehed, P.

    1999-12-01

    The main aim of the project is to minimize the total energy system cost during a ten year period, and to analyze the long-term competitiveness of biomass compared to other energy carriers, and also to make an analysis of cost-efficient measures within the energy system.

  18. Bio-energy utilizes surplusses at the agricultural commodity markets. Large potentials of the biomass; Bioenergie verwertet Ueberschuesse an den Agrarmaerkten. Grosse Potenziale der Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-19

    At the beginning of spring in the northern hemisphere, the situation in agricultural markets relaxes visibly. After the year 2012 was characterized by periods of drought in the United States and some Eastern European countries, in recent months good harvests in major producing countries in the southern hemisphere have provided that the stocks of major agricultural commodities are grown again. Thus, enough resources are still available for the supply of food and energy. There still exists land potential in Europe and on other continents for the use of bio-energy. In addition to new power plant crops, known arable crop cultures contribute to the exploration of such a potential: An example of this is the sugar beet. The view on the global supply balance in agricultural goods inter alia the major staple food rice shows that there exist large surpluses on the food markets. However, these surpluses do not benefit the hungry persons in the world. Hunger is a problem of distribution which is not associated with the growth of bio-energy.

  19. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  20. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  1. Investigation of agricultural residues gasification for electricity production in Sudan as an example for biomass energy utilization under arid climate conditions in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Bakhiet, Arig G.

    2008-05-15

    utilization planning is possible as for any other energy resource. In Sudan, Baggase, Groundnuts shells and Roselle stalks could be considered as possible fuels. The experimental work done in chapter 5 showed that GN.S could be gasified in down draft gasifiers, which are less costly and simpler to operate than circulating systems. Acceptable values of gas thermal properties (c.v.{proportional_to} 4 MJ/Nm{sup 3}, 30 % of burnable gases) at fairly continuing processes were obtained. In chapter 6, a concept for biomass power plant was drafted, the main components are: downdraft, air based gasifier connected to ICE, multi-stage gas cleaning system (cyclones, washer and filters) mechanical ash removal and semi closed water cycle. Main operation measures are: electricity is the sole product; working time is 150 day/year between mid November-mid Mars. Environmental hazards of waste management e.g. flue gas emission and waste water management are the limiting factors. In the last part of chapter 6 an economic analysis was carried out. At a value of 3000 Euro/kW for the initial system and fuel price of 100000 Euro/year for {proportional_to}6 GWh then a price of 0.23 Euro/kWh and a return period of 24 years could be obtained. The study concludes in chapter 7 that biomass gasification under the local conditions has its comparative merits however a high institutional support is needed at the beginning. (orig.)

  2. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...

  3. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  4. Research and Utilization on Straw Transformation to Biomass Energy%秸秆转化为生物质能源利用研究

    Institute of Scientific and Technical Information of China (English)

    马春红; 刘旭; 李运朝; 董文琦; 崔四平; 贾银锁; 王立安

    2011-01-01

    我国秸秆资源丰富,但秸秆利用率低,转化率低,环境污染严重.秸秆作为农作物的副产物,其利用途径是多种多样的.介绍了农作物秸秆能源化利用形式,且随着生物技术的发展,农业秸秆纤维原料的转化利用将为能源开发和发酵工业原料开辟新的来源.加大作物秸秆的开发利用力度,可寻找出一条彻底解决农作物秸秆浪费和综合利用率低的有效途径.利用植物纤维素发酵制氢和生物质合成油研究技术的开展,属于国内首创,可实现资源持续利用,符合可持续发展战略的要求,将为我国构建资源节约型、环境友好型社会作出重要贡献.%Crop straw resource is abundant in China, but the straw stalk u tilization and conversion rate are low and the environmental pollution is serious. As the by-products of the crops, the utilization ways of straw vary. This paper introduces varied use form of the energy-oriented crops straw, and as the development of biotechnology, the transformation and the use of the raw material of the agricultural straw fibre will open up new industrial raw material sources of fermentation and energy development. The dynamics exploitation of the crop straw increase and the best effective way to thoroughly solve the crops straw waste and a low comprehensive utilization rate are found. Producing hydrogen by plant cellulose fermentation and the research techniques of biomass synthetic oils are first carried out in China. They can realize the sustainable utilization of the resource, and they comply with the requirements of the strategy of sustainable development. They will contributes to the constructing a resource-conserving and an environment-friendly society of China.

  5. Biomass to energy; La valorisation energetique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  6. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  7. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  8. Utilization of the biomass in Japan: analysis of the researches and the enterprises implication; Utilisation de la biomasse au Japon: etat des recherches et implication des entreprises

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    According the Kyoto protocol, the renewable energies became necessary and more especially for the Japan, the biomass energy. Since 1990 three Departments launched plans to promote the biomass. Compared to other occidental countries, the Japan began late the biomass utilization but invest massively to promote this resource. The government forecasts a market of 260 milliards of yen in 2010. (A.L.B.)

  9. Switchgrass for Biomass Energy: Status and Progress

    Science.gov (United States)

    Switchgrass has been identified as a perennial biomass energy crop because it can produce high biomass yields on marginal land that is not suitable for grain crop production and provides many conservation benefits. The cellulose and hemi-cellulose of the biomass from switchgrass cell walls can be b...

  10. Launching Plan B:Biomass Energy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China’s first biomass electricity company focuses on helping farmers as it strives to expand In April 2011,the world’s largest biomass power company,China National Bio Energy Co.Ltd.(NBE),began building a biomass power plant in Shangcai County of central China’s Henan Province.The new plant,due to reach

  11. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  12. Biomass Energy Self-Sufficiency Resource Alternatives for a Forested Air Force Installation.

    Science.gov (United States)

    1982-05-01

    to support basewide biomass energy systems. The study confirmed the feasibility of a biomass energy plantation supplying the required fuel wood to...support the basewide biomass energy systems while, at the same time not conflicting with any of the operational missions of Eglin AFB. This conclusion is...have an installation that provides all of its electrical and thermal energy requirements through the utilization of the Biomass Energy Island concept. (Author)

  13. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  14. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  16. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  17. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  18. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  19. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  20. Research on Benefit Evaluation of the Utilization of the Biomass in Beijing for Energy%北京市生物质能源化利用效益评价方法的研究

    Institute of Scientific and Technical Information of China (English)

    樊超; 司慧; 张鹰华; 郭晓慧

    2012-01-01

    To promote the development of utilization of biomass energy industry, relieve the pressure of energy supply in Beijing, an integrated understanding including its economic benefits, social benefits and environmental benefits is needed. This paper puts forward a method of benefit evaluation for the utilization of biomass energy in Beijing with a comprehensive system established, determining weights of each index with analytic hierarchy process. Taking the development of biomass pellets in Huairou District for instance, the fuzzy evaluation of its economic, social and environmental benefits has been studied. Compared with the analysis results of a certain biomass pellets project, the fuzzy evaluation was relatively accurate.%北京市能源消耗量大,提高生物质能利用率可缓解能源供应压力.为推动北京市生物质能源化利用产业的发展,需增进对其经济效益、社会效益和环境效益的综合认识.通过建立综合效益评价体系,运用层次分析法确定各评价指标权重,提出了北京市生物质能源化利用综合效益的评价方法,再以怀柔区发展生物质成型颗粒燃料为例,对其经济效益、社会效益和环境效益进行模糊评价,最后以怀柔杨宋成型颗粒燃料项目的数据为依据,进行分析验证,结果显示模糊综合评价的结论较为准确.

  1. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  2. WOOD BIOMASS FOR ENERGY IN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Gradimir Danon

    2010-01-01

    Full Text Available Wood biomass has got its place in the energy balance of Montenegro. A little more than 6% of the total energy consumption is obtained by burning wood. Along with the appropriate state measures, it is economically and environmentally justified to expect Montenegro to more than double the utilization of the existing renewable energy sources including wood biomass, in the near future. For the purpose of achieving this goal, ‘Commercial Utilisation of the Wood Residue as a Resource for Economic Development in the North of Montenegro' project was carried out in 2007. The results of this project were included in the plan of the necessary interventions of the Government and its Agencies, associations or clusters, non-government organisations and interested enterprises. The plan was made on the basis of the wood residue at disposal and the attitude of individual subjects to produce and/or use solid bio-fuels and consists of a proposal of collection and utilisation of the wood residue for each individual district in the north of Montenegro. The basic factors of sustainability of future commercialisation of the wood residue were: availability of the wood raw material, and thereby the wood residue; the development of wood-based fuel markets, and the size of the profit.

  3. Energy Recovery from Contaminated Biomass

    Directory of Open Access Journals (Sweden)

    Jiří Moskalík

    2012-01-01

    Full Text Available This study focuses on thermal gasification methods of contaminated biomass in an atmospheric fluidized bed, especially biomass contaminated by undesirable substances in its primary use. For the experiments, chipboard waste was chosen as a representative sample of contaminated biomass. In the experiments, samples of gas and tar were taken for a better description of the process of gasifying chipboard waste. Gas and tar samples also provide information about the properties of the gas that is produced.

  4. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  5. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  6. Combinatorial discovery of enzymes with utility in biomass transformation

    Science.gov (United States)

    Fox, Brian G; Elsen, Nathaniel L

    2015-02-03

    Methods for the cell-free identification of polypeptide and polypeptide combinations with utility in biomass transformation, as well as specific novel polypeptides and cell-free systems containing polypeptide combinations discovered by such methods are disclosed.

  7. Sustainable biogas and biomass utilization in Malaysian palm oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, Minato; Shirai, Yoshihito (Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu (Japan)); Yacob, Shahrakbah (Advanced Agriecological Research Sdn Bhd, Selangor (Malaysia)); Ali Hassan, M. (Dept. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang (Malaysia))

    2007-07-01

    Palm oil industry in Malaysia is producing palm oil more than 12 million tones every year, while yielding more than 14 million of empty fruit bunch (EFB) and 25 million tones of palm oil mill effluent (POME). In the POME treatment, huge anaerobic ponds (lagoon) are adopted, generating large amount of methane, more than 20 times global warming effect than CO{sub 2}. The objective of this research is to estimate actual methane emission from the POME treatment and to find out any possibility to utilize generated methane as an energy source under the Clean Development Mechanism (CDM). Methane emission of 0.238 kg CH{sub 4} per kg COD removed or 12.36 kg CH{sub 4} per tone POME are obtained from actual mill operation throughout annual measurement. This indicates that more than 200,000 tones of methane, which is equivalent to 4 million tones of carbon dioxide, are estimated to be emitted from whole Malaysia. 500 tones of methane fermentor installed to palm oil mill to prevent GHG emission under the CDM. By this, lagoon system as major source of local environment pollution necessary no more, thus obtaining another 3 to 4 times large land area than mill. Our proposal is to establish novel industry utilizing biogas energy for value added material or energy conversion of excess biomass, thus enabling reduction of GHG and local environment pollution and sustainable development of local community. (orig.)

  8. Practice of the utilization of biomass from waste materials; Praxis der Verwertung von Biomasse aus Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas (eds.)

    2010-07-01

    Within the 4th Witzenhaeuser Biomass Conference from 10th to 11th November, 2010, in Witzenhausen (Federal Republic of Germany) the following lectures were held: (1) Consequences of the amendment of the law of life-cycle management and biological waste regulations for the practice of acquisition and utilization of biological wastes (Claus-Gerhard Bergs); (2) An eco-efficient handling with biological wastes and composting wastes (Siegfried Kreibe); (3) Perspectives of the biological waste management (Michael Kern); (4) Assessment of waste biogas plants by environmental verifiers - implementation of the EEG novella (Michael Hub); (5) Fermentation of biogenic residuals - State of the art and perspectives (David Wilken); (6) Energy from cultivation masses and waste biomasses - Perspectives for Europe (Katja Bunzel); (7) Optimization of a biogas plant in practical operation (Michael Buchheit); (8) Odour situation and germ situation before and after an integration of a biogas plant in a composite system (Juergen Roth); (9) Aspects of immission protection rights according to the requirements on the permission and operation of biogas plants (Norbert Suritsch); (10) Actual veterinary regulatory, fertilizer regulatory and waste regulatory requirements on the treatment and utilization of fermentation products (Andreas Kirsch); (11) Utilization of fermentation residues from biological waste: Basic conditions and technology of processing (Thomas Raussen); (12) Practical experiences and new developments using selected examples: Pohlsche Heide, Baar (Switzerland) and Cesena (Italy) (Peter Lutz); (13) New facility concepts of dry fermentation in Lohfelden and Uelzen (Gunnar Ziehmann); (14) New facility concepts of plug flow fermentation (Michael Oertig); (15) Further development of the KOMPOFERM {sup registered} systems (Sandra Striewski); (16) Optimization of the gas yield and reduction of disruptive substances in the processing of biological wastes for the wet fermentation

  9. The relative cost of biomass energy transport.

    Science.gov (United States)

    Searcy, Erin; Flynn, Peter; Ghafoori, Emad; Kumar, Amit

    2007-04-01

    Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

  10. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  11. THE POTENTIAL FOR BIOMASS ENERGY IN THREE ALBANIAN REGIONS

    Directory of Open Access Journals (Sweden)

    A. Jupe

    2012-03-01

    Full Text Available Biomass combustion is amongst the oldest and the most mature technique for conversion of biomass to energy; but still a great challenge lies ahead in developing new; more efficient and environmentally sustainable -systems. In light of the European Action and the National Strategy in the energy sector; Albania has enacted a friendly policy regarding renewable energy sources; including biomass. Execution of such projects is delegated to both regional and local authorities for various technical; economic and socio-environmental considerations as well as for an integrated approach to the land use planning. This paper identifies the main sources of biomass energy in three different regions of Albania i.e. Korça; Tirana and Vlora. It shows the weight of each possibility on the total potential for energy production by biomass as well as the type and distribution of each biomass. The manner how the potential offered by forestry; agriculture and agro-industry would be utilized will; apart from availability of appropriate technology; also depend on the ability of economic operators to organize themselves efficiently while respecting environmental sustainability.

  12. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  13. Biomassa e energia Biomass and energy

    Directory of Open Access Journals (Sweden)

    José Goldemberg

    2009-01-01

    Full Text Available Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.

  14. Biomass gasification and energy production

    Energy Technology Data Exchange (ETDEWEB)

    Mahinpey, N.; Nikoo, M.B. [Regina Univ., SK (Canada). Faculty of Engineering

    2007-07-01

    The ASPEN PLUS simulation program was used to model an atmospheric fluidized bed biomass gasifier. The aim of the study was develop a simulation capable of accurately predicting steady state performance of the gasifier in relation to hydrodynamics and reaction kinetics. The influences of feed decomposition, volatile reactions, gas gasification and gas-solid separation were considered through modularized ASPEN PLUS models. The ASPEN PLUS yield reactor was used to simulate biomass feed decomposition. A separation column model was used to separate volatile materials and solids. Experimental data from a pine biomass gasification experiment conducted in a laboratory-scale fluidized bed gasifier was used to validate the simulation results. Good agreement was shown for gas composition, although carbon dioxide (CO{sub 2}) rates were slightly underestimated. The study also demonstrated that higher temperatures improved the gasification process and carbon conversion. The optimized gasification process produced more carbon monoxide (CO) and less CO{sub 2}. The introduction of lower temperature steam to the gasification process increased tar output. It was concluded that the conversion efficiency increased when the equivalence ratio was increased. 7 refs., 1 tab., 12 figs.

  15. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  16. Biomass as a raw material for energy: a future potential energy source; Biomasse als Energierohstoff: Ein zukunftstraechtiger Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Bestebroer, S.I. [KEMA Nederland B.V., Arnheim (Netherlands); Smakman, G.J.J. [Novem, Utrecht (Netherlands); Kwant, K.W. [Novem, Utrecht (Netherlands)

    1996-07-01

    Growing interest in the utilization of biomass in energy production in the Netherlands had led to the foundation of a commission, in which all partners participating in electricity supply in the Netherlands work collectively on evaluating the further development of converting biomass to energy and also on formulating the arrangement solutions. The commission has come to the conclusion that the combined combustion of organic residues and the operation of smaller independent plants for biomass processing are, at the present time, realistic options. After the year 2000, the introduction of wood as a raw material for energy on a larger scale will be taken into consideration. (orig.) [Deutsch] Das wachsende Interesse an der Nutzung von Biomasse in der Energieerzeugung fuehrte in den Niederlanden zur Gruendung einer Kommission, in der alle an der niederlaendischen Energieversorgung beteiligten Partner gemeinsam an der Bewertung der weiteren Entwicklung der Umwandlung von Biomasse in Energie sowie an der Formulierung von Loesungsansaetzen arbeiteten. Die Kommission kam zu dem Schluss, dass die Mitverbrennung organischer Rueckstaende und der Betrieb kleinerer eigenstaendiger Anlagen zur Biomasse-Verstromung zum heutigen Zeitpunkt realistische Optionen sind. Nach dem Jahre 2000 wird die Einfuhr von Holz als Energierohstoff im groesseren Massstab in Erwaegung gezogen. (orig.)

  17. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  19. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    2012-01-01

    supplied could be significantly reduced (from 68 to 17 Gg CO2-eq/PJ) by increased use of wind and residual biomass resources as well as by electrifying the transport sector. Energy crops for production of biofuels and the use of these biofuels for heavy terrestrial transportation were responsible for most......Decrease of fossil fuel consumption in the energy sector is an important step towards more sustainable energy production. Environmental impacts related to potential future energy systems in Denmark with high shares of wind and biomass energy were evaluated using life-cycle assessment (LCA). Based...... on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer–Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions per PJ energy...

  20. Biomass based energy. A review on raw materials and processing methods; Energie aus Biomasse. Eine Uebersicht ueber Rohstoffe und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Woellauer, P.

    2007-07-01

    The book reviews the variety of biogenic raw materials and the technologically important biomass conversion techniques. The chapter on the different kinds of biomass includes a) wood from forestry, landscape culturing and saw mills, bark and old wood; b) plants (corn, miscanthus, cannabis, wheat, rye, sugar beets, grass, rape, etc.), residuals and wastes (straw, liquid manure, slaughthouse wastes, kitchen wastes, sewage sludge, others). The chapter on biomass conversion processing discusses combustion, oxidation in spercritical water, gasification and reforming, fermentation, extrusion or extraction, and downstream processes. The chapter on biomass based electricity and mechanical energy includes refrigeration engineering, direct utilization: Otto engines, Diesel engines, microgas turbine fuel cells, and heat processing: Striling engine, vapour turbine, ORC turbine, externally fired gas turbine, and the Kalina process.

  1. Rural Biomass Energy Utilization and Sustainable Developmental Strategies in Tibet%西藏农村生物质能利用与可持续发展对策

    Institute of Scientific and Technical Information of China (English)

    吴珊珊; 姚治君; 沈镭

    2011-01-01

    [目的]为实现西藏农村能源的可持续利用提供理论依据.[方法]综述了西藏能源资源情况,分析了西藏农村生物质能利用的特点及潜力,并提出了西藏薪柴替代成略的可持续发展对策.[结果]西藏可再生能源十分丰富,主要有水能、地热能、太阳能、风能和以薪柴和畜粪为主的生物质能,而常规化石能源资源稀缺,石油、煤炭资源比较少,能源消耗以生物质能为主.这种低水平的传统的能源消费结构使脆弱的高原生态植被遭到破坏,致使生态环境恶化,水土流失加剧,土壤肥力下降.[结论]西藏未来的能源发展战略迫切需要改变目前能源的消费结构,积极实施薪柴替代战略,大力发展太阳能、风能、农村小水电替代目前以生物质能为主的能源消费结构,加快小城镇化进程,重点发展农村沼气,因地制宜,多能互补,减少因能源消费对西藏生态环境的破坏.%[Objective] This study was to provide theoretical basis for getting sustainable development of rural energy in Tibet into reality. [Method] By reviewing the rural energy resources in Tibet, we analyzed the characteristics and potential of rural biomass utilization in Tibet, and further put forward the sustainable countermeasures on the firewood substitution in Tibet. [Results] Renewable energies including hydraulic, geothermal, solar and wind resources are abundant in Tibet, while there is just a few of fossil energy resources such as oil and coal, with uneven distribution and poor exploration conditions. Traditional consumption of biomass energy resource accounts for a large proportion of the total energy consumption in Tibetan rural districts, which causes potential damage to the fragile ecological environment on the Tibetan Plateau. The excessive use of biomass energy destroyed the vegetation and evoked the environment deterioration such as the intensification of the water and soil loss and the declining of the

  2. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  3. 西藏农村生物质能利用与可持续发展对策%Rural Biomass Energy Utilization and Measures of Sustainable Development in Tibet from Low Carbon Perspective

    Institute of Scientific and Technical Information of China (English)

    吴珊珊; 姚治君; 沈镭

    2011-01-01

    [目的]为实现西藏农村能源的可持续利用提供理论依据.[方法]综述了西藏能源资源情况,分析了西藏农村生物质能利用的特点及潜力,并提出了西藏薪柴替代战略的可持续发展对策.[结果]西藏可再生能源十分丰富,主要有水能、地热能、太阳能、风能和以薪柴和畜粪为主的生物质能,而常规化石能源资源稀缺,石油、煤炭资源较少,能源消耗以生物质能为主.这种低水平的传统的能源消费结构使脆弱的高原生态植被遭到破坏,致使生态环境恶化,水土流失加剧,土壤肥力下降.[结论]西藏未来的能源发展战略迫切需要改变目前能源的消费结构,积极实施薪柴替代战略,大力发展太阳能、风能、农村小水电替代目前以生物质能为主的能源消费结构,加快小城镇化进程,重点发展农村沼气,因地制宜,多能互补,减少因能源消费对西藏生态环境的破坏.%[ Objective] This study was to provide theoretical basis for getting sustainable development of rural energy in Tibet into reality.[ Method ] By reviewing the rural energy resources in Tibet, we analyzed the characteristics and potential of rural biomass utilization in Tibet,and further put forward the sustainable countermeasures on the firewood substitution in Tibet. [ Result] Renewable energies including hydraulie, geothermal, solar and wind resources are abundant in Tibet, while there is less fine quality energy resources with uneven distribution and poor exploration conditions such as oil and coal. Traditional consumption of biomass energy resource accounts for a large proportion of the total energy consumption in Tibetan rural districts, which causes potential damage to the fragile ecological environment on the Tibetan Plateau. The excessive use of biomass energy destroyed the vegetation and evoked the environment deterioration such as the intensification of the water and soil loss and the declining of the soil

  4. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  5. Quantifying the Carbon Intensity of Biomass Energy

    Science.gov (United States)

    Hodson, E. L.; Wise, M.; Clarke, L.; McJeon, H.; Mignone, B.

    2012-12-01

    Regulatory agencies at the national and regional level have recognized the importance of quantitative information about greenhouse gas emissions from biomass used in transportation fuels or in electricity generation. For example, in the recently enacted California Low-Carbon Fuel Standard, the California Air Resources Board conducted a comprehensive study to determine an appropriate methodology for setting carbon intensities for biomass-derived transportation fuels. Furthermore, the U.S. Environmental Protection Agency is currently conducting a multi-year review to develop a methodology for estimating biogenic carbon dioxide (CO2) emissions from stationary sources. Our study develops and explores a methodology to compute carbon emission intensities (CIs) per unit of biomass energy, which is a metric that could be used to inform future policy development exercises. To compute CIs for biomass, we use the Global Change Assessment Model (GCAM), which is an integrated assessment model that represents global energy, agriculture, land and physical climate systems with regional, sectoral, and technological detail. The GCAM land use and land cover component includes both managed and unmanaged land cover categories such as food crop production, forest products, and various non-commercial land uses, and it is subdivided into 151 global land regions (wiki.umd.edu/gcam), ten of which are located in the U.S. To illustrate a range of values for different biomass resources, we use GCAM to compute CIs for a variety of biomass crops grown in different land regions of the U.S. We investigate differences in emissions for biomass crops such as switchgrass, miscanthus and willow. Specifically, we use GCAM to compute global carbon emissions from the land use change caused by a marginal increase in the amount of biomass crop grown in a specific model region. Thus, we are able to explore how land use change emissions vary by the type and location of biomass crop grown in the U.S. Direct

  6. Biomass Compositional Analysis for Energy Applications

    Science.gov (United States)

    Hames, Bonnie R.

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  7. Biomass compositional analysis for energy applications.

    Science.gov (United States)

    Hames, Bonnie R

    2009-01-01

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  8. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  9. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin;

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...

  10. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  11. Waste and biomass as energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Klass, Donald L.

    1978-11-01

    Organic fuels can be manufactured by converting major sources of continuously renewable nonfossil carbon to synfuels that are interchangeable with, or can be substituted for, natural gas and petroleum-derived fuels. Promising sources of this carbon are waste materials, such as urban refuse, and biomass produced from solar energy by photosynthesis. The development of this concept is presented in this paper. The broad scope of the technology and its potential impact on energy supplies are reviewed. The renewable feature of both wastes and biomass makes them valuable natural resources that inevitably will be fully developed and commercialized as sources of energy-intensive products and synfuels. The perpetual availability of organic fuels will permit the conservation of valuable fossil fuel reserves, and, as time passes, offer a long-term solution to independence from foreign energy supplies and fossil fuel depletion.

  12. Purdue Solar Energy Utilization Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  13. Energy from biomass. Ethics and practice; Energie aus Biomasse. Ethik und Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Silke (ed.)

    2013-06-01

    The implementation of the energy policy turnaround inevitably results in modifications of the land use and landscape. Besides the discussion about the environmental consequences, a debate about ethical issues increasingly arose. Under this aspect, the booklet under consideration contains the following contributions: (1) Renewable energy sources - the role of bioenergy (Bernard Widmann); (2) Energy from biomass - An ethic analysis (Stephan Schleissing); (3) Culture for our landscapes - combination of biomass and water protection (Frank Wagener); (4) Cultivation of energy crops - short rotation coppices (Frank Burger); (5) Bioenergy region Straubing-Bogen: Excellent in the matter of renewable energy sources (Josefine Eichwald); (6) Rural development - motor for the energy policy turnaround (Roland Spiller).

  14. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  15. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical

  16. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    Science.gov (United States)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  17. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  18. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  19. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  20. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  1. Limits to solar and biomass energy growth

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.M.; D' Alessio, G.J.

    1983-01-01

    Drawing on some 45 assessments made by the Technology Assessments of Solar Energy (TASE), the authors examine the potential for commercialization of solar and biomass technologies. The book is divided into four major parts: Part I describes and compares technologies; Part II describes the natural and capital resources necessary for commercialization; Part III examines social, economic, and environmental impacts and institutional and regulatory factors; and Part IV analyzes the consequences of several deployment scenarios. The authors conclude that the disproportionate resource requirements for a modest energy contribution will be liminting factor. 103 references, 80 figures, 32 tables. (DCK)

  2. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  3. Potential evaluation of biomass-based energy sources for Turkey

    OpenAIRE

    Mustafa Ozcan; Semra Öztürk; Yuksel Oguz

    2015-01-01

    Turkey has great potential with respect to renewable energy sources (RES) and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biom...

