WorldWideScience

Sample records for biomass combustion fly

  1. Electrodialytic removal of cadmium from biomass combustion fly ashes in larger scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    The paper presents results from the project: "Electrochemical removal of cadmium from biomass combustion fly ashes in larger scale and evaluation of the possibilities of reusing the treated ashes in concrete".......The paper presents results from the project: "Electrochemical removal of cadmium from biomass combustion fly ashes in larger scale and evaluation of the possibilities of reusing the treated ashes in concrete"....

  2. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    fly ashes was studied. Four fly ashes were investigated, originating from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. One of the straw ashes had been pre-washed and was obtained suspended in water, the other ashes were obtained naturally dry...

  3. Leaching of nutrient salts from fly ash from biomass combustion

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Vu, Duc Thuong; Stenby, Mette

    2005-01-01

    moving bed process with agitation/centrifugation. It was found that a satisfactory leaching of the nutrient salts could be achieved with the third method using only two or three stages, depending on the water to fly ash ratio. It is an advantage to perform the process at temperatures above 50°C...

  4. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.

    2013-01-01

    was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd...

  5. Effect of grinding process on the level of leachability of the contaminants from the fly ashes from combustion of biomass

    OpenAIRE

    Pawluk Aleksandra

    2016-01-01

    The most commonly used renewable energy source in Polish energy production companies is solid biomass which is used both as a separate fuel or as a component co-incinerated together with (mostly) hard coal. During its incineration the biomass generates by-products with diverse and variable physicochemical properties. The most of the waste from production of electricity and/or heat are fly ashes. The fly ashes from combustion of biomass are a particular kind of waste distinguished by high leve...

  6. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of vario...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend.......The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...

  7. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar

    Directory of Open Access Journals (Sweden)

    Ulewicz Małgorzata

    2017-01-01

    Full Text Available The preliminary results of fly and bottom ash mixture form combustion od biomass (80% of tree waste and 20% of palm kernel shells for the produce of ceramic mortars has been presented. Currently, bio- ash from fluidized bed are deposited in landfills. Use of this ash to production of cement mortar instead of sand will reduce the consumption of the mineral resources. The chemical composition of this waste materials was determined using X-ray fluorescence (spectrometer ARL Advant ‘XP. Cement mortar were made using CEM I 42.5 R. The ash were added in an amount 20% of cement weight (in different proportions of fly and bottom ash. The results showed, that the compressive strength (after 28 days of cement mortar containing ash is higher regardless of the type of ash mixture used. The highest compressive strength (increased by 7.0% compared to the control sample was found for cement mortars in which the ratio of fly ash to bottom ash was 10/90. This mortars also showed the highest frost resistance (after 150 cycles freezes and unfreeze. The largest decrease the compressive strength (over 18.7% after the frost resistance test. While cement mortars in which the ratio of fly ash to bottom ash was 90/10 showed the highest frost resistance (after 150 cycles freezes and unfreeze.

  8. Electrodialytic removal of cadmium from biomass combustion fly ash in larger scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2005-01-01

    ). The experimental ash was a straw combustion fly ash suspended in water. Within 4 days of remediation, Cd concentrations below the limiting concentration of 5.0 mg Cd/kg DM for straw ash were reached. On the basis of these results, the energy costs for remediation of ash in industrial scale have been estimated...... significantly by using electrodialytic remediation, an electrochemically assisted extraction method. In this work the potential of the method was demonstrated in larger scale. Three different experimental set-ups were used, ranging from bench-scale (25 L ash suspension) to pilot scale (0.3 - 3 m3...

  9. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  10. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  11. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    of coal and straw at conditions relevant to suspension-fired boilers by clarifying the effect of the change in combustion atmosphere on fuel burnout, flame temperatures, emissions of polluting species (NO, SO2, and CO), fly ash quality, and deposit formation. This work is one of the first to investigate...... and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...... be adjusted independently. By increasing the concentration of oxygen in the oxidant, i.e. by reducing the flue gas recirculation ratio, it is possible to achieve similar burnout at lower oxygen excess levels. Further work on implications of this strategy are necessary in order to fully clarify its potential...

  12. Characterization and electrodialytic treatment of wood combustion fly ash for removal of cadmium

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2003-01-01

    Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, the fly ash fractions...

  13. Quality Determination of Biomass for Combustion

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2013-01-01

    A high content of minerals in biomass feedstock may cause fouling, slagging, and corrosion in the furnace during combustion. Here, a new pressurized microwave digestion method for biomass digestion prior to elemental analysis is presented. This high-throughput method is capable of processing...

  14. Electrochemical treatment of wood combustion fly ash for the removal of cadmium

    DEFF Research Database (Denmark)

    Damø, Anne Juul

    2002-01-01

    Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, especially the fly ash...... fractions contain amounts of the toxic heavy metal Cd that may exceed the limiting values for agricultural utilisation given by the Danish EPA. In this work the advances of using an electrochemical remediation method to reduce the Cd content in wood combustion fly ash - for the aim of recycling...

  15. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  16. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  17. Electrochemical treatment of wood combustion fly ash for the removal of cadmium

    DEFF Research Database (Denmark)

    Damø, Anne Juul

    2002-01-01

    fractions contain amounts of the toxic heavy metal Cd that may exceed the limiting values for agricultural utilisation given by the Danish EPA. In this work the advances of using an electrochemical remediation method to reduce the Cd content in wood combustion fly ash - for the aim of recycling......Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, especially the fly ash...... - is described. The method, which is named electrodialytic remediation, uses a low voltage direct current a cleaning agent. Under optimised remediation conditions with the fly ash suspended in a 0.25 M ammonium citrate mixture, more than 70 % of the initial Cd was removed from the wood fly ash using...

  18. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  19. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  20. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  1. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    Application of Fly Ash from Solid Fuel Combustion in Concrete Kim H. Pedersen Abstract Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization...... is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash can adsorb the air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased...... with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...

  2. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  3. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  4. Influence of Fly Ash From Co-Combustion of Coal and Biomass on Scaling Resistance of Concrete / Wpływ Popiołu Lotnego Ze Współspalania Wegla I Biomasy Na Odpornosc Betonu Na Powierzchniowe Łuszczenie

    Directory of Open Access Journals (Sweden)

    Kosior-Kazberuk M.

    2010-09-01

    Full Text Available Industrial utilization of fly ash from various kinds of fuel plays an important role in the environmentally clean and cost effective power generation. The primary market for fly ash utilization is as a pozzolanic addition in concrete production. The possibility of the utilization of these ashes as an active concrete addition is determined by their chemical and mineralogical composition. The paper concerns the concretes containing fly ash called Fly Ash from Biomass (FAB from co-combustion of hard coal and wood biomass (wood chips. Characterization of the fly ash was carried on by means of X-ray diffractometry and E-SEM/EDS analysis. The results of laboratory studies undertaken in order to evaluate the influence of FAB on concrete resistance to surface scaling due to cyclic freezing and thawing in the presence of NaCl solution are presented. The tests were carried out for concretes containing up to 25% of fly ash related to cement mass. Additionally, the microstructure of air-voids was described.

  5. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  6. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    OpenAIRE

    Bellmann, B.; Creutzenberg, O.; Ernst, H.; Muhle, H.

    2009-01-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentra...

  7. Variability of total and mobile element contents in ash derived from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Száková, J.; Ochecová, P.; Hanzlíček, Tomáš; Perná, Ivana; Tlustoš, P.

    2013-01-01

    Roč. 67, č. 11 (2013), s. 1376-1385 ISSN 0366-6352 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : biomass combustion * fly ash * bottom ash * element contents Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.193, year: 2013

  8. Electrodialytic removal of cadmium from straw combustion fly ash

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Villumsen, Arne

    2004-01-01

    Fly ash from straw combustion contains valuable nutrients when returned to agricultural soils. In many instances, however, this fly ash may contain heavy metals, such as cadmium, at levels which often exceed the limits given by the Danish legislation. Thus before utilizing the nutrients, cadmium...... must be removed from these ashes. The use of an electrodialytic remediation method to remove cadmium from fly ash arising from straw combustion and containing 11.2 mg Cd kg$+-1$/ DM (dry matter) was accessed. After 36 days of remediation at a constant current density of 5.6 mA cm$+-2$/ more than 97...

  9. Electrodialytic remediation of fly ash from co-combustion of wood and straw

    DEFF Research Database (Denmark)

    Chen, Wan; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    The heavy metal content in fly ash from biomass combustion, such as straw, wood and sludge, often needs reducing before the ash can be used as fertilizer for agricultural land or as a component in the production of construction materials. In this study, fly ash from a boiler fueled with wood chips...... soluble fraction, mainly KCl and K2SO4, was removed. After EDR treatment, the Cd concentration was reduced to below 2mgkg-1 in all ash samples with high and stable average removal of above 95%, no matter how high the initial concentration was. The amount of Pb removed varied from 12% to 67%. Even though...

  10. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  11. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    International Nuclear Information System (INIS)

    Bellmann, B; Creutzenberg, O; Ernst, H; Muhle, H

    2009-01-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m 3 . The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  12. Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust

    Science.gov (United States)

    Bellmann, B.; Creutzenberg, O.; Ernst, H.; Muhle, H.

    2009-02-01

    The health effects of 6 different fly ash samples from biomass combustion plants (bark, wood chips, waste wood, and straw), and co-firing plants (coal, co-firing of coal and sawdust) were investigated in a 28-day nose-only inhalation study with Wistar WU rats. Respirable fractions of carbon black (Printex 90) and of titanium dioxide (Bayertitan T) were used as reference materials for positive and negative controls. The exposure was done 6 hours per day, 5 days per week at an aerosol concentration of 16 mg/m3. The MMAD of all fly ash samples and reference materials in the inhalation unit were in the range from 1.5 to 3 μm. The investigations focused predominantly on the analysis of inflammatory effects in the lungs of rats using bronchoalveolar lavage (BAL) and histopathology. Different parameters (percentage of polymorphonuclear neutrophils (PMN), interleukin-8 and interstitial inflammatory cell infiltration in the lung tissue) indicating inflammatory effects in the lung, showed a statistically significant increase in the groups exposed to carbon black (positive control), C1 (coal) and C1+BM4 (co-firing of coal and sawdust) fly ashes. Additionally, for the same groups a statistically significant increase of cell proliferation in the lung epithelium was detected. No significant effects were detected in the animal groups exposed to BM1 (bark), BM2 (wood chips), BM3 (waste wood), BM6 (straw) or titanium dioxide.

  13. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  14. Fundamental study of single biomass particle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.

    2013-06-01

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of

  15. Slagging and fouling risk of Mediterranean biomasses for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Nieva, Daniel J.; Dopazo, Raquel; Ortiz, Luis (Univ. of Vigo (Spain), Forestry School, A Xunqueira Campus, Pontevedra)

    2010-07-15

    The interest in biomass combustion has grown exponentially in the last years, as a means for renewable heat and energy promoting local development and mitigating climate change. Various Mediterranean agricultural and forest resources such as olive stone, almond shell or pinecone chips remain large unutilized, despite their potential for being utilized in biomass combustion. New energy crops such as Cardoon, Brassica or Sorghum, are being introduced in Mediterranean countries for Bioenergy production; however, the slagging and fouling risk of many of these potential feedstocks are currently limiting their application in combustion processes given their high alkali, silica or chlorine contents. In this publication, various methods for biomass slagging and fouling hazard monitoring and prediction are presented based on recent studies with Mediterranean biomasses combustion in Spain

  16. COMBUSTION OF BIO COMBUSTION OF BIO-MASS IN AN ATMOSPHERIC FBC: AN EXPERIENCE & STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Inder Singh; S.K. Mohapatra; D.Gangacharyulu; Subrata Bandopadhya [Department of Mechanical Engineering Department of Mechanical Engineering, Guru Nanak Dev Engineering College Guru Nanak Dev Engineering College, Ludhiana (India)

    2008-09-30

    Fluidized bed combustion (FBC) is one of the most promising energy conversion options available today. FBC combines high efficiency combustion of low-grade fuels viz. high ash coal, coal washery rejects and middling, wood and other biomass of agri-waste and municipality waste. Rice-husk/Rice Straw is one kind of renewable energy resource, which is abundant in agricultural states of India. Combustion of biomass in fluidized beds is becoming more and more attractive as a result of the constantly increasing price of fossil fuels, the presence of high quantities of biomass to be disposed of and global warming issues. Fluidized bed technology usually is the best choice, or sometimes the only choice, to convert biomass to energy due to its fuel flexibility and the possibility to achieve an efficient and clean operation. Extensive experimental investigation has been carried out to date on the feasibility and performance of biomass combustion and gasification in fluidized beds. Even if a great amount of operating data has been collected so far, detailed comprehension of the basic mechanisms taking place during conversion in fluidized beds of biomass is still lacking. Biomass usually have a much higher moisture and volatile content, a more porous and fragile structure, often anisotropic, a lower density and a much higher intrinsic reactivity. As a consequence a distinctive feature of biomass in fluidized bed combustion is the larger heat release associated with homogeneous combustion of volatile matter.

  17. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ

    2013-01-01

    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  18. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  19. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  20. Fly ash classification efficiency of electrostatic precipitators in fluidized bed combustion of peat, wood, and forest residues.

    Science.gov (United States)

    Ohenoja, Katja; Körkkö, Mika; Wigren, Valter; Österbacka, Jan; Illikainen, Mirja

    2018-01-15

    The increasing use of biomasses in the production of electricity and heat results in an increased amount of burning residue, fly ash which disposal is becoming more and more restricted and expensive. Therefore, there is a great interest in utilizing fly ashes instead of just disposing of it. This study aimed to establish whether the utilization of fly ash from the fluidized bed combustion of peat, wood, and forest residues can be improved by electrostatic precipitator separation of sulfate, chloride, and some detrimental metals. Classification selectivity calculations of electrostatic precipitators for three different fuel mixtures from two different power plants were performed by using Nelson's and Karnis's selectivity indices. Results showed that all fly ashes behaved similarly in the electrostatic separation process SiO 2 resulted in coarse fractions with Nelson's selectivity of 0.2 or more, while sulfate, chloride, and the studied detrimental metals (arsenic, cadmium, and lead) enriched into fine fractions with varying selectivity from 0.2 to 0.65. Overall, the results of this study suggest that it is possible to improve the utilization potential of fly ashes from fluidized bed combustion in concrete, fertilizer, and earth construction applications by using electrostatic precipitators for the fractionating of fly ashes in addition to their initial function of collecting fly ash particles from flue gases. The separation of the finer fractions (ESP 2 and 3) from ESP 1 field fly ash is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  2. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  3. Particulate and gaseous emissions from residential biomass combustion

    International Nuclear Information System (INIS)

    Boman, Christoffer

    2005-04-01

    Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PICs). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for

  4. Energy balance of a wood biomass combustion process

    International Nuclear Information System (INIS)

    Baggio, P.; Cemin, A.; Grigiante, M.; Ragazzi, M.

    2001-01-01

    This article reports the results of a project developed at the University of Trent dealing with some wood biomass combustion processes. The project has been particularly dedicated to the study of the energetic analysis of the combustion processes that occur on a gasified wood stove of advanced combustion technologies. A considerable number of experimental tests has been carried out making use of different type of wood widely in use in Trentino region. The wood stove is a part of a pilot plant providing an hydraulic circuit equipped with a specific apparatus to measure all the necessary data to determine the energy balance required and specifically the thermal efficiency of the plant [it

  5. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete combu...

  6. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.

    Science.gov (United States)

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai

    2017-12-01

    The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ash related behaviour in staged and non-staged combustion of biomass fuels and fuel mixtures

    International Nuclear Information System (INIS)

    Becidan, Michaël; Todorovic, Dusan; Skreiberg, Øyvind; Khalil, Roger A.; Backman, Rainer; Goile, Franziska; Skreiberg, Alexandra; Jovovic, Aleksandar; Sørum, Lars

    2012-01-01

    The fate of selected elements (with focus on the important players in corrosion i.e. Na, K, Pb, Zn, Cl and S) are investigated for three biomasses (wood, demolition wood and coffee waste) and six mixtures of these as pellets both with and without air staging in a laboratory reactor. In order to get a complete overview of the combustion products, both online and offline analytical methods are used. Information is collected about: flue gas composition, particle (fly ash) size distribution and composition, bottom ash composition and melting properties. The main findings are: (1) complex interactions are taking place between the mixed fuels during combustion; (2) the mode of occurrence of an element as well as the overall structure of the fuel are important for speciation; (3) the pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation; (4) staging and mixing might simultaneously have positive and negative effects on operation; (5) staging affects the governing mechanisms of fly ash (aerosols) formation. -- Highlights: ► Complex interactions are taking place between the mixed fuels during combustion. ► The mode of occurrence of an element as well as the overall structure of the fuel are important for speciation. ► The pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation. ► Staging and mixing might simultaneously have positive and negative effects on operation. ► Staging affects the governing mechanisms of fly ash (aerosols) formation.

  8. Respiratory effects of biomass fuel combustion on rural fish smokers ...

    African Journals Online (AJOL)

    Respiratory effects of biomass fuel combustion on rural fish smokers in a Nigerian fishing settlement: a case control study. Paul Dienye, Alex Akani, Ita Okokon. Abstract. Backgroud: The aim was to study the prevalence of respiratory symptoms and assess the lung function of fish smokers in Nigeria. Methods: A case control ...

  9. Characterisation and prediction of deposits in biomass co-combustion

    NARCIS (Netherlands)

    Tortosa Masiá, A.A.

    2010-01-01

    This PhD thesis deals with the theoretical, experimental and modeling work which was performed to study deposition during biomass and waste co-combustion in pulverised coal facilities. Fossil fuels dominate the current energy scenario. Increasing concerns about fossil fuels availability and about

  10. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  11. Experimental biomass burning emission assessment by combustion chamber

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, Emanuele; Corona, Piermaria; Ciccioli, Paolo; Calfapietra, Carlo

    2014-05-01

    Biomass burning is a significant source of several atmospheric gases and particles and it represents an important ecological factor in the Mediterranean ecosystem. In this work we describe the performances of a recently developed combustion chamber to show the potential of this facility in estimating the emission from wildland fire showing a case study with leaves, small branches and litter of two representative species of Mediterranean vegetation, Quercus pubescens and Pinus halepensis. The combustion chamber is equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect organic volatile compounds (VOCs) and particles, a sampling line connected to a Proton Transfer Reaction Mass-Spectrometer (PTR-MS) and a portable analyzer to measure CO and CO2 emission. VOCs emission were both analyzed with GC-MS and monitored on-line with PTR-MS. The preliminary qualitative analysis of emission showed that CO and CO2 are the main gaseous species emitted during the smoldering and flaming phase, respectively. Many aromatics VOCs as benzene and toluene, and many oxygenated VOC as acetaldehyde and methanol were also released. This combustion chamber represents an important tool to determine the emission factor of each plant species within an ecosystem, but also the contribution to the emissions of the different plant tissues and the kinetics of different compound emissions during the various combustion phases. Another important feature of the chamber is the monitoring of the carbon balance during the biomass combustion.

  12. Emission of nanoparticles during combustion of waste biomass in fireplace

    Science.gov (United States)

    Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal

    2014-08-01

    Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

  13. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  14. Experimental and numerical studies on two-stage combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Eshan

    2012-07-01

    fate of the main corrosive compounds, in particular chlorine, was determined in an experimental campaign using fuel mixtures. The corrosion risk associated with three fuel mixtures was quite different. Grot (Norwegian term used for tree's tops and branches) was found to be a poor corrosion-reduction additive and could not serve as an alternative fuel for co-firing with straw. Peat was found to reduce the corrosive compounds only at high peat additions (50 wt%). Sewage sludge was the best alternative for corrosion reduction as 10 wt% addition almost eliminated chlorine from the fly ash. Numerical studies were also performed to estimate the emission level in the flue gas using a comprehensive mechanism in a configuration which simulated two-stage combustion of biomass. Furthermore, a reduction of the comprehensive chemical mechanism was performed since the mechanism is still complex and needs very long computational time and powerful hardware resources. The selected detailed mechanism in this study contains 81 species and 703 elementary reactions. Necessity analysis was used to determine which species and reactions that are of less importance for the predictability of the final result and, hence, can be discarded. For validation, numerical results using the derived reduced mechanism were compared with the results obtained with the original detailed mechanism. The reduced mechanism contains 35 species and 198 reactions, corresponding to 72% reduction in the number of reactions and, therefore, improving the computational time considerably. Yet the model based on the reduced mechanism predicts correctly concentrations of NOx and CO that are essentially identical to those of the complete mechanism in the range of reaction conditions of interest. The modeling conditions are selected in a way to mimic values in the different ranges of temperature, excess air ratio and residence time, since these variables are the main affecting parameters on NOx emission. (Author)

  15. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  16. Grindability and combustion behavior of coal and torrefied biomass blends.

    Science.gov (United States)

    Gil, M V; García, R; Pevida, C; Rubiera, F

    2015-09-01

    Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Faecal-wood biomass co-combustion and ash composition analysis.

    Science.gov (United States)

    Somorin, Tosin Onabanjo; Kolios, Athanasios J; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean

    2017-09-01

    Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

  18. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  19. An overview of particulate emissions from residential biomass combustion

    Science.gov (United States)

    Vicente, E. D.; Alves, C. A.

    2018-01-01

    Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.

  20. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  1. Modelling of dynamics of combustion of biomass in fluidized beds

    Directory of Open Access Journals (Sweden)

    Saastamoinen Jaakko J.

    2004-01-01

    Full Text Available New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.