  4. Biomass district energy in North America

    Energy Technology Data Exchange (ETDEWEB)

    Maker, T. [Energy Efficiency Associates, Calais, VT (United States)

    1999-06-01

    The advantages of district heating plants, fueled by sustainably produced biomass are reviewed, and numerous successful examples in Canada and the United States are described. Canadian systems include the Trigen PEI system in Charlottetown, systems in the First Nations communities of Ouje-Bougoumou and Grassy Narrows, and systems serving public facilities in New Brunswick and Nova Scotia. In the United States, District Energy St. Paul has recently announced a 25 MW CHP plant fired with municipal tree thinnings and other wood wastes. There are two large state office complexes in Vermont that have been fired with sawmill residues and whole-tree chips for the last 15 years. There are also mini-district heating systems serving small communities, or just a few buildings, that have been pioneered in Vermont, Prince Edward Island and elsewhere. Other systems described include biomass thermal energy plants developed in Vermont (`the Vermont Model`) to serve public schools, a 300 KW waste wood boiler developed by a PEI manufacturer and installed in several multi-building settings on farms and greenhouses, and the hand-fired high efficiency cordwood boiler produced by a Minnesota firm that have been used in a number of multi-building applications in native American villages in Alaska. It has been estimated that compared to building energy retrofits and efficiency improvements which might reduce fossil fuel consumption by 10 to 30 per cent, connecting buildings to a biomass-fired district energy system can reduce fossil fuel use and net CO{sub 2} emissions by as much as 80 to 90 per cent. 12 refs.

  5. Biomass energy from crop and forest residues.

    Science.gov (United States)

    Pimentel, D; Moran, M A; Fast, S; Weber, G; Bukantis, R; Balliett, L; Boveng, P; Cleveland, C; Hindman, S; Young, M

    1981-06-05

    Residues remaining after the harvest of crop and forestry products are being proposed as a substantial energy source for the nation. An estimated 22 percent of the residues might be utilized, providing a renewable source of high-grade energy with the potential of supplying 1 percent of the current U.S. gasoline consumption as ethanol or 4 percent of the total electrical energy used. These net energy benefits are limited by high energy costs to collect, transport, and process the residues. Environmental threats include soil erosion, water runoff, and nutrient loss.

  6. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    Directory of Open Access Journals (Sweden)

    Heidi Scott

    2016-06-01

    Full Text Available This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sources. To consider the comparative literatures of energy as they relate to transportation, we will begin with wind, then consider muscle-driven biomass giving way to coal locomotion, and conclude with the highest octane fuel, petroleum. The central interest is in how the fuel depicted in literature illuminates historical moments in which the interfaces between self, society, and nature are configured by specific energy regimes. By using literature as a source text, we may arrive at an emotionally and philosophically more robust synthesis of energy history than the social and natural sciences, relying upon objective accounts and statistics, are able to provide. By re-reading literature through the lens of the Anthropocene, we gain perspective on how earlier insights into the relationship between energy and experience can inform our explorations of today’s ontological reality. Energy literature instructs us out of the fossil fuel mindset of world domination and back to a physical realm in which we are small actors in a world guided by capricious forces. Such a reality requires hard muscular work and emotional immersion to restore an ethic of care and sustainability.

  7. Biomass energy in the making; La biomasse: une energie en devenir

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in

  8. Biotrade1: international trade in renewable energy from biomass

    NARCIS (Netherlands)

    Agterberg, A.E.; Faaij, A.P.C.

    2006-01-01

    This paper discusses international trade in renewable energy from biomass. Main objective is to compare options for international trade in energy from biomass and to compare these options with non-trade options like domestic use of biomass and afforestation. Aspects that are taken into account are c

  9. Sustainable and resource-conserving utilization of global land areas and biomass; Globale Landflaechen und Biomasse nachhaltig und ressourcenschonend nutzen

    Energy Technology Data Exchange (ETDEWEB)

    Jering, Almut; Klatt, Anne; Seven, Jan; Ehlers, Knut; Guenther, Jens; Ostermeier, Andreas; Moench, Lars

    2012-10-15

    The contribution under consideration reports on the state of the art of biomass based land use as well as on existing and future global development trends. An ecologically compatible and socially equitable utilization of resources as well as priorities in the production and utilization of biomass are described in order to achieve their goals. Approaches to action, measures and policy recommendations are presented with respect to the development of a globally sustainable, resource-conserving utilization of land.

  10. 人工湿地植物生物质资源能源化利用潜力评估%Assessment of Constructed Wetland Plant Biomass for Energy Utilization

    Institute of Scientific and Technical Information of China (English)

    何明雄; 胡启春; 罗安靖; 茆灿泉; 祝其丽; 潘科; 李清

    2011-01-01

    通过测定不同人工湿地植物的纤维素组分和热值,并采用NaOH -酶解工艺研究不同人工湿地植物水解液组分,对在人工湿地技术体系中起重要作用的湿地植物能源化利用潜力进行系统评估.结果显示,15种人工湿地植物的纤维素含量在19.78%~36.9%之间,半纤维素含量在4.51%~19.67%之间,木质素含量在10.79%~20.47%之间,具有与玉米秸秆相当的热值,其热值在14.002~17.839 MJ/kg之间.在NaOH -酶解工艺条件下,不同人工湿地植物水解液中存在5种糖类组分,主要为葡萄糖和木糖.研究表明,人工湿地植物是一种较好的生物质资源,可通过生物质固体成型燃料技术、沼气技术和燃料乙醇技术加以利用,进而建立人工湿地植物牛物质资源能源化藕联利用模式.%Different constructed wetland plants were systematically assessed for energy utilization by measuring their cellulosic contents, caloricvalues and hydrolyzate of NaOH-cellulase pretreatment. The results showed that the cellulose, hemicellulose and lignin contents of the fifteen different constructed wetland plants were 19.78% to 36.9%, 4.51% to 19.67% and 10.79% to 20.47%, respectively. All wetland plants used in this study showed the same thermal value (ranged from 14.002 to 17.839 MJ/kg) as corn stover. Among the five types of sugar existed in the hydrolyzate, glucose and xylose were the main components. The results indicated that the constructed wetland plant could be used as one of suitable raw material resources for biomass briquette fuel, biogas and bioethanol production, and the coupled mode of constructed wetland plant biomass and bioenergy also could be constructed in the future. Fig 2, Tab 2, Ref 22

  11. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  12. Oil palm biomass as a sustainable energy source: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2009-09-15

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  13. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher

  14. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  15. Potential evaluation of biomass-based energy sources for Turkey

    Directory of Open Access Journals (Sweden)

    Mustafa Ozcan

    2015-06-01

    Full Text Available Turkey has great potential with respect to renewable energy sources (RES and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biomass energy potential calculations are made. Methods for energy conversion from wastes applicable to the conditions of Turkey, and technical and economic parameters are used. As a result of the calculations made, the total primary energy value of biogas obtainable from the examined sources is 188.21 TWh/year. The total primary energy value related to the potential of the evaluated biomass sources is 278.40 TWh/year.

  16. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  17. Biomass use in chemical and mechanical pulping with biomass-based energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas M.; Gustavsson, Leif [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2007-12-15

    The pulp and paper industry is energy intensive and consumes large amounts of wood. Biomass is a limited resource and its efficient use is therefore important. In this study, the total amount of biomass used for pulp and for energy is estimated for the production of several woodfree (containing only chemical pulp) and mechanical (containing mechanical pulp) printing paper products, under Swedish conditions. Chemical pulp mills today are largely self-sufficient in energy while mechanical pulp mills depend on large amounts of external electricity. Technically, all energy used in pulp- and papermaking can be biomass based. Here, we assume that all energy used, including external electricity and motor fuels, is based on forest biomass. The whole cradle-to-gate chain is included in the analyses. The results indicate that the total amount of biomass required per tonne paper is slightly lower for woodfree than for mechanical paper. For the biomass use per paper area, the paper grammage is decisive. If the grammage can be lowered by increasing the proportion of mechanical pulp, this may lower the biomass use per paper area, despite the higher biomass use per unit mass in mechanical paper. In the production of woodfree paper, energy recovery from residues in the mill accounts for most of the biomass use, while external electricity production accounts for the largest part for mechanical paper. Motor fuel production accounts for 5-7% of the biomass use. The biomass contained in the final paper product is 21-42% of the total biomass use, indicating that waste paper recovery is important. The biomass use was found to be about 15-17% lower for modelled, modern mills compared with mills representative of today's average technology. (author)

  18. Integration of alternative feedstreams for biomass treatment and utilization

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hames, Bonnie

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  19. Current Status and Prospects of Biomass Energy Industry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    At present biomass energy industry is in its infancy in China and it has a bright future. Biomass energy production used grain as raw materials has entered industrialization phase.Some key technologies of biomass energy industry are coming to mature.China has issued relevant industrial standards laws and regulations,and has provided support in finance,loan,tax,etc.But China's biomass energy industry is faced with many problems which need to be solved.For example,taking grain as raw materials is unsustain...

  20. Opportunities, Challenges and Prospects of Utilization of Plant Biomass for Energy in Constructed Wetland%人工湿地植物能源化利用的机遇、挑战与展望

    Institute of Scientific and Technical Information of China (English)

    刘冬; 欧阳琰; 林乃峰; 葛滢; 常杰; 邹长新

    2013-01-01

    综合概述了利用人工湿地植物进行能源化再生产的方式、优势、存在问题和发展趋势。人工湿地植物具有生长不需额外施肥、较高的生物量、物种多样化等优势,是一种较好的生物质资源,可通过生物质固体成型燃料技术、沼气技术和燃料乙醇技术加以利用,进而建立人工湿地植物生物质能源化利用模式,实现应对能源挑战、进行污水处理和强化环境保护三者的有机统一。%A review was conducted on models of production, strengths, existing problems and development trend in using wetland plants for energy production. The plants grown in constructed wetland are advantageous due to no need for extra fertilization, high biomass production, and high species diversity, they can be used as one of the suitable raw material resources for biomass briquette fuel, biogas and bioethanol production. Models of using plant biomass for bioenergy production will be developed to achieve the harmonization among energy need, wastewater treatment and environmental protection.

  1. Biomass energy production. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  2. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  3. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  4. Coupling of energy and agricultural policies on promoting the production of biomass energy from energy crops and grasses in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Wen-Tien [Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912 (China)

    2009-08-15

    This paper examined promotion programs and implementing regulations that provide a framework for the application of energy and agricultural policies for the local energy crops cultivation by the reactivation of fallow land (about 100,000 ha) and their utilizations in the bioenergy production in Taiwan. The contents were thus addressed on current energy supply and biomass energy production, estimation of carbon dioxide (CO{sub 2}) emissions from energy use (consumption) using the Reference Approach of the Intergovernmental Panel on Climate Change (IPCC) method, national energy goal in biomass energy supply in the near future, and government policies and measures for encouraging bioenergy production and consumption. For the promotion of biofuels, the incentive programs were initiated in the period of 2006-2011. The potential benefits of the program include the upgrade of industrial investment in the bioenergy plants, the reactivation of fallow land (about 100,000 ha), the mitigation of CO{sub 2} emissions, and so on. Concerning the utilization of napier grass (a potential energy grass) as biomass energy (electricity generation) for co-firing, its impacts on ambient air quality and non-CO{sub 2} greenhouse gases (i.e., CH{sub 4} and N{sub 2}O) emissions were also discussed in the paper. (author)

  5. The environmental costs and benefits of biomass energy use in California

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

    1997-05-01

    The California renewable energy industries have worked diligently during the past couple of years to develop public policies conducive to the future of renewable energy production within the context of electric market restructuring and the evolving competitive electric services industry. The state`s biomass power industry has organized itself as the California Biomass Energy Alliance (CBEA), and has participated vigorously in the regulatory and legislative processes. In order to reward biomass power generators for the special services they provide, CBEA has promoted the concept of providing incentives specifically targeted to biomass within the context of any renewables program enacted in the state. This concept has been embraced by the other renewables industry organizations, but resisted by the utilities. This study represents an effort to identify, characterize, ad quantify the environmental costs and benefits of biomass energy use in California, and to elucidate the future role of biomass power production within the context of the evolving deregulation of the California electricity industry. The report begins with a review of the development and growth of the California biomass power industry during the past 15 years. This is followed by an analysis of the biomass fuels market development during the same period. It examines trends in the types and costs of biomass fuels. The environmental performance of the mature California biomass energy industry is analyzed, and takes into account the environmental impacts of the industry, and the impacts that would be associated with disposing of the materials used as fuels if the biomass power industry were not in operation. The analysis is then extended to consider the environmental and economic consequences of the loss of biomass generating capacity since 1993. The report ends with a consideration of the future prospects for the industry in the context of restructuring.

  6. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...... with large amounts of fluctuating sources as it enables fuel efficient and low cost energy systems with thermal heat storages. DH increases the efficiency with the use of combined heat and power production (CHP), while reducing the biomass demand by enabling the use of other renewable resources such as large...

  7. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  8. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  9. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  10. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  11. Economic approach to assess the forest carbon implications of biomass energy.

    Science.gov (United States)

    Daigneault, Adam; Sohngen, Brent; Sedjo, Roger

    2012-06-05

    There is widespread concern that biomass energy policy that promotes forests as a supply source will cause net carbon emissions. Most of the analyses that have been done to date, however, are biological, ignoring the effects of market adaptations through substitution, net imports, and timber investments. This paper uses a dynamic model of forest and land use management to estimate the impact of United States energy policies that emphasize the utilization of forest biomass on global timber production and carbon stocks over the next 50 years. We show that when market factors are included in the analysis, expanded demand for biomass energy increases timber prices and harvests, but reduces net global carbon emissions because higher wood prices lead to new investments in forest stocks. Estimates are sensitive to assumptions about whether harvest residues and new forestland can be used for biomass energy and the demand for biomass. Restricting biomass energy to being sourced only from roundwood on existing forestland can transform the policy from a net sink to a net source of emissions. These results illustrate the importance of capturing market adjustments and a large geographic scope when measuring the carbon implications of biomass energy policies.

  12. A survey of state clean energy fund support for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  13. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Daugbjerg Jensen, P.; Svane Bech, K. [Danish Technological Institute (DTI), Taastrup (Denmark)] [and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  14. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective

    DEFF Research Database (Denmark)

    Tonini, Davide; Vadenbo, Carl; Astrup, Thomas Fruergaard

    2017-01-01

    that utilizing the energy potential of manure and straw represents the primary opportunity for further global warming mitigation. For this purpose, co-digestion (for manure) and combustion with heat-and-power production (for straw) appear as the most promising technologies. The utilization of biomass (or biogas......) for electricity/heat is generally preferred, as long as coal/oil is still used within the energy system. Yet, to fulfill environmental targets for renewable energy in the transport sector, the diversion of a significant share of biogas (and/or other biofuels) from these more beneficial uses is necessary....... To completely phase out coal/oil, additional biomass (to current domestic resources) must be included, either through domestic energy crops cultivation or biomass/biofuel import; alternatively, natural gas could be used....

  15. Biomass measurement from LANDSAT: Drought and energy applications

    Science.gov (United States)

    Maxwell, E. L.

    1981-01-01

    The theory supporting the use of vegetation indices derived from LANDSAT data for the direct measurement of biomass is reviewed. The use of multispectral data to measure biomass is a natural and viable application since the photosynthetic production of biomass gives vegetation its unique spectral properties. Vegetation indices also perform a normalization function which tends to make them insensitive to atmospheric and soil color variations. Optical and digital LANDSAT products are discussed relative to the use of vegetation indices to monitor drought impact. Based on results obtained in Colorado, operational use of LANDSAT to monitor drought is cost effective, practical and ready for implementation today. The direct measurement of biomass energy resources may also benefit from LANDSAT technology. Measurement of total biomass and annual primary production may be feasible. Identification of that component of biomass resources available for energy use will require other sources of information, however.

  16. Energy generation for sustainable development with innovation technology and utilization of biomass residue; Geracao de energia para o desenvolvimento rural sustentavel com inovacao tecnologica de aproveitamento de biomassa residual

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Maria Roseane de Pontes; Lopes, Carlos Eduardo Bezerra; Costa Neto, Manoel Bezerra da; Selvam, P.V. Pannir [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    In the present work, the introduction of alternative energy of biogas in agricultural communities for the sustainable development was studied through exploitation of residual biomass and also getting as by-product the biological fertilizer. A fast composting of the domestic residue with the organic was made possible where part of this residue after processing was taken together with effluent to the biodigestor. The bibliographical research on the processes of generation of biogas, about composting and the equipment for processing had been carried through. The projects Engineering with the use of computational tools had been developed with the Software Super Pro 4,9 Design and ORC GPEC 2004 by our research group. Five case studies had been elaborated, where different scenes related with our innovation, that uses of the residue for the composting together with domestic effluent for digestion. Several economic parameters were obtained and our work proved the viability about the use of biogas for drying of the fruits banana. A economic feasibility study was carried where it was proven that the project with the innovation of the use of residues from the fruits possesses more advantages than the conventional system of drying using electric energy. Considering the viability of this process and the use solar energy, it is intended to apply this technology in rural agricultural communities providing them an energy source of low cost in substitution of the conventional energy. (author)

  17. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  18. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)

    2002-08-01

    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  19. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Tuovinen, Olli H; Puhakka, Jaakko A

    2013-05-01

    This review discusses anaerobic production of methane, hydrogen, ethanol, butanol and electricity from microalgal biomass. The amenability of microalgal biomass to these bioenergy conversion processes is compared with other aquatic and terrestrial biomass sources. The highest energy yields (kJ g(-1) dry wt. microalgal biomass) reported in the literature have been 14.8 as ethanol, 14.4 as methane, 6.6 as butanol and 1.2 as hydrogen. The highest power density reported from microalgal biomass in microbial fuel cells has been 980 mW m(-2). Sequential production of different energy carriers increases attainable energy yields, but also increases investment and maintenance costs. Microalgal biomass is a promising feedstock for anaerobic energy conversion processes, especially for methanogenic digestion and ethanol fermentation. The reviewed studies have mainly been based on laboratory scale experiments and thus scale-up of anaerobic utilization of microalgal biomass for production of energy carriers is now timely and required for cost-effectiveness comparisons.

  20. Production, characterization and utilization of the biomass from various sources

    OpenAIRE

    Gojkovic, Živan

    2014-01-01

    Biomass management is one of the most important issues in modern natural science as it is the basic category which spans through various disciplines of biotechnology. Whether animal, plant or microbial by its origin, biomass presents a vast source of food components, fine chemicals and bioactive molecules, which extraction, characterization and formulation can result in interesting new products destined for human consumption or as new materials in biomedicine. In the scope of t...

  1. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  2. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  3. Valorization of jatropha fruit biomass for energy applications

    NARCIS (Netherlands)

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for energy applications Ahmad Marasabessy

    Thesis Abstract

    Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha biomass fractionatio

  4. Evaluation of energy roof direct utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Rossetto, L.; Viero, L.

    1984-04-01

    Energy roofs are roofing systems equipped with channels which allow both solar and atmospheric energy collection. They were conceived as cold source for heat pump systems. The behavious of an energy roof in DHW direct heating was studied; this might extend energy roof utilization all year long. The estimates were performed through more reliable recently proposed correlations for wind convection heat transfer coefficients. The advantage of annual energy roof utilization in DHW direct heating is predictable.

  5. CUDe—Carbon Utilization Degree as an Indicator for Sustainable Biomass Use

    Directory of Open Access Journals (Sweden)

    Anja Hansen

    2016-10-01

    Full Text Available Carbon (C is a central element in organic compounds and is an indispensable resource for life. It is also an essential production factor in bio-based economies, where biomass serves many purposes, including energy generation and material production. Biomass conversion is a common case of transformation between different carbon-containing compounds. At each transformation step, C might be lost. To optimize the C use, the C flows from raw materials to end products must be understood. The estimation of how much of the initial C in the feedstock remains in consumable products and delivers services provides an indication of the C use efficiency. We define this concept as Carbon Utilization Degree (CUDe and apply it to two biomass uses: biogas production and hemp insulation. CUDe increases when conversion processes are optimized, i.e., residues are harnessed and/or losses are minimized. We propose CUDe as a complementary approach for policy design to assess C as an asset for bio-based production. This may lead to a paradigm shift to see C as a resource that requires sustainable exploitation. It could complement the existing methods that focus solely on the climate impact of carbon.

  6. Waste biomass-to-energy supply chain management: a critical synthesis.

    Science.gov (United States)

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas.

  7. Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    M. Misra

    2007-06-10

    This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two fronts—computer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood

  8. Biomass energy research program 2008 - 2011; Energieforschungsprogramm Biomasse fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, S.; Binggeli, D.; Guggisberg, B.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on energy from biomass for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper describes the concept for the biomass area. Research into modern technological concepts and ways of transforming biomass into energy are discussed and main areas of research to be addressed are discussed. Three main technological areas are defined: combustion, gasification and anaerobic fermentation. Important themes to be examined include system optimisation and integration, quality assurance and the promotion of new technologies. National and international networking between research and practice is commented on, as are the possibilities for the funding of the work.

  9. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  10. Lignocellulosic biomass utilization toward biorefinery using meshophilic Clostridial species

    NARCIS (Netherlands)

    Tamaru, Yutaka; Lopez Contreras, A.M.

    2013-01-01

    Lignocellulosic biomass such as agricultural, industrial, and forestry residues as well as
    dedicated crops constitute renewable and abundant resources with great potential for a lowcost
    and uniquely sustainable bioconversion to value-added bioproducts. Thus, many
    organic fuels and chemic

  11. Integration of Lignocellulosic Biomass into Renewable Energy Generation Concepts

    Directory of Open Access Journals (Sweden)

    KUSCH Sigrid

    2009-08-01

    Full Text Available In all European countries various lignocellulosic biomasses such as agricultural residues (straw, strawcontaining dung or fractions from municipal solid waste are available in large amounts, but currently hardly any of thispotential is being used for energy generation. This paper reviews the different options for including lignocellulosicbiomass into renewable energy generation schemes. Not all wastes are suitable to be treated by principally availabletechniques such as anaerobic digestion, ethanol production or thermal valorisation. The present paper gives an overviewof utilisation options for lignocellulosic biomass to either produce biofuels or to integrate such biomass into anaerobicdigestion. Biorefinery concepts are discussed as well.

  12. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in botswana.

    Science.gov (United States)

    Nkambwe, Musisi; Sekhwela, Mogodisheng B M

    2006-02-01

    This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.

  13. Alfalfa -- a sustainable crop for biomass energy production

    Science.gov (United States)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  14. Characterization of Spanish biomass wastes for energy use.

    Science.gov (United States)

    García, Roberto; Pizarro, Consuelo; Lavín, Antonio G; Bueno, Julio L

    2012-01-01

    Energy plays an important role in the world's present and future. The best way to absorb the huge increase in energy demands is through diversification. In this context biomass appears as an attractive source for a number of environmental, economical, political and social reasons. There are several techniques used to obtain energy from biomass. Among these techniques, the most commonly used throughout the world is a thermo-chemical process to obtain heat. To optimize the combustion process in adequate reactors, a comprehensive study of the characterization of biomass fuel properties is needed, which includes proximate analysis (determination of moisture, ash, volatile and fixed carbon content), ultimate analysis (C, H, N, S and O composition) and calorimetry, focusing on biomass fuels obtained in Spain.

  15. Yearbook 1993: Bioenergy Research Programme. Utilization of bioenergy and biomass conversion

    Science.gov (United States)

    Alakangas, Eija

    BIOENERGIA Research Programme is one of the energy technology programs of the Finnish Ministry of Trade and Industry. The aim of the program is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. R&D projects will also develop new economically competitive biofuels and new equipment and methods for production, handling, and utilization of biofuels. The total funding for 1993 was 45 million FIM and the number of projects 50. The research area of biomass conversion consists of 7 projects in 1993, and the research area of bioenergy utilization of 10 projects. The results of these projects carried out in 1993 and the plans for 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well as wood processing industry and power plants than it is possible at present day appliances. The conversion research in 1993 was pointed at refining of the waste liquors of pulping industry and the extraction of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and combustion tests. The target of the bioenergy utilization research is to demonstrate three to four new utilization technologies or methods. Each of these plants should have a potential of 0.2 - 0.3 million toe. The 1993 projects consisted of three main categories: reduction of emissions from small-scale combustion equipment, development of different equipment and methods for new power plant technologies, and the studies concerning additional usage of wood fuels in forest industry.

  16. Energy Efficiency of Biogas Produced from Different Biomass Sources

    Science.gov (United States)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  17. 1994 Washington State directory of Biomass Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  18. Lignocellulosic biomass utilization toward biorefinery : technologies, products and perspectives

    OpenAIRE

    Mussatto, Solange I.

    2014-01-01

    Lignocellulosic biomass wastes (LBW) are generated and accumulated in large amounts around the world every year. The disposal of large amounts of such wastes in the nature may cause environmental problems, affecting the quality of the soil, lakes and rivers. In order to avoid these problems, efforts have been directed to use LBW in a biorefinery to maximize the reutilization of these wastes with minimal or none production of residual matter. Through biorefiner...

  19. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  20. VT Renewable Energy Sites - Woody Biomass

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  1. Marginal land-based biomass energy production in China.

    Science.gov (United States)

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  2. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    Science.gov (United States)

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  3. Utilization of renewable energy in architectural design

    Institute of Scientific and Technical Information of China (English)

    TIAN Lei; QIN Youguo

    2007-01-01

    Renewable energy does not simply equal to using a photovoltaic (PV) board.In addition to heating,ventilation and air conditioning (HVAC) engineering considerations,the design approaches of architects are crucial to the utilization condition and methods of renewable energy.Through profound comprehension of the relationship between renewable energy utilization and design approaches,we can achieve a dual-standard of building environment performance and esthetics.

  4. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Teel, A.; Brown, S.S. [Iowa State Univ., Ames, IA (United States)

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  5. Energy conservation options for cooking with biomass in Ghana

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Næraa, Rikke; Karlsson, Kenneth

    1996-01-01

    . An energy chain for the cooking process is established and the possible conservation options are surveyed in kitchen performance tests in Abodom in the tropical zone of Ghana. The energy consumption for the food preparation has been measured and energy saving options have been determined for some parts...... of the energy chain. The results show that the possible options for energy conservation through the entire energy chain of the present technology are at least of the same magnitude as that involved in just switching to a more efficient biomass stove. The heat loss is largest while simmering when the boiling......Cooking is the main energy consuming activity in Ghana. This is mainly due to a generally low material standard of living, but also because the cooking process itself is energy inefficient. The fuel for cooking in Ghana is mainly biomass either in the form of wood, agricultural residues or charcoal...