  2. Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler

    OpenAIRE

    Radomiak Henryk; Bala-Litwiniak Agnieszka; Zajemska Monika; Musiał Dorota

    2017-01-01

    In recent years the numerical modelling of biomass combustion has been successfully applied to determine the combustion mechanism and predict its products. In this study the influence of the addition of waste glycerin in biomass wood pellets on the chemical composition of exhaust gases has been investigated. The pellets have been prepared from spruceand pine wood sawdust without and with addition of waste glycerin. The waste glycerol is a undesirable by-product of biodiesel transesterificatio...

  3. Thermogravimetric and Kinetic Analysis of Raw and Torrefied Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Kopczyński Marcin

    2015-06-01

    Full Text Available The use of torrefied biomass as a substitute for untreated biomass may decrease some technological barriers that exist in biomass co-firing technologies e.g. low grindability, high moisture content, low energy density and hydrophilic nature of raw biomass. In this study the TG-MS-FTIR analysis and kinetic analysis of willow (Salix viminalis L. and samples torrefied at 200, 220, 240, 260, 280 and 300 °C (TSWE 200, 220, 240, 260, 280 and 300, were performed. The TG-DTG curves show that in the case of willow and torrefied samples TSWE 200, 220, 240 and 260 there are pyrolysis and combustion stages, while in the case of TSWE 280 and 300 samples the peak associated with the pyrolysis process is negligible, in contrast to the peak associated with the combustion process. Analysis of the TG-MS results shows m/z signals of 18, 28, 29 and 44, which probably represent H2O, CO and CO2. The gaseous products were generated in two distinct ranges of temperature. H2O, CO and CO2 were produced in the 500 K to 650 K range with maximum yields at approximately 600 K. In the second range of temperature, 650 K to 800 K, only CO2 was produced with maximum yields at approximately 710 K as a main product of combustion process. Analysis of the FTIR shows that the main gaseous products of the combustion process were H2O, CO2, CO and some organics including bonds: C=O (acids, aldehydes and ketones, C=C (alkenes, aromatics, C-O-C (ethers and C-OH. Lignin mainly contributes hydrocarbons (3000-2800 cm−1, while cellulose is the dominant origin of aldehydes (2860-2770 cm−1 and carboxylic acids (1790-1650 cm−1. Hydrocarbons, aldehydes, ketones and various acids were also generated from hemicellulose (1790-1650 cm−1. In the kinetic analysis, the two-steps first order model (F1F1 was assumed. Activation energy (Ea values for the first stage (pyrolysis increased with increasing torrefaction temperature from 93 to 133 kJ/mol, while for the second stage (combustion it

  4. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    Directory of Open Access Journals (Sweden)

    Oakey John

    2011-02-01

    Full Text Available Abstract Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling. It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  5. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.

    Science.gov (United States)

    Laryea-Goldsmith, René; Oakey, John; Simms, Nigel J

    2011-02-01

    Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.

  6. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  7. Domestic biomass combustion and associated atmospheric emissions in West Africa

    Science.gov (United States)

    Brocard, Delphine; Lacaux, Jean-Pierre; Eva, Hugh

    1998-03-01

    Biofuel is the main source of energy for cooking and heating in Africa. In order to estimate the consumption of this resource at a regional level, a database with a spatial resolution of 1° latitude by 1° longitude of the distribution of the amounts of fuel wood and charcoal annually burned in West Africa has been derived. Chemical emission factors for fuel wood, for charcoal burning, and for charcoal fabrication measured during two field experiments are then used in conjunction with this database to produce a second 1° latitude by 1° longitude database of the emissions due to domestic fires for the region. A comparison of these emissions from domestic fires with those of savanna fires, the dominant form of biomass burning in tropical Africa, shows that the relative contribution of the wood fuel (i.e. fuel wood and charcoal) combustion is important for CH4 (46%), CO (42%), and nonmethane hydrocarbons (NMHC) (44%), less so for CO2 (32%). This source of biomass burning has a different spatial and temporal distribution than that of savanna fires and represents an atmospheric background noise throughout the year, whereas the savanna fires occur during a limited season.

  8. Laboratory Investigation of Aerosol Formation in Combustion of Biomass

    International Nuclear Information System (INIS)

    Zeuthen, Jacob; Livbjerg, Hans

    2005-01-01

    nucleation is highly dependent on the rate of cooling. Experiments with sulfation of potassium chloride have been performed. By high-temperature filtering it has been found that potassium sulfate is the nucleating agent in aerosol formation during biomass combustion. In the future, the more advanced alkali-sulfur-chloride chemistry will be studied and the mechanisms leading to aerosol formation under biomass combustion conditions in power plants will be studied. The results will be analyzed by model studies including Computational Fluid Dynamics

  9. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  10. Contribution of biomass combustion to air pollutant emissions =

    Science.gov (United States)

    Goncalves, Catia Vanessa Maio

    In Portugal, it was estimated that around 1.95 Mton/year of wood is used in residential wood burning for heating and cooking. Additionally, in the last decades, burnt forest area has also been increasing. These combustions result in high levels of toxic air pollutants and a large perturbation of atmospheric chemistry, interfere with climate and have adverse effects on health. Accurate quantification of the amounts of trace gases and particulate matter emitted from residential wood burning, agriculture and garden waste burning and forest fires on a regional and global basis is essential for various purposes, including: the investigation of several atmospheric processes, the reporting of greenhouse gas emissions, and quantification of the air pollution sources that affect human health at regional scales. In Southern Europe, data on detailed emission factors from biomass burning are rather inexistent. Emission inventories and source apportionment, photochemical and climate change models use default values obtained for US and Northern Europe biofuels. Thus, it is desirable to use more specific locally available data. The objective of this study is to characterise and quantify the contribution of biomass combustion sources to atmospheric trace gases and aerosol concentrations more representative of the national reality. Laboratory (residential wood combustion) and field (agriculture/garden waste burning and experimental wildland fires) sampling experiments were carried out. In the laboratory, after the selection of the most representative wood species and combustion equipment in Portugal, a sampling program to determine gaseous and particulate matter emission rates was set up, including organic and inorganic aerosol composition. In the field, the smoke plumes from agriculture/garden waste and experimental wildland fires were sampled. The results of this study show that the combustion equipment and biofuel type used have an important role in the emission levels and

  11. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  12. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  13. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    Science.gov (United States)

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Screening coal combustion fly ashes for application in geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Sarabér, A.J.; Fischer, H.R.; Nugteren, H.W.

    2013-01-01

    Driven by cost and sustainability, secondary resource materials such as fly ash, blast furnace slag, and bottom ash are increasingly used for alternative types of concrete binders, such as geopolymers. Because secondary resources may be highly variable from the perspective of geopolymers, it is

  16. A review of standards related to biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J.; Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Air quality is evaluated by the concentration of particulate matter (PM) per unit of air volume. PM10 refers to all particles smaller than 10 micrometers in diameter. The European Commission has established acceptable levels of PM10, but the rules are less precise for evaluating the amount of PM that can be emitted from a furnace's chimney. The province of Quebec allows up to 340 mg/m{sup 3} of PM for large furnaces and 600 mg/m{sup 3} for smaller furnaces. Although wood products can be burned in the province, the burning of all other biomass such as straw, stover and grass is forbidden. The City of Vancouver has stricter emissions standards for PM, notably 50 mg/m{sup 3} for large furnaces and 35 mg/m{sup 3} for smaller furnaces. The reason for this difference is that most furnaces in Quebec are used in rural areas whereas the densely populated City of Vancouver must control emissions at the source. It was concluded that although a universal standard on combustion emissions is not feasible because of different socio-economic conditions and population density, furnaces should emit levels of PM which decrease as the surrounding area population concentration increases. Stringent regulations may be met through advances in technology such as chimney height, bag filters, multicyclones, and precipitators.

  17. Modeling and experiments of biomass combustion in a large-scale grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2007-01-01

    is inherently more difficult due to the complexity of the solid biomass fuel bed on the grate, the turbulent reacting flow in the combustion chamber and the intensive interaction between them. This paper presents the CFD validation efforts for a modern large-scale biomass-fired grate boiler. Modeling......Grate furnaces are currently a main workhorse in large-scale firing of biomass for heat and power production. A biomass grate fired furnace can be interpreted as a cross-flow reactor, where biomass is fed in a thick layer perpendicular to the primary air flow. The bottom of the biomass bed...... is exposed to preheated inlet air while the top of the bed resides within the furnace. Mathematical modeling is an efficient way to understand and improve the operation and design of combustion systems. Compared to modeling of pulverized fuel furnaces, CFD modeling of biomass-fired grate furnaces...

  18. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrodialytic remediation of fly ash from co-combustion of wood and straw

    International Nuclear Information System (INIS)

    Chen, Wan; Jensen, Pernille E.; Ottosen, Lisbeth M.; Kirkelund, Gunvor M.

    2015-01-01

    The heavy metal content in fly ash from biomass combustion, such as straw, wood and sludge, often needs reducing before the ash can be used as fertilizer for agricultural land or as a component in the production of construction materials. In this study, fly ash from a boiler fueled with wood chips and straw was treated either by electrodialytic remediation (EDR) directly or by a combination of EDR and pre-wash with distilled water to investigate the possibilities of reducing the heavy metal content and reusing nutrients as fertilizer and bulk material in construction materials. Different experimental set-ups were tested for EDR treatment primarily of Cd and Pb as well as of Cu and Zn. Elemental contents such as K, P and Ni were compared in ash samples before and after treatment. The results showed that pre-washing caused an increase in total concentrations of most heavy metals because the highly soluble fraction, mainly KCl and K 2 SO 4 , was removed. After EDR treatment, the Cd concentration was reduced to below 2 mg kg −1 in all ash samples with high and stable average removal of above 95%, no matter how high the initial concentration was. The amount of Pb removed varied from 12% to 67%. Even though Pb was extracted from the ash samples, its concentrations in the treated ash samples were elevated due to the ash dissolution, except in the case of pre-washed ash treated in a two-compartment EDR cell, where the mass of Pb removed was the highest with a final concentration of about 100 mg kg −1 . The two-compartment EDR cell probably performed better due to a fast acidification process. In addition, this process was less energy-consuming. However, the fast acidification did in turn affect the leaching property of the treated ash, such as As and Ni, exceeding the limiting concentrations. The EDR/pre-wash-EDR treated ash mainly contained quartz, and the X-ray diffraction (XRD) peaks of K salts had disappeared. This shows that the potassium fertilizer potential was

  20. Reduced chemical kinetic mechanisms for NOx emission prediction in biomass combustion

    DEFF Research Database (Denmark)

    Houshfar, Ehsan; Skreiberg, Øyvind; Glarborg, Peter

    2012-01-01

    Because of the complex composition of biomass, the chemical mechanism contains many different species and therefore a large number of reactions. Although biomass gas‐phase combustion is fairly well researched and understood, the proposed mechanisms are still complex and need very long computational...

  1. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  2. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration......CO3 and silica sand, forming a thin product layer. The layer acted as a reactive media further reacting with K2CO3 and silica sand. The results provide a basis for understanding of potassium induced agglomeration process in fluidized bed biomass combustion....

  3. A CFD model for biomass combustion in a packed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Ovi, Ifat Rabbil Qudrat; Naser, Jamal

    2016-07-01

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO2 emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can't model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  4. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  5. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  6. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagra......Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material...

  7. A Refrigerated Web Camera for Photogrammetric Video Measurement inside Biomass Boilers and Combustion Analysis

    Directory of Open Access Journals (Sweden)

    Enrique Granada

    2011-01-01

    Full Text Available This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  8. A refrigerated web camera for photogrammetric video measurement inside biomass boilers and combustion analysis.

    Science.gov (United States)

    Porteiro, Jacobo; Riveiro, Belén; Granada, Enrique; Armesto, Julia; Eguía, Pablo; Collazo, Joaquín

    2011-01-01

    This paper describes a prototype instrumentation system for photogrammetric measuring of bed and ash layers, as well as for flying particle detection and pursuit using a single device (CCD) web camera. The system was designed to obtain images of the combustion process in the interior of a domestic boiler. It includes a cooling system, needed because of the high temperatures in the combustion chamber of the boiler. The cooling system was designed using CFD simulations to ensure effectiveness. This method allows more complete and real-time monitoring of the combustion process taking place inside a boiler. The information gained from this system may facilitate the optimisation of boiler processes.

  9. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5–9-fold increase...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  10. A Thermogravimetric Study of the Behaviour of Biomass Blends During Combustion

    Directory of Open Access Journals (Sweden)

    Ivo Jiříček

    2012-01-01

    Full Text Available The ignition and combustion behavior of biomass and biomass blends under typical heating conditions were investigated. Thermogravimetric analyses were performed on stalk and woody biomass, alone and blended with various additive weight ratios. The combustion process was enhanced by adding oxygen to the primary air. This led to shorter devolatilization/pyrolysis and char burnout stages, which both took place at lower temperatures than in air alone. The results of the ignition study of stalk biomass show a decrease in ignition temperature as the particle size decreases. This indicates homogeneous ignition, where the volatiles burn in the gas phase, preventing oxygen from reaching the particle surface.The behavior of biomass fuels in the burning process was analyzed, and the effects of heat production and additive type were investigated. Mixing with additives is a method for modifying biofuel and obtaining a more continuous heat release process. Differential scanning calorimetric-thermogravimetric (DSC-TGA analysis revealed that when the additive is added to biomass, the volatilization rate is modified, the heat release is affected, and the combustion residue is reduced at the same final combustion temperature.

  11. Modeling and experiments of biomass combustion in a large-scale grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2007-01-01

    is exposed to preheated inlet air while the top of the bed resides within the furnace. Mathematical modeling is an efficient way to understand and improve the operation and design of combustion systems. Compared to modeling of pulverized fuel furnaces, CFD modeling of biomass-fired grate furnaces...... is inherently more difficult due to the complexity of the solid biomass fuel bed on the grate, the turbulent reacting flow in the combustion chamber and the intensive interaction between them. This paper presents the CFD validation efforts for a modern large-scale biomass-fired grate boiler. Modeling...... quite much with the conditions in the real furnace. Combustion instabilities in the fuel bed impose big challenges to give reliable grate inlet BCs for the CFD modeling; the deposits formed on furnace walls and air nozzles make it difficult to define precisely the wall BCs and air jet BCs...

  12. Biomass Fuel and Combustion Conditions Selection in a Fixed Bed Combustor

    Directory of Open Access Journals (Sweden)

    María E. Arce

    2013-11-01

    Full Text Available The biomass market has experienced an increase in development, leading to research and development efforts that are focused on determining optimal biofuel combustion conditions. Biomass combustion is a complex process that involves divergent parameters and thus requires the use of advanced analysis methods. This study proposes combining grey relational analysis (GRA and error propagation theory (EPT to select a biofuel and its optimal combustion conditions. This research will study three biofuels that are currently used in a region of South Europe (Spain, and the most important variables that affect combustion are the ignition front propagation speed and the highest temperature that is reached at the fixed bed combustor. The results demonstrate that a combination of both theories for the analysis of solid-state thermochemical phenomena enables a fast and simple way of choosing the best configuration for each fuel.

  13. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  14. LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy)

    International Nuclear Information System (INIS)

    Caserini, S.; Livio, S.; Giugliano, M.; Grosso, M.; Rigamonti, L.

    2010-01-01

    This paper analyzes and compares the environmental impacts of biomass combustion in small appliances such as domestic open fireplaces and stoves, and in two types of centralized combined heat and power plants, feeding district heating networks. The analysis is carried out following a Life Cycle Assessment (LCA) approach. The expected savings of GHG (greenhouse gases) emissions due to the substitution of fossil fuels with biomass are quantified, as well as emissions of toxic pollutants and substances responsible for acidification and ozone formation. The LCA results show net savings of GHG emissions when using biomass instead of conventional fuels, varying from 0.08 to 1.08 t of CO 2 eq. per t of dry biomass in the different scenarios. Avoided GHG emissions thanks to biomass combustion in Lombardy are 1.32 Mt year -1 (1.5% of total regional GHG emissions). For the other impact categories, the use of biomass in district heating systems can again cause a consistent reduction of impacts, whereas biomass combustion in residential devices shows higher impacts than fossil fuels with a particular concern for PAH, VOC and particulate matter emissions. For example, in Lombardy, PM10 emissions from domestic devices are about 8100 t year -1 , corresponding to almost one third of the total particulate emissions in 2005.

  15. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  16. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  17. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  18. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    Science.gov (United States)

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  19. Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler

    Directory of Open Access Journals (Sweden)

    Radomiak Henryk

    2017-01-01

    Full Text Available In recent years the numerical modelling of biomass combustion has been successfully applied to determine the combustion mechanism and predict its products. In this study the influence of the addition of waste glycerin in biomass wood pellets on the chemical composition of exhaust gases has been investigated. The pellets have been prepared from spruceand pine wood sawdust without and with addition of waste glycerin. The waste glycerol is a undesirable by-product of biodiesel transesterification at oil manufacturing. The produced pellets were being burned in the 10 kW domestic boiler adapted to wood pellets combustion. The possibilities of pollutants generation (CO2, CO, NOx SOx and compounds containing chlorine in the exhaust gases coming from the boiler were numerically calculated using the latest version of CHEMKIN-PRO software, introduced by the American company Reaction Design. The results of the calculations correspond to the data obtained on a real object, in particular: combustion temperature, gas pressure, residence time of fuel in the burner, air flow, fuel consumption, as well as elementary composition of fuel supplied into the boiler. The proposed method of predicting the chemical composition of exhaust gases allows proper control of the combustion process and can be considered as an important step in reducing the pollutants (lower emission of NOx, SOx and CO2 neutral and thus to contribute to the improvement of the environmental quality. In addition, knowledge of the amounts of Clbased compounds produced in combustion process (under given conditions, can serve as an important hint in terms of corrosion prevention of boiler- and chimney steels.

  20. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2013-01-01

    Biomass species such as the rice husk and the olive milling residue, and a low quality Turkish coal, Soma Denis lignite, were burned in a thermal analyzer under pure oxygen and dry air up to 900 °C, and differential thermal analysis (DTA) and derivative thermogravimetric (DTG) analysis profiles were obtained. Co-combustion experiments of lignite/biomass blends containing 5–20 wt% of biomass were also performed. The effects of the oxidizer type and the blending ratio of biomass were evaluated considering some thermal reactivity indicators such as the maximum burning rate and its temperature, the maximum heat flow temperature, and the burnout levels. FTIR (Fourier transform infrared) spectroscopy and SEM (scanning electron microscopy) were used to characterize the samples, and the variations in the combustion characteristics of the samples were interpreted based on the differences in the intrinsic properties of the samples. - Highlights: ► Co-combustion of lignite/biomass blends. ► The effects of the oxidizer type and the blending ratio. ► Effects of intrinsic properties on combustion characteristics.

  1. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Comparative Chemistry and Toxicity of Diesel and Biomass Combustion Emissions

    Science.gov (United States)

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  3. Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal

    Science.gov (United States)

    Matali, Sharmeela; Rahman, Norazah Abdul; Idris, Siti Shawaliah; Yaacob, Nurhafizah

    2017-12-01

    Torrefaction, also known as mild pyrolysis, is proven to convert raw biomass into a value-added energy commodity particularly for application in combustion and co-firing systems with improved storage and handling properties. This paper aims to compare the characteristics of Malaysian bituminous coal i.e. Silantek coal with raw and torrefied biomass pellet originated from oil palm frond and fast growing tree species, Leucaena Leucocephala. Biomass samples were initially torrefied at 300 °C for 60 minutes. Resulting torrefied biomass pellets were analysed using a number of standard fuel characterisation analyses i.e. elemental analysis, proximate analysis and calorific content (high heating values) experiments. Investigations on combustion characteristics via dynamic thermogravimetric analysis (TGA), grindability and moisture uptake tests were also performed on the torrefied biomass pellets. Better quality bio-chars were produced as compared to its raw forms and with optimal process conditions, torrefaction may potentially produces a solid fuel with combustion reactivity and porosity equivalent to raw biomass while having compatible energy density and grindability to coal.

  4. Brown carbon in tar balls from smoldering biomass combustion

    Science.gov (United States)

    R. K. Chakrabarty; H. Moosmuller; L.-W. A. Chen; K. Lewis; W. P. Arnott; C. Mazzoleni; M. K. Dubey; C. E. Wold; W. M. Hao; S. M. Kreidenweis

    2010-01-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Angstrom coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent...

  5. Dry and semi-dry methods for removal of ammonia from pulverized fuel combustion fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Y. Gao; X. Chen; G. Fujisaki; A. Mehta; E. Suuberg; R. Hurt [Brown University, Providence, RI (United States). Division of Engineering

    2002-12-01

    Fly ash from pulverized solid fuel combustion can become contaminated by ammonia during selective catalytic/noncatalytic NOx reduction processes and/or electrostatic precipitator conditioning, resulting in problems with the commercial handling, disposal, and utilization of ash. The present paper investigates the chemistry of a class of postcombustion ammonia removal processes that operate near room temperature and in the dry or semi-dry state. Laboratory experiments are carried out in which ammonia is liberated from fly ash through introduction of controlled amounts of water to the interparticle spaces using static humid air, flowing humid air, and/or flowing fog (water aerosol). Additional experiments explore the possibility of destroying ammonia using ozone as a low-temperature oxidant under both dry and wet conditions, alone or in combination with hydrogen peroxide. 28 refs., 11 figs., 3 tabs.

  6. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    Science.gov (United States)

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  8. Considerations on valorization of biomass origin materials in co-combustion with coal in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; P. Abelha; H. Lopes; A. Crujeira; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2007-07-01

    Co-combustion of biomass materials with coal is currently gaining increasing importance, in order to meet the targets on greenhouse gas emissions, defined in the Kyoto protocol. Co-firing of coal with biomass materials could be the short-term solution in reducing CO{sub 2} emissions from power stations. The work undertaken studied co-firing of meat and bone meal (MBM), olive cake and straw pellets with bituminous coals from Colombia (CC) and Poland (PC), which are commonly used in European power stations. The co-combustion studies were carried out on the pilot fluidized bed installation of INETI. Gaseous pollutants and solid concentration in flue gases and ashes from different locations were monitored. Results obtained indicate that the co-feeding of biomass materials did not present any problem and ensured stable combustion conditions and high efficiency. However, for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass species studied. Most of the combustion of biomass material, contrary to that of coal, was observed to take place in the riser where the temperature was as high as 150-250{sup o}C above that of the bed. SO{sub 2} and NOx levels were found to be lower. The emissions of dioxins could be considerable with fuels with high Cl as is the case with straw. However, mixing of fuels with high S content could lead to a strong reduction in dioxin emissions. Ashes produced from biomass combustion may be considered for further reutilization or landfilling. Other options depend on their characteristics, chemical composition and leaching behaviour. This was evaluated in this study.

  9. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  10. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes.

    Science.gov (United States)

    Alvarez-Ayuso, E; Querol, X; Plana, F; Alastuey, A; Moreno, N; Izquierdo, M; Font, O; Moreno, T; Diez, S; Vázquez, E; Barra, M

    2008-06-15

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 degrees C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut für Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80

  11. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    Science.gov (United States)

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization and integration of oxidation catalysts at small-scale biomass combustion furnaces

    Science.gov (United States)

    Matthes, Mirjam; Hartmann, Ingo; Schenk, Joachim; Enke, Dirk

    2017-10-01

    Small-scale biomass combustion is a major part in heat supply from renewable resources. Drawbacks to the environmental background are the pollutant emissions, which are formed as a result of maloperation, suboptimal furnace construction or the biomass fuel composition. The named primary factors can be influenced by several measures, but the achievable emission results are limited. To provide real clean combustion technology with nearly zero pollutant emissions, secondary emission reduction measures are necessary. One of these measures is the application of catalytic flue gas cleaning as integrated or downstream solution. Catalysis is already a state of the art element in many processes and following this, some studies reveal already its potential to reduce CO, VOC as well as particle emissions in small-scale biomass combustion systems. However, a wide application of catalysts in wood combustion units didn't take place so far, because the challenging process conditions demand a proper integration and highly stable and active catalytic materials. For the achievement of well-functioning combustion systems with catalyst solutions a procedure for application-oriented characterization is presented. Initial investigations with commercially available catalysts have shown that the gas hourly space velocity and the oxygen content have the most significant influence on the conversion rate of carbon monoxide and nitrogen oxide. Two samples with different active phases have been compared, one with solely metal oxides and one with metal oxides and noble metals. The one with noble metals showed as expected a higher activity, but also a higher stability.

  13. Advancing grate-firing for greater environmental impacts and efficiency for decentralized biomass/wastes combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Li, Shuangshuang

    2017-01-01

    to well suit decentralized biomass and municipal/industrial wastes combustion. This paper discusses with concrete examples how to advance grate-firing for greater efficiency and environmental impacts, e.g., use of advanced secondary air system, flue gas recycling and optimized grate assembly, which...

  14. a novel interconnected fluidised bed for the combined flash pyrolysis of biomass and combustion of char

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, Arthur M.C.; Biesheuvel, P.M.; Biesheuvel, Pieter Maarten; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    A novel system of two adjacent fluidised beds operating in different gas atmospheres and exchanging solids was developed for the combined flash pyrolysis of biomass and combustion of the produced char. Fluidised sand particles (200 μm < dp < 400 μm) are transported from the pyrolysis reactor to the

  15. A novel interconnected fluidised bed for the combined flash pyrolysis of biomass and combustion of char.

    NARCIS (Netherlands)

    Janse, Arthur M.C.; Janse, A.M.C.; Biesheuvel, P.M.; Biesheuvel, Pieter Maarten; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A novel system of two adjacent fluidised beds operating in different gas atmospheres and exchanging solids was developed for the combined flash pyrolysis of biomass and combustion of the produced char. Fluidised sand particles (200 μm < dp < 400 μm) are transported from the pyrolysis reactor to the

  16. A review: Fly ash and deposit formation in PF fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Jappe Frandsen, Flemming; Wu, Hao

    2016-01-01

    In recent years suspension fired boilers have been increasingly used for biomass based heat and power production in several countries. This has included co-firing of coal and straw, up to 100% firing of wood or straw and the use of additives to remedy problems with biomass firing. In parallel...... to the commercialization of the suspension biomass firing technology a range of research studies have improved our understanding of the formation of fly ash and the impact on deposit formation and corrosion in such boilers. In this paper a review of the present knowledge with respect to ash and deposit formation...... in biomass suspension fired boilers is provided. Furthermore the influence of co-firing and use of additives on ash chemistry, deposit properties and boiler operation is discussed....

  17. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... between K-containing species and radical pool under combustion conditions has been improved. The available K/O/H/Cl chemistry has been updated by using both experimental work and detailed kinetic modeling. The experimental work was done by introducing gaseous KCl to CO oxidation system under reducing...... level, but the effect levels off at high concentrations. The experimental data were interpreted in terms of a detailed chemical kinetic model and used to update the K/O/H/Cl chemistry. The oxidation of SO2 to SO3 under combustion conditions has been suggested to be the rate limiting step in the gaseous...

  18. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  19. An investigation of co-combustion municipal sewage sludge with biomass in a 20kW BFB combustor under air-fired and oxygen-enriched condition.

    Science.gov (United States)

    Kumar, Rajesh; Singh, Ravi Inder

    2017-12-01

    The behavior of municipal sewage sludge (MSS) with biomass (Guar stalks (GS), Mustard Husk (MH), Prosopis Juliflora Wood (PJW)) has been investigated in a 20kW bubbling fluidized bed (BFB) combustor under both air-fired (A-F) and oxygen-enriched (O-E) conditions. The work presented is divided into three parts, first part cover the thermogravimetric analysis (TGA), second part cover the experimental investigation of BFB combustor, and third part covers the ash analysis. TGA was performed with a ratio of 50%MSS/50%biomass (GS, MH, PJW) and results show that 50%MSS/50%GS has highest combustion characteristic factor (CCF). The experimental investigation of BFB combustor was performed for two different ratios of MSS/biomass (50%/50% and 25%/75%) and the combustion characteristics of blends were distinctive under both A-F and O-E condition. Despite 50%MSS/50%GS showing the highest combustion performance in TGA analysis, it formed agglomerates during burning in BFB. Due to this formation of large amount of agglomerates, de-fluidization was observed in the combustor bed after 65-75min in A-F conditions. The rate of de-fluidization increased under O-E condition. The de-fluidization problem disappeared when the share of MSS was reduced to 25%, but small amounts of the agglomerate were still present in the bed. With oxygen enhancement, the combustion efficiency of BFB combustor was improved and flue gasses were found within permissible limit. The maximum conceivable combustion efficiency (97.1%) for BFB combustor was accomplished by using 50% MSS/50%PJW under O-E condition. Results show that a ratio of 25%MSS/75%biomass combusted successfully inside the BFB combustor and extensive work is required for efficient utilization of significant share of MSS with biomass. SEM/EDS analyses were performed for agglomerate produced and for the damaged heater to study the surface morphology and compositions. The elemental heterogeneity of fly ash generated during MSS/biomass combustion

  20. Brown carbon in tar balls from smoldering biomass combustion

    OpenAIRE

    R. K. Chakrabarty; H. Moosmüller; L.-W. A. Chen; K. Lewis; W. P. Arnott; C. Mazzolen; M. Dubey; C. E. Wold; W. M. Hao; S. M. Kreidenweis

    2010-01-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index – optically defined as "brown carbon" – is an important component of tar balls. The spectrum of the...

  1. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Alkali metals in combustion of biomass with coal

    NARCIS (Netherlands)

    Glazer, M.P.

    2007-01-01

    Growing demand for energy in the world, depletion of fossil fuels and green house effect require from us to utilize alternative, renewable sources of power. Biomass gained in the last few years more and more attention especially in Europe. Many research programs focused on the various forms of

  3. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  4. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  5. Emission factors from residential combustion appliances burning Portuguese biomass fuels.

    Science.gov (United States)

    Fernandes, A P; Alves, C A; Gonçalves, C; Tarelho, L; Pio, C; Schimdl, C; Bauer, H

    2011-11-01

    Smoke from residential wood burning has been identified as a major contributor to air pollution, motivating detailed emission measurements under controlled conditions. A series of experiments were performed to compare the emission levels from two types of wood-stoves to those of fireplaces. Eight types of biomass were burned in the laboratory: wood from seven species of trees grown in the Portuguese forest (Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europaea and Quercus ilex rotundifolia) and briquettes produced from forest biomass waste. Average emission factors were in the ranges 27.5-99.2 g CO kg(-1), 552-1660 g CO(2) kg(-1), 0.66-1.34 g NO kg(-1), and 0.82-4.94 g hydrocarbons kg(-1) of biomass burned (dry basis). Average particle emission factors varied between 1.12 and 20.06 g kg(-1) biomass burned (dry basis), with higher burn rates producing significantly less particle mass per kg wood burned than the low burn rates. Particle mass emission factors from wood-stoves were lower than those from the fireplace. The average emission factors for organic and elemental carbon were in the intervals 0.24-10.1 and 0.18-0.68 g kg(-1) biomass burned (dry basis), respectively. The elemental carbon content of particles emitted from the energy-efficient "chimney type" logwood stove was substantially higher than in the conventional cast iron stove and fireplace, whereas the opposite was observed for the organic carbon fraction. Pinus pinaster, the only softwood species among all, was the biofuel with the lowest emissions of particles, CO, NO and hydrocarbons.

  6. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  7. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  8. Scientific tools for fuel characterization for clean and efficient biomass combustion - SciToBiCom final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F. (ed.); Glarborg, P.; Arendt Jensen, Peter [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)] [and others

    2013-05-15

    Through years the Nordic countries and Austria have been very active in promoting biomass utilization for heat and power production. This project has succeeded in conducting a research plan including main actors in the field of biomass combustion from Denmark, Norway, Finland and Austria. The project has aimed at the development of advanced fuel analysis and characterisation methods concerning the combustion of different biomass fuels in various plant technologies of different size ranges. The goal has been to provide the basis for an improved understanding of the combustion behaviour and to collect the data in an advanced fuel database. Moreover, advanced CFD-based simulation routines considering different phenomena like single particle conversion, solid biomass combustion on the grate, release of ash forming elements, gas phase combustion and NO{sub x} formation has been developed as efficient, future process analysis and plant design tools. (LN)

  9. Brown carbon in tar balls from smoldering biomass combustion

    Science.gov (United States)

    Chakrabarty, R. K.; Moosmüller, H.; Chen, L.-W. A.; Lewis, K.; Arnott, W. P.; Mazzoleni, C.; Dubey, M. K.; Wold, C. E.; Hao, W. M.; Kreidenweis, S. M.

    2010-07-01

    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index - optically defined as "brown carbon" - is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  10. Brown carbon in tar balls from smoldering biomass combustion

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty

    2010-07-01

    Full Text Available We report the direct observation of laboratory production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC indicate that a class of light absorbing organic carbon (OC with wavelength dependent imaginary part of its refractive index – optically defined as "brown carbon" – is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  11. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Element budgets of forest biomass combustion and ash fertilisation - a Danish case-study

    DEFF Research Database (Denmark)

    Ingerslev, Morten; Skov, Simon; Sevel, Lisbeth

    2011-01-01

    the retention of various elements in the different ash fractions and utilise the nutrient recovery to evaluate the fertiliser quality of the examined ash. The mass and element flux of wood chips, bottom ash, cyclone fly ash and condensation sludge at Ebeltoft central heating plant was studied over a four day...... period in spring 2005. On average, 19 ton wood chips (dry weight) were combusted each day. The combustion of the wood chips produced 0.70% ash and sludge (dry weight). The ash and sludge dry matter was distributed as 81% fly ash, 16% bottom and residual grate ash and 3% sludge solid phase. Substantial...... amounts of nutrients were retained in the fly ash (P, Ca, Mg, Mn and Cu have a recovery higher than 60% and K, S and Fe have a recovery higher than 30%). The recovery of elements in the bottom ash was smaller. The added recovery of the usable fractions of ashes (both fly ash and bottom ash) exceeded 75...

  13. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  14. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration

  15. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.

  16. Possibility analysis of combustion of torrefied biomass in 140 t/h PC boiler

    Directory of Open Access Journals (Sweden)

    Jagodzińska Katarzyna

    2016-01-01

    Full Text Available The study attempts to evaluate the impact of combustion of torrefied willow (Latin: Salix viminalis and palm kernel shell (Latin: Elaeis guineensis on the heat exchange in a 140 t/h PC boiler through an analysis of 6 cases for different boiler loads (60 %, 75 % and 100 % and a comparison with coal combustion. The analysis is premised on a 0-dimensional model based on the method presented in [15, 16, 17] and long-standing experimental measurements. Inter alia, the following results are presented: the temperature distribution of flue gases and the working medium (water/steam in characteristic points of the boiler as well as heat transfer coefficients for each element thereof. The temperature distribution of both fluids and the heat transfer coefficients are similar for all analysed fuels for each boiler load. However, the flue gas temperature at the outlet is higher in the case of torrefied biomass combustion. Due to that, there is an increase in the stack loss, which involves a decrease in the boiler efficiency. The conclusion is that torrefied biomass combustion is possible in a PC boiler without the need to change the boiler construction. However, it would be less effective than coal combustion.

  17. Characterization of Bottom and Fly Ashes Generated Co-incineration of Biomass with Automotive Shredder Residue

    Directory of Open Access Journals (Sweden)

    Othaman Muhamad Fazli

    2017-01-01

    Full Text Available One of the viable techniques to reduce land filling of automotive shredder residue is by co-incinerating them with biomass. This study focuses on characterization of bottom and fly ashes produced from the coincineration of the automotive shredded residue with oil palm biomass. The co-incineration was carried out in a pilot-scale fluidized bed incinerator. The oil palm biomass used was oil palm shell while the automotive shredded residue was obtained from a local recycling company. The characterization was done based on particle size distribution, morphology (SEM analysis and chemical composition (EDS analysis. In term of chemical composition the ashes contain C (Carbon, O (Oxygen, Si (Silicon, K (Potassium, Ca (Calcium and Fe (Ferum.

  18. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Aho, Martti; Paakkinen, Kari

    2013-01-01

    Studies of the release of critical ash-forming elements from combustion of biomass are typically conducted with small sample masses under well controlled conditions. In biomass combustion on a grate, secondary recapture and release reactions in the fuel-bed may affect the overall release...... and partitioning of these elements. Earlier work by the authors on the release of K, Cl, and S from a high-chlorine biomass (corn stover) in a lab-scale setup is, in the present work, supplemented with novel results from a bench-scale fixed bed reactor and a 100kW moving grate pilot facility. The results from...

  19. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  20. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.

    Science.gov (United States)

    Montes-Hernandez, G; Pérez-López, R; Renard, F; Nieto, J M; Charlet, L

    2009-01-30

    The increasing CO(2) concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO(2). In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. second, the spontaneous carbonation of calcium hydroxide suspension. A significant CaO-CaCO(3) chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2h of reaction at 30 degrees C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO-CaCO(3) conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO(2) (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature "20-25", 30 and 60 degrees C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO(2) transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 index < or = 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester up to 26 kg of CO(2), i.e. 38.18 ton of fly-ash per ton of CO(2) sequestered. This confirms the possibility to use this alkaline residue for CO(2

  1. Regulations and standardization relative to the biomass combustion; Reglementation et normalisation relatives a la combustion de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Autret, E. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 49 - Angers (France)

    2009-03-15

    It does not exist regulations on pollutants emissions on domestic wood burning furnaces, however, these appliances are submitted to the European and french standardization concerning the safety rules, the use rules and the tests methods. Since 2007, these wood burning appliances on the market must have the European Community label. The green flame label was elaborated by the environment and energy control Agency (A.D.E.M.E.), and manufacturers of domestic appliances to promote the use of competitive wood burning appliances. concerning the collective and industrial heating, the installations of more 2 MW are framed by different categories of the installations classified for environment protection (I.C.P.E.) regulation according their fuel and power. The combustion installations of less than 2 MW are a particular case, they are framed by a sanitary department regulation and are controlled by the department directions of sanitary and social affairs. the limit values of emissions are summarized in tables. (N.C.)

  2. Biomass

    International Nuclear Information System (INIS)

    Hernandez, L.A.

    1998-01-01

    Biomass constitutes the energetic form more important and of greater potential after solar energy (source of origin), being consumed in direct form through the combustion, or indirectly through the fossil fuels (those which originates) or by means of different technical of thermochemical and of biochemistry for its conversion and utilization. The current document describes the origin and the energetic characteristics of biomass, its energetic and environmental importance for a developing Country as Colombia, its possibilities of production and the technologies developed for its utilization and transformation, mainly, of the residual biomass

  3. Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Morten Nedergaard; Jespersen, Jacob Boll

    2014-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4 and HCl. In the present study, the rate constants for decomposition of ammonium sulfate and aluminum......-dependent distribution of SO2 and SO3 from ammonium sulfate decomposition. On the basis of these data as well as earlier results, a detailed chemical kinetic model for sulfation of KCl by a range of sulfate additives was established. Modeling results were compared to biomass combustion experiments in a bubbling...... fluidized-bed reactor using ammonium sulfate, aluminum sulfate, and ferric sulfate as additives. The simulation results for ammonium sulfate and ferric sulfate addition compared favorably to the experiments. The predictions for aluminum sulfate addition were only partly in agreement with the experimental...

  4. NO formation during oxy-fuel combustion of coal and biomass chars

    DEFF Research Database (Denmark)

    Zhao, Ke; Jensen, Anker Degn; Glarborg, Peter

    2014-01-01

    The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char preparat......The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char...

  5. Polycyclic aromatic hydrocarbons and other organic compounds in ashes from biomass combustion

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Havelcová, Martina

    2012-01-01

    Roč. 9, č. 4 (2012), s. 481-490 ISSN 1214-9705 R&D Projects: GA MZe QI102A207 Institutional research plan: CEZ:AV0Z30460519 Keywords : biomass combustion * ash * PAHs Subject RIV: GD - Fertilization, Irrigation, Soil Processing Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_04/6.Straka_%20Havelcova.pdf

  6. In-Situ Characteristics of Particle Emissions from Biomass Combustion

    International Nuclear Information System (INIS)

    Pagels, Joakum; Wierzbicka, Aneta; Bohgard, Mats; Strand, Michael; Lillieblad, Lena; Sanati, Mehri; Swietlicki, Erik

    2005-01-01

    In this work we used a Scanning Mobility Particle Sizer and an Electrical Low-pressure Impactor to: a) Derive information of the particle morphology through air-borne analysis and b) Identify time and size variations of particle phase components from incomplete combustion and ash-components. The results presented here covers measurements in two moving grate boilers (12 MW operating on moist forest residue and 1.5 MW operating on wood pellets). We have previously shown that PM1 estimated from Electrical Low-Pressure Impactor (ELPI)-measurements consisted of a rather constant background with peaks correlating with CO and OGC peaks. In the 1.5 MW boiler EC contributed to 34% of PM1, while in the 12 MW boiler EC was below 0.5%. Figure 2 shows time variations in the 1.5 MW boiler as the current in three stages of the ELPI-impactor. Note that time-variations increase strongly with particle size. The fraction of the gravimetric mass detected as water-soluble ions (IC) decreased from ∼ 70% for dae= 78 and 133 nm to ∼ 25% for 322 and 510 nm particles and increased to around 50% for particles larger than 1 μm. In the 12 MW boiler time variations were as low as for 128 nm particles and IC recovery was high for all studied particle sizes. Based on these data we conclude that PM consisting of ash-components are formed with small time variations mainly in mobility-sizes below 250 nm, while Elemental Carbon is emitted at high concentrations during peaks on the time-scale 10-30 s, mainly in particle sizes larger than 150 nm. However, the detailed mixing status of these two particle types/materials is still not known

  7. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    Science.gov (United States)

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Suitability of aquatic biomass from Lake Toba (North Sumatra, Indonesia) for energy generation by combustion process

    Science.gov (United States)

    Brunerová, A.; Roubík, H.; Herák, D.

    2017-09-01

    Several aquatic plant species were identified as aquatic pollution of Lake Toba, North Sumatra (Indonesia); specifically, water hyacinth Eichhornia crassipes and aquatic weeds Hydrilla verticillata and Myriophyllum spicatum due to their high biomass yield which causes impenetrable mats at the bottom and surface of the lake. That complicates other vegetation growth and utilization of water areas for fishing or recreation. In attempt to clean the lake and prevent plants expansion, great amount of plants populations are removed from water but subsequent efficient utilization of such aquatic biomass is not ensured. Present research investigated energy potential of aquatic biomass originated from mentioned aquatic plants from Lake Toba and its possible utilization for energy production by direct combustion. Performed chemical analysis contained from determination of moisture, ash and volatile matter contents and calorific values. Evaluation of results proved highest suitability and energy potential of Eichhornia crassipes with gross calorific value (GCV) 16.31 MJ·kg-1, followed by Hydrilla verticillata with GCV 15.24 MJ·kg-1. Samples of Myriophyllum spicatum exhibited unsatisfactory results due to its low GCV (11.27 MJ·kg-1) in combination with high ash content (36.99%) which indicates complications during combustion, thus, low energy production efficiency and overall unsuitability for combustion purposes.