  6. Biomasse til energi og økologisk jordbrug

    DEFF Research Database (Denmark)

    Christensen, Bent T; Meyer, Niels I; Nielsen, Vilhjalmur

    Biomass is foreseen to play an important role in the Danish energy supply in the future. In recent years however, concerned ecological farmers have claimed that crop residues and animal manure should be returned to the fields with as small loss in carbon and nutrients content as possible. This has...... of ecological farmers on the use of biomass for energy are described, and empirical studies and models of the impact of soil carbon and nutrients on soil productivity are presented. The impact on the soil carbon balance of incorporating straw and manure to the field and the effects of land use changes...... created uncertainty concerning the realistic potential of biomass for energy. In order to analyse this question the Danish Energy Agency has funded a preliminary, interdiciplinary study concerning the relevance of the claims of the ecological farmers. The principles of ecological farming and the claims...

  7. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  8. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  9. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  10. Biomass for Energy and the Impacts on Food Security

    NARCIS (Netherlands)

    Nonhebel, Sanderine; Barbir, F; Ulgiati, S

    2010-01-01

    In climate policies in the developed world the use of biomass as an energy source plays an important role Indications exist that these policies are affecting global food security In this chapter we compare the global demands for food, feed and energy in the near future We distinguish between develop

  11. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  12. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass.

    Science.gov (United States)

    Falter, Christian; Zwikowics, Claudia; Eggert, Dennis; Blümke, Antje; Naumann, Marcel; Wolff, Kerstin; Ellinger, Dorothea; Reimer, Rudolph; Voigt, Christian A

    2015-09-01

    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.

  13. Hydrothermal conversion of biomass to liquid energy sources; Hydrothermale Konversion von Biomasse zu fluessigen Energietraegern

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Michael; Peters, Mario; Klemm, Marco; Nelles, Michael [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany)

    2013-10-01

    Beside thermo-chemical processes like pyrolysis, torrefaction and gasification another process group called hydrothermal conversion of biomass comes into the focus of research and development. Especially for wet biomass this process has several advantages: as the reaction medium is water wet biomass not needs to be dried. Beside the reaction pathways, which are still not completely understood, it is important to investigate reactor concepts. That gives the possibility to continuously process the given biomass to deduce specific process conditions for the production of chemicals and fuels. Experiments were conducted in a newly developed tubular reactor at temperatures from 150 to 270 C and reaction times from 1 to 6 min. By studying the HPLC analysis of the liquid products the formation and degradation of several products which may be utilized as base materials for chemicals and fuels (furfural, 5-HMF etc.) was conducted. The experiments illustrate the possibility to influence product composition to a certain extend only by varying temperature and time of the hydrothermal process. That could result in an economic and feasible way to produce intermediate chemicals from biomass. In a second step these product analysis will be used to develop catalysts and investigate the possibilities of in-situ-hydrogenation and synthesis of further valuable chemicals and fuels. (orig.)

  14. Utility Constrained Energy Minimization In Aloha Networks

    CERN Document Server

    Khodaian, Amir Mahdi; Talebi, Mohammad S

    2010-01-01

    In this paper we consider the issue of energy efficiency in random access networks and show that optimizing transmission probabilities of nodes can enhance network performance in terms of energy consumption and fairness. First, we propose a heuristic power control method that improves throughput, and then we model the Utility Constrained Energy Minimization (UCEM) problem in which the utility constraint takes into account single and multi node performance. UCEM is modeled as a convex optimization problem and Sequential Quadratic Programming (SQP) is used to find optimal transmission probabilities. Numerical results show that our method can achieve fairness, reduce energy consumption and enhance lifetime of such networks.

  15. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael R; Morrison, James A; Spomer, Eric; Thimot, Carol A

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heat and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.

  16. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    Directory of Open Access Journals (Sweden)

    DEEPAK PALIWAL,

    2010-10-01

    Full Text Available The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternative to conserve the natural resources and reduce the pollution burden. At present renewable sources of energy such as solar, wind, geothermal and hydropower provide small fraction of energy need. The most prevalent source is biomass, which accounts around 12% of total energy requirement. This source of energy includes wood, logging waste, sawdust, animal dung and vegetables consisting of grass, leaves, grass residues and agricultural waste. The biomass is abundant in nature which can be trapped as source of energy for generation of electricity for the rural as well as urban population. The technology needs to be developed for use of biomass as a source of energy. This paperdiscusses about its prospects in Asia and particularly in India. The recent developments and projects in India are discussed. A note on pollution control strategies has also been added.

  17. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  18. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  19. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  20. Biomass energy: Employment generation and its contribution to poverty alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Openshaw, Keith [2430 Shenandoah St., Vienna, VA 22180 (United States)

    2010-03-15

    Studies were undertaken in Malawi from 1995 to 1997 and 2007 to 2008 to estimate the supply and demand of household energy. Because little is known about the supply chain for biomass, surveys were carried out for urban areas on its production, transport and trade as well as sustainable supply. Also, because biomass is used by all people for a multitude of purposes, a complete picture was made of regional and urban biomass supply and demand. The results indicated that biomass is not only the principal energy, accounting for 89 percent of demand, but also the main traded energy in the two time periods accounting for 56-59 percent of commercial demand. Petroleum products supplied 26-27 percent, electricity 8-12 percent and coal 6-10 percent. The market value of traded woodfuel was US$ 48.8 million and US$ 81.0 million in 1996 and 2008 respectively, about 3.5 percent of gross domestic product (GDP). The study found that in 1996 and 2008 respectively, the equivalent of 93,500 and 133,000 full-time people was employed in the biomass supply chain, approximately 2 percent of the potential workforce. In contrast, about 3400 and 4600 people were employed in the supply chain of other fuels in these years. If the Malawi findings are applied to the current estimated wood energy consumption in sub-Saharan Africa, then approximately 13 million people could be employed in commercial biomass energy; this highlights its importance as a means to assist with sustainable development and poverty alleviation. (author)

  1. Introduction to energy balance of biomass production; Introduccion al calculo del balance energetico de la produccion de Biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P.

    1997-11-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs.

  2. Solar biomass energy: an overview of u.s. Potential.

    Science.gov (United States)

    Burwell, C C

    1978-03-10

    The U.S. annual biomass production for food, lumber, paper, and fiber, if used exclusively for energy, would provide 25 percent of current energy requirements. The collection of unharvested wood residues and cull trees for direct use as fuel for small nearby space-heating applications-especially for peak winter conditions-is an important near-term solar energy opportunity. Improved management of hundreds of millions of acres of productive forest land is an important opportunity for the long term. Harvest of cropland residues for energy values, new biomass production using intensive short-rotation silviculture, resubstitution of natural products for petroleum-based synthetics, and forest management for large-scale production of electricity and synthetic fuels are judged to be less appropriate directions for the U.S. energy system to take.

  3. Impact of novel energy sources: OTEC, wind, goethermal, biomass

    Science.gov (United States)

    Roberts, A. S., Jr.

    1978-01-01

    Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.

  4. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.;

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...... the extent to which wood for energy is and energy sectors in particular. F included in forest legislation and forest certification standards under the "Programme for the Endorsement of Forest Certification" (PEFC) and the "Forest Stewardship Council" (FSC) schemes. Energy and forest policies at EU...

  5. Energy-efficient photobioreactor configuration for algal biomass production.

    Science.gov (United States)

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs.

  6. Development of Switchgrass Into a Biomass Energy Crop

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a North American prairie grass that is being developed into a biomass energy crop in the USA and other countries. Research on switchgrass as a pasture and forage crop was initiated in the mid-1930's in an U.S. Department of Agriculture and University of Nebraska ...

  7. Fuels and chemicals from biomass using solar thermal energy

    Science.gov (United States)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  8. Agronomic Considerations for Simulating Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.), a perennial warm-season grass native to North America, is a prime candidate for dedicated biomass energy for many regions of the USA. USDA-ARS in Lincoln, NE has conducted switchgrass research since the 1930’s. Plot-scale research has been conducted on switchgrass ...

  9. Conflicts on Use of Agricultural Biomass for Energy

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, Bent T.

    1997-01-01

    The use of biomass for energy puposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers claim that crop residues and animal manure should all be returned to the fields with as small a loss in carbon and nutrients content as possible. If a large part...

  10. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  11. Utilities and energy efficiency Denmark report

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Lyck, N.C.

    1996-11-01

    The report is the Danish contribution to the project `Utilities and Energy Efficiency` produced for the European Commission by IET, Nikkel straat 15, 4823 AE Breda, The Netherlands. Information is given under the headings of existing situation and desired situation. Recommendations are also given under the headings of legislation concerning the objectives of the utilities, of government programs and targets, of organizational structure, required market dependence and internal objectives of the utilities, for regulation and standardization, and of tariff structure. Flow diagrams are presented for the Danish energy system 1990, 1993. The 1993 follow up of the energy plan `Energy 2000` points out that the goals set up at that time, first and foremost the 20% reduction in CO{sub 2} emissions in 2005 compared to the 1988 level, will not be reached without changes in policy, such as an increase in the use of renewable energy, more transparent and consistent tariff systems as a greater incentive for energy conservation, regulations on thermal insulation of houses, increase in public information activities,a new subsidy scheme to stimulate improvements of energy efficiency in buildings and regulations on energy supply to large buildings. (ARW) 55 refs.

  12. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability.

  13. Challenges in meeting biomass energy needs in West Africa

    Energy Technology Data Exchange (ETDEWEB)

    Dianka, M. [GAA/RPTES, Dakar (Senegal)

    2001-07-01

    Biomass energy represents conciderable potential for West Africa. However, the traditional methods of tapping into this biomass have not only had grave consequences for the environment, but have only been able to partially resolve the crucial issue of how to sustainably supply households with domestic fuels. Nevertheless, recent progress made in the improvement of technologies enhancing biomass energy provides a glimpse at interesting perspectives fostering the modernisating and better assesment of the biocombustible and biofuel industries. Reflection conducted over these past years by a group of African experts, brought together around the ASG at the instigation of the RPTES Programme and founded on a new approach to forest resource management, illustrates the attention public powers are granting increasingly to biomass energy, which had been relegated to the back burner for so long, to the benefit of more 'conventional' energy sources. Considering the complexity of biomass energy issues, and their direct links to poverty, it is evident that isolated actions will never succeed in solving the problems currently faced. Thus it is essential to promote regional collaboration and partnerships for more effective actions and to capitalise on experiences, with the aim of ensuring sustainable development for the continent of Africa. Today, given the economic potential of more than US$6 billion generated by African forests, this implies the introduction of sustainable strategies which will result in increasing incomes and improving welfare in general. West Africa, masthead of the continent, will certainly not be an isolated case. Consequently, vigorous action supporting the sustainable management of natural resources as part of poverty alleviation programmes should be undertaken post-haste, in compliance with the Abuja Treaty establishing the African Economic Community. (au)

  14. A Spatial Model of the Biomass to Energy Cycle

    DEFF Research Database (Denmark)

    Möller, Bernd

    2003-01-01

    by location. This paper aims to contribute to the development of a biomass to energy evaluation and mapping system, using geographical information systems (GIS). A GIS-based in-forest residue model considers forest growth and choice of harvest method. Data from a sawmill survey is used to assess sawmill resi...... and the costs of accumulated amounts of wood residues can now be calculated almost instantly for each location in the country. It is assumed that this approach will facilitate the assessment of future biomass markets....

  15. A Study of Thermal Analyses and Fundamental Combustion Characteristics for Thermal Utility with Biomass Volatile Matter

    Science.gov (United States)

    Ida, Tamio; Namba, Kunihiko; Sano, Hiroshi

    Based on un-use biomass utilities, Carbonized technology is noticed as material utilities and solid fuel. Therefore, this technology is tackling by national project as large-scale utilities. But, this technology is dehydrated volatiles matter during carbonized from biomass. Especially, Woody tar into one of volatile matter has vicious handling to get into trouble in carbonized equipment. In this study, we propose to get fundamental knowledge for effective thermal utility through thermal decompositions and fundamental combustion properties on experimental results. Woody tar has high caloric value (approximately 30MJ/kg) and high carbon ration. On the other hand, a woody vinegar liquid has thermal decomposition property close to water property with heat absorption as evaporation latent heat of water. In fundamental combustion experimental result, a woody tar has fl ammable combustion and surface combustion. Especially, a total combustion and ignition time properties has hyperbola relation to environment temperatures in furnace.

  16. Energy from Biomass: technology assessment of small-medium scale biomass conversion systems

    OpenAIRE

    Cutz Ijchajchal, Luis Leonardo

    2016-01-01

    Mención Internacional en el título de doctor Bioenergy is a key resource to addressing challenges such as climate change (anthropogenic CO₂ emissions), pollution (suspended particles), energy security and human well-being. Currently, most of the biomass produced worldwide is consumed for cooking and space heating which has raised concerns among governments and policy-makers, especially due to threats to human health. The present thesis focuses on studying the technical and economic feasibi...

  17. Energy balance for steam generation system with biomass dryer

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Pedro A.R. [Instituto Superior Politecnico Jose Antonio Echeverria (CUJAE), Ciudad de La Habana (Cuba). Facultad Ingenieria Mecanica]. E-mail: pedro@economia.cujae.edu.cu; Lombardi, Geraldo; Santos, Antonio Moreira dos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia]. E-mails: lombardi@sc.usp.br; asantos@sc.usp.br

    2008-07-01

    Water content is a major drainer of the energy available in the biomass, which justifies the proposal of a drying system with the potential to increase 80% of the biomass low heating value, also increasing the production of steam in the boiler and cogeneration of electricity. An example of biomass is the sugar cane bagasse of an alcohol mill producing 120,000 liters of alcohol per day, whose humidity from the extraction section is usually 50%. The present paper determines the increases in the mass flow rates of steam in the boiler, in the cogeneration of electricity and in the pay back time of the drying system and of the alcohol mill, as a consequence of the bagasse drying from 50 to 35%, considering 30% of air excess over the stoichiometric value admitted in the boiler for the bagasse burning. It also provides subsidies for the development and deployment of a drying system for the current boilers. (author)

  18. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  19. Strategies on biomass energies in EU

    Energy Technology Data Exchange (ETDEWEB)

    Xenakis, E. [European Commission, Bruxelles (Belgium)

    1997-08-01

    The main EU programmes, supporting the renewable deployment, are the research and development programmes JOULE, THERMIE and FAIR, included in the 4th framework programme, the ALTENER programme and the `Community Support Framework` programme. Research and development (R and E) activity within the JOULE and THERMIE programmes are divided into five areas, of which the third concerns the renewable energies. The support could range from 40 to 100 % of the cost. JOULE programme is research oriented, while the THERMIE programme is demonstration oriented. The FAIR programme is also a specific research and development programme for agriculture and agrifood industry. It could cover, among others, projects in connection with the biogas exploitation. The ALTENER programme provides support for the so called `software` actions, promoting renewables, mainly training and information actions, including events like the present one. Furthermode, it provides support for technical specifications, creation of infrastructure for the promotion of renewables and so on. ALTENER does not support investments. Finally the `Community Support Framework` programme promoting the regional development, could, in some cases, support traditional technology investments in relation to renewables. (au)

  20. Utility Optimal Scheduling in Energy Harvesting Networks

    CERN Document Server

    Huang, Longbo

    2010-01-01

    In this paper, we show how to achieve close-to-optimal utility performance in energy harvesting networks with only finite capacity energy storage devices. In these networks, nodes are capable of harvesting energy from the environment. The amount of energy that can be harvested is time varying and evolves according to some probability law. We develop an \\emph{online} algorithm, called the Energy-limited Scheduling Algorithm (ESA), which jointly manages the energy and makes power allocation decisions for packet transmissions. ESA only has to keep track of the amount of energy left at the network nodes and \\emph{does not require any knowledge} of the harvestable energy process. We show that ESA achieves a utility that is within $O(\\epsilon)$ of the optimal, for any $\\epsilon>0$, while ensuring that the network congestion and the required capacity of the energy storage devices are \\emph{deterministically} upper bounded by bounds of size $O(1/\\epsilon)$. We then also develop the Modified-ESA algorithm (MESA) to ac...

  1. Energy and conservation benefits from managed prairie biomass

    Science.gov (United States)

    Jungers, Jacob M.; Trost, Jared J.; Lehman, Clarence L.; Tilman, David; Booth, Elaine

    2011-01-01

    Marginally productive land, such as that enrolled in the Conservation Reserve Program (CRP), may provide acreage and economic incentives for cellulosic energy production. Improving the yields from these lands will help establish a biomass producer?s position in the marketplace. The effects of water and nitrogen on biomass yields were investigated in both a plot-scale experiment and a broad-scale survey of CRP lands. The plot-scale experiment demonstrated that irrigation improved mixed-species prairie biomass yields more than nitrogen fertilizer on coarse-textured, marginally productive soils. Experimental plots amended with both irrigation and moderate (but not high) nitrogen produced more biomass than other treatment combinations, but this trend was not statistically significant. The survey of biomass yields on CRP lands across four Midwestern States indicates that yields are better correlated with June rainfall than any other individual month. Applying nutrient-enriched water such as agricultural runoff could benefit prairie yields if applied at appropriate times.

  2. Integrated energy systems based on cascade utilization of energy

    Institute of Scientific and Technical Information of China (English)

    JIN Hongguang; LI Bingyu; FENG Zhibing; GAO Lin; HAN Wei

    2007-01-01

    Focusing on the traditional principle of physical energy utilization,new integration concepts for combined cooling,heating and power (CCHP) system were identified,and corresponding systems were investigated.Furthermore,the principle of cascade utilization of both chemical and physical energy in energy systems with the integration of chemical processes and thermal cycles was introduced,along with a general equation describing the interrelationship among energy levels of substance,Gibbs free energy of chemical reaction and physical energy.On the basis of this principle,a polygeneration system for power and liquid fuel (methanol)production has been presented and investigated.This system innovatively integrates a fresh gas preparation subsystem without composition adjustment process (NA) and a methanol synthesis subsystem with partial-recycle scheme (PR).Meanwhile,a multi-functional energy system (MES) that consumes coal and natural gas as fuels simultaneously,and co-generates methanol and power,has been presented.In the MES,coal and natural gas are utilized synthetically based on the method of dual-fuel reforming,which integrates methane/steam reforming and coal combustion.Compared with conventional energy systems that do not consider cascade utilization of chemical energy,both of these systems provide superior performance,whose energy saving ratio can be as high as 10%-15%.With special attention paid to chemical energy utilization,the integration features of these two systems have been revealed,and the important role that the principle of cascade utilization of both chemical and physical energy plays in system integration has been identified.

  3. Technical and economic analysis of using biomass energy

    Directory of Open Access Journals (Sweden)

    Piaskowska-Silarska Małgorzata

    2017-01-01

    Full Text Available In the first part of the article were presented the technical possibilities of obtaining solid biomass, biogas, landfill gas, a biogas from wastewater treatment plants, bioethanol and biodiesel. Then processes was described, allowing use of energy from biomass. As first was discussed the incineration which includes drying and degassing of the wood materials, wood gas burning at 1200°C, post-combustion gas and heat transfer in the heat exchanger. Then had been described gasification, or thermochemical conversion process, occurring at high temperature. It is two-stage process. In the first chamber at deficiency of air and at relatively low temperatures (450–800°C, the fuel is being degasified, resulting in creating combustible gas and a mineral residue (charcoal. In the second stage, secondary combustion chamber and at a temperature of about 1000–1200°C and in the presence of excess of oxygen resultant gas is burned. A further process is pyrolysis. It consists of the steps of drying fuel to a moisture level below 10%, milling the biomass into very small particles, the pyrolysis reaction, separation of solid products, cooling and collecting bio-oil. Then discusses co-generation, which is combined production of heat and electricity. In this situation where the biomass contains too much water it can be used for energy purposes through biochemical processes. The alcoholic fermentation results in decomposition of carbohydrates taking place under anaerobic conditions, and the product is bioethanol. Another biochemical process used for the production of liquid biofuels is esterification of vegetable oils. Methane fermentation in turn causes a decomposition of macromolecular organic substances with limited oxygen available. As a result, we obtain alcohols, lower organic acids, methane, carbon dioxide and water. There was analysis of economic increasing of solid biomass energy, biogas and liquid biofuels in the following article.

  4. A decision model for cost effective design of biomass based green energy supply chains.

    Science.gov (United States)

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures.

  5. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  6. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  7. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass.

    Science.gov (United States)

    Khosravi, Claire; Benocci, Tiziano; Battaglia, Evy; Benoit, Isabelle; de Vries, Ronald P

    2015-01-01

    Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.

  8. Easetech Energy: Advanced Life Cycle Assessment of Energy from Biomass and Waste

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Turconi, Roberto; Tonini, Davide

    SUMMARY: Biomass and waste are expected to play a key role in future energy systems based on large shares of renewable energy resources. The LCA model EASETECH Energy was developed specifically for modelling large and complex energy systems including various technologies and several processing st...

  9. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  10. Production and trading of biomass for energy: an overview of the global status

    NARCIS (Netherlands)

    Heinimö, J.; Junginger, Martin

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the

  11. Biomass as energy resource of Bosnia and Herzegovina

    Energy Technology Data Exchange (ETDEWEB)

    Gvero, P. (University of Banja Luka, Faculty of Mechanical Engineering, Banja Luka (Bosnia and Herzegowina)); Petrovic, S. (IGT R and D Centre for Gas Technology, Sarajevo (Bosnia and Herzegowina)); Ballard Tremeer, G. (ECO Ltd., London (United Kingdom)); Maslac, S. (UNDP, Banja Luka Office (Bosnia and Herzegowina))

    2007-07-01

    The production, harvesting and processing of timber is one of the country's oldest economic activities, and has a major strategic importance for the country's economic development, especially in post war period. Some statistical estimations shows that the wood export value within the total Bosnia and Herzegovina export value is probably in order of 15%. It is further estimated that 15% of the total population receives its livelihood through the activities in forestry and forest industry. Sustainable development of the present and future energy systems has to be based on two strategies: energy efficiency and renewable energy sources. Bosnia and Herzegovina thanking to great hydro potential, biomass, geothermal energy etc. belongs to the list of the countries which will development of energy sector mainly based on renewable energy sources. In a present period biomass plays significant role in households and wood processing industry sectors. Bosnia and Herzegovina has large biomass resources: the growing stock is equivalent to 7.44 x 106 m3 of wood giving an annual sustainable production volume of about 4.43 x 106 m3. Because of large potential of biomass, this energy source will play more important role in whole energy sector of Bosnia and Herzegovina. This paper gives some data regarding to biomass energy potential collected from different sources in Republic of Srpska and Federation of B and H as consisting parts of the Bosnia and Herzegovina and recouped on one place. This paper also gives short analysis of potential biomass resource use. There are a lot of large industrial energy systems in the Country, mainly in wood processing industry, which was passed through privatization process in last couple years. Now, new owners of this mainly to large capacities for them, looking for the chances in ESCO business, electricity production, district heating systems. This paper gives short analysis of potential cogeneration systems based on biomass. Some analysis

  12. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis

    Science.gov (United States)

    Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F.

    2014-06-01

    The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg-1H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg-1H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis.

  13. Design of Off-Grid Home with SOLAR-WIND-BIOMASS Energy

    Directory of Open Access Journals (Sweden)

    Smruti Ranjan Pradhan,

    2014-01-01

    Full Text Available Due to the limited reserves of fossil fuels and global environmental concerns for the production of electrical power generation and utilization, it is very necessary to use renewable energy sources. By use of hybrid systems we can implement renewable energy sources which are very economical for remote villages, homes etc. In particular, rapid advances in wind-turbine generator ,biomass generator and photovoltaic technologies have brought opportunities for the utilization of wind and solar resources for electric power generation world-wide .So by the use of hybrid systems consisting of Biomass ,PV and also wind for production of electrical energy in these remote areas can be more economical . If the development of a computer-based approach for evaluating, the general performance of standalone hybrid PV- Biomass-wind generating systems are analyzed ,then these results are useful for developing and installing hybrid systems in remote areas This paper focuses the economical consideration and simulation approach for a standalone hybrid systems having PV, wind and Biomass for electrical production in remote areas. In this paper we are taken the average solar radiation, quantity of biomass, average wind speed for the remote area for prediction of general performance of the generating system. Simulation studies were carried out using HOMER software Simulation results will be given for performance evaluation of a stand-alone hybrid wind-PV generating unit for a residential house which is to be located in a remote area . The system is a off grid one. Finally, the results obtained and methods are suggested to enhance the performance of the proposed model

  14. Environmental multi-objective optimization of the use of biomass resources for energy.

    Science.gov (United States)

    Vadenbo, Carl; Tonini, Davide; Astrup, Thomas Fruergaard

    2017-02-17

    Bioenergy is often considered an important component, alongside other renewables, to mitigate global warming and to reduce fossil fuel dependency. Determining sustainable strategies for utilizing biomass resources, however, requires a holistic perspective to reflect a wider range of potential environmental consequences. To circumvent the limitations of scenario-based life cycle assessment (LCA), we develop a multi-objective optimization model to systematically identify the environmentally-optimal use of biomass for energy under given system constraints. Besides satisfying annual final energy demand, the model constraints comprise availability of biomass and arable land, technology- and system-specific capacities, and relevant policy targets. Efficiencies and environmental performances of bioenergy conversions are derived using biochemical process models combined with LCA data. The application of the optimization model is exemplified by a case aimed at determining the environmentally-optimal use of biomass in the Danish energy system in 2025. A multi-objective formulation based on fuzzy intervals for six environmental impact categories resulted in impact reductions of 13-43% compared to the baseline. The robustness of the optimal solution was analyzed with respect to parameter uncertainty and choice of environmental objectives.

  15. Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2016-09-01

    Full Text Available This work presents some energy considerations concerning a biorefinery case study that has been carried out by the CRB/CIRIAF of the University of Perugia. The biorefinery is the case study of the BIT3G project, a national funded research project, and it uses the lignocellulosic biomass that is available in the territory as input materials for biochemical purposes, such as cardoon and carthamus. The whole plant is composed of several sections: the cardoon and carthamus seed milling, the oil refinement facilities, and the production section of some high quality biochemicals, i.e., bio-oils and fatty acids. The main goal of the research is to demonstrate energy autonomy of the latter section of the biorefinery, while only recovering energy from the residues resulting from the collection of the biomass. To this aim, this work presents the quantification of the energy requirements to be supplied to the considered biorefinery section, the mass flow, and the energy and chemical characterization of the biomass. Afterwards, some sustainability strategies have been qualitatively investigated in order to identify the best one to be used in this case study; the combined heat and power (CHP technology. Two scenarios have been defined and presented: the first with 6 MWt thermal input and 1.2 MWe electrical power as an output and the second with 9 MWt thermal input and 1.8 MWe electrical power as an output. The first scenario showed that 11,000 tons of residual biomass could ensure the annual production of about 34,000 MWht, equal to about the 72% of the requirements, and about 9600 MWhe, equal to approximately 60% of the electricity demand. The second scenario showed that 18,000 tons of the residual biomass could ensure the total annual production of about 56,000 MWht, corresponding to more than 100% of the requirements, and about 14,400 MWhe, equal to approximately 90% of the electricity demand. In addition, the CO2 emissions from the energy valorization

  16. Utilization of the biomass in Japan: state of the researches and involvement of the enterprises; Utilisation de la biomasse au Japon: etat des recherches et implication des entreprises

    Energy Technology Data Exchange (ETDEWEB)

    Gabet, A.