  9. Analysis of selected problems of biomass combustion process in batch boilers - experimental and numerical approach

    Science.gov (United States)

    Szubel, Mateusz

    2016-03-01

    It is possible to list numerous groups of heating units that are used in households, such as boilers, stoves and units used as supporting heat sources, namely fireplaces. In each case, however, the same operational problems may be evoked [1]. To understand the causes of energy losses in a boiler system, a proper definition of significant elements of the unit's heat balance is necessary. In the group of energy losses, the flue gas loss and the incomplete combustion loss are the most significant factors. The problem with the loss resulting from incomplete combustion, which is related to the presence of combustible substances in the exhaust, is especially significant in case of biomass boilers [2, 3]. The paper presents results of the research and the optimisation of the biomass combustion process in the 180 kW batch boiler. The studies described have been focused on the reduction of the pollutants emission, which was primarily realised by the modifications of the air feeding system. Results of the experiments and the CFD simulations have been compared and discussed. Both in case of the model as well as the experiment, positive influence of the modifications on the emission have been observed.

  10. Analysis of selected problems of biomass combustion process in batch boilers - experimental and numerical approach

    Directory of Open Access Journals (Sweden)

    Szubel Mateusz

    2016-01-01

    Full Text Available It is possible to list numerous groups of heating units that are used in households, such as boilers, stoves and units used as supporting heat sources, namely fireplaces. In each case, however, the same operational problems may be evoked [1]. To understand the causes of energy losses in a boiler system, a proper definition of significant elements of the unit’s heat balance is necessary. In the group of energy losses, the flue gas loss and the incomplete combustion loss are the most significant factors. The problem with the loss resulting from incomplete combustion, which is related to the presence of combustible substances in the exhaust, is especially significant in case of biomass boilers [2, 3]. The paper presents results of the research and the optimisation of the biomass combustion process in the 180 kW batch boiler. The studies described have been focused on the reduction of the pollutants emission, which was primarily realised by the modifications of the air feeding system. Results of the experiments and the CFD simulations have been compared and discussed. Both in case of the model as well as the experiment, positive influence of the modifications on the emission have been observed.

  11. Removal of unburned carbon in fly ash produced in coal combustion process

    International Nuclear Information System (INIS)

    Velasquez V, Leonardo F; De La Cruz M, Javier F; Sanchez M, Jhon F

    2007-01-01

    The coal unburned in flying ashes obtained in the processes of coal combustion is the main disadvantage for its use in the industry of the construction. This material normally has a size of particle greater than the mineral material, therefore it is possible to be separated in a considerable percentage, obtaining double benefit: the reusability of unburned like fuel or precursor for the activated charcoal production and the use of the mineral material in the industry of the construction since the organic matter has retired him that disables its use. In this work it is experienced with a sifted technique of separation by for three obtained flying ash samples with different technology (travelling Grill, pneumatic injection and overturning grill), were made grain sized analyses with meshes of a diameter of particle greater to 0,589 mm, the short analyses were made to them next to the retained material in each mesh and the unburned percentage of removal was determined of. The technique was compared with other developing.

  12. Improvement of the competitiveness of biomass fuels by developing combustion technologies - new research facilities to Saarijaervi

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, M.; Leino, T.; Kaerki, J.; Haemaelaeinen, J. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)), Email: markku.orjala@vtt.fi, Email: timo.leino@vtt.fi, Email: janne.karki@vtt.fi, Email: jouni.hamalainen@vtt.fi

    2009-07-01

    The global use of biomass fuels is increasing significantly which also means that the fuel assortment will be increased strongly in the future. These new fuels, however, are often more challenging from the point of both production and site handling methods, and their combustion properties than the more traditional fuels. The increment of the biomass assortment creates a need for further development of combustion technologies. VTT creates with its collaborators possibilities for new generation multi-fuel boiler research and product development environment that enables the development of efficient solutions for utilisation of new biomass fuels. The research environment will be constructed during 2009 by the side of the new heating plant located at Saarijaervi. 'The future multi-fuel boiler' - research environment offers a unique possibility to develop solutions for the total biomass chain, from production of the fuel to fuel handling, and the combustion process. The research environment offers abilities, e.g. the analysis of the total biomass supply chain and new concept demonstration, as well as training possibilities for both domestic and international customers of Finnish equipment suppliers. Through the research and development abilities VTT and its co-operators want to develop the branch in co-operation with all actors in bioenergy chain. Co-operators in the research are currently Saarijaerven Kaukolaempoe Oy, boiler supplier Putkimaa, University of Jyvaeskylae and JAMK University of Applied Sciences. In the future the objective is to increase both the national and European co-operation with universities, equipment suppliers and energy companies, and hence to improve the competitiveness of Finnish equipment suppliers and energy companies, and hence to improve the competitiveness of Finnish equipment suppliers on the international markets. (orig.)

  13. Acidic extraction and precipitation of heavy metals from biomass incinerator cyclone fly ash

    Directory of Open Access Journals (Sweden)

    Kröppl M.

    2013-04-01

    Full Text Available Biomass incineration is increasingly used for the generation of heat and/or electricity. After incineration two ash fractions remain. Bottom ashes (the coarser ash fraction can usually be used as fertilizing agent on fields as it contains valuable elements for soils and plants and only minor concentrations of heavy metals. Fly ashes (the finer ash fraction are in most cases disposed as their heavy metal concentrations are too high for a usage as soil enhancer. In this study highly heavy metal contaminated fly ash has been cleaned through extraction with hydrochloric acid. The heavy metals were removed from the extract by precipitation with sodium hydroxide. After the cleaning procedure the ash can be pelletized and be returned to the soils.

  14. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  15. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Andi Mulkan; Zainal, Z.A.

    2006-01-01

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m 3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NO x emission are higher for biomass fuel

  16. Application of Heterogeneous Catalysis in Small-Scale Biomass Combustion Systems

    Directory of Open Access Journals (Sweden)

    Christian Thiel

    2012-04-01

    Full Text Available Combustion of solid biomass fuels for heat generation is an important renewable energy resource. The major part among biomass combustion applications is being played by small-scale systems like wood log stoves and small wood pellet burners, which account for 75% of the overall biomass heat production. Despite an environmentally friendly use of renewable energies, incomplete combustion in small-scale systems can lead to the emission of environmental pollutants as well as substances which are hazardous to health. Besides particles of ash and soot, a wide variety of gaseous substances can also be emitted. Among those, polycyclic aromatic hydrocarbons (PAH and several organic volatile and semi-volatile compounds (VOC are present. Heterogeneous catalysis is applied for the reduction of various gaseous compounds as well as soot. Some research has been done to examine the application of catalytic converters in small-scale biomass combustion systems. In addition to catalyst selection with respect to complete oxidation of different organic compounds, parameters such as long-term stability and durability under flue gas conditions are considered for use in biomass combustion furnaces. Possible catalytic procedures have been identified for investigation by literature and market research. Experimental studies with two selected oxidation catalysts based on noble metals have been carried out on a wood log stove with a retrofit system. The measurements have been performed under defined conditions based on practical mode of operation. The measurements have shown that the catalytic flue gas treatment is a promising method to reduce carbon monoxide and volatile organic compounds. Even a reduction of particulate matter was observed, although no filtering effect could be detected. Therefore, the oxidation of soot or soot precursors can be assumed. The selected catalysts differed in their activity, depending on the compound to be oxidized. Examinations showed that

  17. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  18. Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation

    Directory of Open Access Journals (Sweden)

    Erić Aleksandar M.

    2016-01-01

    Full Text Available The paper presents results of experimental and numerical investigation addressing combustion of baled agricultural biomass in a 50 kW experimental furnace equipped with cigar burners. Experiments performed included measurements of all parameters deemed important for mass and energy balance, as well as parameters defining quality of the combustion process. Experimental results were compared with results of numerical simulations performed with previously developed CFD model. The model takes into account complex thermo mechanical combustion processes occurring in a porous layer of biomass bales and the surrounding fluid. The combustion process and the corresponding model were deemed stationary. Comparison of experimental and numerical results obtained through research presented in this paper showed satisfactory correspondence, leading to the conclusion that the model developed could be used for analysis of different effects associated with variations in process parameters and/or structural modifications in industrial biomass facilities. Mathematical model developed was also utilized to examine the impact of flue gas recirculation on maximum temperatures in the combustion chamber. Gas recirculation was found to have positive effect on the reduction of maximum temperature in the combustion chamber, as well as on the reduction of maximum temperature zone in the chamber. The conclusions made provided valuable inputs towards prevention of biomass ash sintering, which occurs at higher temperatures and negatively affects biomass combustion process. [Projekat Ministarstva nauke Republike Srbije, br. III 42011: Development and improvement of technologies for energy efficient and environmentally sound use of several types of agricultural and forest biomass and possible utilization for cogeneration i br. TR33042: Fluidized bed combustion facility improvements as a step forward in developing energy efficient and environmentally sound waste combustion

  19. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  20. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K.I. [A. Ahlstrom Corporation, Varkaus (Finland)

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  1. Experimental study of cyclone pyrolysis - Suspended combustion air gasification of biomass.

    Science.gov (United States)

    Zhao, Yijun; Feng, Dongdong; Zhang, Zhibo; Sun, Shaozeng; Zhou, Xinwei; Luan, Jiyi; Wu, Jiangquan

    2017-11-01

    Based on the original biomass cyclone gasifier, the cyclone pyrolysis-suspension combustion gasification technology was constituted with a bottom wind ring to build the biochar suspension combustion zone. This technology decouples the biomass pyrolysis, gasification (reduction reaction) and combustion (oxidation reaction) within the same device. With the feed amount and total air fixed, the effect of air rate arrangement on temperature distribution of the gasifier, syngas components and gasification parameters was studied. With the secondary air rate (0.20) and bottom air rate (0.50), the gasification efficiency was best, with gas heating value of 5.15MJ/Nm 3 , carbon conversion rate of 71.50%, gasification efficiency of 50.80% and syngas yield of 1.29Nm 3 /kg. The device with biochar for the tar catalytic cracking was installed at the gasifier outlet, effectively reducing the tar content in syngas, with a minimum value of 1.02g/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  3. Contaminated biomass fly ashes--Characterization and treatment optimization for reuse as building materials.

    Science.gov (United States)

    Doudart de la Grée, G C H; Florea, M V A; Keulen, A; Brouwers, H J H

    2016-03-01

    The incineration of treated waste wood generates more contaminated fly ashes than when forestry or agricultural waste is used as fuel. The characteristics of these biomass fly ashes depend on the type of waste wood and incineration process parameters, and their reuse is restricted by their physical, chemical and environmental properties. In this study, four different fly ash types produced by two different incineration plants were analysed and compared to Dutch and European standards on building materials. A combined treatment was designed for lowering the leaching of contaminants and the effect of each treatment step was quantified. A pilot test was performed in order to scale up the treatment. It was found that chlorides (which are the main contaminant in all studied cases) are partly related to the amount of unburnt carbon and can be successfully removed. Other contaminants (such as sulphates and chromium) could be lowered to non-hazardous levels. Other properties (such as particle size, LOI, oxide and mineralogical compositions) are also quantified before and after treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  5. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables

    International Nuclear Information System (INIS)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Scacchia, Federica

    2005-01-01

    The substitution of conventional fossil fuels with biomass for energy production results both in a net reduction of greenhouse gases emissions and in the replacement of non-renewable energy sources. However, at present, generating energy from biomass is rather expensive due to both technological limits related to lower conversion efficiencies, and logistic constraints. In particular, the logistics of biomass fuel supply is likely to be complex owing to the intrinsic feedstock characteristics, such as the limited period of availability and the scattered geographical distribution over the territory. In this paper, the economical feasibility of biomass utilization for direct production of electric energy by means of combustion and gasification-conversion processes, has been investigated and evaluated over a capacity range from 5 to 50 MW, taking into account total capital investments, revenues from energy sale and total operating costs, also including a detailed evaluation of logistic costs. Moreover, in order to evaluate the impact of logistics on the bio-energy plants profitability, the effects of main logistic variables such as specific vehicle transport costs, vehicles capacity, specific purchased biomass costs and distribution density, have been examined. Finally, a mapping of logistic constraints on plant profitability in the specified capacity range has been carried out

  6. Co-firing coal and biomass blends and their influence on the post-combustion CO2 capture installation

    Science.gov (United States)

    Więckol-Ryk, Angelika; Smoliński, Adam

    2017-10-01

    Co-firing of biomass with coal for energy production is a well-known technology and plays an important role in the electricity sector. The post-combustion capture integrated with biomass-fired power plants (Bio-CCS) seems to be a new alternative for reducing greenhouse gas emissions. This study refers to the best known and advanced technology for post-combustion CO2 capture (PCC) based on a chemical absorption in monoethanolamine (MEA). The co-firing of hard coal with four types of biomass was investigated using a laboratory fixed bed reactor system. The comparison of gaseous products emitted from the combustion of coal and different biomass blends were determined using gas chromatography. Research proved that co-firing of biomass in fossil fuel power plants is beneficial for PCC process. It may also reduce the corrosion of CO2 capture installation. The oxygen concentration in the flue gases from hard coal combustion was comparable with the respective value for a fuel blend of biomass content of 20% w/w. It was also noted that an increase in biomass content in a sample from 20 to 40 % w/w increased the concentration of oxygen in the flue gas streams. However, this concentration should not have a significant impact on the rate of amine oxidative degradation.

  7. SIZE ANALYSIS OF SOLID PARTICLES AT THE EXPERIMENTAL DEVICE FOR MULTI-STAGE BIOMASS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Michaela Hrnčířová

    2014-02-01

    Full Text Available This paper presents the results of an analysis of ash content particles produced in biomass combustion at an experimental device. The main parts of the device are: the water heater, the gasifying chamber, the air preheater, and the fuel feeder. This device can be modified for combustion in an oxygen-enriched atmosphere. Sawdust and wood chips were used as fuel, and were laid loosely into the device. Ash specimens were extracted from various parts of the device. For the measurements themselves, we used the Analysette 22 MicroTec Plus universal laser diffraction device manufactured by the Fritch Company, in the size range from 0.08 μm to 2000 μm. The device utilizes laser diffraction for particle size analysis.

  8. An exploratory study of alkali sulfate aerosol formation during biomass combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti; Frandsen, Flemming; Livbjerg, Hans

    2008-01-01

    It is still in discussion to what extent alkali sulfate aerosols in biomass combustion are formed in the gas phase by a homogeneous mechanism or involve heterogeneous or catalyzed reactions. The present study investigates sulfate aerosol formation based on calculations with a detailed gas phase...... mechanism. The modeling predictions are compared to data from laboratory experiments and entrained flow reactor experiments available in the literature. The analysis support that alkali sulfate aerosols are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The rate...

  9. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Zhang, Mengqun; Zhai, Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  10. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate...... was combined with a detailed gas-phase kinetic model of KCl sulfation and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results showed good agreements with the experiments conducted in a biomass grate-firing combustor, where ferric sulfate...... and elemental sulfur were used as additives. The results indicated that the SO3 released from ferric sulfate decomposition was the main contributor to KCl sulfation and that the effectiveness of ferric sulfate addition was sensitive to the applied temperature conditions. Comparison of the effectiveness...

  11. Foliage and Grass as Fuel Pellets–Small Scale Combustion of Washed and Mechanically Leached Biomass

    Directory of Open Access Journals (Sweden)

    Jan Hari Arti Khalsa

    2016-05-01

    Full Text Available The high contents of disadvantageous elements contained in non-woody biomass are known to cause problems during small and large scale combustion, typically resulting in a higher risk of slagging, corrosion, and increased emissions. Mechanically leaching the respective elements from the biomass through a sequence of process steps has proven to be a promising solution.The florafuel process used here is comprised of size reduction followed by washing and subsequent mechanical dewatering of the biomass. Densification of the upgraded biomass into standardized pellets (Ø 6mm enables an application in existing small-scale boilers. The presented combustion trials investigated the performance of pellets made from leached grass, foliage and a mixture of both in two small-scale boilers (<100 kWth with slightly different technology (moving grate versus water-cooled burner tube during a 4-h measurement period. Emissions were in accordance with German emissions standards except for NOx (threshold is 0.50 g/m3 in the case of pure grass pellets (0.51 g/m3 and particulate matter (PM in all but one case (foliage, 13–16 mg/m3. An electrostatic precipitator (ESP unit installed with one of the boilers successfully reduced PM emission of both the grass and mixture fuel below the threshold of 20 mg/m3 (all emission values refer to 13 vol.% O2, at standard temperature and pressure (STP. Bottom ash composition and grate temperature profiles were analyzed and discussed for one of the boilers.

  12. Biomass gasification for electricity generation with internal combustion engines. Process efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia Faure, Luis; Recio Recio, Angel; Oliva Ruiz, Luis; Pajarín Rodríguez, Juan; Revilla Suarez, Dennis

    2015-01-01

    Biomass is a renewable source of energy worldwide increased prospects for its potential and its lower environmental impact compared to fossil fuels. By processes and energy conversion technologies it is possible to obtain fuels in solid, liquid and gaseous form from any biomass. The biomass gasification is the thermal conversion thereof into a gas, which can be used for electricity production with the use of internal combustion engines with a certain level of efficiency, which depends on the characteristics of biomass and engines used. In this work the evaluation of thermal and overall efficiency of the gasification in Integrated Forestry Enterprise of Santiago de Cuba, designed to generate electricity from waste from the forest industry is presented. Is a downdraft gasifier reactor, COMBO-80 model and engine manufacturing Hindu (diesel) model Leyland modified to work with producer gas. The evaluation was carried out for different loads (electric power generated) engine from experimental measurements of flow and composition of the gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25%. (full text)

  13. Emissions from small-scale combustion of biomass fuels - extensive quantification and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Nordin, Anders; Oehman, Marcus; Bostroem, Dan [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Analytical Chemistry

    2005-02-01

    This work was a part of the Swedish national research program concerning emissions and air quality with the sub-programme concerning biomass, health and environment - BHM. The main objective of the work was to systematically determine the quantities and characteristics of gaseous and particulate emissions from combustion in residential wood log and biomass fuel pellet appliances and report emission factors for the most important emission components. The specific focus was on present commercial wood and pellet stoves as well as to illustrate the potentials for future technology development. The work was divided in different subprojects; 1) a literature review of health effects of ambient wood smoke, 2) design and evaluation of an emission dilution sampling set-up, 3) a study of the effects of combustion conditions on the emission formation and characteristics and illustrate the potential for emission minimization during pellets combustion, 4) a study of the inorganic characteristics of particulate matter during combustion of different pelletized woody raw materials and finally 5) an extensive experimental characterization and quantification of gaseous and particulate emissions from residential wood log and pellet stoves. From the initial literature search, nine relevant health studies were identified, all focused on effects of short-term exposure. Substantial quantitative information was only found for acute asthma in relation to PM10. In comparison with the general estimations for ambient PM and adverse health effects, the relative risks were even stronger in the studies where residential wood combustion was considered as a major PM source. However, the importance of other particle properties than mass concentration, like chemical composition, particle size and number concentration remain to be elucidated. A whole flow dilution sampling set-up for residential biomass fired appliances was designed, constructed and evaluated concerning the effects of sampling

  14. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  15. Monitoring of the radionuclides in fly-ash from lignite combustion and its use in building industry

    International Nuclear Information System (INIS)

    Vanek, M.; Hybler, P.

    2004-01-01

    Fossil fuels such as lignite are widely used in thermal power plants. A large amount of ashes is being produced, consisting of fly-ash and a bottom-ash. Lignite often contain high concentrations of naturally occurring radionuclides such as K-40, Th-232, U-238 and decay products of decay chains of last two mentioned. Produced ashes are enriched in these radionuclides in the combustion process. Large amounts of waste, especially fly-ashes and its proper disposal is a significant environmental problem. This waste, however, can be effectively used as a raw material in many industrial and other applications. It is widely used especially in building industry, because of its properties, which allow it to partially replace cement in concrete. Other applications include non-active additives in building industry, additives in metallurgy, filling of exploited mines and others. A limiting factor can be the natural radionuclide contents in fly-ashes. Its limit is given by the law and therefore activity of the fly-ashes should be monitored in order to avoid negative influence on the environment. A method of direct gamma spectrometry with high purity germanium detector was used to determine the activity of above mentioned natural radionuclides in fly-ash samples taken from the thermal plant TEZVO in Zvolen. A standard geometry of 450 ml Marinelli beaker for large volume samples was used. Preliminary results are in a good agreement with results published by several authors in recent works. The use of fly-ashes is a very effective way to reduce the amount of waste from lignite combustion to be disposed, and in many cases it saves alternative natural resources. With respect to all benefits arising from its use, its potential negative influence on the environment should be avoided by careful monitoring of its limiting properties (author)

  16. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade im...

  17. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Directory of Open Access Journals (Sweden)

    Elisa M Calvo-Muñoz

    2016-05-01

    Full Text Available A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2. In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt. Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  18. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    International Nuclear Information System (INIS)

    Miedema, Jan H.; Benders, René M.J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Highlights: • Coal mining is more energy and CO 2 efficient than biomass production. • Co-combustion of 60% biomass with coal doubles mass transport compared to 100% coal. • Low co-combustion levels reduce GHG emissions, but the margins are small. • Total supply chain efficiency is the highest for the coal reference at 41.2%. - Abstract: Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective to reduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative. The indicators from the renewable energy directive cannot be aligned. When biomass is regarded as scarce, co-combustion of small shares or no co-combustion is the best option from an energy perspective. When biomass is regarded as abundant, co-combustion of large shares is the best option from a GHG reduction perspective.