    2003-09-01

    Following the Kyoto demands the budgets allocated to the renewable energies researches are more and more important. Among these energies the biomass is very popular in Japan because it does not increase the carbon dioxide level in the atmosphere. Since the years 1990 the Japan implemented three ministries to promote the biomass energy in the country. This document presents the biomass situation in the world and more specially in the Japan and the researches programs with the NEDO, the New Energy and Industrial Technology Development Organization). (A.L.B.)

  17. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

  18. Clean Processing and Utilization of Coal Energy

    Institute of Scientific and Technical Information of China (English)

    陈如清; 王海峰

    2006-01-01

    The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal, low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning, which is a highly efficient, clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.

  19. Local biomass as a decentral source of energy; Kommunale Biomasse als dezentraler Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Schlederer, Swantje Mignon; Guenthert, F. Wolfgang [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. fuer Wasserwesen, Siedlungswasserwirtschaft und Abfalltechnik

    2013-03-15

    The production of wood based fuels such as wooden logs, wood chip, wooden briquettes or pellets has become standard practice. The easy handling of wood as an energy source has contributed to its popularity. A growing demand for wood based fuels has resulted in higher prices and the increasing demand is being met more and more by imports. The florafuel-Procedure provides an alternative to this trend by processing stalks and biomass waste, which in turn means a considerably broader raw material base. The procedure, which produces fuel in the form of pellets or briquettes to generate electricity or heat, is currently being optimised at the University of the German Federal Armed Forces in Munich (Universitaet der Bundeswehr Muenchen) and is about to complete a demonstration plant which should prove its economic viability. Substances such as chlorine and potassium which normally cause concern during the combustion of stalks and stems can be significantly reduced through this production process. Moreover, the materials used as an energy source do not compete with food production. The fuel produced can be easily transported and stored. It can be used to meet both base load and peak load demands and has therefore proven to be highly flexible. Easy handling, little storage space and low capital expenditure are important characteristics of the florafuel-Procedure. Compared to other production processes, the florafuel-Procedure shows a very favourable energy balance for biomass based on stalks and stems. (orig.)

  20. EERC Center for Biomass Utilization 2008-2010. Phases I-III

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States); Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Auich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States); Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States); Strege, Josua R. [Univ. of North Dakota, Grand Forks, ND (United States); Patel, Nikhil M. [Univ. of North Dakota, Grand Forks, ND (United States); Swanson, Michael L. [Univ. of North Dakota, Grand Forks, ND (United States); Martin, Christopher L [Univ. of North Dakota, Grand Forks, ND (United States); Olson, Edwin S. [Univ. of North Dakota, Grand Forks, ND (United States); Oster, Benjamin G. [Univ. of North Dakota, Grand Forks, ND (United States); Stanislowski, Joshua J. [Univ. of North Dakota, Grand Forks, ND (United States); Nyberg, Carolyn M. [Univ. of North Dakota, Grand Forks, ND (United States); Wocken, Chad A. [Univ. of North Dakota, Grand Forks, ND (United States); Pansegrau, Paul D. [Univ. of North Dakota, Grand Forks, ND (United States)

    2015-07-30

    The U.S. Department of Energy (DOE) Energy Information Administration (EIA) projects nonhydro renewable electric energy increases of 140% and liquid transportation biofuels growing by 32,200 barrels a day between 2012 and 2040 (U.S. Energy Information Administration, 2014). This is the EIA base case scenario, and this outlook could be a low estimate depending on the many assumptions involved in making such projections, not the least of which are climate change and the resultant legislation. The climate change postulate is based on increasing levels of CO2 being introduced into the atmosphere through anthropogenic activity such as fossil fuel combustion for energy use. Renewable energy, and biomass conversion to energy in particular, is a net-zero CO2 emission generator. When biomass is converted to energy, it emits CO2; however, this CO2 is balanced in a cycle where the production of biomass removes CO2 from the atmosphere for growth and then releases it back into the atmosphere to be taken up by new growth of biomass feedstocks for energy. In comparison, fossil fuels are examples of CO2 that has been removed from the atmosphere and sequestered and which, when converted to energy, is a new addition to the atmospheric levels of CO2, which has been linked to climate change. While recent advances in technology used for extracting oil and gas from tight formations have increased the availability of fossil fuels for energy, the end game needs to focus on providing sustainable energy sources for the United States as well as the world. If, in the future, legislation is enacted that places a fee on atmospheric CO2 emissions, this may make the use of biomass for energy more economically attractive, increasing its use. Research that focuses on the future sustainability of energy production is part of the answer to bringing about game-changing technologies that can provide energy in a

  1. Evaluating energy efficiency and emissions of charred biomass used as a fuel for household cooking in rural Kenya

    OpenAIRE

    Achour, Nemer

    2015-01-01

    In sub-Saharan Africa a large share of the energy use utilize biomass as a fuel. In some countries more than 90 percent of the energy use is biomass. This energy is primarily used for cooking, heating and drying. Cooking food on an open fire or using a traditional stove will combust the firewood inefficiently and leads to pollution in the form of particulate matter, carbon monoxide and other hazardous pollutants. Indoor pollution has serious health effects and especially women and children ar...

  2. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    Science.gov (United States)

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  3. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  4. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  5. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.; Oser, M.

    2004-07-01

    This final report prepared for the International Energy Agency (IEA) Bioenergy Task 32 presents a method for a comparison of different energy systems with respect to the overall energy yield during their life cycles. For this purpose, the Cumulative Energy Demand (CED) based on primary energy and the Energy Yield Factor (EYC) are introduced and determined for the following scenarios: Log wood, wood chips, and wood pellets for residential heating and - except for log wood - also for district heating. As an alternative to heat production, power production via combustion and use of the electricity for decentralised heat pumps is also looked at. The evaluation and comparison of both the EYC for all fuels and the EYC{sub N}R for the non-renewable part enables a ranking of energy systems without a subjective weighing of non-renewable and renewable fuels to be made. For a sustainable energy supply, it is proposed to implement renewable energy systems in future which achieve an energy yield EYC{sub N}R of at least greater than 2 but favourably greater than 5. The evaluation of the different scenarios presented is proposed as the future basis for the choice of the most efficient energy systems based on biomass combustion.

  6. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  7. Energy potential of sugar cane biomass in Brazil

    Directory of Open Access Journals (Sweden)

    Rípoli Tomaz Caetano Cannavam

    2000-01-01

    Full Text Available Brazil is a developing tropical country with abundant biomass resources. Sugar cane (Saccahrum spp. is primarily produced to obtain sugar and alcohol. Presently sugar cane is burned before harvest. If the cane were not burned before harvest, the trash (tops and leaves could be collected and burned to produce steam to generate electricity, or be converted into alcohol fuel and decrease the severe air pollution problems caused by sugar cane burning. Based upon logical assumptions and appropriate data, we estimate the number of people that could be served each year by this biomass if its energy was converted into electricity. From trash and bagasse, 7.0x10(6 and 5.5x10(6 people y-1 could be served, respectively.

  8. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  9. Solar energy utilization in the USSR

    Science.gov (United States)

    Shpilrain, E. E.

    1991-05-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economic. In higher latitudes, only seasonal use of solar energy is reasonable. Up to now, the main application of solar energy has been to produce low-temperature heat for hot water production, drying of agricultural goods, space heating and thermal treatment of concrete. A substantial proportion of the solar heating installations are flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 square meters. The collectors are produced by large- and small-scale industry. Where selective coatings are applied to the absorber plates, black nickel or chromium are the main coating materials. Recently launched new projects aim to develop and produce advanced collectors, with enhanced efficiency and reliability. There has been substantial progress in developing photovoltaic (PV) cells for space applications, but terrestrial application of PV is still in a very early stage. Annual production of PV cells totals about 100 kW, based on mono- or polycrystalline silicon. R&D work on thin-film PV cells is in progress. Work is in progress on the development of automated production lines to manufacture 1 MW/yr of crystalline and amorphous silicon. A 5-MW tower-type demonstration plant, with a circular heliostat field, uses steam as the working fluid. Experience with this plant has revealed several disadvantages, including commonwealth of independent states.

  10. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  11. Biomass power generation: toward a sustainable energy future

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 16 October, 2005 was a day of celebration for the Guangzhou Institute of Energy Conversion(GIEC), CAS, as its technology ofbiomass gasification and power generation (BGPG) was chosen by an evaluation panel of the United Nations Industrial Development Organization as one of the 10 top investment scenarios to apply new technologies for renewable energy utilization.

  12. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...... of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment....... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...

  13. Potential of cofiring with biomass in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Tommasi, I.; Galatola, M. [University of Bari (Italy). Dept. of Chemistry

    1997-12-31

    Biomass is considered a potential fuel and a renewable source for the future. In Italy, the utilization of biomass nowadays is addressed, above all, towards thermal energy production. In the near future, however, it is predictable a higher differentiation in order to use biomass with the more suitable technology. In this paper we review the utilization of residual biomasses. (Author)

  14. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  15. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  16. Location Optimization for Biomass Trigeneration System with Pit Thermal Energy Storage: the Case of the City of Petrinja

    DEFF Research Database (Denmark)

    Ćosić, B.; Dominkovic, Dominik Franjo; Ban, M.

    2015-01-01

    The combined production of electricity, heat and cold in biomass trigeneration power plants integrated with seasonal pit thermal energy storage ensures maximum utilization of biomass resources and at the same time reduction of variable operation costs of the system. Beside optimal size...... of trigeneration system, location allocation problem is additional factor which need to be taken into account. In this study, optimization of the location of biomass trigeneration power plant was considered. The system combined biomass cogeneration power plant, absorbers and the seasonal pit thermal energy storage......, four case studies were done for the city of Petrinja for which economic assessment of choosing optimal and non-optimal location was performed. Case studies have shown that significant amount of yearly spending on fuel can be avoided, if the optimal location has been chosen for the power plant location...

  17. Economic viability of present-day biomass energy installations; Wirtschaftlichkeit von heutigen Biomasse-Energieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Markus Sommerhalder, M.; Schelske, O. [Ernst Basler und Partner AG, Zuerich (Switzerland); Nussbaumer, T. [Verenum, Zuerich (Switzerland); Engeli, H. [Engeli Engineering, Neerach (Switzerland); Membrez, Y.; Ndoh, M.; Tacchini, C. [EREP SA, Aclens (Switzerland)

    2007-03-15

    This illustrated, comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the economic viability of biomass energy installations. The installations examined included wood-fired installations, biogas installations and those using bio-diesel and bio-ethanol. The system boundaries involved are defined and various factors that influence cost calculations are examined. The resulting heat and electricity prices for various energy sources and systems are presented and discussed. Examples of small and large-scale installations are presented. For wood-energy, combined heat and power system producing electricity at powers of 1 to 5 MWe are looked at and the various factors influencing their viability are discussed. Biogas installations of various sizes are discussed and the differing investment costs involved are commented on. Here, large industrial installations using communal green wastes are also examined and the influence of communal waste-collection charges on the price for the electricity generated is discussed, as is the influence of the market for the residual compost produced. The production and use of biogas in public wastewater treatment plants is also looked at, including the use of co-substrates. As far as biogenic liquid fuels such as bio-diesel and bio-ethanol are concerned, the report takes a brief look at the situation concerning installations in Switzerland and reviews the production costs involved. Various conclusions are drawn for the various energy sources reviewed as well as for the prices for heat and electrical energy obtained.

  18. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conve

  19. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    Science.gov (United States)

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  20. Energy from biomass — Some basic physical and related considerations

    Science.gov (United States)

    Gloyne, R. W.

    1983-09-01

    The production of vegetable matter (biomass) by photosynthesis is determined by species and by meteorological factors (especially, but not exclusively, solar radiation). Annual net primary production of land-based biomass corresponds to only about 1/1000 of the intercepted irradiation at ground level, but even so, is 10 times the world's estimated energy needs. The exploitation of this energy potential at any one place is critically influenced by the economic, political and social factors, amongst which are the competition from agriculture (especially food crops), forestry, industrial and urban (including leisure) needs for land and resources. Social factors (e.g. population and population density) also constitute prime influences. Strategies for utilisation range from the cultivation of special energy crops (readily conceivable on the American/ Australasian continents); to the more efficient manipulation of current land-use patterns (including “opportunity” cropping); to the more effective exploitation of biologi cal wastes (e.g. methane from sewage), probably the only immediately practical possibility in any densely populated and highly industrialised country. The spatial pattern of solar irradiation at ground level is complex. In the summer, total daily irradiation in continental high latitudes can exceed that in maritime temperate regions; and this combined with species differences and the almost infinite variety of shape and orientation of plant parts, result in a photosynthetic production of biomass which does not conform completely to a zonal pattern, but in broad terms annual dry matter production varies from a few kg/ha in Arctic Tundra to tens of tonnes in temperate latitudes rising to nearly 100 t/ha for perennial tropical crops. If a species could be developed to grow throughout the year at the current seasonal rate, a yield of 150 t/yr, ha) seems possible.

  1. Bioenergy Research Programme, Yearbook 1995. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma, vuosikirja 1995. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Centre TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The research area of biomass conversion consisted of 8 projects in 1995, and the research area of bioenergy utilization of 14 projects. The results of these projects carried out in 1995 are presented in this publication. The aim of the biomass conversion is to produce more bio-oils and electric power as well as wood processing industry as at power plants than it is possible at present appliances. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel-oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. The main aim of the research in bioenergy utilization is to create the technological potential for increasing the bioenergy use. The aim is further defined as to get into commercial phase 3-4 new techniques or methods and to start several demonstrations, which will have 0.2-0.3 million toe bioenergy utilization potential

  2. The Phase-Formation Behavior of Composite Ceramic Powders Synthesized by Utilizing Rice Husk Ash from the Biomass Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Wenjie Yuan

    2015-01-01

    Full Text Available The development and utilization of biomass as a vital source of renewable energy were stimulated in order to reduce the global dependency on fossil fuels. A lot of rice husk ashes (RHA were generated as the waste after the rice husk as the main fuel was burnt in the biomass cogeneration plant. The phase-formation behavior of composite ceramic powders synthesized by using rice husk ash from the biomass cogeneration plant at the different carbon ratios and temperatures was investigated. The sequence of phase formation with the calcining temperatures ranging from 1773 K to 1853 K was followed by O′-Sialon→SiC + Si3N4→SiC in samples with C/SiO2  =  1 : 1–4 : 1. Ca-α-Sialon formed in samples with C/SiO2  =  5 : 1 and 6 : 1. The results highlighted that series of reactions happening sensitively depended on C/SiO2 and the temperature and demonstrated that the carbothermal nitridation provided an alternative for converting RHA waste into composite ceramic powders.

  3. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste......, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate......, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass...

  4. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios....... This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios...

  5. Comprehensive Evaluation of Methanol Synthesis and Utilization System for Making Use of Remote Wind Power Energy

    Science.gov (United States)

    Morimoto, Shin'Ichiro; Pak, Pyong Sik; Liu, Wei; Kosugi, Takanobu

    For the purpose of mitigating carbon dioxide emissions, three renewable energy transportation systems are proposed in which methanol is synthesized by use of wind power generation energy at an oversea and is transported to Japan to be used for a power generation. The proposed systems are the following three systems: (1) wind energy and captured CO2 utilization system, (2) wind energy and coal utilization system, and (3) wind energy and biomass utilization system. The characteristic and cost of the proposed systems’ components such as a wind power generation and a methanol synthesis plants are investigated, and so are the energy and carbon flows of the systems, assuming that the wind power generation plant is constructed at the eastern coast of Russia. Major indicators such as energy efficiency, methanol cost, CO2 reduction cost, etc., of the proposed systems are evaluated together with those of a similar CO2 recycling system utilizing hydraulic power. On the basis of the evaluation results, the wind energy and biomass utilization system is shown to be the most excellent among the evaluated systems from the viewpoints of the CO2 reduction cost. When LNG cost is increased, its estimated CO2 reduction cost islower than that of a CO2 recovery system adopted to a conventional LNG-fired power plant. Consequently, the proposed system is expected to be a feasible option for CO2 reduction in the near future when the wind power generation cost is much decreased.

  6. Industrial utilization of geopressured geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Underhill, Gary K; Carlson, Ronald A.; Clendinning, William A.; Erdos, Jozsef; Gault, John; Hall, James W.; Jones, Robert L.; Michael, Herbert K.; Powell, Paul H.; Riemann, Carl F.; Rios-Castellon, Lorenzo; Shepherd, Burchard P.; Wilson, John S.

    1976-01-01

    Discussion of the industrial utilization of geopressured geothermal energy is currently limited by the limited knowledge of the resource's distribution. However, the resource assessment activity in the Bureau of Economic Geology, The University of Texas at Austin, has identified a number of fairway or potential resource zones. These zones are located in Kenedy County; in and about Corpus Christi and Nueces Bays in Nueces, San Patricio, and Aransas Counties; in the coastal zones of Matagorda County; and in a crescent-shaped zone parallel to the coastline in Brazoria and Galveston Counties. The Kenedy and Matagorda County zones are situated in rural areas with little or no industrial activity. The Corpus Christi and Brazoria-Galveston zones are in and adjacent to highly industrialized and urbanized districts. The rural zones will require the establishment of new industries for geothermal fluid utilization while the industrial-urban zones will require either new industry, expansion to existing industry, or modification to existing plant and process. Proposed industries for geothermal fluid utilization can be considered with respect to fitting the industry to the available fluids; this has been the usual approach. An alternate approach is to fit the abailable fluids to the proposed industry. In order to follow the alternate approach requires consideration of ways to upgrade the quality of existing geothermal fluids or geothermal-derived or -energized fluids.

  7. Efficient biomass preparation for the utilization as biocoal in industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampe, Karl; Grund, Guido; Erpelding, Richard; Denker, Jurgen [ThyssenKrupp Polysius AG, Beckum (Germany)

    2012-11-01

    Rising energy costs and regulations on the efficient utilisation of energy resources force plant operators in all industrial sectors to focus on these aspects. Both in power generation as well as in thermal processes, the use of renewable sources is becoming more and more important. In this respect, especially the utilisation of biomass plays an ever-increasing role. The production of biocoal offers a solution to overcome the challenges of a wide range of different feedstock properties and to provide homogenised, biogenic fuels. The main objectives to be achieved in biocoal production are efficient drying, energy densification, bulk density maximisation and grindability optimisation. Here, the torrefaction of biomass presents a suitable and energy-efficient solution. With regard to uniform temperature distribution, temperature control, efficiency and final product quality, the multiple hearth furnace method is the preferred process of ThyssenKrupp Polysius. A double-zone multiple hearth furnace (POLTORR) permits both drying and torrefaction of wet biomasses up to 50% moisture content in one coupled unit. The main advantage of this process is the direct, safe and efficient utilisation of the volatiles released during torrefaction for the drying process by means of post-combustion, thus under favourable conditions, an almost autothermic process can be realized.

  8. Potential and possibilities of supplying energy from biomass and biogas; Potentiale und Moeglichkeiten der Energiebereitstellung durch Biomasse und Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, H. [Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Betriebstechnik; Weiland, P.; Ahlgrimm, H.J. [Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany). Inst. fuer Technologie

    1998-06-01

    Agriculture`s potential contribution to the energy supply of the ``town of the future`` through the conversion of biomass to energy, including biogas production, is a rather modest one. Supposing that the share of total renewable energy in Germany`s primary energy demand rises to approximately 4%, then the proportion of biomass from biotic raw materials especially produced for the purpose will at the most make up an eighth of this amount. Beyond this, biomass is burdened with other drawbacks such as low supply efficiency, limited availability, and weather-dependent reliability. On the other hand, biomass is well suited for conversion to solid, liquid, and gaseous fuels, including inexpensive ones with low energy density (solid fuels), mostly used for stationary heating applications, as well as more expensive ones such as liquid fuels with a high energy density for mobile applications in the automotive sector. Thanks to its capacity to regenerate, biomass is an inexhaustible resource. Moreover, its natural life cycle has a small impact on the environment. [Deutsch] Der Beitrag, den die Landwirtschaft durch energetische Nutzung von Biomasse, z.B. auch mit der Erzeugung von Biogas, zur Energieversorgung der `Stadt der Zukunft` leisten kann, nimmt sich bescheiden aus. Wird erwartet, dass innerhalb des naechsten Jahrzehnts der Anteil regenerativer Energien insgesamt auf etwa 4% des Primaerenergie-Verbrauchs Deutschlands ansteigen koennte, so duerfte Biomasse als speziell zur Energiegewinnung angebaute nachwachsende Rohstoffe mit bestensfalls 0,5 Prozentpunkten daran beteiligt sein. Es beduerfen darueber hinaus auch Nachteile, wie geringe Bereitstellungseffizienz, beschraenkte Verfuegbarkeit und witterungsabhaengige Zuverlaessigkeit, der Beachtung. Die Biomasse kann jedoch mit Erfolg in feste, fluessige und gasfoermige Energietraeger konvertiert werden, sowohl in preiswerte mit geringer Energiedichte (Festbrennstoffe) fuer bevorzugt stationaeren Heizungs-Einsatz als auch

  9. Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    D. Gera; M.P. Mathur; M.C. Freeman; Allen Robinson [Fluent, Inc./NETL, Morgantown, WV (United States)

    2002-12-01

    This paper reports on the development and validation of comprehensive combustion sub models that include the effect of large aspect ratio of biomass (switchgrass) particles on carbon burnout and temperature distribution inside the particles. Temperature and carbon burnout data are compared from two different models that are formulated by assuming (i) the particles are cylindrical and conduct heat internally, and (ii) the particles are spherical without internal heat conduction, i.e., no temperature gradient exists inside the particle. It was inferred that the latter model significantly underpredicted the temperature of the particle and, consequently, the burnout. Additionally, some results from cofiring biomass (10% heat input) with pulverized coal (90% heat input) are compared with the pulverized coal (100% heat input) simulations and coal experiments in a tangentially fired 150 MW{sub e} utility boiler. 26 refs., 7 figs., 4 tabs.

  10. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.

    Science.gov (United States)

    Kim, Sung Bong; Kim, Dong Sup; Yang, Ji Hyun; Lee, Junyoung; Kim, Seung Wook

    2016-04-01

    The waste hydrolysate after dilute acid pretreatment (DAP) of lignocellulosic biomass was utilized to generate electricity using an enzymatic fuel cell (EFC) system. During DAP, the components of biomass containing hemicellulose and other compounds are hydrolyzed, and glucose is solubilized into the dilute acid solution, called as the hydrolysate liquid. Glucose oxidase (GOD) and laccase (Lac) were assembled on the electrode of the anode and cathode, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were measured, and the maximum power density was found to be 1.254×10(3) μW/cm(2). The results indicate that the hydrolysate from DAP is a reliable electrolyte containing the fuel of EFC. Moreover, the impurities in the hydrolysate such as phenols and furans slightly affected the charge transfer on the surface of the electrode, but did not affect the power generation of the EFC system in principal.

  11. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  12. Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review

    Directory of Open Access Journals (Sweden)

    Rafał Baum

    2013-03-01

    Full Text Available This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 includes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020. Growth of demand for renewable energy will primarily result from strong growth of demand for transport biofuels and electricity. In 2020, approximately 80% of final energy from renewable sources will come from biomass. More than three-quarters of the biomass will be generated from agriculture. In Poland, crops from 1.0 to 4.3 million ha can be used for energy production. The study shows changes in the structure of biomass use, and the analysis confirms the declining share of biomass for heat production and the increasing share of biomass for electricity and biofuels. The main obstacles to the continued use of agricultural biomass are a lack of local markets for biomass energy and poor financial support for energy crop production.

  13. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.

    Science.gov (United States)

    Zhu, J Y; Pan, X J

    2010-07-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed to significantly reduce mechanical energy consumption. Because the ultimate goal of biofuel production is net energy output, a concept of pretreatment energy efficiency (kg/MJ) based on the total sugar recovery (kg/kg wood) divided by the energy consumption in pretreatment (MJ/kg wood) is defined. It is then used to evaluate the performances of three of the most promising pretreatment technologies: steam explosion, organosolv, and sulfite pretreatment to overcome lignocelluloses recalcitrance (SPORL) for softwood pretreatment. The present study found that SPORL is the most efficient process and produced highest sugar yield. Other important issues, such as the effects of lignin on substrate saccharification and the effects of pretreatment on high-value lignin utilization in woody biomass pretreatment, are also discussed.

  14. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nichol, Corrie Ian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  15. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce

  16. Potential for the energy-oriented use of biomass in Switzerland; Potentiale zur energetischen Nutzung von Biomasse in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Oettli, B.; Blum, M.; Peter, M.; Schwank, O. [Infras, Zuerich (Switzerland); Bedniaguine, D.; Dauriat, A.; Gnansounou, G. [Swiss Federal Institute of Technology (EPFL), Laboratory of Energy Systems (LASEN), Lausanne (Switzerland); Chetelat, J.; Golay, G. [Swiss Federal Office of Technology (EPFL), Laboratoire de systemes d' information geographique (LASIG), Lausanne (Switzerland); Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U. [Meritec GmbH, Guntershausen (Switzerland); Schleiss, K. [Umwelt- und Kompostberatung, Grenchen (Switzerland)

    2004-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the potential offered by the use of biomass in the energy area. In the first and main part of the report, the base data and the methodology used are discussed and the theoretical and realisable potentials are examined. Scenarios on reference-energy prices are discussed, whereby the price of oil is taken as primary reference. General estimates of the potential of biomass are presented for 2025 and 2040 and compared with figures for 2003. Conversion paths and various types of installations are discussed. Economic potential and future market-shares of biomass energy-use are discussed. Finally, the external costs of energy supply systems are examined and their influence on the economic potential of biomass technologies is discussed. The second part of the report takes a look at the use of geographic information systems (GIS) for data acquisition and the visualisation of energy-potentials. In the third part of the report, the optimal use of the potential offered by biomass is looked at and the most important results and recommendations of the study group are presented. The report is completed with a list of relevant literature and a comprehensive appendix.

  17. Inorganic perovskite photocatalysts for solar energy utilization.

    Science.gov (United States)

    Zhang, Guan; Liu, Gang; Wang, Lianzhou; Irvine, John T S

    2016-10-24

    The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

  18. Challenges of Biomass in a Development Model Based on Renewable Energies

    Science.gov (United States)

    Cuadros, F.; González-González, A.; Ruiz-Celma, A.; López-Rodríguez, F.; García-Sanz-Calcedo, J.; García, J. A.; Mena, A.