  19. Physical and combustion characteristics of biomass particles prepared by different milling processes for suspension firing in utility boilers

    DEFF Research Database (Denmark)

    Yin, Chungen; Momenikouchaksaraei, Maryam; Kær, Søren Knudsen

    2016-01-01

    The physical and combustion properties of roller-milled and hammer-milled wood pellets for suspension-firing are characterized both experimentally and numerically. The particle size and shape distribution is measured based on dynamical digital image processing. The traditional coal roller mills...... produce larger biomass particles than hammer mills do. The true density of the particles, measured by ethanol displacement method, does not remarkably vary with the different mills. Combustion tests of the milled biomass particles are performed in a single particle combustion reactor under conditions...... close to suspension-fired boilers. The ignition, devolatilization and burnout times of the milled particles under different combustion conditions are analysed. A one-dimensional transient model, properly accounting for the particle-ambient flow interaction and appropriately addressing the key sub...

  20. The direct observation of alkali vapor species in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  1. Environmental consequences of the use of biomass and combustible waste in the Baltic Region

    International Nuclear Information System (INIS)

    Denafas, G.; Revoldas, V.; Zaliauskiene, A.; Bendere, R.; Kudrenickis, I.; Mander, U.; Oja, T.; Sergeeva, L.; Esipenko, A.

    2002-01-01

    Three Baltic countries (Lithuania, Latvia, and Estonia) and the Russian Kaliningrad region possess similar natural conditions as well as natural resources and are closely related by network of energy systems. Therefore joint research into the potentialities hidden in biomass and combustive waste as alternative fuel and into the related problems of air pollutions has been carried out. Based on the methods worked out by the main coordinator of the research work - the Kaunas University of Technology (Dept. of Env. Engineering) - emission of CO 2 , SO 2 , CO, NO x and solid particles at combustion of various fuels have been studied and the energy potential and resource of alternative fuels (different kinds of wood fuel, straw, combustible waste, bio diesel oil, bio ethanol and biogas) have been estimated with regard to each of the mentioned regions. In the paper, possibilities for substitution of the alternative fuels for traditional ones in energy production and transport are discussed and the forecasts as to possible limitations of emissions due to the substitution are given. The work presents the tabulated results of exhaustive calculation of air pollutant formation on the scale of Lithuania, Latvia, Estonia and the Kaliningrad region made with due consideration for the current requirements on the primary energy and existing renewable sources of alternative fuel. A separate conclusion is made concerning Lithuania, where the issue of alternative fuels is closely connected with the operation of the Ignalina NPP and its expected decommissioning. (authors)

  2. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J.

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  3. Comparison of woody pellets, straw pellets, and delayed harvest system herbaceous biomass (switchgrass and miscanthus): analysis of current combustion techniques determining the value of biomass

    NARCIS (Netherlands)

    Hui, Y.

    2011-01-01

    Since the energy consumption is growing fast, it is important to find alternative resources for the future generation energy supply. This study is going to compare the woody pellets, straw pellets and delayed harvest system biomass (switchgrass and miscanthus) from the combustion technique

  4. Biomass of tomorrow: Banknotes. Two new disposal methods as an alternative to combustion. Die Biomasse von morgen: Banknoten. Zwei neue Verwertungsverfahren als Alternative zur Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Franken, M.

    1999-06-01

    Old banknotes may be tomorrow's biomass. Experts on biowaste are investigating two new processes for disposal of the 1000 tonnes of old bills sorted out every year which may be an alternative to combustion. The author presents details.

  5. PM10 emissions and PAHs: The importance of biomass type and combustion conditions.

    Science.gov (United States)

    Zosima, Angela T; Tzimou-Tsitouridou, Roxani D; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Ochsenkühn-Petropoulou, Maria Th

    2016-01-01

    The aim of the present work was to investigate the impact of biomass combustion with respect to conditions and fuel types on particle emissions (PM10) and their PAHs content. Special concern was on sampling, quantification and characterization of PM using different appliances, fuels and operating procedures. For this purpose different lab-scale burning conditions, two pellets stoves (8.5 and 10 kW) and one open fireplace were tested by using eight fuel types of biomass. An analytical method is described for the quantitative determination of 16 PAHs using liquid-liquid extraction and subsequent measurement by gas chromatography coupled to a mass spectrometer (GC-MS). Average PM10 emissions ranged from about 65 to 170 mg/m(3) at lab-scale combustions with flow oxygen at 13% in the exhaust gas, 85-220 mg/m(3) at 20% O2, 47-83 mg/m(3) at pellet stove of 10 kW, 34-69 mg/m(3) at pellet stove of 8.5 kW and 106-194 mg/m(3) at the open fireplace. The maximum permitted particle emission limit is 150 mg/m(3). Pellets originated from olive trees and from nonmixture trees were found to emit the lowest particulate matter in relation to the others, so they are considered healthiest and suitable for domestic heating reasons. In general, the results show that biomass open burning is an important PM10 and PAHs emission source.

  6. ENERGY PROPERTIES OF MULTIFLORA ROSE (ROSA MULTIFLORA THUNB. AND ENVIRONMENTAL BENEFITS FROM THE COMBUSTION OF ITS BIOMASS

    Directory of Open Access Journals (Sweden)

    Alina Kowalczyk-Juśko

    2016-11-01

    Full Text Available The article presents the results of a study on multiflora rose, one of the energy crop plants. The yield of aerial parts was determined in a field experiment, and the calorific value and chemical composition of the biomass were determined in laboratory tests. The results were used to calculate the amount of hard coal that can be replaced by multiflora rose biomass and the air pollution emissions from combustion of coal and multiflora rose. Combustion of multiflora rose biomass from an area of 1 ha in place of hard coal with equivalent energy value was found able to reduce emissions of SO2 by 98.9%, NO2 by 27.8%, particulates by over 18% and CO by 8.5%. The actual CO2 emissions from biomass combustion proved somewhat higher than in the case of coal; however, carbon dioxide emitted into the atmosphere during combustion of plant biomass is equal to the amount taken in by the plants during their growing period. Therefore the CO2 emissions are considered to be zero.

  7. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Gomes, Ana Paula; Nunes, Maria Isabel; Alves, Célia; Tarelho, Luís A C

    2017-06-01

    An experimental study was conducted at field conditions in order to evaluate the effect of application of ash from biomass combustion on some soil fertility characteristics and plant growth. Application of 7.5 Mg ha -1 industrial fly ash (IA), domestic ash (DA), and a 50:50 mix of domestic ash (DA) and spent coffee grounds (SCG) was made in different soil parcels. Lolium perenne seeds were sown and the grown biomass was harvested and quantified after 60 days. Soil samples from each parcel were also collected after that period and characterized. Both soil and grown biomass samples were analyzed for Ca, Mg, Na, K, P, Fe, Mn, Zn, and Al contents. Soil pH was determined before and after amendment. All applications rose significantly soil pH. Domestic ash, whether combined with coffee grounds or not, proved to be efficient at supplying available macronutrients Ca, Mg, K, and P to the soil and also reducing availability of Al (more than industrial ash). However, it inhibited plant growth, even more when combined with spent coffee grounds. As regards to elemental abundance in plant tissue, both domestic ash treatments reduced Ca and enhanced Al contents, unlike industrial ash, which proved less harmful for the load applied in the soil. Hence, it was possible to conclude that application load should be a limiting factor for this management option for the studied materials.

  8. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  9. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  10. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    Science.gov (United States)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A

  11. Sorption potential of different biomass fly ashes for the removal of diuron and 3,4-dichloroaniline from water.

    Science.gov (United States)

    Quirantes, Mar; Nogales, Rogelio; Romero, Esperanza

    2017-06-05

    Hazardous contaminants in water and biomass fly ash spillage are causes for environmental and health concern. We selected five fly ashes generated from olive-mill (O,P, G and H) and greenhouse vegetable (I) waste used as biomass fuel in order to quantify their capacity to remove diuron and 3,4-dichloroaniline (DCA) from water. To understand the sorption processes involved, four kinetic models and two adsorption isotherms were assayed. The pseudo second-order kinetic showed the best fit (R 2 >0.99). The initial adsorption rate constant was found to be faster for DCA than for diuron. The Freundlich adsorption constants of ashes O, P, G and H for diuron were more than 2-fold higher than for DCA (Kf=109-16μg 1-1/n g -1 mL -1 ). The alkaline pH of these fly ashes plays an important role in the adsorption process. Sorption/desorption processes were significantly affected by iron oxide content. DCA sorption was also influenced by particle size and carbon content. Low hysteresis coefficient values (H=0.01-0.26) revealed an irreversible sorption process. The study presents novel information on the immobilization of hazardous chemicals in water by biomass fly ashes generated from olive-oil industry and greenhouse crop waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impact on mortality of biomass combustion from wildfires in Spain: A regional analysis.

    Science.gov (United States)

    Linares, C; Carmona, R; Salvador, P; Díaz, J

    2018-05-01

    Studies that analyse the impact on mortality of particulate matter (PM) produced by biomass combustion from wildfires mostly focus on a single city or on cities in different countries, with very few concentrating on one country as a whole. Accordingly, the aim of this paper was to analyse the impact that PM has on daily mortality in Spain on days with biomass combustion from wildfires. To analyse natural PM advections the Ministry of Agriculture and Fishing, Food & Environment divides Spain into 9 geographical regions. One province representative of each region for was selected analysis purposes, with provincial daily natural-cause mortality across the period 2004-2009 as the dependent variable, and daily mean PM concentrations in the provincial capital as the independent variable. We controlled for the effect of other chemical pollutants (NO 2 and O 3 ), maximum daily temperature on heat-wave days, day of the week, trends, seasonalities and the autoregressive nature of the series, using generalised linear models with the Poisson regression link to calculate relative risks (RRs) and the increase in RR (IRR) of PM-related mortality. The analysis was performed for days with and without biomass advections (DBA and DNBA respectively), with a breakdown by year, summer, and the remainder of the year (i.e., excluding summer). The results indicated that daily mean PM concentrations were higher on DBA than on DNBA, with statistically significant differences in most provinces. Furthermore, PM 10 was associated with higher daily mortality on DBA in regions where wildfires were most frequent, but not in the remaining provinces. This translated as an IRR per 10μg/m 3 of PM of 7.93 (2.36-13.81) in the North-west, 3.76 (1.36-6.22) in the Centre and 4.46 (2.99-5.94) in the South-west, values which in all cases were statistically higher than those obtained on DNBA. The increase in PM caused by biomass advections from wildfires is linked to a significant IRR of mortality in Spain

  13. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  14. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to

  15. Preliminary observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Science.gov (United States)

    T. Lee; S. M. Kreidenweis; J. L. Collett; A. P. Sullivan; C. M. Carrico; J. L. Jimenez; M. Cubison; S. Saarikoski; D. R. Worsnop; T. B. Onasch; E. Fortner; W. C. Malm; E. Lincoln; Cyle Wold; WeiMin Hao

    2010-01-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion...

  16. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  17. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    Science.gov (United States)

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    Science.gov (United States)

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    Science.gov (United States)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  20. The fate of heavy metals during combustion and gasification of contaminated biomass-a brief review.

    Science.gov (United States)

    Nzihou, Ange; Stanmore, Brian

    2013-07-15

    The literature on the presence of heavy metals in contaminated wastes is reviewed. Various categories of materials produced from domestic and industrial activities are included, but municipal solid waste, which is a more complex material, is excluded. This review considers among the most abundant the following materials - wood waste including demolition wood, phytoremediation scavengers and chromated copper arsenate (CCA) timber, sludges including de-inking sludge and sewage sludge, chicken litter and spent pot liner. The partitioning of the metals in the ashes after combustion or gasification follows conventional behaviour, with most metals retained, and higher concentrations in the finer sizes due to vaporisation and recondensation. The alkali metals have been shown to catalyse the biomass conversion, particularly lithium and potassium, although other metals are active to a lesser extent. The most prevalent in biomass is potassium, which is not only inherently active, but volatilises to become finely distributed throughout the char mass. Because the metals are predominantly found in the ash, the effectiveness of their removal depends on the efficiency of the collection of particulates. The potential for disposal into soil depends on the initial concentration in the feed material. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  2. Chemical speciation, mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge.

    Science.gov (United States)

    Xiao, Zhihua; Yuan, Xingzhong; Li, Hui; Jiang, Longbo; Leng, Lijian; Chen, Xiaohong; Zeng, Guangming; Li, Fei; Cao, Liang

    2015-12-01

    Combustion of pelletized municipal sewage sludge (MSS) can generate pestilent byproducts: fly ash and slag. Comparisons of heavy metal sequential extraction results among MSS, fly ash and slag showed that after combustion, the bioavailable heavy metal fractions (acid soluble/exchangeable, reducible and oxidizable fractions) were mostly transformed into the very stable heavy metal fractions (residual fractions). On the other hand, the results of toxicity characteristic leaching procedure (TCLP), diethylenetriamine pentaacetic acid and HCl extraction (phyto-accessibility assessment) demonstrated that the mobility and toxicity of heavy metals were greatly reduced. The direct and long-term bioavailability and eco-toxicity of heavy metals in fly ash and slag were relieved, which implied that combustion of pelletized MSS could be a promising and completely safe disposal technology for MSS treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China.

    Science.gov (United States)

    Zhang, J K; Cheng, M T; Ji, D S; Liu, Z R; Hu, B; Sun, Y; Wang, Y S

    2016-08-15

    An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    Czech Academy of Sciences Publication Activity Database

    Košnář, Z.; Mercl, F.; Perná, Ivana; Tlustoš, P.

    563-564, SEP 1 (2016), s. 53-61 ISSN 0048-9697 Institutional support: RVO:67985891 Keywords : PAHs * biomass combustion * ashes * incineration temperature * combustibles Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.900, year: 2016

  6. Catalytic ozonation of ammonia using biomass char and wood fly ash.

    Science.gov (United States)

    Kastner, James R; Miller, Joby; Kolar, Praveen; Das, K C

    2009-05-01

    Catalytic ozonation of gaseous ammonia was investigated at room temperature using wood fly ash (WFA) and biomass char as catalysts. WFA gave the best results, removing ammonia (11 ppmv NH(3), 45% conversion) at 23 degrees C at a residence time of 0.34 s, using 5 g of catalyst or ash at the lowest ozone concentration (62 ppmv). Assuming pseudo zero order kinetics in ozone, a power rate law of -r(NH3) = 7.2 x 10(-8) C(NH3)(0.25) (r, mol g(-1)s(-1), C(NH3)molL(-1)) was determined at 510 ppmv O(3) and 23 degrees C for WFA. Water vapor approximately doubled the oxidation rate using WFA and catalytic ozonation activity was not measured for the char without humidifying the air stream. Overall oxidation rates using the crude catalysts were lower than commercial catalysts, but the catalytic ozonation process operated at significantly lower temperatures (23 vs. 300 degrees C). Nitric oxide was not detected and the percentage of NO(2) formed from NH(3) oxidation ranged from 0.3% to 3% (v/v), with WFA resulting in the lowest NO(2) level (at low O(3) levels). However, we could not verify that N(2)O was not formed, so further research is needed to determine if N(2) is the primary end-product. Additional research is required to develop techniques to enhance the oxidation activity and industrial application of the crude, but potentially inexpensive catalysts.

  7. Mercury removal from coal combustion flue gas by modified fly ash.

    Science.gov (United States)

    Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei

    2013-02-01

    Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.

  8. Electricity generation from solid biomass via co-combustion with coal. Energy and emission balances from a German case study

    International Nuclear Information System (INIS)

    Hartmann, D.; Kaltschmitt, M.

    1999-01-01

    The environmental effects of electricity production from different biofuels by means of co-combustion with hard coal in existing coal fired power plants are analysed and compared to electricity production from hard coal alone based on Life Cycle Analysis (LCA). The use of straw and residual wood at a 10% blend with coal in an existing power plant in the southern part of Germany shows that all investigated environmental effects are significantly lower if biomass is used instead of coal. Thus based on the available and proven technology of co-combustion of hard coal and biomass in existing power plants a significant contribution could be made to a more environmentally sound energy system compared to using coal alone. (author)

  9. A practical approach for modelling and control of biomass pyrolysis pilot plant with heat recovery from combustion of pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, Mohamed Ammar; Grioui, Najla; Halouani, Kamel [Micro-Electro-Thermal Systems - Industrial Energy Systems Group (METS-ENIS), IPEIS, University of Sfax, B.P: 1172 - 3018, Sfax (Tunisia); Zoulalian, Andre [Laboratoire d' Etudes et de Recherches sur le Materiau Bois (LERMAB), Universite Henri Poincare Nancy 1 (UHP), B.P: 239 - 54506 Vandoeuvre, les Nancy Cedex (France); Zeghmati, Belkacem [LAMPS-GME, Universite de Perpignan Via Domitia, 52, Avenue Paul Alduy 66860 Perpignan Cedex (France)

    2009-10-15

    A pilot plant of biomass pyrolysis using pyrolysis products as fuel has been tested and shown to improve energy balance of the process and to be environmentally friendly by avoiding rejection of pyrolysis pollutants fumes into the atmosphere. The high number of parameters involved in a pyrolysis process makes it difficult to specify an optimum procedure for charcoal yield and pyrolysis cycle durability. So the knowledge of the essential parameters which govern the kinetics mechanisms of the biomass thermal decomposition and the combustion of pyrolysis gases is very useful to understand the operating cycle of the plant. In the present study a thermochemical model is developed in order to simulate and control the operating cycle of the system. The effect of the inlet molar air flow rate on the temporal evolution of biomass mass loss rate and temperatures in the different active zones of the pilot plant as well as the determination of the critical inlet molar air flow rate for which accidental runaway of combustion reactions occurs are presented. To avoid this accidental phenomenon a Proportional-Integral-Derived (PID) anticipated regulation is used in order to control temperatures evolution in the different zones of the device and avoid the runaway of combustion reactions. (author)

  10. Particulate emissions from biomass combustion in small district heating plants; Partikelemissioner fraan biobraensleeldade mindre fjaerrvaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Henrik; Johansson, Linda; Tullin, Claes; Oesterberg, Stefan; Johansson, Mathias [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Energy Conversion

    2001-12-01

    In recent years, negative health effects associated with increased levels of PM{sub 10} and PM{sub 2.5} (particles less then 10 and 2.5 {mu}m, respectively) in the ambient air have been highlighted. The development towards a sustainable society will lead to an increased use of biomass in Sweden. Conversion from oil to biomass can lead to increased local levels of particulate matter. In smaller district heating plants (up to a few MW), the dust reduction often is restricted to the use of cyclones/multicyclones having limited separation efficiency for submicron particles (particles less than 1 {mu}m). The emissions are often in the range 100 Mg/nm{sup 3} or higher but very few data regarding particle size distributions from district heating plants have been reported in the literature. In addition to the particle size, a number of other properties might be important for the health effects but the knowledge in this area is limited. It is therefore important to characterise the particles in detail regarding physical and chemical qualities. The objective with the present investigation is to measure and characterise the particulate emissions from two biomass based smaller district heating centrals for different fuel qualities (pellets, briquettes, forest residues and wood chips) and operating parameters such as load and excess air. In addition to analyses of dust and particulates, extensive measurements of the flue composition have been performed. Measurements were performed downstream the multicyclones. The dust emissions were found to be in the range 20 to 120 mg/MJ supplied fuel depending on operating condition and fuel quality. At normal operation, the dust emissions were about 35 to 40 mg/MJ supplied fuel. The particle size distributions were measured using an ELPI (Electric Low Pressure Impactor). The number size distributions were found to be dominated by submicron particles with maxima at diameters between 0. 1 and 0.3 gm. Additional measurements indicated that

  11. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women.

    Science.gov (United States)

    Agrawal, S; Yamamoto, S

    2015-06-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005-2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39,657 women aged 15-49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26-3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  13. Theoretical study of the combustion de pellets of biomass coming from the sugar cane

    International Nuclear Information System (INIS)

    Verdecia Torres, David; Macías Socarrás, Idalberto; Gaskins Espinosa, Benjamín Gabriel

    2012-01-01

    In the follow work they are an a examinations of the kinetic quimestry of the combustions process, we obtain the combustions time in functions of the kinetic combustions model and we made a experiment design for determinations of the theory's mathematics models in that process. (author)

  14. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  15. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  16. Washing of fly ash from combustion of municipal solid waste using water as leachant; Vattentvaett av flygaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Zhao, Dongmei

    2010-03-15

    Ashes from combustion of municipal solid waste contain a large amount of minerals, salts and other metal compounds that are more or less soluble in water. The metal salts are often enriched in the fly ash which leads to a classification of the ash as hazardous waste. This makes ash management complicated and costly. Many stabilisation methods for Municipal Solid Waste Incineration (MSWI) fly ash have been developed and most of them are based on a removal of chloride and sulfate in addition to a binding of metals in less soluble forms. The aim is to avoid the common situation that the ash does not comply to leaching limit values due to release of harmless salts. The aim of this project was to investigate if a simple washing with water can remove enough of the fly ash content of chloride and sulphate so that the ash can be landfilled in a simpler and less costly way than today. The project was focused on fly ashes from the MSWI units owned by Boraas Energi och Miljoe AB and Renova AB Goeteborg, i.e. a electro filter ash from grate fired boilers at Renova and a cyclone ash from a fluid bed boiler at Boraas. The results show that the main part of the chloride content of the ashes can be removed easily, but the washing with water is less effective in the removal of sulphate. A water-to-ash ratio of 1-2 l/kg removes about 100% of chloride but only 8-16% of the sulphate content. In many cases, the leachability of sulphate increases after the washing step. This is due to the rather complex sulphate chemistry with several possible reactions taking place in the ash-water system. For both the tested ashes the high level of chloride leaching is an important factor that prevents admittance on a landfill for hazardous waste without treatment.. The leaching of certain metals, such as Pb, is also high from both ashes but in the case of the Renova fly ash this is dealt with by treatment of the ash according to the Bamberg method. After a water washing with L/S 1-2 (L/kg dry ash

  17. Mobility of arsenic in technosoils with coal combustion fly ash content (locality Zemianske Kostolany)

    International Nuclear Information System (INIS)

    Farago, T.; Petkova, K.; Lachka, L.; Skultetyova, S.