    Although fire has been known to mankind for about 500,000 years, the implementation of biomass energy in the world has barely changed since then, having been used mainly for heat production. To this end, an estimated global consumption of biomass accounts for 10.6% of total world consumption of primary energy. However, the use of biomass as transportation fuel or for generation of electricity is not displayed in the annual world, European, or national statistics, as if its contribution to primary energy consumption was insignificant. What is the reason behind this? Why is the development of biomass only limited to its thermal use? Why is the production of biomass for electricity and transportation purposes not increasing? And what is then happening to biomass? The present article addresses issues that, in our view, limit the incursion of biomass in current energy systems and provides some answers to solve them.

  19. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  20. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  1. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  2. Cascading use: a systematic approach to biomass beyond the energy sector

    NARCIS (Netherlands)

    Keegan, D.; Kretschmer, M.; Elbersen, B.S.; Panoutsou, C.

    2013-01-01

    Growing demand for biomass for energy in Europe and beyond, alongside growing interest in the use of biomass to replace petroleum and other conventional materials in the production of industrial products and chemicals, necessitates consideration of how the limited supplies of biomass can be used mos

  3. Preserving elephantgrass and energycane biomass as silage for energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodard, K.R.; Prine, G.M.; Bates, D.B.; Chynoweth, D.P. (Florida Univ., Gainesville, FL (United States). Inst. of Food and Agricultural Sciences)

    1991-01-01

    Elephantgrass (Pennisetum purpureum Schum.) and energycane (Saccharum sp.) are being evaluated in the colder subtropics of Florida, USA, as biomass energy crops. At one location near Gainesville, annual dry biomass yields of elephantgrass (full-season growth) in excess of 45 Mg ha{sup -1} have been reported. Our objective was to determine if these prolific bunchgrasses could be stored as silage. Three elephantgrasses (two 'tall' and one 'dwarf') and a tall energycane were harvested one, two, and three times per year and ensiled (directcut) during 1986 and 1987. Mean pH values ranged from 3.8 to 4.0 for tall elephantgrass silages made from plants harvested at the different frequencies. Highest pH values were obtained from silages made from immature dwarf elephantgrass plants harvested three times per year (2-year mean was 4.3). Lactic acid was the major end-product of fermentation in most silages with the exception of those made from immature dwarf elephantgrass and energycane plants, where lactic and acetic acids were both major fermentation components. Dry matter (DM) recoveries for all silages ranged from 843 to 984 g kg{sup -1} of DM ensiled. The ease with which elephantgrass and energycane were preserved as silage was attributed to adequate levels of water-soluble carbohydrates and the inherently low buffering capacities in standing forages. (author).

  4. Evaluation of phytic acid utilization by S. cerevisiae strains used in fermentation processes and biomass production.

    Science.gov (United States)

    Mikulski, Dawid; Kłosowski, Grzegorz

    2017-01-01

    Saccharomyces cerevisiae is a well-studied yeast species used mainly in fermentation processes, bakery, and for SCP (Single Cell Protein) acquisition. The aim of the study was to analyze the possibility of phytic acid utilization as one of the hydrolysis processes carried out by yeast. The analysis of 30 yeast strains used in fermentation and for biomass production, that were grown in media containing phytic acid, revealed a high variability in the biomass production rate and the capability to hydrolyze phytates. No correlation between a high biomass concentration and a high level of phytate hydrolysis was found. Only four analyzed strains (Bayanus IOC Efficience, Sano, PINK EXCEL, FINAROME) were able to reduce the phytic acid concentration by more than 33.5%, from the initial concentration 103.0 ± 2.1 μg/ml to the level below 70 μg/ml. The presented results suggest that the selected wine and fodder yeast can be used as in situ source of phosphohydrolases in fermentation processes, and especially in the production of fodder proteins. However, further studies aimed at the optimization of growing parameters, such as the maximization of phytase secretion, and a comprehensive analysis of the catalytic activity of the isolated phosphohydrolases, are necessary.

  5. Implementation of a Biomass Energy Island for a Forested Air Force Installation.

    Science.gov (United States)

    1983-01-01

    pine (CSP) plantations on Eglin AFB to establish Eglin as a Biomass Energy Island (BEI). Previous studies have demonstrated: (1) the feasibility of...AFB as a Biomass Energy Island (BEI). As such, Eglin would satisfy all energy needs of the facility by using 540,000 green tons of wood chips harvested

  6. Strip intercropping strategy for biomass to energy production while on the same time maintaining soil fertility

    DEFF Research Database (Denmark)

    Hauggard-Nielsen, Henrik; Jensen, Erik Steen; Carter, Mette Sustmann

    2009-01-01

    In contrast to energy technologies like solar and wind, energy in the form of biomass can be stored and bioenergy produced when needed using a wide range of technologies. However, a substantial rise in the use of biomass for energy is expected, which means additional pressure on farmland...

  7. Impacts of variability in cellulosic biomass yields on energy security.

    Science.gov (United States)

    Mullins, Kimberley A; Matthews, H Scott; Griffin, W Michael; Anex, Robert

    2014-07-01

    The practice of modeling biomass yields on the basis of deterministic point values aggregated over space and time obscures important risks associated with large-scale biofuel use, particularly risks related to drought-induced yield reductions that may become increasingly frequent under a changing climate. Using switchgrass as a case study, this work quantifies the variability in expected yields over time and space through switchgrass growth modeling under historical and simulated future weather. The predicted switchgrass yields across the United States range from about 12 to 19 Mg/ha, and the 80% confidence intervals range from 20 to 60% of the mean. Average yields are predicted to decrease with increased temperatures and weather variability induced by climate change. Feedstock yield variability needs to be a central part of modeling to ensure that policy makers acknowledge risks to energy supplies and develop strategies or contingency plans that mitigate those risks.

  8. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  9. China' s Fundamental Research in Energy Utilizations and Environment

    Institute of Scientific and Technical Information of China (English)

    LiuTao; LinRumou; JinHongguang; PengXiaofeng

    2003-01-01

    The progress in the science of energy utilizations will act crucial effect on the developments of energy science and technology, which will then promote social and economical developments and fulfill requirements for the national strategic objectives. For the sake of sustainable development, a harmonious blend of energy utilizations and environment considerations will become one of the vital topics in the future research area of energy science. It is suggested that clean and high-efficiency utilization of traditional or fossil energy resources, fundamental investigations on the energy and environment theory, renewable energy utilizations, and the development of nuclear energy are selected as priority research areas during the period of the Tenth Five-year Plan of China, according to the development trend of the world energy science and the research background of Chinese energy science, It is expected to promote the interdisciplinary investigations in the science of energy utilizations and provide scientific and technological supports for the development of related advanced high technologies,

  10. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Supporting document

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    This supporting document contains the result from the inventory phase of the biomass assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. This study provides a comprehensive assessment of global biomass potential estimates, focusing on the various factors affecting these potentials, such as food supplies, water use, biodiversity, energy demands and agro-economics.

  11. Comparative assessment of utilization means of plant inedible biomass in the soil-like substrate concerning bioregenerative LSS

    Science.gov (United States)

    Tikhomirov, Alexander A.; Velichko, Vladimir; Ushakova, Sofya; Trifonov, Sergey V.

    Researches carried out at the Institute of Biophysics SB RAS (Russia) have shown that the soil-like substrate (SLS) was the promising biological substrate for inclusion of plant inedible biomass into matter turnover. Still, mineralization rate of plant residues introduced into the SLS strongly depends upon the character of its preliminary preparation and the plant species. So the given work is aimed at a comparative assessment of different approaches to utilization of plant inedible biomass in the SLS when growing plants on it. Efficiency criteria of plant wastes utilization in the SLS was the productivity of the plants grown on it. Radish was the test object. The wheat and radish inedible biomass was introduced into the SLS. The biomass amount of wheat straw inserted was equal on nitrogen content to the nitrogen value removed during the radish harvesting. During experiments three introduction ways of plant inedible biomass were used: 1) direct insertion of crushed biomass into the SLS; 2) introduction of plant wastes mineralized by a physical-chemical method; 3) a combination of two abovementioned ways of plant wastes preparation. The carried out researches have shown that the use of the third preparation way of plant wastes combining both a physical-chemical mineralization method and their direct introduction into the SLS was the most efficient to involve inedible biomass into the LSS intersystem mass exchange. Quantitative and qualitative characteristics of utilization processes of plant wastes in the SLS under study and their effect on the plants productivity are discussed.

  12. Biomass. Energy carrier and biobased products; Biomasse. Energietraeger und biobasierte Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, W. [Technische Univ. Muenchen (Germany). Inst. fuer Toxikologie und Umwelthygiene; Groeger, G. (eds.) [BioRegionUlm Foerderverein Biotechnologie e.V., Ulm (Germany)

    2006-07-01

    Within the scope of the 3rd Reivensburg Environmental Biotechnology Meeting at 29th June, 2007, at Castle Reivensburg near Guenzburg (Federal Republic of Germany), the following lectures were held: (a) Challenges according to materials management, land use and power generation in the background of precarious economical situation in the Federal Republic of Germany (H.-G. Petersen); (b) Regenerative raw materials in Germany: Plant sources and potentials (W. Luehs, W. Friedt); (c) Biobased industrial products and bioraffinery systems (B. Kamm, M. Kamm); (d) Potential of biomass materials conversion in chemical industries (R. Busch); (e) Environmental compatible processes and low-priced ecological materials from the processing of biotechnological poly-3-hydroxybutyrate (H. Seliger, H. Haeberlein, R. Kohler, P. Sulzberger); (f) New starch from potatoes - a regenerative raw material (T. Servay); (g) Fuels from renewable energy sources: potential, production, perspectives (M. Specht, U. Zuberbuehler, A. Bandi); (h) Application of biogas as a fuel from the view of a car manufacturer (S. Schrahe); (i) Large-scale production of bioethanol (P. Johne, C. Sauter); (j) Environmental political evaluation of the use of biofuels and politics of biofuels of selected countries (J.M. Henke).

  13. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  14. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh

    2014-02-21

    feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  15. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  16. Energy potential of biomass from conservation grasslands in Minnesota, USA.

    Science.gov (United States)

    Jungers, Jacob M; Fargione, Joseph E; Sheaffer, Craig C; Wyse, Donald L; Lehman, Clarence

    2013-01-01

    Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1). May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1) and the concentration of plant N was 7.1 g kg(-1), both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic

  17. Energy potential of biomass from conservation grasslands in Minnesota, USA.

    Directory of Open Access Journals (Sweden)

    Jacob M Jungers

    Full Text Available Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1 and the concentration of plant N was 7.1 g kg(-1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing

  18. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  19. Dynamic Biogas Upgrading for Integration of Renewable Energy from Wind, Biomass and Solar

    DEFF Research Database (Denmark)

    Jurgensen, Lars

    The Sabatier process is investigated as a storage scheme for renewable energy. Hydrogen derived from fluctuating renewable energy sources like wind and solar is converted to methane by the hydrogenation/methanation of carbon oxides. Biogas from anaerobic digestion is considered in this study...... as a high concentrated source of carbon dioxide. By using the Sabatier process, the CO2 content of the biogas is converted to CH4, which is a new upgrading process for biogas. By switching between (i) this upgrading process during periods of extensive electricity production from wind and solar, and (ii......) combined heat and power production from biogas during periods of electricity demand, bioenergy utilization becomes a dynamic process. In such a process scheme, biomass, wind, and solar could be integrated in a local context. This thesis aims to demonstrate the feasibility of the dynamic biogas upgrading...

  20. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  1. Power generation prior food safety? Biomass in the conflict area of energy security and hunger crisis; Energieerzeugung vor Ernaehrungssicherung? Biomasse im Spannungsfeld von Energiesicherung und Hungerkrise

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.)

    2011-07-01

    Within the international meeting of the Evangelische Akademie Loccum (Rehburg-Loccum, Federal Republic of Germany) at 13rd to 15th May, 2009 the following lectures were held: (1) Biomass - Energy of the future (Daniela Thraen); (2) Bio energy and cultivation of energy crops in Lower Saxony. State of the art and perspectives (Gerd Carsten Hoeher); (3) Bioenergy and food security project in FAO (Mirella Salvatore); (4) Appetite for hunger and competition in land use (Elmar Altvater); (5) Biodiesel poles in Northeast Brasilia. Efficiencies and experiences of a project for the integration of small farmers into the national Biodiesel program (Stefan Goertz); (6) Bioenergy in Africa: Chance to overcome energy poverty or driver of hunger (Hamimu Hongo); (7) Cultivation of Jatropha for direct utilization of oil: Win-Win situation for small farmers and companies? (Lorenz Kirchner); (8) Energy security by means of sufficient power generation. Energy and fuels from biomass result in renaissance of the agriculture and offer chances for fight against poverty and for avoidance of hunger to developing countries (Nasir El Bassam).

  2. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    . Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.

  3. The effect of lipid content on the elemental composition and energy capacity of yeast biomass.

    Science.gov (United States)

    Minkevich, Igor G; Dedyukhina, Emiliya G; Chistyakova, Tat'yana I

    2010-10-01

    Oleaginous yeasts (18 strains) were grown in ethanol media under various cultivation conditions (33 biomass samples). It was found that lipid and lipid-free fractions of dry biomass have elemental composition and biomass reductivity very close to values which can be considered as biological constants. The energy content of dry biomass strongly depended on the total lipid content. When the lipid content was 64%, the energy value of dry biomass reached 73% of diesel oil; therefore, oleaginous microorganisms can be a promising source of biodiesel fuel. The approach used in this work makes it possible to determine the energy value of biomass by its elemental composition without application of laborious and expensive calorimetric measurements of combustion heats.

  4. Biomass for energy in the European Union - a review of bioenergy resource assessments

    Directory of Open Access Journals (Sweden)

    Bentsen Niclas

    2012-04-01

    Full Text Available Abstract This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor.

  5. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas.

    Science.gov (United States)

    Metzger, Jürgen O; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO(2) content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  6. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    Science.gov (United States)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  7. Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass

    Institute of Scientific and Technical Information of China (English)

    DU Wen-yong; HE Xiong-kui; ZHANG Lu-da; HU Zhen-fang; Shamaila Z; ZENG Ai-jun; SONG Jian-li; LIU Ya-jia; Wolfram S; Joachim M

    2011-01-01

    The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSILL ,CBSIH ), which can be used for distinguishing the crop value from the image. CBSIL. and CBSIH (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI1. to CBSIH. Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0. 887 6, the average of relative error (Er) ranges from 13.33% to 16. 88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6,16.89%, -0. 12), sprinkler irrigation (0. 970 0, 14.85%, -0. 12), flood irrigation (0. 969 0, 18. 87%,-0. 18), with the values ofR2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0. 980 0, 13.70%, -0.13), sprinkler irrigation (0. 95, 13.15%,-0.14), flood irrigation (0. 970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The

  8. Value analysis of wind energy systems to electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Percival, D.; Harper, J.

    1981-01-01

    A method has been developed for determining the value of utility-operated wind energy systems to electric utilities. The analysis is performed by a package of computer models that interface with most conventional utility planning models. Weather data are converted to wind turbine output powers, which are used to modify the utility load representation. Execution of the utility planning models with both the original and modified load representation yields the gross and marginal value ($/rated kW/) of the added wind energy systems. This value is then compared with cost estimates to determine if for economic reasons the wind energy system should be included in future generation plans.

  9. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  10. Sustainable biomass-derived hydrothermal carbons for energy applications

    Directory of Open Access Journals (Sweden)

    C. Falco

    2012-09-01

    Full Text Available The hydrothermal carbonisation of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass.

  11. Estimation on the Total Quantity of Biomass Energy and Its Environmental Benefit Analysis in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to estimate the total quantity of biomass energy and analyze its environmental benefit in Shandong Province.[Method] Based on the data from the statistics yearbook of Shandong Province in 2010,the total quantity of biomass resources and biomass energy in Shandong Province in 2009 was estimated,and its environmental benefit was analyzed.[Result] Biomass resources in Shandong Province mainly refer to crop residues,forest residues,grassland changed from degraded land.If degraded land be...

  12. Geothermal energy in Nevada: development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  13. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  14. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  15. Biomass energy utilisation in Malaysia - prospects and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Hoi Why [Forest Research Institute Malaysia, Kuala Lumpur (Malaysia)

    1999-04-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  16. Biomass energy utilisation in Malaysia - prospects and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Hoi Why [Forest Research Institute Malaysia, Kuala Lumpur (Malaysia)

    1999-01-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  17. Waste biomass and energy transition. Proven practices, new developments and visions; Abfall-Biomasse und Energiewende. Bewaehrtes, Neues und Visionen

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Klaus [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Technische Univ. Braunschweig (Germany). Lehrstuhl Abfall- und Ressourcenwirtschaft; Kammann, Claudia [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany). Fachausschuss Biokohle; Hochschule Geisenheim Univ. (Germany). Klimafolgenforschung-Klimawandel in Spezialkulturen; Wallmann, Rainer (ed.) [Arbeitskreis fuer die Nutzbarmachung von Siedlungsabfaellen (ANS) e.V., Braunschweig (Germany); Werra-Meissner Kreis, Eschwege (Germany)

    2014-07-01

    This book contains 17 papers that were presented at the 75th meeting of the ANS. The following main topics are covered: waste management in the context of climate protection and the energy turnaround; optimised materials management; carbon: climate killer or indispensable raw material?; climate protection in Germany - why and how?; treatment techniques for waste biomass; the amended Renewable Energy Law - sensible adaptation or impediment to the energy turnaround?; putting ideas into practice: examples and opportunities. Four of the contributions have been abstracted individually for this database. [German] Dieses Buch enthaelt 17 Beitraege, die auf dem 75. Symposium des ANS vorgetragen wurden. Die Themenschwerpunkte waren: Abfallwirtschaft im Kontext des Klimaschutzes und der Energiewende; Optimiertes Stoffmanagement; Kohlenstoff: Klimakiller oder unverzichtbare Rohstoff?; Klimaschutz in Deutschland - Warum und wie?; Behandlungstechniken von Abfall-Biomasse; Novellierung des EEG - Sinnvolle Anpassung oder Breme der Energiewende; Der Weg in die Praxis: Beispiele und Chancen. Vier der Beitraege wurden separarat fuer diese Datenbank aufgenommen.

  18. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  19. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    Science.gov (United States)

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  20. Conflicts between Ecological Farming and Energy Use of Biomass from Agriculture

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, B.T.

    1996-01-01

    claim that crop residues and animal manure should all be returned to the fields with as small a loss in carbon and nutrients content as possible. More empirical data are needed in order to evaluate the Danish potential for energy from biomass in view of the need for preserving soil quality. If a large......Due to the fluctuating nature of several renewable energy sources such as solar, wind and waves, new methodologies are needed for planning of sustainable energy supply systems. As Denmark has no hydro power, biomass plays an important role in this connection. Especially surplus straw and animal...... manure (for biogas) from agriculture. In the official Danish energy plans biomass is supposed to cover more than 20% of the Danish energy demand by year 2030. However, the use of biomass for energy purposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers...

  1. Banana biomass as potential renewable energy resource: A Malaysian case study

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Jing Yan; Lai, Chin Lin; Lee, Keat Teong; Tan, Kok Tat; Bhatia, Subhash [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2010-02-15

    The world has been relying on fossil fuels as its primary source of energy. This unsustainable energy source is not going to last long and thus, gradual shift towards green renewable energy should be practiced. In Malaysia, even though fossil fuel dominates the energy production, renewable energies such as hydropower and biomass are gaining popularity due to the implementation of energy policies and greater understanding on the importance of green energy. Malaysia has been well endowed with natural resources in areas such as agriculture and forestry. Thus, with the availability of feedstock, biomass energy is practical to be conducted and oil palm topped the ranking as biomass source here because of its high production. However, new sources should be sought after as to avoid the over dependency on a single source. Hence, other agriculture biomass should be considered such as banana plant biomass. This paper will discuss on its potential as a new biomass source in Malaysia. Banana plant is chosen as the subject due to its availability, high growth rates, carbon neutrality and the fact that it bears fruit only once a lifetime. Conversion of the biomass to energy can be done via combustion, supercritical water gasification and digestion to produce thermal energy and biogas. The theoretical potential power generation calculated reached maximum of 950 MW meeting more than half of the renewable energy requirement in the Fifth Fuel Policy (Eighth Malaysia Plan 2001-2005). Thus, banana biomass is feasible as a source of renewable energy in Malaysia and also other similar tropical countries in the world. (author)

  2. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  3. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  4. U.S. Biomass Opportunities for Value-added Biomass Exports based on the European Union Renewable Energy Share Targets

    Directory of Open Access Journals (Sweden)

    Ulises Lacoa

    2014-10-01

    Full Text Available World energy demand is expected to continue increasing in the coming years. This situation has created a worldwide pressure for the development of alternative fuel and energy sources, pursuing a more environmentally friendly usage of biofuels. The EU has the target of generating 20% of its energy consumption from renewable sources by 2020. Member States have different individual targets to meet this overall target. Meanwhile in the United States, there are about 750 million acres [300 million hectares] of forestland, with slightly more than two-thirds classified as timberland or land capable of producing 20 cubic feet per acre [1.4 m3 per hectare] annually of roundwood. Given these circumstances, this research aimed to understand the U.S. opportunities to export woody biomass based on the targets that the European Union has imposed to its Member States. The data collected allowed several scenario developments by identifying the possible EU’s biomass deficits and U.S.’s capacity to supply the gaps. Considering the physical availability, the U.S. would be able to satisfy between 42 and 48% depending on the energy efficiency scenario. Nevertheless, when considering reasonable biomass prices, only a small portion of the EU demand could be covered by the U.S.

  5. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  6. Potential of energetic utilization of grains residual biomass; Potencial de utilizacao energetica de biomassa residual de graos

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna L. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Tecnologia de Embalagem], e-mail: anna@ital.sp.gov.br; Ambrogi, Vinicius S.; Guerra, Sinclair M.G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], e-mail: ambrogi@fem.unicamp.br, e-mail: sguerra@fem.unicamp.br

    2004-07-01

    The biomass resulting from the rejected parts of grains, as straw and peel of rice, corn, wheat, soy, all great cultivations in the country, has potential to be takes advantage as energy. It was considered that the contribution of this residual biomass is near of 167,8 million GJ/year, value that could be added to the use already established of the cane bagasse for energy purpose (658 million GJ, in 2001). This energy can be used for drying of these same grains (energy expense estimate of 67 million GJ), currently obtained from oil. It can also substitute the fuel oil used in the agricultural section, in the industries of food and beverage, ceramic and textile (sections that consumed 67.822 GJ in 2001). In Sao Paulo state the regions with greater potential to install biomass plants are located in Assis, Avare and Itapeva EDR (regional development office). (author)

  7. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  8. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category

  9. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  10. Implications of Perennial Biomass Energy Cropping Systems for Pasture and Forage Lands

    Science.gov (United States)

    The lignocellulose in forage crops represents large source of biomass feedstock for conversion into energy-related end products. With new technologies and processes for biomass production and conversion approaching commercial reality forages could once again fuel agriculture. Some of the most extens...

  11. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  12. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  13. Biomass Gasifier Energy Cyber-Physical System Design with Coupling of the Wind and Solar Energy

    Directory of Open Access Journals (Sweden)

    Zhihuan Zhang

    2013-07-01

    Full Text Available The air pollution in China has been quite serious, and biomass is extremely rich in large agricultural country. In the view of current situation, highly efficient solar collectors, wind energy and solar energy coupled heating straw gasification system is studied. The stability of continuous gas production is analyzed in various weather conditions including windy, calm, sunny and cloudy. Highly efficient solar panels, wind energy and solar energy coupled heating straw gasification control system is raised. This system overcomes the time variability of the weather conditions to ensure the stability of the continuous gas production under a variety of weather conditions. It has high quality of gas production, strong anti-interference ability and robustness.

  14. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  15. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    John M. Sweeten, Kalyan Annamalai

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development

  16. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category

  17. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day).

  18. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  19. The use of biomass for energy in Sweden. Critical factors and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt; Boerjesson, Paal; Ericsson, Karin; Nilsson, Lars J.; Svenningsson, Per

    2002-08-01

    In this report the development of Swedish biomass use during recent decades is discussed. The relations between biomass supply, biomass demand and various policy initiatives are explored. The objectives are to discuss the most important factors affecting the biomass development and to establish which factors are specific for Swedish conditions and also to identify general factors that are relevant in assessing the possibility of expanding biomass use in different contexts. The focus is on the use of biomass for heat and electricity production. Biomass contributed 14% to the Swedish energy supply in 1999. The major fraction of Swedish biomass is used within the forest industry (63%) and in district heating systems (23%). The remaining fraction is used in small-scale boilers in one- and two family dwellings. Between 1990 and 1999 Swedish bioenergy use (including waste and peat) increased by 44%. During the same period there has been a fourfold increase in the district heating systems. By-products from forestry and the Swedish forest industry dominate the supply of biomass in Sweden, but the importation of biomass increased significantly during the 1990s. A number of factors of various kinds have interacted to bring about the increased use of biomass in Sweden during the past twenty years. These factors can be divided into three categories: structure, policies and actors. The existence of a major forest industry and well-developed district heating systems has enabled a rapid response to strong and standing policy commitments to biomass. The reformation of the taxation system, with the introduction of a high carbon tax on fossil fuels, has led to significantly improved competitiveness for biomass when used for heating purposes.

  20. Exploration and utilization of energy from sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    -shaped floating structures made of super-light, high strength, and high seawater corrosion resistant materials (such as those used in the Japan Sea) seems to be a viable proposition for extraction of offshore wind-energy for the benefit of the Indian people...

  1. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  2. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  3. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. Utilizing alternative energy sources in France

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, M.

    1977-01-01

    The relative merits of various alternative-energy sources are discussed with particular reference to their suitability in the French context. The case is presented for decentralized solar power as against centralized solar-power production and some test installations in France are described. The potential for geothermal power is examined, and it is shown that the resource is essentially nonrenewable. A history of wind generation in France is presented, and power extraction from the seas is discussed, with particular reference to the Rance tidal-power scheme. While the public romance with alternative-energy schemes is accepted, it is pointed out that this may only last for as long as their implementation is on a small scale.

  5. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  6. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    Science.gov (United States)

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  7. [Biomass- and energy allocation in Eucalyptus urophylla x Eucalyptus tereticornis plantations at different stand ages].