    2015-01-01

    This work is focused on the of the column (dynamic) experiments by study of arsenic mobility from technosoils in Zemianske Kostolany. This area is significantly contaminated by power plant fly ash, which contains high concentrations of arsenic and other potentially toxic elements. A huge disaster happened in 1965 (dam brake) and the whole area was contaminated. Approximately 3 million m 3 of fly ash polluted cca 20 km 2 agricultural soil. The total content of arsenic in the studied samples is in the range of 1100-1139 ppm. During experiments (105-day experiment) with demineralized water released from the sample ZK2 from a depth of 60 cm (= 11.11 % from Astot 1100 ppm), during the experiment with citric acid from a given sample of 16.58 % As was obtained and during the experiment with hydrochloric acid from a given sample of 5.18 % was obtained. From the results obtained we can find that the strongest extractant was citric acid. (authors)

  18. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Directory of Open Access Journals (Sweden)

    Junga Robert

    2017-01-01

    Full Text Available This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel and a blend of coal with laying hens mature (CLHM were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC. Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20% and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  19. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Science.gov (United States)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  20. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    Science.gov (United States)

    Querejeta, Nausika; Plaza, Marta G.; Rubiera, Fernando; Pevida, Covadonga

    2016-01-01

    The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications. PMID:28773488

  1. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    Directory of Open Access Journals (Sweden)

    Nausika Querejeta

    2016-05-01

    Full Text Available The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications.

  2. Catalytic reduction of emissions from small-scale combustion of biomass

    International Nuclear Information System (INIS)

    Berg, Magnus; Gustavsson, Patrik; Berge, Niklas

    1998-01-01

    This report covers a study on the prospect of using catalytic techniques for the abatement of emissions from small-scale combustion of biomass. The results show that there is a great potential for catalytic techniques and that the emissions of primarily CO and unburned hydrocarbons can be reduced but also that indirectly the emissions of NO x can be reduced. The aim of the project was to methodically indicate the requirement that both the catalyst and the stove must meet to enable the development of low emission stoves utilising this technique. The project should also aim at the development of catalysts that meet these requirements and apply the technique on small-scale stoves. By experimental work these appliances have been evaluated and conclusions drawn on the optimisation of the technique. The project has been performed in close collaboration between TPS Termiska Processer AB, Department of Chemical Technology at KTH, Perstorp AB and CTC-PARCA AB. The development of new catalysts have been conduc ted by KTH in collaboration with Perstorp while the work performed by TPS have been directed towards the integration of the monolithic catalysts in two different stoves that have been supplied by CTC. In one of these stoves a net based catalyst developed by KATATOR have also been tested. Within the project it has been verified experimentally that in a wood fired stove a reduction of the CO-emissions of 60% can be achieved for the monolithic catalysts. This reduction could be achieved even without any optimisation of the design. Experiments in a smaller scale and under well controlled conditions have shown that almost 100% reduction of CO can be achieved. The parameters that limits the conversion over the catalyst, and thereby prevents that the targeted low emissions can be reached, have been identified as: * Short residence time, * Mass transport limitations caused by the large channel width, * Uneven temperature profile over the catalyst, and * Insufficient mixing

  3. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Czech Academy of Sciences Publication Activity Database

    Lusini, I.; Pallozi, E.; Corona, P.; Calfapietra, Carlo

    2014-01-01

    Roč. 94, sep (2014), s. 117-125 ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : forest fires * combustion chamber * combustion gases * volatile organic compounds emission Subject RIV: EH - Ecology, Behaviour Impact factor: 3.281, year: 2014

  4. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    OpenAIRE

    Junga Robert; Wzorek Małgorzata; Kaszubska Mirosława

    2017-01-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested...

  5. Strategies to reduce gaseous KCl and chlorine in deposits during combustion of biomass in fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan

    2012-11-01

    Combustion of a biomass with an enhanced content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. In this work, measures were investigated in order to decrease the risk of superheater corrosion by reducing gaseous KCl and the content of chlorine in deposits. The strategies applied were sulphation of KCl by sulphur/sulphate containing additives (i.e. elemental sulphur (S) and ammonium sulphate (AS)) and co-combustion with peat. Both sulphation of KCl and capture of potassium (K) in ash components can be of importance when peat is used. The experiments were mainly performed in a 12 MW circulation fluidised bed (CFB) boiler equipped for research purposes but also in a full-scale CFB boiler. The results were evaluated by means of IACM (on-line measurements of gaseous KCl), conventional gas analysis, deposit and corrosion probe measurements and ash analysis. Ammonium sulphate performed significantly better than elemental sulphur. Thus the presence of SO{sub 3} (i.e. AS) is of greater importance than that of SO{sub 2} (i.e. S) for sulphation of gaseous KCl and reduction of chlorine in deposits. Only a minor reduction of gaseous KCl was obtained during co-combustion with peat although chlorine in the deposits was greatly reduced. This reduction was supposedly due to capture of K by reactive components from the peat ash in parallel to sulphation of KCl. These compounds remained unidentified. The effect of volatile combustibles on the sulphation of gaseous KCl was investigated. The poorest sulphation was attained during injection of ammonium sulphate in the upper part of the combustion chamber during the lowest air excess ratio. The explanation for this is that SO{sub 3} was partly consumed by side reactions due to the presence of combustibles. These experimental results were supported by modelling, although the

  6. Particulate emissions from residential wood combustion: Final report: Norteast regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The objective of this study was to provide a resource document for the Northeastern states when pursuing the analysis of localized problems resulting from residential wood combustion. Specific tasks performed include assigning emission rates for total suspended particulates (TSP) and benzo(a)pyrene (BaP) from wood burning stoves, estimating the impact on ambient air quality from residential wood combustion and elucidating the policy options available to Northeastern states in their effort to limit any detrimental effects resulting from residential wood combustion. Ancillary tasks included providing a comprehensive review on the relevant health effects, indoor air pollution and toxic air pollutant studies. 77 refs., 11 figs., 25 tabs.

  7. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.

    Science.gov (United States)

    Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2014-12-16

    To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.

  8. Use of artificial intelligence techniques for optimisation of co-combustion of coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J. [University of Glamorgan, Pontypridd (United Kingdom). Division of Mechanical Engineering

    2006-03-15

    The optimisation of burner operation in conventional pulverised-coal-fired boilers for co-combustion applications represents a significant challenge This paper describes a strategic framework in which Artificial Intelligence (AI) techniques can be applied to solve such an optimisation problem. The effectiveness of the proposed system is demonstrated by a case study that simulates the co-combustion of coal with sewage sludge in a 500-kW pilot-scale combustion rig equipped with a swirl stabilised low-NOx burner. A series of Computational Fluid Dynamics (CFD) simulations were performed to generate data for different operating conditions, which were then used to train several Artificial Neural Networks (ANNs) to predict the co-combustion performance. Once trained, the ANNs were able to make estimations of unseen situations in a fraction of the time taken by the CFD simulation. Consequently, the networks were capable of representing the underlying physics of the CFD models and could be executed efficiently for a large number of iterations as required by optimisation techniques based on Evolutionary Algorithms (EAs). Four operating parameters of the burner, namely the swirl angles and flow rates of the secondary and tertiary combustion air were optimised with the objective of minimising the NOx and CO emissions as well as the unburned carbon at the furnace exit. The results suggest that ANNs combined with EAs provide a useful tool for optimising co-combustion processes.

  9. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Science.gov (United States)

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  10. Combustibility of biomass from wet fens in Belarus and its potential as a substitute for peat in fuel briquettes

    Directory of Open Access Journals (Sweden)

    W. Wichtmann

    2014-01-01

    Full Text Available Peatland drainage has caused enormous environmental problems at global scale; in particular, ongoing greenhouse gas emissions and soil degradation. In Belarus, which is rich in peatlands and a hotspot of emissions from drained peatlands, several thousand hectares have already been re-wetted but are not used productively. Moreover, vast areas of wet (undrained peatland that are designated for nature conservation are in need of mowing and biomass removal. Plants such as common reed (Phragmites australis, reed canary grass (Phalaris arundinacea and sedges (Carex spp. which frequently dominate these areas could be harvested and used as fuel, potentially as a substitute for peat. In this study we analysed the yield and combustibility of late harvests in March/April 2009 and 2010. The yields of 3.7–11.7 t DM ha-1 were within the range reported from other studies on wetland plants. Concentrations of Cl, S, N, P, C, Ca, K, Mg and Na, as well as water and ash contents, indicated similar or better combustibility when compared to other straw-like (graminaceous plants such as Miscanthus. The full replacement of peat fuel by biomass from wet peatlands in Belarus would require an area of 680,000 ha, i.e. 'only' half of the peatland that has been drained for agriculture.

  11. Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Luxa, Jan; Bartůněk, Vilém; Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    In this paper, we would like to demonstrate that biomass ash with appropriate composition can be used for the fabrication of high performance composites. Biomass ash from wooden chips and packed wheat straw was characterized using XRF and XRD. While the biomass ash contained high amount of carbon, it was thermally treated in order to reduce carbon content. The chemical and phase composition of treated biomass ash was again analyzed in detail by XRF and XRD. Moreover, the thermal treatment process was analyzed using STA. In the next step, the pozzolanic activity was analyzed using Frattini test. Potentiometric method was used for pH measurement. Since the both biomass ashes were pozzolana active, they are potentially suitable as a pozzolana active admixture in the cement, lime and alkali activated aluminosilicate composites.

  12. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  13. Laboratory Studies of Water Uptake by Biomass Burning Smoke: Role of Fuel Inorganic Content, Combustion Phase and Aging

    Science.gov (United States)

    Dubey, M. K.; Bixler, S. L.; Romonosky, D.; Lam, J.; Carrico, C.; Aiken, A. C.

    2017-12-01

    Biomass burning aerosol emissions have substantially increased with observed warming and drying in the southwestern US. While wildfires are projected to intensify missing knowledge on the aerosols hampers assessments. Observations demonstrate that enhanced light absorption by coated black carbon and brown carbon can offset the cooling effects of organic aerosols in wildfires. However, if mixing processes that enhance this absorption reduce the aerosol lifetime it would lower their atmospheric burden. In order to elucidate mechanisms regulating this tradeoff we performed laboratory studies of smoke from biomass burning. We focus on aerosol optical properties and their hygroscopic response. Fresh emissions from burning 30 fuels under flaming and smoldering conditions were investigated. We measured aerosol absorption, scattering and extinction at multiple wavelengths, water uptake at 85% relative humidity (fRH85%) with a humidity controlled dual nephelometer, and black carbon mass with a SP2. Trace gases and the ionic content of the fuel and smoke were also measured We find that whereas the optical properties of smoke were strongly dictated by the flaming versus smoldering nature of the burn, the observed hygroscopicity was intimately linked to the chemical composition of the fuel. The mean hygroscopicity ranged from nearly hydrophobic (fRH85% = 1) to very hydrophilic (fRH85% = 2.1) values typical of pure deliquescent salts. The k values varied from 0.004 to 0.18 and correlated well with inorganic content. Inorganic fuel content was the key driver of hygroscopicity with combustion phase playing a secondary but important role ( 20%). Flaming combustion promoted hygroscopicity by generating refractory black carbon and ions. Smoldering combustion suppressed hygroscopicity by producing hydrogenated organic species. Wildfire smoke was hydrophobic since the evergreen species with low inorganic content dominated in these fires. We also quantify the mass absorption cross

  14. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    International Nuclear Information System (INIS)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong

    2013-01-01

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2–4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  16. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    Science.gov (United States)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong

    2013-08-01

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2-4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  17. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    Science.gov (United States)

    Gavin R. McMeeking; Sonia M. Kreidenweis; Stephen Baker; Christian M. Carrico; Judith C. Chow; Jeffrey L. Collett; Wei Min Hao; Amanda S. Holden; Thomas W. Kirchstetter; William C. Malm; Hans Moosmuller; Amy P. Sullivan; Cyle E. Wold

    2009-01-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission...

  18. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  19. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    Science.gov (United States)

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-04-14

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2

  20. Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry.

    Science.gov (United States)

    Lundin, Lisa; Gomez-Rico, Maria Francisca; Forsberg, Christer; Nordenskjöld, Carl; Jansson, Stina

    2013-05-01

    The use of waste wood as an energy carrier has increased during the last decade. However, elevated levels of alkali metals and chlorine in waste wood compared to virgin biomass can cause increased deposit formation and higher concentrations of organic pollutants. In this study, we investigated the effect of the ChlorOut technique on concentrations of organic pollutants. Ammonium sulfate was injected into the combustion system to inhibit formation of KCl (which causes deposits) and persistent organic pollutants, namely polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs). The results showed that concentrations of the toxic congeners of PCDD, PCDF and PCB decreased in the presence of ammonium sulfate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  2. Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels

    DEFF Research Database (Denmark)

    Lucassen, Arnas; Zhang, Kuiwen; Warkentin, Julia

    2012-01-01

    Laminar premixed flames of the two smallest isomeric amines, dimethylamine and ethylamine, were investigated under one-dimensional low-pressure (40mbar) conditions with the aim to elucidate pathways that may contribute to fuel-nitrogen conversion in the combustion of biomass. For this, identical...... flames of both fuels diluted with 25% Ar were studied for three different stoichiometries (Φ=0.8, 1.0, and 1.3) using in situ molecular-beam mass spectrometry (MBMS). Quantitative mole fractions of reactants, products and numerous stable and reactive intermediates were determined by electron ionization...... (EI) MBMS with high mass resolution to separate overlapping features from species with different heavy elements by exact mass. Species assignment was assisted by using single-photon vacuum-ultraviolet (VUV) photoionization (PI) MBMS. The results indicate formation of a number of nitrogenated...

  3. Three-dimensional combustion modelling of a biomass fired pulverized fuel boiler

    OpenAIRE

    Stastny, M.;Ahnert, F.;Spliethoff, H.

    2017-01-01

    A Computational fluid dynamic (CFD) model was applied for a 200 MW pulverised fuel boiler. Peat, demolition wood and wood residuals were used as fuel. The computer code FLUENT was used for the modelling of the combustion process inside the boiler. The RNG k-epsilon turbulence model together with wall functions was adapted for characterization of the flue gas behaviour. Reaction between fuel and oxidizer was modelled using the mixture-fraction/PDF approach. The CFD calculations were compared w...

  4. Biomass waste carbon materials for post-combustion CO2 capture

    OpenAIRE

    Calvo-Muñoz, Elisa; García-Mateos, Francisco J.; Rosas, Juana M.; Rodríguez-Mirasol, J.; Cordero, Tomás

    2016-01-01

    Low-carbon energy systems based on carbon capture and storage (CCS) have become of great interest due to the imperative necessity of mitigating the carbon footprint derived from the currently fossil fuels-based energy technologies. In this sense, post-combustion CO2 adsorption over porous solids results particularly attractive from several viewpoints. In a green context, the use of carbon-based materials as adsorbents would entail important economic and environmental profits, such as the valo...

  5. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  6. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jakobsen, Jon Geest; Frandsen, Flemming

    2011-01-01

    ranging from 500 to 1150 °C, under both pyrolysis and combustion atmospheres. The volatilized material was quantified by means of mass balances based on char and ash elemental analysis, compared to a corresponding feedstock fuel analysis. Close relations between the observed K and Cl release are found....... The silicate/ alumina chemistry is found to play a significant role in the alkali retention. The Si-rich sample is capable of retaining all excess K not released as KCl....

  7. Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char.

    Science.gov (United States)

    Deng, Shuanghui; Tan, Houzhang; Wang, Xuebin; Yang, Fuxin; Cao, Ruijie; Wang, Zhao; Ruan, Renhui

    2017-09-01

    Gaining the valuable fuels from sewage sludge is a promising method. In this work, the fast pyrolysis characteristics of sewage sludge (SS), wheat straw (WS) and their mixtures in different proportions were carried out in a drop-tube reactor. The combustion reactivity of the residual char obtained was investigated in a thermogravimetric analyzer (TGA). Results indicate that SS and WS at different pyrolysis temperatures yielded different characteristic gas compositions and product distributions. The co-pyrolysis of SS with WS showed that there existed a synergistic effect in terms of higher gas and bio-oil yields and lower char yield, especially at the WS adding percentage of 80wt%. The addition of WS to SS increased the carbon content in the SS char and improved char porous structures, resulting in an improvement in the combustion reactivity of the SS char. The research results can be used to promote co-utilization of sewage sludge and biomass. Copyright © 2017. Published by Elsevier Ltd.

  8. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  9. Analysis of unburned carbon in industrial ashes from biomass combustion by thermogravimetric method using Boudouard reaction

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Náhunková, Jana; Žaloudková, Margit

    2014-01-01

    Roč. 575, JAN (2014), s. 188-194 ISSN 0040-6031 R&D Projects: GA MZe QI102A207 Institutional support: RVO:67985891 Keywords : unburned carbon * biomass * ash * thermogravimetry Subject RIV: GD - Fertilization, Irrigation, Soil Processing Impact factor: 2.184, year: 2014 http://www.sciencedirect.com/science/article/pii/S0040603113005455

  10. Biomass-based gasifiers for internal combustion (IC) engines—A ...

    Indian Academy of Sciences (India)

    though each of the above energy sources has a niche market, biomass has been playing a key role. ∗. For correspondence. 461 ..... Great sensitivity to tar and moisture and moisture content of fuel ..... The fundamental information obtained in the gasification of each component could possibly be used to predict the ...

  11. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    Science.gov (United States)

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    Directory of Open Access Journals (Sweden)

    Chang-Sang Cho

    2012-01-01

    Full Text Available This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4, Nitrous oxide (N2O. The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF, RDF and Refused Plastic Fuel (RPF of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ and 4.0 kg/TJ (2.9–5.3 kg/TJ within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  13. The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim

    2010-01-01

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NOx combustion technologies. In this work, pulverized fuel has...... by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA...... adsorption capacity based on measurements on a carbon black. The NOx formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NOx formation. The type of fuel had high impact on the AEA adsorption behavior of the ash...

  14. Effect of torrefaction pre-treatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue

    Directory of Open Access Journals (Sweden)

    Amira Atan Nor

    2018-01-01

    Full Text Available Biomass is an alternative renewable energy sources that can generates energy almost same as fossil fuel. The depletion sources of fossil fuel had increase the potential use of biomass energy. In Malaysia, rice husk and banana residues are abundantly left and not treated with proper disposal method which later may contribute to environment and health problems. Thus the development of biomass composite briquette made from rice husk and banana residue is one of the potential ways to reduce the problems and hence may contribute the better way to treat the waste by recycling the waste into a form of biomass product. The biomass briquettes are used for thermal applications because it can produce a complete combustion as it has a consistent quality and high burning efficiency. However, the quality of the biomass briquette can be added by application of torrefaction pre-treatment method. Torrefaction is a thermal method that can produce more high quality of the briquette with high calorific value, high fixed carbon content, low volatile matter, and low ash content. This study was conducted to assess the physical and combustion characteristic of the biomass briquette from rice husk and banana residue which was produced through torrefaction process. The biomass briquette, were densified by using hot press machine with temperature of 180°C for about 30 minutes. The briquette produce are 150 μm in particle size with varies in mixing ratio of rice husk to banana residue which are 100:0, 80:20 and 60:40. After the briquetting process, the biomass fuel briquettes have been undergoes parameter testing and the data have been analysed. Result showed the best biomass briquette is developed from torrefied rice husk and banana residue mixed at ratio of 60:40. Moreover, SEM image reveal that torrefaction pre-treatment has shrinkage the fibres size which confirming the thermal stability of the briquette.

  15. Influence of forest biomass grown in fertilised soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K.; Orjala, M. [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    This presentation describes research carried out by VTT Energy and METLA during 1996, as part of the collaborative EU project involving Finland, Portugal and Spain. The main objectives of this project are to carry out experimental studies of both combustion and gasification under atmospheric (Portugal and Spain) and pressurised conditions (Finland) using biomass from different countries, namely Finland, Portugal and Spain. This was to determine the influence of biomass fertilising conditions on the process itself and the impact on the integrated energy production facilities, such as gas turbines. The aim of the research was carried out during 1996: (1) To complete the biomass collection, analyses and selection of the samples for combustion and gasification tests. This task has been carried out in co-operation with VTT and METLA, (2) To start the combustion and gasification tests under pressurised and atmospheric conditions. The combustion research in Finland is being performed in pressurised entrained flow reactor at VTT in Jyvaeskylae and the gasification research is being conducted at VTT in Espoo. The collection of biomass samples has been completed. The analyses of the samples show that for instance potassium and phosphorus content will be increased by about 30-50 % due to fertilisation. In the ash fusion tests, the ash from fertilised bark and branches and needles may start to soften already at 900 deg C under reducing conditions depending on the composition of the ash. In oxidising atmospheres the ash softening seems to occur at higher temperatures. Preliminary results indicate that the fertilisation may have an influence on the combustion process

  16. Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia

    Science.gov (United States)

    Shea, Ronald W.; Shea, Barbara W.; Kauffman, J. Boone; Ward, Darold E.; Haskins, Craig I.; Scholes, Mary C.

    1996-10-01

    Fires are dominant factors in shaping the structure and composition of vegetation in African savanna ecosystems. Emissions such as CO2, NOx, CH4, and other compounds originating from these fires are suspected to contribute substantially to changes in global biogeochemical processes. Limited quantitative data exist detailing characteristics of biomass, burning conditions, and the postfire environment in African savannas. Fourteen test sites, differentiated by distinct burn frequency histories and land-use patterns, were established and burned during August and September 1992 in savanna parklands of South Africa and savanna woodlands of Zambia. Vegetation physiognomy, available fuel loads, the levels of biomass consumed by fire, environmental conditions, and fire behavior are described. In the South African sites, total aboveground fuel loads ranged from 2218 to 5492 kg ha-1 where fire return intervals were 1-4 years and exceeded 7000 kg ha-1 at a site subjected to 38 years of fire exclusion. However, fireline intensity was only 1419 kW m-1 at the fire exclusion site, while ranging from 480 to 6130 kW m-1 among the frequent fire sites. In Zambia, total aboveground fuel loads ranged from 3164 kg ha-1 in a hydromorphic grassland to 7343 kg ha-1 in a fallow shifting cultivation site. Dormant grass and litter constituted 70-98% of the total fuel load among all sites. Although downed woody debris was a relatively minor fuel component at most sites, it constituted 43-57% of the total fuel load in the fire exclusion and shifting cultivation sites. Fire line intensity ranged between 1734 and 4061 kW m-1 among all Zambian sites. Mean grass consumption generally exceeded 95%, while downed woody debris consumption ranged from 3 to 73% at all sites. In tropical savannas and savanna woodlands of southern Africa, differences in environmental conditions, land- use patterns, and fire regimes influence vegetation characteristics and thus influence fire behavior and biomass

  17. An example of environmental applications of PTR-MS: characterization of pollution outflow from India and Arabia - biomass burning and fossil fuel combustion

    International Nuclear Information System (INIS)

    Wisthaler, A.; Hansel, A.; Stehr, J.W.; Dickerson, R.R.; Guazzotti, S.A.; Prather, K.A.

    2002-01-01

    Full text: One objective of the Indian Ocean Experiment (INDOEX 1999) was to characterize the chemical composition of pollution outflow from South Asia. Real-time single particle analysis (ATOFMS, Univ. of California- Riverside), CO analysis (Nondispersive Infrared Gas Filter Correlation Photometer, Univ. of Maryland) and fast-response VOC measurements (PTR-MS, Univ. of Innsbruck) measurements were performed onboard the NOAA R/V Ronald H. Brown. Gas phase and aerosol chemical composition of encountered air parcels changed according to their geographic origin traced by backtrajectory analysis (continental air from Arabia and India; maritime air). The relative strength of combustion related pollution sources (biomass burning (BB) vs. fossil fuel (FF) combustion) was determined from the relative abundance of different tracers: acetonitrile (BB), CO (BB and FF), submicron particles containing carbon but no potassium (FF), submicron particles containing carbon and potassium (BB and coal combustion), submicron particles containing carbon, potassium and lithium (coal combustion). Arabian air clearly reflected the signature of fossil fuel combustion, while air from the Indian subcontinent was strongly influenced by biomass burning. (author)

  18. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... showed that guaiacol formed significant amount of deposits. The structure observed was a lacquer type of deposit. It was determined that there was no distinct deposit formation due to phenol. Experiments were conducted with a 0.48 litre one-cylinder high compression ratio SI engine fueled by synthetic...... producer gas. Known quantities of tar compounds were added to the fuel gas and the CCD were examined. The experiments showed significant formation of deposits when guaiacol was added to the fuel, whereas for phenol only minor CCD formation was observed. Particulate matter in the exhaust gas was sampled...

  19. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Ogunkoya, Dolanimi; Fang, Tiegang

    2015-01-01

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO 2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  20. Experimental investigation on combustion and heat transfer characteristics in a furnace fueled with unconventional biomass fuels (date stones and palm stalks)

    International Nuclear Information System (INIS)

    Al-Omari, S.-A.B.

    2006-01-01

    The combustion of date stones and palm stalks in a small scale furnace with a conical solid fuel bed is investigated experimentally. This investigation (to the best of the knowledge of the author) is the first addressing date stones as a new renewable energy source. Different experimental conditions are investigated where different fuel feed conditions and different combustion air flow rates are considered. The major results are given in terms of the fuel reduction rates and the heat transferred to the cooling water flowing in a water jacket around the furnace as functions of time. Combustion of the biomass fuels considered here in the investigated furnace is initiated by using LPG fuel as a starter. The hot products of LPG combustion, which is taking place in a burner built prior to the investigated solid fuel furnace, are allowed to penetrate the conical fuel bed for 2-3 min from its bottom base in the upward direction, causing effective heating and gasification and pyrolysis of the solid fuel in the bed to take place. The resulting combustible gases mix with the combustion air and subsequently are ignited by an external ignition source. The results of the present study highlight date stones as a renewable energy source with a good potential

  1. Health effects engineering: Perspectives for environmental health and environmental engineering studies-domestic biomass combustion as an example

    International Nuclear Information System (INIS)

    Gao Xiang; Yu Qi; Chen Limin

    2007-01-01

    Health effects engineering (HEE) is a newly developed research field, which involves collaboration with environmental scientists, engineering researchers, and toxicologists. By employing the methods of HEE, one can not only confirm which attributes of the project are likely to contribute to certain health effects, but can also get rid of the adverse health effects by engineering technologies. HEE is thought to be particularly important to domestic projects in which there is a lack of environmental assessment. This paper presented the authors' viewpoints of the principles of HEE in the field of the environmental health and engineering studies by using programs of domestic biomass combustion as an example. The authors showed that there are three sub-fields of HEE, which are as follows: engineering behavior, the pollution characteristics, and the health effects. The authors conclude that the principles of HEE compose a helix with the studies in the fields of environmental science, health, and engineering, and give suggestions on how to perform HEE in a practical field

  2. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    Scala, Fabrizio; Chirone, Riccardo

    2008-01-01

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  3. NOx emissions and thermal efficiencies of small scale biomass-fuelled combustion plant with reference to process industries in a developing country

    International Nuclear Information System (INIS)

    Tariq, A.S.; Purvis, M.R.I.

    1996-01-01

    Solid biomass materials are an important industrial fuel in many developing countries and also show good potential for usage in Europe within a future mix of renewable energy resources. The sustainable use of wood fuels for combustion relies on operation of plant with acceptable thermal efficiency. There is a clear link between plant efficiency and environmental impacts due to air pollution and deforestation. To supplement a somewhat sparse literature on thermal efficiencies and nitrogen oxide emissions from biomass-fuelled plants in developing countries, this paper presents results for tests carried out on 14 combustion units obtained during field trials in Sri Lanka. The plants tested comprised steam boilers and process air heaters. Biomass fuels included: rubber-wood, fuelwood from natural forests; coconut shells; rice husks; and sugar can bagasse. Average NO x (NO and NO 2 ) emissions for the plants were found to be 47 gNO 2 GJ -1 with 18% conversion of fuel nitrogen. The former value is the range of NO x emission values quoted for combustion of coal in grate-fired systems; some oil-fired systems and systems operating on natural gas, but is less than the emission levels for the combustion of pulverized fuel and heavy fuel oil. This value is significantly within current European standards for NO x emission from large combustion plants. Average thermal efficiency of the plants was found to be 50%. Observations made on operational practices demonstrated that there is considerable scope for the improvement of this thermal efficiency value by plant supervisor training, drying of fuelwood and the use of simple instruments for monitoring plant performance. (Author)

  4. Characterization of Dried and Torrefied Arundo Donax Biomass for Inorganic Species Prior to Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Johnson, Bradley R.; Cabe, James E.

    2012-08-01

    Portland General Electric (PGE) potentially plans to replace the coal with torrefied Arundo donax for their Boardman coal-fired power plant by 2020. Since there is only a limited amount of experience with this high yield energy crop, PGE would like to characterize raw and torrefied Arundo before a test burn and therefore avoid possible ash related operational problems such as slagging, deposit formation and corrosion. This report describes the results from characterization of ground and cross-sectioned samples of Arundo with a high-resolution scanning electron microscopy and energy dispersive spectroscopy, and also includes analytical results from a short water-leaching test for concentrations of Ca, Mg, K, Na, S, and Cl in the non-leached and leached Arundo and leachates. SEM-EDS analysis of torrefied Arundo revealed that condensation of volatile components during torrefaction can result in their undesirable re-deposition on the outside surfaces in the form of amorphous or crystallized clusters with a size from a few µm’s to as large as 100 µm. A short exposure of Arundo to water resulted in an efficient removal of volatile species from the raw and torrefied Arundo, e.g., ~ 98 wt% of total K and Cl, and ~75 wt% of total S were removed from raw Arundo, and more than 90 wt% of total K and Cl, and 70 wt% of S from torrefied Arundo, suggesting that water-leaching of Arundo before combustion can be an effective pre-treatment method because high concentrations of Cl increase emissions of HCl, and in combination with K can form large amounts of KCl deposits on boiler surfaces and in combination with H2O or SO3 cause corrosion.

  5. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  6. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    Albalak, R.; Haber, M.

    1999-01-01

    PM 10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM 10 concentrations were 1830 and 280 microg/m 3 and geometric mean home concentrations were 280 and 440 microg/m 3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM 10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h -1 m -3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  7. Increased combustion stability in modulating biomass boilers for district heating systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zethraeus, Bjoern; Olsson, Pernilla; Gummesson, Martin [Vaexjoe Univ. (Sweden). Dep. of Bioenergy Technology

    2002-04-01

    The ultimate aim of the development work performed at ITN was to provide a tool for the boiler designer, a tool to make good estimates as to the environmental performance of different boiler designs. In the longer perspective, such a predictive model may also be developed into a process control system predictor and thus improve boiler control with respect to dynamic mixing imperfections. To fulfil this aim there also has to be available a sufficiently fast measurement technique and part of ITN's work aimed at demonstrating that by digital methods may the time resolution of measured data be improved. The main deliverables from ITN were planned to be: A description of an algorithm to improve the time resolution of measured data by aid of digital back-calculation to provide measurement data with a time resolution comparable to the computational model with the lowest possible demands on measurement frequency. A transportable computer code to describe the dynamic behaviour of biomass-fired boilers with respect to hydrocarbon-, CO- and NO{sub x}-emissions. The program should be able to predict the distribution of concentrations of these gas components in a reasonably short computing time. An algorithm based on the use of Fourier transforms has been derived and tested of-line. Provided the gas analysis sampling system has a time constant r for its low-pass characteristic, even noisy signals may be reconstructed into time constant {tau}/2 if a clever filter is used to improve the signal/noise ratio. Further improvement is theoretically possible - but seems not realistic in practical cases. A computer code has been produced in MATLAB, a code that reproduces the dynamic mixing behaviour of realistic boilers. The most fundamental assumptions for the code have not been thoroughly verified but a number of comparisons have been made to different boilers and seem to indicate that the predictions are qualitatively correct. The code is based on a constant flow of fuel

  8. Development of generalised model for grate combustion of biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, L.

    2007-02-15

    This project has been divided into two main parts, one of which has focused on modelling and one on designing and constructing a grate fired biomass test rig. The modelling effort has been defined due to a need for improved knowledge of the transport and conversion processes within the bed layer for two reasons: 1) to improve emission understanding and reduction measures and 2) to improve boundary conditions for CFD-based furnace modelling. The selected approach has been based on a diffusion coefficient formulation, where conservation equations for the concentration of fuel are solved in a spatially resolved grid, much in the same manner as in a finite volume CFD code. Within this porous layer of fuel, gas flows according to the Ergun equation. The diffusion coefficient links the properties of the fuel to the grate type and vibration mode, and is determined for each combination of fuel, grate and vibration mode. In this work, 3 grates have been tested as well as 4) types of fuel, drinking straw, wood beads, straw pellets and wood pellets. Although much useful information and knowledge has been obtained on transport processes in fuel layers, the model has proved to be less than perfect, and the recommendation is not to continue along this path. New visual data on the motion of straw on vibrating grates indicate that a diffusion governed motion does not very well represent the transport. Furthermore, it is very difficult to obtain the diffusion coefficient in other places than the surface layer of the grate, and it is not likely that this is representative for the motion within the layer. Finally, as the model complexity grows, model turnover time increases to a level where it is comparable to that of the full furnace model. In order to proceed and address the goals of the first paragraph, it is recommended to return to either a walking column approach or even some other, relatively simple method of prediction, and combine this with a form of randomness, to mimic the

  9. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  10. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy-fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 3.752, year: 2016

  11. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    Science.gov (United States)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  12. Regional assessment of woody biomass physical availability as an energy feedstock for combined combustion in the US northern region

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Patrick Miles; Stephen Shifley; Nianfu Song; Hank Stelzer

    2012-01-01

    Woody biomass is a renewable energy feedstock with the potential to reduce current use of nonrenewable fossil fuels. We estimated the physical availability of woody biomass for cocombustion at coal-fired electricity plants in the 20-state US northern region. First, we estimated the total amount of woody biomass needed to replace total annual coal-based electricity...

  13. Characterization and Mutagenicity of Biomass Smoke from Peat and Red Oak Fuel under Smolder and Flame Combustions

    Science.gov (United States)

    Although wildfire smoke is known to cause adverse health effects, less is known about the relative effects of wildfire smoke from different fuel types or combustion conditions. In this study, we describe a novel in-tandem application of controlled combustion and cryo-trapping tec...

  14. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  15. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  16. Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004-2009.

    Science.gov (United States)

    Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J

    2015-05-01

    Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR  ≥  75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR  ≥  75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural

  17. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  18. Ecophysiological and biochemical traits of three herbaceous plants growing on the disposed coal combustion fly ash of different weathering stage

    Directory of Open Access Journals (Sweden)

    Gajić Gordana

    2013-01-01

    Full Text Available The ecophysiological and biochemical traits of Calamagrostis epigejos (Roth. Festuca rubra L. and Oenothera biennis L. growing on two fly ash lagoons of different weathering stage (L1-3 years and L2-11 years of the “Nikola Tesla- A” thermoelectric plant (Obrenovac, Serbia were studied. Species-dependent variations were observed at the L1 lagoon; the greatest vitality (Fv/Fm and Fm/Fo followed by higher photopigment and total phenolic contents were measured in O. biennis in relation to C. epigejos (p<0.001 and F. rubra (p<0.001. At the L2 site, higher vitality was found in O. biennis (p<0.001 and F. rubra (p<0.01 compared to C. epigejos. O. biennis had the highest photosynthetic capacity. The results obtained in this study indicate that all examined species maintained a level of photosynthesis that allowed them to survive and grow under the stressful conditions in ash lagoons, albeit with lower than optimal success. [Projekat Ministarstva nauke Republike Srbije, br. 173018

  19. Combustion gas from biomass - innovative plant concepts on the basis of circulating fluidized bed gasification; Brenngas aus Biomasse - innovative Anlagenkonzepte auf Basis der Zirkulierenden Wirbelschichtvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-09-01

    The contribution describes the applications of the Lurgi-ZWS gas generator. There are three main fields of application: Direct feeding of combustion gas, e.g. into a rotary kiln, as a substitute for coal or oil, without either dust filtering or gas purification. - Feeding of the combustion gas into the steam generator of a coal power plant after dust filtering and, if necessar, filtering of NH{sub 3} or H{sub 2}S. - Combustion in a gas turbine or gas engine after gas purification according to specifications. The applications are described for several exemplary projects. (orig./SR) [Deutsch] Im folgenden wird ueber die Anwendung des Lurgi-ZWS-Gaserzeugers berichtet. Nach heutiger Sicht stehen drei Anwendungsgebiete im Vordergrund: - direkte Einspeisung des Brenngases in z.B. einen Zementdrehrohrofen zur Substitution von Kohle oder Oel, ohne Entstaubung und Gasreinigung. - Einspeisung des Brenngases nach Entstaubung und gegebenenfalls Entfernung weiterer Komponenten wie NH{sub 3} oder H{sub 2}S in den Dampferzeuger eines Kohlekraftwerkes - Einsatz des Brenngases in einer Gasturbine oder Gasmotor nach spezifikationsgerechter Gasreinigung. Die aufgefuehrten Einsatzmoeglichkeiten werden am Beispiel von Projekten beschrieben. (orig./SR)

  20. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H

  1. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Directory of Open Access Journals (Sweden)

    X. Fan

    2016-10-01

    Full Text Available Humic-like substances (HULIS in smoke fine particulate matter (PM2.5 emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch and fossil fuels (lignite coal and diesel fuel were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV–vis (ultraviolet–visible spectroscopy, excitation–emission matrix (EEM fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2–23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0–21.7 and 56.9–66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for  ∼  0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV–vis spectra, a distinct band at λex∕λem ≈  280∕350 nm in EEM spectra, lower H ∕ C and O ∕ C molar ratios, and a high content of [Ar–H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS

  2. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Hazem [Farmingdale State College, NY (United States)

    2017-03-10

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as well as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.

  3. Identification of levoglucosan and related steroisomers in fog water as a biomass combustion tracer by ESI-MS/MS.

    Science.gov (United States)

    Palma, Pierangela; Cappiello, Achille; De Simonii, Elisa; Mangani, Filippo; Trufelli, Helga; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro

    2004-12-01

    A conspicuous fraction of the water soluble organic compounds (WSOC) in fog and fine aerosol samples is composed by monosaccharide anhydrides, such as levoglucosan and its stereoisomers, galactosan and mannosan. Levoglucosan is produced exclusively during wood combustion processes, making it a very useful tracer for plant combustion emissions in the atmosphere. This paper describes a new experimental approach, based on electrospray-tandem mass spectrometry (ESI-MS/MS), for the identification of levoglucosan in fog water samples. The analytical method proposed allows to identify the specific sugar anhydrides directly in the liquid phase without the need of any derivatization process.

  4. Fly Ash Formation during Suspension-Firing of Biomass. Effects of Residence Time and Fuel-Type

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    particles were subjected to various analyses, including char burnout level, particle size distribution, elemental composition, and particle morphology and composition. Furthermore, the transient release, i.e. the vaporization of the flame-volatile inorganic elements K, Cl and S, from the burning fuel...... particles to the gas phase, has been quantified by using two different calculation methods. The ash formation mechanisms were found to be quite similar for straw and wood. The degree of conversion (char burn-out level) was generally good at residence times ≥ 1s. The size distribution of the residual fly ash...

  5. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    Science.gov (United States)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  6. Elephant grass genotypes for bioenergy production by direct biomass combustion Genótipos de capim-elefante para produção de bioenergia por combustão direta da biomassa

    Directory of Open Access Journals (Sweden)

    Rafael Fiusa de Morais

    2009-02-01

    Full Text Available The objective of this work was to evaluate elephant grass (Pennisetum purpureum Schum. genotypes for bioenergy production by direct biomass combustion. Five elephant grass genotypes grown in two different soil types, both of low fertility, were evaluated. The experiment was carried out at Embrapa Agrobiologia field station in Seropédica, RJ, Brazil. The design was in randomized complete blocks, with split plots and four replicates. The genotypes studied were Cameroon, Bag 02, Gramafante, Roxo and CNPGL F06-3. Evaluations were made for biomass production, total biomass nitrogen, biomass nitrogen from biological fixation, carbon/nitrogen and stem/leaf ratios, and contents of fiber, lignin, cellulose and ash. The dry matter yields ranged from 45 to 67 Mg ha-1. Genotype Roxo had the lowest yield and genotypes Bag 02 and Cameroon had the highest ones. The biomass nitrogen accumulation varied from 240 to 343 kg ha-1. The plant nitrogen from biological fixation was 51% in average. The carbon/nitrogen and stem/leaf ratios and the contents of fiber, lignin, cellulose and ash did not vary among the genotypes. The five genotypes are suitable for energy production through combustion.O objetivo deste trabalho foi avaliar genótipos de capim-elefante (Pennisetum purpureum Schum. quanto ao potencial para a produção de bioenergia por combustão direta da biomassa. Avaliaram-se cinco genótipos de capim-elefante, em dois solos com baixa fertilidade. Os experimentos foram conduzidos na estação experimental da Embrapa Agrobiologia, em Seropédica, RJ. O delineamento experimental foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. Os genótipos estudados foram Cameroon, Bag 02, Gramafante, Roxo e CNPGL F06-3. Determinaram-se a produção de biomassa, o acúmulo de nitrogênio na biomassa, o nitrogênio da biomassa proveniente da fixação biológica, as relações carbono/nitrogênio e talo/folha, e os teores de fibra, lignina

  7. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even....... The objective of this work was to generate novel and comprehensive data on the formation of residual fly ash during the initial stage (0.25 – 2.0 s) of suspension-firing of biomass (pulverized wood and straw). Combustion experiments were carried out with bio-dust (pulverized straw and wood), in an entrained...... flow reactor, simulating full-scale suspension-firing of biomass. By the use of a movable, cooled and quenched gas/ particle sampling probe, samples were collected at different positions along the vertical axis in the reactor, corresponding to gas residence times, varying in the range [0.25 – 2.0 s...