    Science.gov (United States)

    Zhou, Qun-Ying; Chen, Shao-Xiong; Han, Fei-Yang; Chen, Wen-Ping; Wu, Zhi-Hua

    2010-01-01

    An investigation was made on the biomass- and energy allocation in 1-4-year-old Eucalyptus urophylla x Eucalyptus tereticornis plantations at Beipo Forest Farm of Suixi County in Guangdong Province. Stand age had significant effects on the retained biomass of the plantations (P biomass was in the range of 10.61-147.28 t x hm(-2). Both the total biomass and the biomass of above- and belowground components increased with increasing stand age. The proportions of leaf-, branch- and bark biomass to total biomass decreased with year, while that of stem biomass was in reverse. The biomass allocation of the components in 1- and 2-year-old plantations decreased in order of stem > branch > bark > root > leaf, and that in 3- and 4 -year-old plantations was in order of stem > root > branch > bark > leaf. The mean ash content (AC) of the five components at different stand ages ranged from 0.47% to 5.91%, being the highest in bark and the lowest in stem. The mean gross caloric value (GCV) and ash free caloric value (AFCV) of different components ranged from 17.33 to 20. 60 kJ x g(-1) and from 18.42 to 21.59 kJ x g(-1) respectively. Of all the components, leaf had the highest GVC and AFCV, while bark had the lowest ones. Stand age had significant effects on the GVC of branch, stem, and bark, and on the AFCV of leaf, stem, and bark (P 0.05). The retained energy of 1-4-year-old plantations ranged from 199.98 to 2837.20 GJ x hm(-2), with significant differences among the stand ages (P energy of various components and plantations increased with stand age, and the energy allocation of various components had the same trend as biomass allocation.

  8. Biofuels for fuel cells: renewable energy from biomass fermentation

    NARCIS (Netherlands)

    Lens, P.N.L.; Westermann, P.; Haberbauer, M.; Moreno, A.

    2005-01-01

    This book has been produced under the auspices of the Network ‘Biomass Fermentation Towards Usage in Fuel Cells’. The Network comprises nine partners from eight European countries and is funded by the European Science Foundation. This volume includes a chapter, from each of the member institutions,

  9. Challenges for sustainable biomass utilisation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hiete, Michael; Ludwig, Jens; Bidart, Christian; Schultmann, Frank (eds.)

    2010-07-01

    The energetic use of biomass can provide solutions for the growing worldwide demand for energy and fuel. This book contains the contributions for the final workshop of the ''Biociclo'' research exchange between the Universidad de Concepcion and the Universitaet Karlsruhe. It reflects interdisciplinarity of the workshop's participants with contributed papers about Biomass Utilization Paths in Chile, Pyrolysis and Life-Cycle Assessment of Biomass and Logistic Concepts of Biomass Utilization Concepts. (orig.)

  10. Spatial and temporal effects in drying biomass for energy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, T.; Khan, M.A.; Meng, Q. [Hawaii Univ., Honolulu, HI (United States)

    1996-10-01

    This study evaluates the impact of the moisture content of biomass on thermal efficiency and relative boiler size which directly represent the economic merits of biomass drying. A model for predicting the moisture content of bundled Leucaena (Leucocephala) trees under open environment was validated for tropical Hawaii. Cumulative precipitation and evapotranspiration (ET) are the major factors affecting the biomass moisture content change. ET was computed using Hargreave`s model, which requires only temperature and solar radiation data. Integration of these models made it possible to calculate the thermal efficiency and relative boiler size when using bundled trees as a fuel under a given drying regime and for a specific geographical location. A geographic information system provided the temperature and precipitation data required for evaluating the spatial variation in boiler efficiency and size for the 1440 km{sup 2} island of Kauai. Depending on the time of harvest, the Leucaena moisture content varied from 35 to 69% (on wet basis) following a period of 6 months of in-field drying. Boiler efficiency using fuelwood with this range of moisture content varied from 49 to 73%. Boiler relative size varied from 1.2 to 2.2 times the size required when Leucaena with 0% moisture content is used as a fuel. The spatial and temporal effects on the value of biomass were thus found to be important factors for various sites in the study area. The methods for quantifying the merit of biomass moisture management proposed in this paper demonstrate how GIS modeling can lead to appropriate decision-making capability in bioenergy. (Author)

  11. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  12. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  13. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  14. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  15. Synthesis of polymers from liquefied biomass and their utilization in wood bonding

    Science.gov (United States)

    As the sustainable manufacturing concept becomes a mandatory requirement, more and more researchers have devoted to converting biomass as components for polymer or as a substitution for part of petroleum based polymers for different applications. Agricultural and forestry lignocellulosic biomass mat...

  16. Analysis of energy and utility service demands

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The collection, analysis, and review of existing data on a community's service requirements are documented. The research focused on the analysis of energy-using activities including both micro activities such as space heating, cooking, lighting, and transportation; and macro activities such as providing shelter, health care, education, etc. The technical report describes the analytical framework developed for community description; describes an indexing system by which a catalog of services can be accessed; illustrates the application of the data to an existing community; and provides ancillary information on data availability. A catalog of data is presented which includes several sets of indices which facilitate access of data using various keys. Abstracts of 48 data sources are analyzed. Each abstract includes a description and evaluation of the data, a sampling of that data, an assessment as to how that data may be applied to other analyses, and a reference where the user can secure additional data. (MCW)

  17. Importance of Peaceful Utilization of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    J. Frydryšková

    2009-01-01

    Full Text Available Following the massive destruction of Hiroshima and Nagasaki in the end of Second World War, the atom was generally taken to be the primary symbol of the new era, the so-called ‘atomic age’, a prototypical modern conjuncture forever oscillating between the agonies of mass death and standardized terror, and the euphoria of tremendous economic transformation through the permanent resolution of the ever increasing need for electrical energy at little or no cost. After Hiroshima the symbolic meaning and presence of the atom crossed and recrossed the lines between popular culture, lived experience, political protest, strategic discourse, modern design, industry, medicine, and agriculture, that it truly became ‘atomic age’ whether one was in the US, France, China or anywhere else. 

  18. A study of energy balances in biomass drying and pelleting processes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S.; Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2004-07-01

    Making pellets from biomass is considered to be the best way to use biomass as a replacement for fossil fuels. This study developed a simulation tool and a rotary biomass drying model to optimize unit operations for pellet production. A pelletizing plant layout was presented along with a table indicating the typical energy and power consumptions per ton of pellets produced. The importance of the drying process was discussed with reference to drying results for timothy grass, alfalfa stems and leaves. It was shown that a dryer control system can reduce energy consumption from 12 GJ/ton to 6.5 GJ/ton. This drop in energy consumption by nearly 50 per cent is due to a reduction in moisture from 70 per cent to 10 per cent. Future research will focus on reducing the environmental emissions from the biomass dryer. tabs., figs.

  19. Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals

    Science.gov (United States)

    Smith, Alistair M. S.; Tinkham, Wade T.; Roy, David P.; Boschetti, Luigi; Kremens, Robert L.; Kumar, Sanath S.; Sparks, Aaron M.; Falkowski, Michael J.

    2013-12-01

    Satellite based fire radiant energy retrievals are widely applied to assess biomass consumed and emissions at regional to global scales. A known potential source of uncertainty in biomass burning estimates arises from fuel moisture but this impact has not been quantified in previous studies. Controlled fire laboratory experiments are used in this study to examine the biomass consumed and the radiant energy release (Fire Radiative Energy, FRE, (MJ)) for western white pine needle fuels burned with water content (WC, unitless) from 0.01 to 0.14. Results indicate a significant relationship: FRE per kilogram of fuel consumed = -5.32 WC + 3.025 (r2 = 0.83, n = 24, P FRE and fuel consumed can lead to systematic biases. A methodological framework to derive a revised formula that enables the estimation of biomass consumed from FRE, which explicitly takes into account fuel water content, is presented.

  20. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  1. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  2. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.

    Science.gov (United States)

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-08-01

    This paper presents the techno-economics of greenfield projects of an integrated first and second-generation sugarcane biorefinery in which pentose sugars obtained from sugarcane biomass are used either for biogas (consumed internally in the power boiler) or n-butanol production via the ABE batch fermentation process. The complete sugarcane biorefinery was simulated using Aspen Plus®. Although the pentoses stream available in the sugarcane biorefinery gives room for a relatively small biobutanol plant (7.1-12 thousand tonnes per year), the introduction of butanol and acetone to the product portfolio of the biorefinery increased and diversified its revenues. Whereas the IRR of the investment on a biorefinery with biogas production is 11.3%, IRR varied between 13.1% and 15.2% in the butanol production option, depending on technology (regular or engineered microorganism with improved butanol yield and pentoses conversion) and target market (chemicals or automotive fuels). Additional discussions include the effects of energy-efficient technologies for butanol processing on the profitability of the biorefinery.

  3. Stakeholder perspectives on converting forest biomass to energy in Oregon, USA

    Energy Technology Data Exchange (ETDEWEB)

    Stidham, Melanie; Simon-Brown, Viviane [Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-01-15

    Within the state of Oregon, USA, there is considerable interest in the possibility of converting forest biomass to energy. A number of studies have assessed the technical feasibility of forest biomass energy, but few have focused on social aspects, an important consideration in projects involving public forests. This study explores the social context of converting forest biomass to energy, using qualitative research methods. Semi-structured interviews were conducted with forty individuals representing nine different stakeholder groups. Information gained through interviews was used to understand stakeholder views on forest biomass energy, including their perspectives on potential barriers and opportunities in Oregon. Findings indicate the most challenging barrier will be access to long-term, consistent supply. A related challenge is the long history of contention between parties over forest products coming from public lands. However, findings also show that there are many areas of common ground between these groups that have historically been at odds, such as agreement on the necessity of restoration treatments in certain forest types, the by-product of which could be used for biomass generation. Potential conflicts still exist, for instance over projects in mixed conifer forests. Development of policies and projects through inclusive, collaborative approaches could alleviate controversies, potentially allowing more activities to move forward. Information provided by this research creates a foundation for discussions as forest biomass energy becomes an increasingly prominent issue in Oregon, the western USA, and other regions of the world. (author)

  4. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  5. Economic Potential of Biomass from Unused Agriculture Land for Energy Use

    DEFF Research Database (Denmark)

    Pfeifer, A.; Dominkovic, Dominik Franjo; Ćosić, B.

    2015-01-01

    In this paper the energy potential of biomass from growing short rotation coppice (SRC) on unused agricultural land in the Republic of Croatia was examined. At present, SRC is not completely recognized in Croatian legislative and considerations in energy strategy and action plans. The paper aspires...... to contribute to better understanding of the role SRC can take in national and local energy planning. The methodology is provided for regional analysis of biomass energy potential on unused agricultural land and for assessing the cost of the biomass at the power plant (PP) location considering transport...... plants and appropriate size of seasonal heat storage is discussed for each case study. Case studies have shown the potential for use of previously unused agricultural land to help achieve national targets for renewable energy sources as well as reducing carbon dioxide emissions, help diversify...

  6. Productivity, carbon utilization, and energy content of mass in scalable microalgae systems.

    Science.gov (United States)

    Murray, Kyle E; Shields, Jeremy A; Garcia, Nicholas D; Healy, Frank G

    2012-06-01

    This study was designed to examine carbon utilization within scalable microalgae production systems. Neochloris oleoabundans was produced in replicated troughs containing BG11 nutrient formulation. Atmospheric CO(2) was supplemented with ∼5% CO(2) or with NaHCO(3), and the pH of troughs receiving NaHCO(3) was adjusted with HCl or H(3)PO(4). Peak biomass concentrations reached 950, 1140, or 850 mg L(-1) and biomass productivities of 109, 96, and 74 mg L(-1) day(-1) were achieved in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) troughs, respectively. The highest productivity is expected in a scaled-up continuous batch process of the CO(2) supplemented system, which was projected to yield 8948 L lipids ha(-1)yr(-1). Carbon utilization in the CO(2), NaHCO(3):HCl and NaHCO(3):H(3)PO(4) systems was ∼0.5, 15.5, and 12.9%, while the energy content of the combustible biomass was 26.7, 13.2, and 15.4 MJ kg(-1), respectively. Techno-economic analyses of microalgal production systems should consider efficiencies and cost-benefit of various carbon sources.

  7. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  8. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  9. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  10. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  11. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  12. Biomass and Energy of Casuarina equisetiofolia Plantations in Southeast Coast of China

    Institute of Scientific and Technical Information of China (English)

    YEGongfu; ZHANGQinghai; LINYiming

    2005-01-01

    The biomass and energy production of Casuarina equisetifolia plantations aged 14 were studied in Huian County, Fujian Province, Southeast of China. The standing crop biomass was 152.60 t/ha, in which the biomass of bole was 67.02 t/ha, accounting for 43.94 % of the total, while that of root was 36.83 t/ha and 24.14 %, respectively. Net primary productivity was 10.17t/(ha.a).The range of gross caloric of components was 19.29~20.23 kJ/g, with the average 19.70 kJ/g. The standing crop energy was 2 987×106 kJ/ha. Net energy production was 196.8×106 kJ/ha, while solar energy conversion efficiency was 0.90%.

  13. Research advances in the study of Pistacia chinensis Bunge, a superior tree species for biomass energy

    Institute of Scientific and Technical Information of China (English)

    Li Hong-lin; Zhang Zhi-xiang; Lin Shan-zhi; Li Xiao-xu

    2007-01-01

    As a renewable energy, biomass energy has aroused wide attention and studies of this issue have become a hot topic throughout the world. Pistacia chinensis Bunge (Anacardiaceae) is a superior species for biomass energy with high oil content in seeds and wide geographic distribution. It is a dioeciously, deciduous arbor, flowering from March to April and bearing fruits from September to November. The classification, regional distribution and biological characteristics of P. chinensis are stated in this paper,then, research advances in the growth, breeding and physiology of this species are summarized. The problems in present studies are broached. Finally, a future direction for research is proposed.

  14. BIOMASS AS AN ALTERNATIVE SOURCE OF ENERGY IN INDIA

    OpenAIRE

    2010-01-01

    The fossil fuel is a main source of energy for generation of electricity in India. Overall, about 80% of greenhouse gas (GHS) emissions are related to the production and use of energy, and particularly, burning of fossils fuels. The environmental problems are associated with the generation of conventional sources of energy.The Kyoto protocol has established flexible mechanisms for developing countries to meet there GHG reduction commitment. Therefore, renewable source of energy is an alternat...

  15. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.

    Science.gov (United States)

    Freire, Márcia; Lopes, Helena; Tarelho, Luís A C

    2015-12-01

    Bottom and fly ashes streams collected along a year in several biomass thermal plants were studied. The bulk composition of ashes and other chemical characteristics that may impact soil application showed a high variability depending on the ash stream, combustion technology and ash management practice at the power plants. The acid neutralization capacity (ANC) and metal's availability for leaching at fixed pH 7 and 4 was performed according with EA NEN 7371, as a quick evaluation method to provide information on the long-term behavior of ashes, regarding heavy metals and also plant nutrients release. Also the pH dependence leachability study was performed according to CEN/TS 14429 for predicting the leaching behavior under different scenarios. Leachability profiles were established between pH 3 and 12, allowing to distinguish different solubility control phenomena of toxic heavy metals (Cu, Cr, Mn, Ni, Zn, Pb) as well as other salts (Ca, K, Mg, Na, Cl). The ANC of fly ashes at pH 4 (3.6-9.6 molH(+)/kg) were higher than that observed for the bottom ashes (1.2-2.1 molH(+)/kg). Ashes were also characterized for persistent organic pollutants (POP), such as polycyclic aromatic hydrocarbons (PAH) and paradibenzodioxines and furanes (PCDD/F). Contents were found to be much higher in fly ash than in bottom ash streams. None of the PAH levels did reach the current national limit value of sewage sludge application in soils or the guide value for ash in north European countries. However, PCDD/F contents, which are not regulated, varied from non-detectable levels to high amounts, regardless the level of loss on ignition (LOI) or unburned carbon content in fly ashes. Given the current ash management practices and possible use of blends of bottom and fly ash streams as soil conditioners resembles clear the urgent need to regulate ash utilization in soils, incorporating limit values both for heavy metals, PAH and PCDD/F.

  16. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  17. Do biomass harvesting guidelines influence herpetofauna following harvests of logging residues for renewable energy?.

    Science.gov (United States)

    Fritts, Sarah; Moorman, Christopher; Grodsky, Steven; Hazel, Dennis; Homyack, Jessica; Farrell, Chris; Castleberry, Steven

    2016-04-01

    Forests are a major supplier of renewable energy; however, gleaning logging residues for use as woody biomass feedstock could negatively alter habitat for species dependent on downed wood. Biomass Harvesting Guidelines (BHGs) recommend retaining a portion of woody biomass on the forest floor following harvest. Despite BHGs being developed to help ensure ecological sustainability, their contribution to biodiversity has not been evaluated experimentally at operational scales. We compared herpetofauanal evenness, diversity, and richness and abundance of Anaxyrus terrestris and Gastrophryne carolinensis among six treatments that varied in volume and spatial arrangement of woody biomass retained after clearcutting loblolly pine (Pinus taeda) plantations in North Carolina, USA (n = 4), 2011-2014 and Georgia (n = 4), USA 2011-2013. Treatments were: (1) biomass harvest with no BHGs, (2) 15% retention with biomass clustered, (3) 15% retention with biomass dispersed, (4) 30% retention with biomass clustered, (5) 30% retention with biomass dispersed, and (6) no biomass harvest. We captured individuals with drift fence arrays and compared evenness, diversity, and richness metrics among treatments with repeated-measure, linear mixed-effects models. We determined predictors of A. terrestris and G. carolinensis abundances using a priori candidate N-mixture models with woody biomass volume, vegetation structure, and groundcover composition as covariates. We had 206 captures of 25 reptile species and 8710 captures of 17 amphibian species during 53690 trap nights. Herpetofauna diversity, evenness, and richness were similar among treatments. A. terrestris abundance was negatively related to volume of retained woody biomass in treatment units in North Carolina in 2013. G. carolinensis abundance was positively related with volume of retained woody debris in treatment units in Georgia in 2012. Other relationships between A. terrestris and G. carolinensis abundances and habitat metrics

  18. Electric utility capacity expansion and energy production models for energy policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, E.; Edenburn, M.

    1997-08-01

    This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

  19. Energy efficiency analysis of reactor for torrefaction of biomass with direct heating

    Science.gov (United States)

    Kuzmina, J. S.; Director, L. B.; Shevchenko, A. L.; Zaichenko, V. M.

    2016-11-01

    Paper presents energy analysis of reactor for torrefaction with direct heating of granulated biomass by exhaust gases. Various schemes of gas flow through the reactor zones are presented. Performed is a comparative evaluation of the specific energy consumption for the considered schemes. It has been shown that one of the most expensive processes of torrefaction technology is recycling of pyrolysis gases.

  20. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    Science.gov (United States)

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  1. Environmental and energy performance of the biomass to synthetic natural gas supply chain

    NARCIS (Netherlands)

    Miedema, Jan Hessels; Moll, Henri; Benders, Reinerus

    2016-01-01

    A quarter of the total primary energy demand in the European Union is met by natural gas. Synthetic natural gas produced through biomass gasification can contribute to a more sustainable energy supply system. A chain analysis of the energetic performance of synthetic natural gas where the upstream,

  2. The Legal Conditions for Water Utilities Eco-Innovation as Energy Smart Water Utilities

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2013-01-01

    Welfare and green growth rest havely on an appropriate supply of safe water, the provision of adequate sewage, and on energy services. These services are interdependent, as water is an integral part of electric-power generation. Energy is also an integrated part of water services, as satisfying...... water needs for supply, purification, distribution, and treatment of wastewater requires energy sources. Water and energy utilities are however regulated without a specific focus on the interdependency of the two sectors and the possibilities to ensure sustainable use of the resources and reduction...... of greenhouse gasses by a better coordination. The article explains the possibilities of sustainable consumption and production of energy in the water utilities. It highlights EU legal framework that makes coordination at national level possible, and it gives examples and concludes on the obstacles...

  3. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    Science.gov (United States)

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans.

  4. Biomass Assessment. Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Inventory and analysis of existing studies. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.; Faaij, A.; Verweij, P. [Utrecht University, Utrecht (Netherlands); Banse, M.; Van Diepen, K.; Van Keulen, H.; Langeveld, H.; Meeusen, M.; Van de Ven, G.; Wester, F. [Wageningen UR, Wageningen (Netherlands); Alkemade, R.; Ten Brink, B.; Van den Born, G.J.; Van Oorschot, M.; Ros, J.; Smout, F.; Van Vuuren, D.; Van den Wijngaart, R. [Netherlands Environmental Assessment Agency NMP, Bilthoven (Netherlands); Aiking, H. [Vrije Universiteit, Amsterdam (Netherlands); Londo, M.; Mozaffarian, H.; Smekens, K. [ECN Policy Studies, Petten (Netherlands); Lysen, E. (ed.); Van Egmond, S. (ed.) [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2008-01-15

    The increased use and potential growth of biomass for energy has triggered a heated debate on the sustainability of those developments as biomass production is now also associated with increased competition with food and feed production, loss of forest cover and the like. Besides such competition, also the net reduction in greenhouse gas emissions is questioned in case land-use for biomass is associated with clearing forest, with conversion of peat land, as well as with high fossil energy inputs for machinery, fertilisers and other agrochemicals. Although available studies give a reasonable insight in the importance of various parameters, the integration between different arenas is still limited. This causes confusion in public as well as scientific debate, with conflicting views on the possibilities for sustainable use of biomass as a result. This study aims to tackle this problem by providing a more comprehensive assessment of the current knowledge with respect to biomass resource potentials.

  5. Allocation of Energy Use in the Biomass-based Fuel Ethanol System and Its Use in Decision Making

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; YU Sui-ran; FANG Fang; DAI Du; WANG Cheng-tao

    2005-01-01

    The Chinese government is developing biomass ethanol as one of its automobile fuels for energy security and environmental improvement reasons. The energy efficiency of the biomass-based fuel ethanol is critical issue. To investigate the energy use in the three biomass-base ethanol fuel systems, energy content approach, Market value approach and Product displacement approach methods were used to allocate the energy use based on life cycle energy assessment. The results shows that the net energy of corn based, wheat based, and cassava-based ethanol fuel are 12543MJ, 10299MJ and 13112MJ when get one ton biomassbased ethanol, respectively, and they do produce positive net energy.

  6. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  7. PERFORMANCE STUDIES ON DOWNDRAFT GASIFIER WITH BIOMASS ENERGY SOURCES AVAILABLE IN REMOTE VILLAGES

    Directory of Open Access Journals (Sweden)

    V. ChristusJeya Singh

    2014-01-01

    Full Text Available Increasing global concern over the environmental issues and depletion of fossil fuels, significant interest has been shown by the researchers to develop alternate energy technologies like biomass, biogas, solar to meet the future energy demand. The prediction of the performance of different biomass energy sources in gasifiers is needed for the implementation of this technology to fulfil the need of decentralized heat and power applications, relevant to remote villages. This study presents the theoretical and experimental studies conducted on a 50 kW downdraft biomass gasifier with various biomass materials such as wood, coconut shell, rubber seed kernel and coir pith which are generally available in villages. Two-zone kinetic equilibrium model approach is used to predict the composition and temperature of the producer gas. The influence of equivalence ratio on the reaction temperature, quality of producer gas and gasifier conversion efficiency are discussed. The experimental and theoretical studies show that the rubber seed kernel can be effectively used as a feedstock of the biomass gasifier to meet the rural energy demand.

  8. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)

  9. Environmental Multiobjective Optimization of the Use of Biomass Resources for Energy

    DEFF Research Database (Denmark)

    Vadenbo, Carl; Tonini, Davide; Astrup, Thomas Fruergaard

    2017-01-01

    of the optimization model is exemplified by a case aimed at determining the environmentally optimal use of biomass in the Danish energy system in 2025. A multiobjective formulation based on fuzzy intervals for six environmental impact categories resulted in impact reductions of 13-43% compared to the baseline...... environmental consequences. To circumvent the limitations of scenario-based life cycle assessment (LCA), we develop a multiobjective optimization model to systematically identify the environmentally optimal use of biomass for energy under given system constraints. Besides satisfying annual final energy demand......, the model constraints comprise availability of biomass and arable land, technology- and system-specific capacities, and relevant policy targets. Efficiencies and environmental performances of bioenergy conversions are derived using biochemical process models combined with LCA data. The application...

  10. Storage of caatinga forest biomass to improve the quality of wood for energy

    Directory of Open Access Journals (Sweden)

    Martha Andreia Brand

    2016-07-01

    Full Text Available ABSTRACT: This study aimed to evaluate the quality of forest biomass energy, coming from the Caatinga, for different storage times in the field. The study was conducted in southern Piauí, between January and February (rainy season. Samples were collected containing branches and trunks of various species, and samples of branches and trunks separately in 5 sample units of 20x20m. Samples were evaluated in the general state freshly harvested and samples of branches and logs after 15 and 30 days of storage in piles in the field. The analyzes carried out were: moisture content on wet basis, ash content and calorific value. Moisture content of freshly harvested biomass ranged from 39% with two days after cutting to 79% in biomass cut and left distributed in the field for 10 days. After storage in piles for 15 days, branches showed moisture content of 18% and the logs 21%, and net calorific value of 3432kcal kg-1 and 3274kcal kg-1, respectively. After 30 days, moisture content for branches was 13% and the logs 21%, and net calorific value of 3672kcal kg-1 and 3240kcal kg-1, respectively. Ash content of the biomass was low. Cutting trees in the rainy season, with maintenance of biomass in the field for 10 days, resulted in an increment of moisture content. Branches had the best behaviour during the storage. Fifteen days of storage are sufficient for the caatinga biomass to achieve high-quality energy.

  11. Modeling stump biomass of stands using harvester measurements for adaptive energy wood procurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Vesa, Lauri [ForestCalc Consulting Oy Ltd., 80230 Joensuu (Finland); Palander, Teijo [School of Forest Sciences, University of Eastern Finland, 80100 Joensuu (Finland)

    2010-09-15

    The value and volumes of industrial stump fuel supply are increasing for energy production. Accurate estimates of aboveground and belowground biomass of trees are important when estimating the potential of stumps as a bioenergy source. In this study two stump biomass equations were adapted and tested using them as calibrated stump biomass models computed as the cumulative sum by a local stand. In addition, variables derived from stem measurements of the forest harvester data were examined to predict stump biomass of a stand by applying regression analysis. The true stump yield (dry weight) was used as the reference data in the study. Both biomass models performed well (adjusted R{sup 2} {proportional_to} 0.84) and no advance was found in using other stem dimensions as independent variables in the model. The stand-level model can be used in innovative stump biomass prediction tools for increasing efficiency of energy wood procurement planning to stands within a certain area. In practice, wood procurement managers would need to adapt developed system and decide whether the degree of accuracy/precision provided by the models is acceptable in their local stand harvesting conditions. (author)

  12. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  13. On the hypothetical utilization of atmospheric potential energy

    Directory of Open Access Journals (Sweden)

    Thomas Frisius

    2014-09-01

    Full Text Available Atmospheric potential energy is typically divided into an available and a nonavailable part. In this article a hypothetical utilization of a fraction of the nonavailable potential energy is described. This part stems from the water vapor that can be converted into the liquid phase. An energy gain results when the potential energy of the condensate relative to a reference height exceeds the energy necessary to condensate the water vapor. It is shown that this can be the case in a saturated atmosphere without convective available potential energy. Finally, simulations with the numerical cloud model HURMOD are performed to estimate the usability of the device in practice. Indeed, a positive energy output results in a simulation with immediate gathering of the condensate. On the contrary, potential energy gained falls significantly short of the necessary energy for forming the condensate when a realistic cloud microphysical scheme allowing re-evaporation of condensate is applied. Taken together it can be concluded that, a utilization of atmospheric potential energy is hypothetically possible but the practical realization is probably not feasible.

  14. Energy densification of biomass-derived organic acids

    Science.gov (United States)

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  15. Multifunctional System for Biomass Utilization With CO2 Control%生物质气化耦合CO2控制多功能系统

    Institute of Scientific and Technical Information of China (English)

    李洪强; 曹艳峰; 唐志华; 蔡博; 金红光

    2011-01-01

    本文针对生物质能独特的碳氢结构特点以及现有生物质能应用技术存在的问题,提出了基于化学能、物理能梯级利用为基础的控制CO2排放的多功能系统集成原则,即:化学能、物理能梯级利用原则,化学势能梯级利用以及分步转化原则,能量释放、迁移与CO2控制一体化原则。并且基于这些原则给出了控制CO2排放的多功能系统集成典型思维流程。在本文中提出一个生物质一天然气:互补的控制CO2排放的甲醇一动力串联型的多功能系统。采用商用流程模拟软件aspenplus完成系统计算分析。结果表明,该多功能系统采用了双原料互补,适度重整反应机制,适度甲醇合成,分级转化合成气,系统层面控制CO2等,不仅实现了2O%的CO2减排,同时在相同的化工产品与动力输出情况下可以节省原料输入5%-12%。该系统体现了本文所提出的控制CO2排放的多功能系统集成原则,为生物质以及天然气的更高效利用提供了一条有效途径。%This paper summarized that according to the special hydrocarbon structure in biomass and the current problems during tile bio-energy utilization, the author put forward three fundamental principles for integrating multifunctional system with CO2 control: cascaded utilization of chemical & physical energy; cascaded utilization of chemical potential and stepping conversion; and the integration of energy conversion, transportation and CO2 control. And put forward the typical flow chart for integrating novel multifunctional systems with CO2 control, which are based on those principles. A novel multifunctional system with CO2 control based on biomass and natural gas is suggested here as a case study. The evaluation and calculation of the system are carried out by the help of Aspen Plus process simulator. The results show that, the suggested system with such features: complementary of biomass and

  16. Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change

    Directory of Open Access Journals (Sweden)

    Martin Gutsch

    2015-04-01

    Full Text Available In the future, Germany's land-use policies and the impacts of climate change on yields will affect the amount of biomass available for energy production. We used recent published data on biomass potentials in the federal states of Germany to assess the uncertainty caused by climate change effects in the potential supply of biomass available for energy production. In this study we selected three climate scenarios representing the maximum, mean and minimum temperature increase for Germany out of 21 CMIP5-projections driven by the Representative Concentration Pathways (RCP 8.5 scenario. Each of the three selected projections was downscaled using the regional statistical climate model STARS. We analysed the yield changes of four biomass feedstock crops (forest, short-rotation coppices (SRC, cereal straw (winter wheat and energy maize for the period 2031–2060 in comparison to 1981–2010. The mean annual yield changes of energy wood from forest and short-rotation coppices were modelled using the process-based forest growth model 4C. The yield changes of winter wheat and energy maize from agricultural production were simulated with the statistical yield model IRMA. Germany's annual biomass potential of 1500 PJ varies between minus 5 % and plus 8 % depending on the climate scenario realisation. Assuming that 1500 PJ of biomass utilisation can be achieved, climate change effects of minus 75 (5 % PJ or plus 120 (8 % PJ do not impede overall bioenergy targets of 1287 PJ in 2020 and 1534 PJ in 2050. In five federal states the climate scenarios lead to decreasing yields of energy maize and winter wheat. Impacts of climate scenarios on forest yields are mainly positive and show both positive and negative effects on yields of SRC.

  17. A techno-economic evaluation of a biomass energy conversion park

    Energy Technology Data Exchange (ETDEWEB)

    Van Dael, M.; Van Passel, S.; Witters, N. [Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek (Belgium); Pelkmans, L.; Guisson, R. [VITO, Boeretang 200, 2400 Mol (Belgium); Reumermann, P. [BTG Biomass Technology Group, Josink Esweg 34, 7545 PN Enschede (Netherlands); Marquez Luzardo, N. [School of Life Sciences and Environmental Technology, Avans Hogeschool, Hogeschoollaan 1, 4800 RA Breda (Netherlands); Broeze, J. [Agrotechnology and Food Sciences Group, Wageningen University, Bomenweg 2, 6703 HD Wageningen (Netherlands)

    2013-04-15

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production.

  18. Review of evaluations of utility home-energy-audit programs

    Science.gov (United States)

    Berry, L.; Soderstrom, J.; Hirst, E.; Newman, B.; Weaver, R.

    1981-03-01

    Evaluation efforts of utilities with active home energy audit programs are reviewed to suggest methodologies, issues, and data that can contribute to the development of a comprehensive Residential Conservation Service evaluation plan. On the basis mainly of written reports received from the utilities, findings about customer response to programs are summarized. The topics discussed include: correlates of program penetration rates; use of financing; attitudes toward programs; actions taken; characteristics of participants; and energy savings due to programs. Particular attention is given to three studies (Tennessee Valley Authority, Seattle City Light, and Pacific Gas and Electric) that analyze fuel consumption records as part of the evaluation.

  19. Progress and Prospect of LNG Cold Energy Utilization in China

    Institute of Scientific and Technical Information of China (English)

    Hua Ben

    2009-01-01

    @@ Values and utilization significance of LNG cold energy LNG is a cryogenic liquid mixture made from gas through purification and liquefaction at the temperature of 162℃.850 kWh/t of power may be consumed for LNG production.230kWh/t of cold energy with the temperature ranging from-162℃ to 5℃ may be released when LNG is gasified under the pressure of latm.During actual gasification operation,pumps are required to be used to increase pressure for LNG gasification and delivery,so part of LNG cold energy will be converted into pressure energy(Fig.1).

  20. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  1. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Cyd E. [Dept. of Energy (DOE), Washington DC (United States).

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  2. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account...... the microbiology and biochemistry of the processes....

  3. Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen

    2007-01-01

    shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes...

  4. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces.

    Science.gov (United States)

    Chen, Wei-Hsin; Du, Shan-Wen; Tsai, Chien-Hsiung; Wang, Zhen-Yu

    2012-05-01

    Torrefaction and burning characteristics of bamboo, oil palm, rice husk, bagasse, and Madagascar almond were studied and compared with a high-volatile bituminous coal using a drop tube furnace to evaluate the potential of biomass consumed in blast furnaces. Torrefaction at 250 and 300°C for 1h duration was carried out. Analysis using the ash tracer method indicated that the extent of atomic carbon reduction in the biomasses was less than that of atomic hydrogen and oxygen. Torrefaction also lowered the sulfur content in bamboo and oil palm over 33%. An examination of the R-factor and burnout of the samples suggests that more volatiles were released and a higher burnout was achieved with raw and torrefied biomasses at 250°C than at 300°C; however, torrefaction at 300°C is a feasible operating condition to transform biomass into a solid fuel resembling a high-volatile bituminous coal used for blast furnaces.

  5. 77 FR 5755 - Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program

    Science.gov (United States)

    2012-02-06

    ... Regional Biomass Coordinator as listed in the addresses above or contact Susan LeVan-Green, Program Manager... Federal income tax returns shall be considered. In addition, applicants should have a Dun and Bradstreet... highest). The two assessments and three years of tax returns shall be included with the submission....

  6. 78 FR 11622 - Request for Proposals: 2013 Hazardous Fuels Woody Biomass Utilization Grant Program

    Science.gov (United States)

    2013-02-19

    ... Department of Agriculture (USDA), Forest Service, State and Private Forestry (S&PF), Technology Marketing... woody biomass boiler for steam at a sawmill, hospital or school; non-pressurized hot water system for... Forest Service, S&PF Technology Marketing Unit, One Gifford Pinchot Drive, Madison, Wisconsin...

  7. Utility investments in low-income-energy-efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A. [Oak Ridge National Lab., TN (United States); Beyer, M.A. [Aspen Systems Corp., Oak Ridge, TN (United States); Eisenberg, J.; Power, M. [Economic Opportunity Research Institute, Washington, DC (United States); Lapsa, E.J. [Manhattan Data Systems, Knoxville, TN (United States)

    1994-09-01

    The objective of this study is to describe the energy-efficiency programs being operated by utilities for low-income customers. The study focuses, in particular, on programs that install major residential weatherization measures free-of-charge to low-income households. A survey was mailed to a targeted list of 600 utility program managers. Follow-up telephone calls were made to key non- respondents, and a random sample of other non-respondents also was contacted. Completed surveys were received from 180 utilities, 95 of which provided information on one or more of their 1992 low-income energy-efficiency programs for a total of 132 individual programs. These 132 utility programs spent a total of $140.6 million in 1992. This represents 27% of the total program resources available to weatherize the dwellings of low-income households in that year. Both the total funding and the number of programs has grown by 29% since 1989. A majority of the 132 programs are concentrated in a few regions of the country (California, the Pacific Northwest, the Upper Midwest, and the Northeast). Although a majority of the programs are funded by electric utilities, gas utilities have a significantly greater average expenditure per participant ($864 vs. $307 per participant). The most common primary goal of low-income energy-efficiency programs operating in 1992 was {open_quotes}to make energy services more affordable to low-income customers{close_quotes}. Only 44% of the programs were operated primarily to provide a cost-effective energy resource. Based on a review of household and measure selection criteria, equity and not the efficiency of resource acquisition appears to dominate the design of these programs.

  8. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  9. Implementing Workload Postponing In Cloudsim to Maximize Renewable Energy Utilization

    Directory of Open Access Journals (Sweden)

    Enida Sheme

    2016-08-01

    Full Text Available Green datacenters has become a major research area among researchers in academy and industry. One of the recent approaches getting higher attention is supplying datacenters with renewable sources of energy, leading to cleaner and more sustainable datacenters. However, this path poses new challenges. The main problem with existing renewable energy technologies is high variability, which means high fluctuation of available energy during different time periods on a day, month or year. In our paper, we address the issue of better managing datacenter workload in order to achieve higher utilization of available renewable energy. We implement an algorithm in CloudSim simulator which decides to postpone or urgently run a specific job asking for datacenter resources, based on job’s deadline and available solar energy. The aim of this algorithm is to make workload energy consumption through 24 hours match as much as possible the solar energy availability in 24 hours. Two typical, clear and cloudy days, are taken in consideration for simulation. The results from our experiments show that, for the chosen workload model, jobs are better managed by postponing or urgently running them, in terms of leveraging available solar energy. This yields up to 17% higher utilization of daily solar energy.

  10. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  11. Assessing the interactions among U.S. climate policy, biomass energy, and agricultural trade

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Marshall A.; McJeon, Haewon C.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page

    2014-09-01

    Energy from biomass is potentially an important contributor to U.S. climate change mitigation efforts. However, an important consideration to large-scale implementation of bioenergy is that the production of biomass competes with other uses of land. This includes traditionally economically productive uses, such as agriculture and forest products, as well as storage of carbon in forests and non-commercial lands. In addition, in the future, biomass may be more easily traded, meaning that increased U.S. reliance on bioenergy could come with it greater reliance on imported energy. Several approaches could be implemented to address these issues, including limits on U.S. biomass imports and protection of U.S. and global forests. This paper explores these dimensions of bioenergy’s role in U.S. climate policy and the relationship to these alternative measures for ameliorating the trade and land use consequences of bioenergy. It first demonstrates that widespread use of biomass in the U.S. could lead to imports; and it highlights that the relative stringency of domestic and international carbon mitigation policy will heavily influence the degree to which it is imported. Next, it demonstrates that while limiting biomass imports would prevent any reliance on other countries for this energy supply, it would most likely alter the balance of trade in other agricultural products against which biomass competes; for example, it might turn the U.S. from a corn exporter to a corn importer. Finally, it shows that increasing efforts to protect both U.S. and international forests could also affect the balance of trade in other agricultural products.

  12. FY 1997 report on the research study for preparation of NEDO`s vision. Biomass energy; 1997 nendo chosa hokokusho (NEDO vision sakutei ni muketa chosa kenkyu). Biomass energy ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research study was made on the current usage, technological development and future subjects of biomass energy. The current use of biomass energy over the world estimated to be nearly a billion t/y oil equivalent. This value is estimated to be only a part of a pure primary biomass yield of 73 billion t/y oil equivalent showing a large supply potential. The evaluation result of a biomass energy potential in the world by GLUE (Global Land Use and Energy Model) considering worldwide biomass flow and competition of land use showed that no change of land use form in advanced areas is predicted, and no production of new biomass energy from forests in advancing areas is also expected. Production of biomass energy from farm products is promising in advanced areas, while the potential of biomass residue is high in advancing areas showing the possibility of energy development. Development of new biotechnologies such as molecular control of bio-production functions is expected to increase biomass resources. 76 refs., 26 figs., 30 tabs.

  13. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  14. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  15. Array of titanium dioxide nanostructures for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  16. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed by ...

  17. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    Science.gov (United States)

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%).

  18. Renewable energy utilization in 3 european cities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Energy production based on fossil fuels produces CO2, SO2 and NOx, which are harmful to the environment. It is agreed, both nationally and internationally, that it is necessary to considerably reduce the energy consumption. The difference between different European countries politically, financially, culturally, and socially needs to be acknowledged when energy initiatives are considered for implementation on a local as well as an international scale. This was the basis for the initiation of the project `Renewable Energy Utilization in 3 European Cities`. Three very different cities with different problems and thus different interests got together and joined efforts to develop action plans to increase renewable energy use to reduce the burden on the environment from energy consumption in the urban and regional areas. The work has been undertaken by the working group presented in appendix 3. (EG) ALTENER. 25 refs.

  19. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hongbo [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-Ku, 603-8577 Kyoto (Japan); Zhou, Weisheng; Nakagami, Ken' ichi [College of Policy Sciences, Ritsumeikan University, 603-8577 Kyoto (Japan); Gao, Weijun [Faculty of Environmental Engineering, The University of Kitakyushu, 808-0135 Kitakyushu (Japan)

    2010-05-15

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  20. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

    Science.gov (United States)

    Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae

    2017-03-01

    In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).

  1. Energy-, exergy- and emergy analysis of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.

    1997-11-01

    In this report, results from analyzing salix-, winter wheat-, and winter rape cultivations from energy, exergy, and EMERGY perspectives are presented. The exchange in terms of energy for this Salix cultivation is 28 times , but if instead an exergy analysis is done the exchange for exactly the same process is 36 times. The energy analysis gives an energy exchange of 8.1 for winter wheat cultivation, and 5.7 for winter rape cultivation. Corresponding exchanges for the exergy analysis are 9.3 for winter wheat and 6.6 for winter rape. The EMERGY analysis gives a transformity for salix of 1.04E+11 sej/kg DM, for winter wheat 3.85E+11 sej/kg DM, and for winter rape 1.03E+12 sej/kg DM. Thus, the EMERGY need is bigger for rape cultivation than for winter wheat and salix cultivations. The NEYR is the ratio between the EMERGY yield and the EMERGY invested from society (economy, services and other resources), and it is 1.10 for this salix cultivation, and 0.66 for both the winter wheat and the winter rape cultivations. The EIR is the ratio between the EMERGY invested from society and the EMERGY invested from the environment, and it is 2.23 for this salix cultivation, 11.5 for the winter wheat cultivation , and 11.8 for the winter rape cultivation. 26 refs, 11 figs, 25 tabs

  2. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  3. Background research paper : township of East Garafraxa utilities and renewable energy planning study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-11

    This paper established the foundation for future policies in Ontario's Township of East Garafraxa regarding renewable energy facilities and utilities. The paper provided research which included a summary of policy and regulatory best practices; a lexicon for renewable energy and wind power terminology; a baseline for scales of facilities; identification of constraints and land use issues; a discussion on alternative energy sources and their impacts; a summary of discussions with stakeholders and interest groups; and an opportunity and constraints analysis. Specifically, the report provided an overview of the Township of East Garafraxa and discussed regulations such as the Environmental Assessment Act and Environmental Protection Act. The forms of renewable energy that were discussed included wind, solar, biomass, hydro and geothermal energy. A jurisdictional analysis was then presented. Scale options for each renewable energy system were presented along with recommended scales for each renewable energy system. It was concluded that the Township of East Garafraxa has an opportunity to proactively accommodate new renewable energy land uses in a manner that reflects the local characteristics and aspirations of its residents. 50 refs., 12 figs., 1 appendix.

  4. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianping [Univ. of Florida, Gainesville, FL (United States); Sandhu, Hardev [Univ. of Florida, Gainesville, FL (United States)

    2017-03-23

    1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypically and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars

  5. The Impact of Aerosols Generated from Biomass Burning, Dust Storms, and Volcanoes Upon the Earth's Radiative Energy Budget

    Science.gov (United States)

    Christopher, Sundar A.

    1997-01-01

    A new technique for detecting aerosols from biomass burning and dust is developed. The radiative forcing of aerosols is estimated over four major ecosystems in South America. A new smoke and fire detection scheme is developed for biomass burning aerosols over South America. Surface shortware irradiance calculations are developed in the presence of biomass burning aerosols during the SCAR-B experiment. This new approach utilizes ground based, aircraft, and satellite measurements.

  6. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  7. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  8. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  9. Biomass energy systems program summary. Information current as of September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  10. Second biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This volume provides the proceedings for the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry which was held August 21-24, 1995. The volume contains copies of full papers as provided by the researchers. Individual papers were separately indexed and abstracted for the database.

  11. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  12. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    Science.gov (United States)

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  13. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  14. Multifunctional Catalysts to Synthesize and Utilize Energy Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lercher, Johannes A.; Appel, Aaron M.; Autrey, Thomas; Bullock, R. Morris; Camaioni, Donald M.; Cho, Herman M.; Dixon, David A.; Dohnalek, Zdenek; Gao, Feng; Glezakou, Vassiliki Alexandra; Henderson, Michael A.; Hu, Jian Z.; Iglesia, Enrique; Karkamkar, Abhijeet J.; Kay, Bruce D.; Kimmel, Gregory A.; Linehan, John C.; Liu, Jun; Lyubinetsky, Igor; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Schenter, Gregory K.; Shaw, Wendy J.; Szanyi, Janos; Wang, Huamin; Wang, Yong; Weber, Robert S.

    2014-06-23

    The central role and critical importance of catalysis in a future based on sustainability, together with the insight that developments have to be knowledge-based have motivated significant efforts to better understand catalyzed processes and to develop new catalytic routes from this knowledge. Overall, three main energy carriers are used worldwide, carbon (and hydrocarbons), hydrogen, and electrons. Conventionally, the stored energy is accessed by oxidizing carbon and hydrogen, forming O-H and C-O bonds and performing work with the produced heat or electricity. Conversely, to synthesize energy carriers sustainably, it is consequently required to reverse the direction, i.e., to break C-O and O-H bonds and form C-C, C-H and H-H bonds. To address these challenges, PNNL’s BES-sponsored program comprises three thrust areas with subtasks, focusing on the fundamentals of biomass conversion processes, direct and indirect CO2 reduction, and on elementary studies aimed at generating and using H2. Multi-functionality, i.e., the simultaneous interaction of more than one catalytically active site with the substrate is the key to achieving the atom and energy efficiency in individual steps. The combination of several types of these sites with carefully selected energetics and rate constants is used to generate complex catalysts able to enhance the rates of multistep processes. This short report summarizes recent results obtained in this BES-funded program.

  15. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  16. Spatial distribution of biomass consumption as energy in rural areas of the Indo-Gangetic plain

    Energy Technology Data Exchange (ETDEWEB)

    Saud, T. [National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), New Delhi-110012 (India); Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi-110006 (India); Singh, D.P.; Gadi, Ranu [Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi-110006 (India); Mandal, T.K.; Saxena, M.; Sharma, S.K.; Gautam, R.; Mukherjee, A.; Bhatnagar, R.P. [National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), New Delhi-110012 (India); Pathak, H. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi-110012 (India)

    2011-02-15

    Biomass is widely used as energy source in rural households in India. Biomass samples and socio-economic data have been collected at district level in the rural areas of Indo-Gangetic plain (IGP), India to determine the emissions of trace gases and aerosols from domestic fuels. Dung cake, fuelwood and crop residue are main sources of energy in rural areas of the IGP. Dung cake is the major domestic fuel (80-90%) in the rural areas of Delhi, Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal, whereas, 99% of rural households in Uttarakhand use wood as the main energy source. Using crop production data and usage of crop residues as energy, new consumption values have been estimated (21.13 Mt). Present information on the domestic fuel usage would be helpful in determining budgets estimates of trace gases and aerosols for India. (author)

  17. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues.

  18. Sustainable Biomass Energy and Indigenous Cultural Models of Well-being in an Alaska Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Munish Sikka

    2013-09-01

    Full Text Available Oil-dependent indigenous communities in remote regions of Alaska and elsewhere are facing an unprecedented crisis. With the cost of fuel and transport skyrocketing, energy costs are crippling local economies, leading to increasing outmigration and concern for their very existence in the future. What can be done to address this energy crisis, and promote energy security, sustainability and resilience in rural forest communities? We examine the potential of developing a sustainable biomass-energy industry in Southeast Alaska, home to nearly 16,000 Alaska Natives in a dozen rural and two urban communities within the United States’ largest national forest: The Tongass. Although the potential for biomass energy has long been touted, realization of the opportunity has been catalyzed only recently as part of a model of sustainable development being enacted by the region’s largest Native corporation, Sealaska, and its subsidiary, Haa Aaní (“Our Land” L.L.C. In this paper we examine the unique nature of Alaska Native corporations and their potential as engines of sustainable development, particularly through Sealaska’s emerging cultural model of sustainability in relation to social-ecological well-being. We assess the economic, ecological, and atmospheric emissions parameters of a wood-biomass energy industry at various scales according to the “triple bottom line” of sustainability. Finally, we address what additional policy and support measures may be necessary to nurture the successful transition to biomass energy at a sustainable scale to support rural indigenous communities, a more resilient, renewable energy system, and a lower carbon footprint.

  19. Environmental sustainable utilization of waste resources for energy production

    DEFF Research Database (Denmark)

    Fruergaard, Thilde

    teknologier: Vind og kul for el-produktion, samt biomasse og kul (eller et andet fossilt brændsel afhængigt af lokale forhold) for varmeproduktion. Foruden energisubstitution blev adskillige andre bidrag identificeret som vigtige for resultaterne af en LCA, blandt andet emissioner af tungmetaller relateret...... for livscyklusvurderinger (LCA) af affaldsbaserede energiteknologier, samt undersøge hvorledes den sparede energi kan identificeres. Følgende faktorer blev identificeret som kritiske i forhold til at sikre gennemsigtighed og sammenhæng i LCA-studier af affaldssystemer: 1) definition af målsætning, 2) LCA-metodikken, 3...... affaldsforbrænding) baseret på de langsigtede, investeringsmæssige effekter i energisystemet. Disse effekter er behæftet med væsentlig usikkerhed, da de finder sted i fremtiden. For at teste betydningen af energisubstitution for LCA’ens resultater blev det derfor anbefalet at benytte to signifikant forskellige...

  20. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.

    Science.gov (United States)

    Farkas, Joel; Chung, Daehwan; Cha, Minseok; Copeland, Jennifer; Grayeski, Philip; Westpheling, Janet

    2013-01-01

    Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD(680)) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.

  1. Energie nécessaire au broyage de la biomasse et des produits densifiés

    Directory of Open Access Journals (Sweden)

    Temmerman, M.

    2011-01-01

    Full Text Available Milling energy needs for biomass and densified products. The literature about energy requirements for product milling in mining industry shows the subject has been, and still is, considered by numerous authors. Several milling theories have been proposed for these industries, especially concerning ores milling. The main mining milling theories and some of their evolutions are described in this paper. Biomass milling has been, by far, less studied. Nevertheless, few measurements are available about energy needed for milling of particular biomass, in particular systems. But studies taking into account enough characteristics of the milled material (origin, moisture content, particle size distribution are scarce. In consequence, nearly none biomass milling model has been proposed. Concerning densified products (pellets and briquettes apparently no data are available yet. Considering the milling theories, this study selects parameters that have to be taken into account when milling modeling comes to an end for biomass or densified biomass.

  2. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid...... captured during growth of the plants. This, however, neglects that using the land for energy crops implies that the same land cannot be used for other purposes, including food cropland, forestry, grassland, etc. This may induce cascading effects converting natural biomes into arable land with associated...... impacts. Waste, such as municipal solid waste, does not involve land use change impacts. However, existing and emerging waste treatment technologies offer different environmental benefits and drawbacks which should be evaluated in order to recommend appropriate technologies in selected scenarios...

  3. Economics and utility energy-efficiency programs: Energy-efficient manufactured housing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Onisko, S.A.

    1992-10-01

    As utilities investigate ways to implement conservation programs, the differences between customer and utility economic perspectives become more important. Because utilities bear the cost of new energy sources, energy efficiency investments that are cost-effective to them may not be cost-effective to their customers who pay average energy prices and have different economic parameters. The Bonneville Power Administration (BPA) and other parties in the Pacific Northwest have initiated an innovative manufactured (mobile) home energy conservation program. Because manufactured homes are regulated by the Department of Housing and Urban Development (HUD), are exempt from local regulations, and comprise up to 50% of new housing starts in some parts of the United States, utilities and energy planners need to find creative ways to make the economics of manufactured housing energy-efficiency investments more attractive. Differences between the economic criteria and perspectives of consumers and utilities can be used to design energy-efficiency programs. This paper discusses life-cycle cost (LCC) analysis as a framework for highlighting these differences and examines other economic criteria. It then presents information from the Pacific Northwest manufactured housing program to illustrate the application of this framework to a real-world program. Findings from this program should,be of interest to utility and government planners who are designing innovative energy-efficiency programs.