  8. Prevalence of chronic obstructive pulmonary disease in rural women of Tamilnadu: implications for refining disease burden assessments attributable to household biomass combustion

    Directory of Open Access Journals (Sweden)

    Priscilla Johnson

    2011-11-01

    Full Text Available Chronic obstructive1 1This paper was orally presented in the Annual conference International Society of Environmental Epidemiology held in Pasadena in 2008. pulmonary disease (COPD is the 13th leading cause of burden of disease worldwide and is expected to become 5th by 2020. Biomass fuel combustion significantly contributes to COPD, although smoking is recognized as the most important risk factor. Rural women in developing countries bear the largest share of this burden resulting from chronic exposures to biomass fuel smoke. Although there is considerable strength of evidence for the association between COPD and biomass smoke exposure, limited information is available on the background prevalence of COPD in these populations.This study was conducted to estimate the prevalence of COPD and its associated factors among non-smoking rural women in Tiruvallur district of Tamilnadu in Southern India.This cross-sectional study was conducted among 900 non-smoking women aged above 30 years, from 45 rural villages of Tiruvallur district of Tamilnadu in Southern India in the period between January and May 2007. COPD assessments were done using a combination of clinical examination and spirometry. Logistic regression analysis was performed to examine the association between COPD and use of biomass for cooking. R software was used for statistical analysis.The overall prevalence of COPD in this study was found to be 2.44% (95% CI: 1.43–3.45. COPD prevalence was higher in biomass fuel users than the clean fuel users 2.5 vs. 2%, (OR: 1.24; 95% CI: 0.36–6.64 and it was two times higher (3% in women who spend >2 hours/day in the kitchen involved in cooking. Use of solid fuel was associated with higher risk for COPD, although no statistically significant results were obtained in this study.The estimates generated in this study will contribute significantly to the growing database of available information on COPD prevalence in rural women. Moreover, with

  9. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  10. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  11. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  12. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO 2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO x ) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO 2 ), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η e ); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO 2 concentration, HC concentration and smokiness were achieved. However, the NO x and thermo-mechanical engine load increased.

  13. Experimental study on effects of particle shape and operating conditions on combustion characteristics of single biomass particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A charge-coupled device (CCD) camera is used to record the whole...

  14. Evaluation of Planck mean coefficients for particle radiative properties in combustion environments

    Science.gov (United States)

    Hofgren, Henrik; Sundén, Bengt

    2015-04-01

    Thermal radiation is the dominating form of heat transfer in several combustion technologies that combust solid fuels, such as pulverized coal combustion and fixed bed combustion. The thermal radiation originates from the hot combustion gases and particles. For accurate modelling of thermal radiation in these environments the selection of the radiative transport model and radiative property model is important. Radiative property models for gases have received huge attention and several well documented models exist. For particles, soot has received considerable attention whereas other particles have not to a similar extent. The Planck mean coefficients are most commonly used to describe the radiative properties of the particles. For gases the Planck mean absorption coefficient is known to give large deviations from recognised exact models in predicting the radiative heat transfer. In this study the use of Planck mean coefficients for particles are investigated and compared to spectral models. Two particle mass size distributions of fly ash are used, representing biomass and coal combustion. The evaluation is conducted in several combustion-like test cases with both gases and particles. The evaluation shows that using Planck mean coefficients for particles, in combustion-like situations, can give large errors in predicting the radiative heat flux and especially the source term. A new weighted sum of grey gas approach is tested and evaluated. It includes both the particles and gases to better account for the non-greyness of the fly ash absorption coefficient.

  15. Study into the status of co-combustion of sewage sludge, biomass and household refuse in coal-fired power stations. Final report; Untersuchungen zum Stand der Mitverbrennung von Klaerschlamm, Hausmuell und Biomasse in Kohlekraftwerken. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Spliethoff, H.; Scheurer, W. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen; Seifert, H.; Richers, U. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer technische Chemie - Thermische Abfallbehandlung

    2000-03-01

    The co-combustion of wastes in power stations is an additional option for the thermal treatment of certain waste materials and thus for complying with the specifications of the German TA-Siedlungsabfall (technical directive on disposal of municipal solid waste). The present investigation compiles the status of knowledge about co-combustion of sewage sludge, biomass and selected waste materials in coal-fired power stations. The results are meant to provide extensive assistance to evaluate the processes and thus to contribute to sort out uncertainties, both on the part of power plant operators and of the authorities. Based on the information acquired, the report shall point out the gaps in knowledge, the further need for research and development and the need for action conerning the authorities. By enquiries at disposal enterprises, power station operators as well as authorities, the literature work was completed and a comprehensive view of the current situation in Germany elaborated. The report points out the legal conditions of co-combustion and supplementary fuel potentials, presents the process engineering of co-combustion, and examines the obstacles encountered during the technical conversion, the environmental questions, and the potential for co-combustion of the above materials in existing power stations. The electrical power sector is subject to strong changes due to the liberalisation of the energy market. The pressure on costs has increased and the periods available for planning are shorter. On the one hand, this arouses an increased interest in co-combustion of waste materials because of possible additional payments for the wastes. On the other hand, however, initiatives in this respect are counteracted by high investments costs necessary for the introduction of co-combustion with the existing high environmental standards. What is more, the competitive situation reduces the exchange of experience between the power station operators. Co-combustion of sewage

  16. Influence of forest biomass grown in fertilized soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K. [VTT Energy, Jyvaeskylae (Finland)

    1999-07-01

    Project has started 1995 by determination of fertilized areas in Finland, Portugal and Spain. According to the results obtained from the analysis proper amount of pine and eucalyptus samples were selected for combustion and gasification tests. After that atmospheric and pressurized combustion and gasifications tests, including few series of gas clean up tests, have been performed by INETI and VTT. The 1 MW-scale long term test, were conducted by CIEMAT. The results are indicating that fertilization increases the potassium content in trees up to 50% or more depending upon the climate and conditions in soil. Alkali release seems to be an inverse function of the pressure indicating that the highest alkali release take place under atmospheric conditions corresponding to 111 mg/Nm{sup 3} which is over 25 wt.-% of total potassium in pine and 214 mg/Nm{sup 3} which is 32 wt.-% of total potassium in eucalyptus as received in the 1 MW ABFBC-tests. The potassium release is higher than allowed for the gas turbine process. Therefore the flue gas need to be cleaned up before it enters the gas turbine. For alkali removal at the operation conditions in oxidizing environment, the sorbent technology looks promising. According to the gasification tests the alkali release seems to be somewhat lower. Using for example filter system such as ceramic cancel filter the alkali emissions can be kept below requirements for gas turbine process using temperatures between 460-480 deg C. The research conducted here shows that fertilized biomass accumulate nutrients such potassium more than the non fertilized biomasses. Also the soil conditions has an effect to that. Due to the fact that alkalies in biomass are bonded differently than that of coal, the release is also higher. It could be shown that in combined gas turbine process the release of potassium is too high and need to be removed from the flue gas. It could also be shown that alkalies can be captured between 95-100 % at high temperature

  17. Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren K.

    2008-01-01

    Grate boilers are widely used to fire biomass for heat and power production. However grate-firing systems are often reported to have relatively high un-burnout, low efficiency and high emissions, and need to be optimized and modernized. This paper presents the efforts towards a reliable baseline...... computational fluid dynamics (CFD) model for an industrial biomass-fired grate boiler, which can be used for diagnosis and optimization of the grate boiler as well as design of new grate boilers. First, based on the design conditions, a thorough sensitivity analysis is done to evaluate the relative importance...... of different factors in CFD analysis of the grate boiler. In a late stage, a two-day measuring campaign is carried out to measure the gas temperatures and gas concentrations in the boiler using a fiber optic probe connected to a Fourier transform infrared (FTIR) spectrometer. A baseline model is then defined...

  18. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  19. Study on the valorization routes of ashes from thermoelectric power plants working under mono-and co-combustion regimes

    Science.gov (United States)

    Barbosa, Rui Pedro Fernandes

    The main objective of this thesis was to study new valorization routes of ashes produced in combustion and co-combustion processes. Three main valorization pathways were analyzed: (i)production of cement mortars, (ii) production of concretes, and (iii) use as chemical agents to remove contaminants from wastewaters. Firstly, the ashes produced during the mono-combustion of coal, co-combustion of coal and meat and bone meal (MBM), and mono-combustion of MBM were characterized. The aim of this study was to understand the ashes properties in extreme levels of substitution of coal by a residue with a high contamination of specific metals. The substitution of coal by MBM produced ashes with higher content of heavy metals. Secondly, the ashes coming from an industrial power plant working under mono-combustion(coal) and co-combustion conditions (coal+sewage sludge+MBM) were studied. The use of cofuels did not promote significant changes in the chemical and ecotoxicological properties of ashes. Fly ashes were successfully stabilized/solidified in cement mortar, and bottom and circulating ashes were successfully used as raw materials in concrete. The third step involved the characterization and valorization of biomass ashes resulting from the combustion of forestry residues. The highest concentrations of metals/metalloids were found in the lowest particle size fractions of ashes. Biomass ashes successfully substituted cement and natural aggregates in concretes, without compromising their mechanical, chemical, and ecotoxicological properties. Finally, the biomass ashes were tested as chemical agents to remove contaminants from wastewaters. The removal of P, mainly phosphates, and Pb from wastewaters was assayed. Biomass ashes presented a high capacity to remove phosphates. As fly ashes were more efficient in removing phosphates, they were further used to remove Pb from wastewaters. Again, they presented a high efficiency in Pb removal. New potential valorization routes for

  20. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of North China Plain: significant contribution from coal and biomass combustions

    Science.gov (United States)

    Li, Haiyan; Zhang, Qi; Zhang, Qiang; Chen, Chunrong; Wang, Litao; Wei, Zhe; Zhou, Shan; Parworth, Caroline; Zheng, Bo; Canonaco, Francesco; Prévôt, André; Chen, Ping; Zhang, Hongliang; He, Kebin

    2017-04-01

    The North China Plain (NCP) frequently encountered heavy haze pollution in recent years, particularly during wintertime. In 2015-2016 winter, the NCP region suffered several extremely severe haze episodes with air pollution red alerts issued in many cities. In this work, we investigated the sources and aerosol evolution processes of the severe pollution episodes in Handan, a typical industrialized city in the NCP region, using real-time measurements from an intensive field campaign during the winter of 2015-2016. The average (± 1σ) concentration of submicron aerosol (PM1) during December 3, 2015 - February 5, 2016 was 187.6 (± 137.5) μg m-3, with the hourly maximum reaching 700.8 μg m-3. Organic was the most abundant component, on average accounting for 45% of total PM1 mass, followed by sulfate (15%), nitrate (14%), ammonium (12%), chloride (9%) and BC (5%). Positive matrix factorization (PMF) with multi-linear engine (ME-2) identified four major organic aerosol (OA) sources, including traffic emissions represented by a hydrocarbon-like OA (HOA, 7% of total OA), industrial and residential burning of coal represented by a coal combustion OA (CCOA, 29% of total OA), open and domestic combustion of wood and crop residuals represented by a biomass burning OA (BBOA, 25% of total OA), and formation of secondary OA (SOA) in the atmosphere represented by an oxygenated OA (OOA, 39% of total OA). Emissions of primary OA (POA), which together accounted for 61% of total OA and 27% of PM1, are a major cause of air pollution in this region during the winter. Our analysis further uncovered that, primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. However, the bulk composition of PM1 showed comparatively small variations between less polluted periods (daily PM2.5 ≤ 75 μg m-3) and severely polluted periods (daily PM2.5 > 75

  1. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion

    Science.gov (United States)

    Li, Haiyan; Zhang, Qi; Zhang, Qiang; Chen, Chunrong; Wang, Litao; Wei, Zhe; Zhou, Shan; Parworth, Caroline; Zheng, Bo; Canonaco, Francesco; Prévôt, André S. H.; Chen, Ping; Zhang, Hongliang; Wallington, Timothy J.; He, Kebin

    2017-04-01

    The North China Plain (NCP) frequently experiences heavy haze pollution, particularly during wintertime. In winter 2015-2016, the NCP region suffered several extremely severe haze episodes with air pollution red alerts issued in many cities. We have investigated the sources and aerosol evolution processes of the severe pollution episodes in Handan, a typical industrialized city in the NCP region, using real-time measurements from an intensive field campaign during the winter of 2015-2016. The average (±1σ) concentration of submicron aerosol (PM1) during 3 December 2015-5 February 2016 was 187.6 (±137.5) µg m-3, with the hourly maximum reaching 700.8 µg m-3. Organic was the most abundant component, on average accounting for 45 % of total PM1 mass, followed by sulfate (15 %), nitrate (14 %), ammonium (12 %), chloride (9 %) and black carbon (BC, 5 %). Positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm identified four major organic aerosol (OA) sources, including traffic emissions represented by a hydrocarbon-like OA (HOA, 7 % of total OA), industrial and residential burning of coal represented by a coal combustion OA (CCOA, 29 % of total OA), open and domestic combustion of wood and crop residuals represented by a biomass burning OA (BBOA, 25 % of total OA), and formation of secondary OA (SOA) in the atmosphere represented by an oxygenated OA (OOA, 39 % of total OA). Emissions of primary OA (POA), which together accounted for 61 % of total OA and 27 % of PM1, are a major cause of air pollution during the winter. Our analysis further uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. However, the bulk composition of PM1 showed comparatively small variations between less polluted periods (daily PM2. 5 ≤ 75 µg m-3) and severely polluted periods (daily PM2. 5 > 75 µg m-3

  2. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method

    Science.gov (United States)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Maenhaut, Willy; Claeys, Magda; Molnár, Mihály; Major, István; Ajtai, Tibor; Utry, Noémi; Bozóki, Zoltán

    2017-11-01

    An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m-3, respectively. The EC and organic matter (1.6 × OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36 % of the total carbon (TC = EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon-levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF) to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB) were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO) made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal

  3. A quick scan of economic value of offshore wind versus biomass co-combustion; Quick scan economische waarde van wind op zee versus biomassabijstook

    Energy Technology Data Exchange (ETDEWEB)

    Rooijers, F.J.; Bennink, D.; Blom, M.J.

    2013-05-15

    Co-combustion of biomass in conventional power stations is currently cheaper than offshore wind power. By the year 2025, though, both forms of renewable energy are expected to be similarly priced. Because offshore wind yields more added value for the Dutch economy and employment than biomass cocombustion, it would seem more logical to earmark more of the funds under the SDE (Dutch renewable energy subsidy scheme) for the former. At the request of the Netherlands Society for Nature and Environment (Natuur en Milieu) CE Delft compared the two generating options to assess how the Netherlands can boost use of renewable energy in the economically wisest manner in the years ahead. This issue is also to be discussed in upcoming consultations under the umbrella of the Netherlands Social and Economic Council (SER), where a new national energy agreement is to be hammered out [Dutch] Biomassabijstook is op dit moment goedkoper dan wind op zee. De verwachting is echter dat tegen 2025 de prijs van beide vormen van hernieuwbare energie vergelijkbaar kunnen zijn. Doordat de toegevoegde waarde voor de Nederlandse economie en werkgelegenheid van wind op zee groter is dan van biomassabijstook, lijkt het logischer dat uit de SDE-gelden meer wind op zee dan biomassa bijstook wordt betaald. Voor Natuur en Milieu heeft CE Delft een vergelijking gemaakt tussen deze twee technieken om de vraag te beantwoorden op welke economisch verstandige manier Nederland de komende jaren het gebruik van hernieuwbare energie kan realiseren. Die vraag is ook aan de orde in het SER-overleg dat de komende maand moet leiden tot een Energieakkoord.

  4. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  5. Modelling of pyrolysis of peat and biomass under combustion and gasification; Pyrolyysimalli turpeen ja biomassan poltolle ja kaasutukselle

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Haukka, P.; Vehmaan-Kreula, M. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In the model developed during the research the chemical kinetics of pyrolysis is described with `the two competing reactions model`. Heat transfer in particle consists of convection and conduction. With the help of the model all the kinetic parameters of the two pyrolysis reactions are fitted with measured values. Also simple correlations for pyrolysis of peat under fluidized bed and pulverised flame conditions are given. The effect of the heating rate can be taken into account by using two competing Arrhenius-type reactions. In this model pyrolysis is modelled by using two reactions; one for the low temperature level and the other for the high temperature level. Both of these reactions consume the same unreacted fuel and this model is able to describe the pyrolysis at different temperature levels. Pyrolysis takes place in the heating stage of the particle before heterogeneous combustion and therefore temperature and density profiles inside the particle have to be solved simultaneously. The energy and mass balance equations of the particle form a set of partial differential equations (PDE), which is solved numerically by using so called method of lines, by converting PDE into a set of ordinary differential equations (ODE). The final solution of ODEs is received by using LSODE algorithm of Hindmash. An user friendly interface for the pyrolysis model is programmed by using Visual Basic enabling convenient variation of the conditions and observation of the results

  6. Utilization of coal/biomass fly ash and bentonite as a low permeability barrier for the containment of acid-generating mine tailings

    International Nuclear Information System (INIS)

    Penney, K.; Mohamedelhassan, E.; Catalan, L.J.J.

    2009-01-01

    The control and treatment of acid mine drainage (AMD) in decommissioned mine sites is a major environmental challenge. In general, AMD has a low pH, high acidity, and elevated concentrations of heavy metals. This study investigated the use of coal/biomass fly ash (CBFA) and CBFA/bentonite mixtures as a low permeability seal to contain acid generating mine tailings and treat AMD. Although pure CBFA is effective as a reactive barrier to treat most toxic metals in AMD, its initial hydraulic conductivity exceeds the maximum regulatory requirement of 1 x 10 -7 cm/s. Therefore, 3 cases were investigated, notably CBFA only; CBFA amended with low percentages of bentonite; and layering of CBFA and CBFA amended with bentonite. Practical geoenvironmental applications for low permeability CBFA or bentonite/CBFA mixtures include a cap overlying reactive mine tailings, a containment pond liner, and a core in containment dams and dykes. Mixing 10 per cent by mass bentonite with CBFA decreased the hydraulic conductivity to 1 x 10 -7 cm/s or less throughout the entire permeation by water and AMD. The installation of a layer of pure CBFA upstream of the bentonite/CBFA mixture resulted in a further decrease in hydraulic conductivity over time by preventing the collapse of the bentonite double layer and promoting precipitation of gypsum and ettringite in the CBFA layer. The effluent from all tested bentonite/CBFA barriers met the regulatory requirements for chemical parameters, except for aluminum which was leached from the CBFA. 14 refs., 3 tabs., 10 figs.

  7. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  8. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  9. A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Rathbone; Thomas L. Robl

    2001-04-11

    Work completed in this reporting period focused on finalization of the Work and Management Plan, sample acquisition and analysis, evaluation of ammonia measurement methods, and measurement of ammonia loss from mortar. All fly ash samples have been acquired and analyzed for chemical composition and particle fineness. Three non-ammoniated fly ash samples were obtained from power plants that do not inject ammonia for NOx or particulate control, while three ammoniated fly ashes originate from plants that inject ammonia into the flue gas. The fly ash sources were selected based on their marketability as concrete admixtures and ammonia content. Coarse and fine aggregates for mortar and concrete testing have also been secured and have been thoroughly characterized using ASTM methods. Methodologies for the measurement of ammonia in the gaseous and aqueous phase have been carefully considered in the context of their suitability for use in this project. These include ammonia detection tubes, carbon impregnated with sulfuric acid (CISA) tubes, titration, and electrochemical methods. It was concluded that each of these methods is potentially useful for different aspects of the project, depending on the phase and concentration of ammonia to be measured. Preparation of fly ash-containing mortars both with and without ammonia indicated that the ammonia has no significant influence on compressive strength. Finally, measurement of ammonia loss from mortar has begun and the results of several of these experiments are included herein. It has been found that, under the laboratory curing conditions devised, ammonia release from mortar occurs at a relatively rapid rate in the first 24 hours, proceeded by a much slower, essentially linear rate. Furthermore, at the end of the three-week experiments, it was calculated that greater than 80% of the initial ammonia concentration remained within the mortar.

  10. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    Energy Technology Data Exchange (ETDEWEB)

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow

  11. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method

    Directory of Open Access Journals (Sweden)

    I. Salma

    2017-11-01

    Full Text Available An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC, organic carbon (OC, levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m−3, respectively. The EC and organic matter (1.6  ×  OC accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF combustion represented 36 % of the total carbon (TC  =  EC + OC in the PM2.5 size fraction. Biomass burning (BB was a major source (40 % for the OC in the PM2.5 size fraction, and a substantial source (11 % for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon–levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as

  12. A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Rathbone; Thomas L. Robl

    2002-10-30

    The Clean Air Act Amendments of 1990 require large reductions in emissions of NO{sub x} from coal-fired electric utility boilers. This will necessitate the use of ammonia injection, such as in selective catalytic reduction (SCR), in many power plants, resulting in the deposition of ammonia on the fly ash. The presence of ammonia could create a major barrier to fly ash utilization in concrete because of odor concerns. Although there have been limited studies of ammonia emission from concrete, little is known about the quantity of ammonia emitted during mixing and curing, and the kinetics of ammonia release. This is manifested as widely varying opinions within the concrete and ash marketing industry regarding the maximum acceptable levels of ammonia in fly ash. Therefore, practical guidelines for using ammoniated fly ash are needed in advance of the installation of many more SCR systems. The goal of this project was to develop practical guidelines for the handling and utilization of ammoniated fly ash in concrete, in order to prevent a decrease in the use of fly ash for this application. The objective was to determine the amount of ammonia that is released, over the short- and long-term, from concrete that contains ammoniated fly ash. The technical approach in this project was to measure the release of ammonia from mortar and concrete during mixing, placement, and curing. Work initially focused on laboratory mortar experiments to develop fundamental data on ammonia diffusion characteristics. Larger-scale laboratory experiments were then conducted to study the emission of ammonia from concrete containing ammoniated fly ash. The final phase comprised monitoring ammonia emissions from large concrete slabs. The data indicated that, on average, 15% of the initial ammonia was lost from concrete during 40 minutes of mixing, depending on the mix proportions and batch size. Long-term experiments indicated that ammonia diffusion from concrete was relatively slow, with greater

  13. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips

    