  4. BIOMASS TO ENERGY IN THE SOUTHERN UNITED STATES: SUPPLY CHAIN AND DELIVERED COST

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-06-01

    Full Text Available Supply chain and delivered cost models for seven feedstocks (loblolly pine, Eucalyptus, natural hardwood, switchgrass, Miscanthus, sweet sorghum, and corn stover were built, simulating a supply of 453,597 dry tons per year to a biorefinery. Delivered cost of forest-based feedstocks ranged from $69 to $71 per dry ton. On the other hand, delivered cost of agricultural biomass ranged from $77.60 to $102.50 per dry ton. The total production area required for fast growing feedstocks was estimated as between 22,500 to 27,000 hectares, while the total production area for feedstocks with lower biomass productivity ranged from 101,200 to 202,300 hectares (corn stover and natural hardwood, respectively. Lower delivered cost per ton of carbohydrate and million BTU were found for loblolly pine, Eucalyptus, and natural hardwood. In addition, agricultural biomass had higher delivered costs for carbohydrate and energy value.

  5. Integration of Shiitake cultivation and solid-state anaerobic digestion for utilization of woody biomass.

    Science.gov (United States)

    Lin, Yunqin; Ge, Xumeng; Liu, Zhe; Li, Yebo

    2015-04-01

    Pretreatment technologies that can not only reduce the recalcitrance of woody biomass but also achieve a high benefit-cost ratio are desirable for bioenergy production from woody biomass. In this study, an integrated process was proposed and conducted by pretreating woodchips via Shiitake cultivation for improved methane yield during solid-state anaerobic digestion (SS-AD), and simultaneously producing mushrooms as a high-value co-product. Shiitake cultivation using woodchips as the main substrate ingredient obtained mushroom yields comparable to those using a commercial substrate. Enzymatic digestibility and cumulative methane yields (133-160 L kg(-1)VS during 62 days of SS-AD) of pretreated substrates (spent mushroom substrate) were at least 1.5 times as high as those of untreated woodchips. Compared to a sole SS-AD process, the integrated Shiitake cultivation/SS-AD process increased methane production and solid waste reduction per kilogram of woodchips by about 1.5 and 8 times, respectively.

  6. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    Science.gov (United States)

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations.

  7. Performance analysis of liquid air energy storage utilizing LNG cold energy

    Science.gov (United States)

    Luyao, Li; Sixian, Wang; Zhang, Deng; Luwei, Yang; Yuan, Zhou; Junjie, Wang

    2017-02-01

    As the high energy density and can be stored in a long period, the liquid air is regarded as the potential energy storage medium. In the liquid air energy storage (LAES) system, liquid air is produced in the liquefaction processes by using the renewable energy or off-peak energy. The compressor is used to supply and recycle the air in liquefaction processes. In this paper, a LAES model is established, and the impact of compressor on LAES system is analysed theoretically. Liquid air energy storage (LAES) system utilizing LNG cold energy is also described. The results show that the round trip energy efficiency is enhanced and the utilizing has promising application prospect for large scale energy storage.

  8. Environmental advantages to the utilization of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, P. [EGS Inc., Santa Rosa, CA (United States)

    1997-02-01

    Geothermal energy is a technically-proven, cost effective source of electrical and thermal energy that has been utilized for many decades. recent estimates indicate that over 6700 MWe and 8200 MWt are currently developed throughout the world. This paper discusses the specific environmental advantages to the development of geothermal electrical power and direct use projects and demonstrates how environmental impacts can be easily mitigated using existing technologies. In the areas of CO{sub 2}, NO{sub x}, and SO{sub 2} emissions, land disturbance per MWe and disposal of waste products, geothermal energy has significantly fewer impacts than most other energy sources, particularly conventional fossil and nuclear fuels. Examples are sited where goethermal developments have occurred in pristine areas with no significant impacts and even offering the opportunity for improving environmental conditions. (author)

  9. Decentralized power generation from solid biomass in the course of the Renewable Energy Law (EEG); Dezentrale Stromerzeugung aus fester Biomasse im Rahmen des Erneuerbare-Energien-Gesetzes (EEG)

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, Philipp; Witt, Janet; Billig, Eric [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme

    2012-07-01

    The increased use of renewable energy sources is the stated goal of the German and European climate policy. According to the German government, in 2020, 35 % of electricity production will be covered by renewable energy (currently 20 %). To achieve this goal, the federal government has enacted the EEG. Currently, solid biomass plays an important role by having a share of 10 % of renewable electricity production while providing combined heat and power (CHP). Since the enactment of the EEG in 2000, the number, as well as the installed capacity of biomass (thermal) power plants (CHP) increased more than tenfold. During the first two versions of the EEG (EEG 2000 and EEG 2004) mainly larger (> MW{sub el}) and medium (> 500 MW{sub el}) sized biomass CHP-plants were installed. Later on (EEG 2009), progressively smaller biomass CHP-plants were built. This is due to the increasing scarcity of fuel wood as well as technological advances in power generation of small biomass CHP-plants - initially in the use of ORC turbines and most recently in the development of thermochemical gasifiers with a gas engine attached. In total, German CHP-plants using solid biomass produced 9 590 GWhel EEG relevant electricity in 2011. Therefore, more than 7.8 million tbone dry wood is used (except the fuel used in CHP-plants of the pulp and paper industry). It is expected, that the use of other types of biomass, such as straw, miscanthus and other energy crops will increase in the near future and mostly small, heat-operated biomass CHP-plants will be installed. (orig.)

  10. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  11. Multilanguage Web application to assess biomass energy production: economic and energetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berruto, Remigio; Busato, Patrizia; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: remigio.berruto@unito.it

    2008-07-01

    One of the main difficulties in the development of biomass supply chains is the lack of reliable and complete information, which is needed to carry out a correct feasibility study. The aim of the research is contributing to knowledge which can be exploited in designing and evaluating biomass supply chains, within a standardized system approach. For this purpose has been implemented by DEIAFA a Web application - www.energyfarm.unito.it - to investigate the biomass supply chains under the technical, economic and energetic aspects. The first set of procedures allow the evaluation of field and logistic operations related to biomass cultivation, harvest and transport to the point of use. Another set of procedures refers to the feasibility study of biomass power plant. All procedures share a common database, ensuring their proper integration. EnergyFarm{sup R} represents a step toward the standardization of data and calculation procedures. In the future, it will be possible to foresee also in the same application the computing of the results with different standards (ASAE, EU, etc.). The interface to the application is provided in English and Italian languages. (author)

  12. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  13. Impact of forest biomass residues to the energy supply chain on regional air quality.

    Science.gov (United States)

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃.

  14. Energy and exergy analyses of a biomass-based hydrogen production system.

    Science.gov (United States)

    Cohce, M K; Dincer, I; Rosen, M A

    2011-09-01

    In this paper, a novel biomass-based hydrogen production plant is investigated. The system uses oil palm shell as a feedstock. The main plant processes are biomass gasification, steam methane reforming and shift reaction. The modeling of the gasifier uses the Gibbs free energy minimization approach and chemical equilibrium considerations. The plant, with modifications, is simulated and analyzed thermodynamically using the Aspen Plus process simulation code (version 11.1). Exergy analysis, a useful tool for understanding and improving efficiency, is used throughout the investigation, in addition to energy analysis. The overall performance of the system is evaluated, and its efficiencies become 19% for exergy efficiency and 22% energy efficiency while the gasifier cold gas efficiency is 18%.

  15. Biomass energy: State of the technology present obstacles and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  16. Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Saluja, J.

    1987-06-30

    The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

  17. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus

    2006-01-01

    Biomass is increasingly used in energy plants of different size and sophistication in Sweden. Biomass is also available in Sweden owing to its large forest-covered areas. Incineration of biomass in an environmentally friendly manner is one of the key issues in Swedish policy for sustainable...... development. Hence there is ongoing research on the effects of biomass burning on the air quality in Swedish cities. The relative contributions of anthropogenic sources to pollution in the urban environment are usually difficult to evaluate owing to the complexity of the ambient aerosol. In order...... of biomass burning to particulate air pollution. In order to identify typical indicators for biomass burning, principle component analysis was performed on data on elemental contents and black carbon. Analysis suggests that the K/Zn ratio will be useful as an indicator for biomass incineration....

  18. A new principle of synthetic cascade utilization of chemical energy and physical energy

    Institute of Scientific and Technical Information of China (English)

    JIN; Hongguang; HONG; Hui; WANG; Baoqun; HAN; Wei; LIN; Rum

    2005-01-01

    We propose a new principle of the cascade utilization of both chemical energy and physical energy in energy systems with the integration of chemical processes and thermal cycles. Particularly, a general equation of energy levels of substance, Gibbs free energy of chemical reaction and physical energy is explicitly founded. On the basis of this equation, a chemical-looping combustion and an indirect combustion are investigated. Furthermore, a mechanism of energy release, with the combination of decreasing the energy level of Gibbs free energy and upgrading the energy level of low or middle- temperature thermal energy, is clarified. The promising results obtained here establish a theoretical basis for the further investigation of multi-function systems in which energy and the environment are compatible, and create a new approach to improve the performance of traditional thermal cycles.

  19. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard;

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate was studied respectively in a fast-heating rate thermogravimetric analyzer for deriving a kinetic model to describe the process. The yields of SO2 and SO3...... of different sulfates indicated that ammonium sulfate has clearly strongest sulfation power towards KCl at temperatures below 800oC, whereas the sulfation power of ferric and aluminum sulfates exceeds clearly that of ammonium sulfate between 900 and 1000oC. However, feeding gaseous SO3 was found to be most...

  20. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  1. Efficient energy utilization and environmental issues applied to power planning

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Hector, E-mail: hcampbellr@gmail.com [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Montero, Gisela; Perez, Carlos [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C., Mexico, P.O. Box 3439, Calexico, CA 92232 (United States); Lambert, Alejandro [Facultad de Ingenieria, Universidad Autonoma de Baja California, Blvd Benito Juarez y calle de la Normal, Col Insurgentes Este, CP 21280, Mexicali, B.C. (Mexico)

    2011-06-15

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO{sub 2} to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO{sub 2}. The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO{sub 2}. - Highlights: > We contrast power planning methods for supply electricity for economy development. > Importance of policies for electricity savings and efficient use in power planning. > Systemic planning facilitates decision-making process for electricity optimization. > Supply-side planning will cause climb in prices and loss of energy self-sufficiency. > Power planning should be immersed in an environment of appropriate energy policies.

  2. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    Science.gov (United States)

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming.

  3. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  4. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Science.gov (United States)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  5. Issues of geothermal and biomass energy efficiency in agriculture, industry, transports and domestic consumption

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-12-01

    Full Text Available Increasing energy efficiency should be a concern for both the firm managers and any leader at any level, given that energy efficiency significantly reduce production costs. An important aspect of this is the use of renewable energy sources, in different types of activities, depending on the possibilities to produce it on favorable terms, to supply at relatively low costs and to efficiently consume it both in the producing units and the households. A skilful and powerful leader will seek and support, through its influence, all the means that determine the reduction of the production costs and obtain a profit as high as possible. Wider use of renewable energy promotes concern for the environment through clean energy, for reducing pollution and for facilitate, in some cases, even the increase of the production with the same costs or lower costs. In agriculture, industry, transports and household consumption, a high importance presents the geothermal energy and the biomass as source of energy.

  6. Jicarilla Apache Utility Authority Renewable Energy and Energy Efficiency Strategic Planning

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, K.R.

    2008-06-28

    The purpose of this Strategic Plan Report is to provide an introduction and in-depth analysis of the issues and opportunities, resources, and technologies of energy efficiency and renewable energy that have potential beneficial application for the people of the Jicarilla Apache Nation and surrounding communities. The Report seeks to draw on the best available information that existed at the time of writing, and where necessary, draws on new research to assess this potential. This study provides a strategic assessment of opportunities for maximizing the potential for electrical energy efficiency and renewable energy development by the Jicarilla Apache Nation. The report analyzes electricity use on the Jicarilla Apache Reservation in buildings. The report also assesses particular resources and technologies in detail, including energy efficiency, solar, wind, geothermal, biomass, and small hydropower. The closing sections set out the elements of a multi-year, multi-phase strategy for development of resources to the maximum benefit of the Nation.

  7. Field biomass as energy resource for the future; Peltobiomassat tulevaisuuden energiaresurssina

    Energy Technology Data Exchange (ETDEWEB)

    Pahkala, K.; Loetjoenen, T. (eds.)

    2012-11-01

    Bioenergy can be derived from biomasses especially produced for bioenergy or from by-products, side streams and waste from wood processing industry, agriculture and forestry, or e.g. municipal waste. In the Nordic countries and Russia forests are a natural source of bioenergy. In many other European countries forests may be too scarce for bioenergy use. Therefore field biomasses form an interesting potential source for bioenergy. Production of field biomasses for non-food purposes has been criticized, especially as there is not enough food for everyone even at present, and in the future more food has to be produced as the world population increases. We studied the field biomass potential in different European countries with different scenarios for development. 'Good development' scenario includes improvements in plant breeding and food production and processing technologies, with increasing yields and decreasing waste of food products and raw materials. 'Bad development' scenario assumes stagnating yields and little improvement in technologies in the OECD countries, and only small improvements in former Soviet Union countries. The foci of the present research were the effects of development of food production, population growth and climate change on regional potential of field biomasses for bioenergy and sustainable use of crop residues and grasses for bioenergy. The field area that could be allocated to energy crops after growing enough food for the citizens of each country depends mostly on the diet. Growing food for vegetarian diet would occupy so little field area that every country under study could set aside at least half of their field area for bioenergy purposes already at present, if the 'good development' scenario was applied. With 'bad development' scenario some of the countries would be unable to set aside fields for bioenergy production even with vegetarian diet. With affluent diet there would be little field

  8. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  9. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways.

    Science.gov (United States)

    Kabir, Md Ruhul; Kumar, Amit

    2012-11-01

    Life cycle energy and environmental performances of nine different biomass/coal co-firing pathways to power generation were compared. Agricultural residue (AR), forest residue (FR), and whole trees (WT) as feedstock were analyzed for direct (DC) and parallel co-firing (PC) in various forms (e.g., chip, bale and pellet). Biomass co-firing rate lies in the range of 7.53-20.45% (energy basis; rest of the energy comes from coal) for the co-firing pathways, depending on type of feedstock and densification. Net energy ratios (NER) for FR-, WT-, and AR-based co-firing pathways were 0.39-0.42, 0.39-0.41, and 0.37-0.38, greenhouse gas (GHG) emissions were 957-1004, 967-1014, and 1065-1083 kg CO(2eq)/MWh, acid rain precursor (ARP) emissions were 5.16-5.39, 5.18-5.41, and 5.77-5.93 kgSO(2eq)/MWh, and ground level ozone precursor (GOP) emissions were 1.79-1.89, 1.82-1.93, and 1.88-1.91 kg (NO(x)+VOC)/MWh, respectively. Biomass/coal co-firing life cycle results evaluated in this study are relevant for any jurisdiction around the world.

  10. Renewable energy. The Danish case pictured by policy, biomass and wind

    Energy Technology Data Exchange (ETDEWEB)

    Heding, N. [Danish Centre for Forest, Landscape and Planning, Horsholm (Denmark)

    2001-07-01

    The main objective of the first Danish energy plan, Danish Energy Policy 1976, was to safeguard Denmark against supply crises. The next plan, Energy Plan 81, continued to focus on limiting the national dependence on imported oil and due to the increasing unemployment rates high priority was given to socio-economic considerations. The plan boosted the development of the oil and gas fields in the North Sea considerably, and the nation-wide natural gas network was established. Following Energy Plan 81, the first subsidy schemes aimed at the exploitation of straw and chips were introduced, and biomass became a competitive fuel through increasing taxation of fossil fuels. The first chip-fired district heating plants were built and the consumption of wood-chips, straw and firewood in individual dwellings rose markedly. The third energy plan, Energy 2000, is from 1990 and gives high priorities to environmental considerations. The plan is an ambitious attempt to increase the use of environmentally desirable fuels. The fourth and latest plan, Energy 21, was introduced in 1996. A long-term objective in this plan requires that CO{sub 2} emissions must be halved in 2030 compared with 1998. The CO{sub 2} objective shall be achieved through energy savings, better exploitation of the energy resources and contributions from renewable energy sources amounting to 35 per cent of the gross energy consumption in 2030. Energy 21 assumes that renewable energy covers 12-14 percent of the country's total energy consumption in 2005. The majority of this contribution is to come from wind power and biomass.

  11. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  12. Improved accounting of emissions from utility energy storage system operation.

    Science.gov (United States)

    Denholm, Paul; Holloway, Tracey

    2005-12-01

    Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO2 and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions "accounting" might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation.

  13. Renewable energy utilization and CO2 mitigation in the power sector: A case study in selected GMS countries

    Directory of Open Access Journals (Sweden)

    Kong Pagnarith

    2011-06-01

    Full Text Available Renewable energy is an alternative resource to substitute fossil fuels. Currently, the share of renewable energy inpower generation is very low. The selected Greater Mekong Sub-region (GMS, namely, Cambodia, Laos, Thailand andVietnam is a region having abundant of renewable energy resources. Though these countries have a high potential of renewableenergy utilization, they are still highly dependent on the imported fossil fuels for electricity generation. The less contributionof renewable energy in the power sector in the region is due to the high cost of technologies. Renewable energytechnology cannot compete with the conventional power plant. However, in order to promote renewable energy utilizationand reduce dependency on imported fossil fuel as well as to mitigate CO2 emissions from the power sector, this study introducesfour renewable energy technologies, namely, biomass, wind, solar PV, and geothermal power, for substitution of conventionaltechnologies. To make the renewable energy competitive to the fossil fuels, incentives in terms of carbon credit of20$/ton-ne CO2 are taken into account. Results are analyzed by using the Long-Range Energy Alternative Planning System(LEAP modeling. Results of analyses reveal that in the renewable energy (RE scenario the biomass power, wind, solarphotovoltaics, and geothermal would contribute in electricity supply for 5.47 GW in the region, accounted for 3.5% in 2030.The RE scenario with carbon credits could mitigate CO2 emissions at about 36.0 million tonne at lower system cost whencompared to the business-as-usual scenario.

  14. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process.

    Science.gov (United States)

    Baratieri, M; Baggio, P; Fiori, L; Grigiante, M

    2008-10-01

    In the present work an equilibrium model (gas-solid), based on the minimization of the Gibbs energy, has been used in order to estimate the theoretical yield and the equilibrium composition of the reaction products (syngas and char) of biomass thermochemical conversion processes (pyrolysis and gasification). The data obtained from this model have also been used to calculate the heating value of the fuel gas, in order to evaluate the overall energy efficiency of the thermal conversion stage. The proposed model has been applied both to partial oxidation and steam gasification processes with varying air to biomass (ER) and steam to carbon (SC) ratio values and using different feedstocks; the obtained results have been compared with experimental data and with other model predictions obtaining a satisfactory agreement.

  15. The Energy Efficiency Of Willow Biomass Production In Poland - A Comparative Study

    Science.gov (United States)

    Szczukowski, Stefan; Tworkowski, Józef; Stolarski, Mariusz J.; Krzyżaniak, Michał

    2015-01-01

    Field experiments with willow (Salix L.) coppice cultivation and Eko-Salix systems have been conducted at the University of Warmia and Mazury since 1992. In that wider context, the aim of the work described here was to compare energy inputs involved in setting up a plantation and producing biomass, and to assess the efficiency of willow-chips production under the coppice and Eko-Salix systems. The energy gain determined in the experiments was several to more than twenty times as great as the inputs needed to operate the plantation and to harvest willow biomass, this leaving both systems of willow cultivation under study attractive where setting up short-rotation coppices is concerned.

  16. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  17. Collaborative Research: Metabolic Engineering of E. coli Sugar-Utilization Regulatory Systems for the Consumption of Plant Biomass Sugars.

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Gonzalez (PI); J. V. Shanks (Co-PI); K-Y. San (Co-PI).

    2006-03-31

    The overall objective of this project is to metabolically engineer the E. coli sugar-utilization regulatory systems (SURS) to utilize sugar mixtures obtained from plant biomass. Of particular relevance is the implementation of a metabolic engineering cycle aided by functional genomics and systems biology tools. Our findings will help in the establishment of a platform for the efficient production of fuels and chemicals from lignocellulosic sugars. Our research has improved the understanding of the role of SURS in regulating sugar utilization and several other cellular functions. For example, we discovered that Mlc, a global regulatory protein, regulates the utilization of xylose and demonstrated the existence of an important link between catabolite repression and respiratory/fermentative metabolism. The study of SURS mutants also revealed a connection between flagellar biosynthesis and catabolite repression. Several tools were also developed as part of this project. A novel tool (Elementary Network Decomposition, END) to help elucidate the network topology of regulatory systems was developed and its utility as a discovery tool was demonstrated by applying it to the SURS in E. coli. A novel method (and software) to estimate metabolic fluxes that uses labeling experiments and eliminates reliance on extracellular fluxes was also developed. Although not initially considered in the scope of this project, we have developed a novel and superior method for optimization of HPLC separation and applied it to the simultaneous quantification of different functionalities (sugars, organic acids, ethanol, etc.) present in our fermentation samples. Currently under development is a genetic network driven metabolic flux analysis framework to integrate transcriptional and flux data.

  18. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion.

  19. Development strategy of efficient bio-methane system by focused utilization of distributed biomass

    Institute of Scientific and Technical Information of China (English)

    Ouyang Pingkai

    2014-01-01

    Bio-methane,as a promising renewable green energy,the component and thermal value of which are very close to that of natural gas,indicates an enormous resource potential and could be employed as the al-ternative of fossil energy through the development of agro-industrial integration and efficient bio-methane sys-tem. Establishment of high efficient agro-industrial integrated bio-methane system is an important component of the renewable energy system and also a significant way of emission reduction.

  20. The Utility of Fire Radiative Energy for Understanding Fuel Consumption due to Wildfire in Boreal Peatlands

    Science.gov (United States)

    Banskota, A.; Falkowski, M. J.; Kane, E. S.; Smith, A. M.

    2014-12-01

    Radiative energy from active fire has been found to correlate well with the amount of fuel consumed during the lifetime of a fire event. Fire radiative power (FRP) detected by sensors onboard MODIS satellites may therefore provide direct estimates of CO2 emissions related to biomass burning. Less known is the ability of satellite data to detect active fire from predominantly smoldering burns in boreal peatlands. Boreal peatlands store a large amount of soil carbon that is likely to become increasingly vulnerable to wildfire as climate change lowers water tables and exposes C-rich peat to burning. In this study, we investigate the utility of fire radiative energy (FRE) to estimate fuel consumption associated with wildfire in 2004 in boreal peatlands in Alaska. FRE values are generally estimated from FRP retrieved at detected active fire locations and times by summing the FRP values multiplied by the time difference between acquisitions. One central issue in deriving reliable FRE estimates by such approach is the requirement for sufficient sampling of the FRP to capture spatiotemporal variability in the fire. Our preliminary analysis confirms that the detection of active fire in peatlands are indeed not spatially exhaustive and temporally continuous. Thus we are further investigating the fusion of instantaneous FRP from MODIS active fire detection with the MODIS burned area product to derive FRE estimates across the burned area. We are following a previously tested strategy for such fusion for temporal integration of instantaneous FRP to derive FRE and spatial extrapolation of FRE over the burned area. The FRE estimates are then related to ground-measured peatland burn depths across different wildfire locations. The results of this study will ultimately indicate the utility of MODIS fire products for providing reliable biomass burned estimates in boreal peatlands.

  1. Utilization of rural wastes for algal biomass production with Scenedesmus acutus and Spirulina platensis in India

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, L.V.; Devi, K.M.; Mahadevaswamy, M.; Mohammed Kunhi, A.A.

    1982-03-01

    A technology for the production of the green alga, Scenedesmus acutus, and blue-green alga, Spirulina platensis, in clean water has been developed to suit Indian conditions. Experience gained on algal production technology in India indicates the scope for applying this at the rural level for use in the production of animal feed. Spirulina is the most promising alga in view of its amenability to low level technology. Nutrient input to the cultures is one of the most expensive steps. It is shown that agricultural and domestic wastes can be effectively recycled for algal biomass production by replacing, at least partly, the nutrient inputs. Urine and bonemeal reduce the inputs of nitrate, calcium and phosphate salts into the culture medium. Sheep's blood has a growth promoting effect on algal cultures and a good potential for application. Carbon dioxide enriched air-'aerobic biogas'-produced by composting cow dung, can be used as a carbon source for algal cultivation. Several experiments carried out in India indicate the possibility of developing an integrated algal production system in rural areas by means of which wastes can be effectively recycled. The use of algae in poultry and fish feeds is a distinct possibility for the future. (Refs. 25).

  2. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1977-11-01

    Progress in studies on the production of reducing sugars and other products by Clostridium thermocellum on cellulosic biomass is reported. The rate of reducing sugar production using corn residue was found to be equal if not greater than on solka floc. Current work is being devoted towards elucidating discrepancies between reducing sugar analysis and high pressure liquid chromatography sugar analysis in order to permit accurate material balances to be completed. Studies are reported in further characterizing the plasmics of C. thermocellum and in the development of protoplasts of the same microorganism. A process and economic analysis for the production of 200 x 10/sup 6/ pounds (90 x 10/sup 6/ kilograms) per year of soluble reducing sugars from corn stover cellulose, using enzymes derived from Clostridium thermocellum was designed. Acrylic acid was produced in resting cell preparation of Clostridium propionicum from both ..beta..-alanine and from propionic acid. Results from the conversion of corn stover hydrolyzates to lactic acid, a precursor to acrylic acid, show that up to 70% of the sugars produced are converted to lactic acid. Efforts are proceeding to improve the conversion yield and carry out the overall conversion of corn stover to acrylic acid in the same fermentor. Results on the production of acetone and butanol by Clostridium acetobutylicum demonstrated the capability of the strain to produce mixed solvents in concentration and conversion similar to that achieved in industrial processes. Various studies on the production of acetic acid by Clostridium thermoaceticum are also reported.

  3. Maximizing Utilization of Energy from Crop By-products

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2014-03-01

    Full Text Available The availability of crop by-products is huge during harvesting times as related to the vast agricultural land area; however, their utilization is still limited due to lack of knowledge and handling problem. Seasonal effect is obvious especially during wet season when high rainfall hinders proper management of crop by-products. Crop by-products are energy rich feedstuffs in the form of chemical substance such as cellulose and hemicellulose. The utilization of cellulose and hemicellulose as sources of energy can be maximized by the application of technologies to increase the digestibility. Cellulose is polymer of glucose while hemicellulose is polymer of xylose which both can be converted to volatile fatty acids by rumen microbial enzyme activities and subsequently used by the host animal as source of energy. In addition, cellulose and hemicellulose can also be used as substrates for bioethanol production leaving behind residual matter with higher concentration of protein which is also appropriate for ruminant feeds. The fat content of crop by-products such as those in rice bran and corn germ can be extracted for oil production that can be used for human consumption with concomitant production of high nutritive value of residues for ruminant feeds. The oil extraction technologies are available; however the high cost of ethanol and oil production should obtain high attention to make the technologies more applicable at farmers’ level.

  4. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohy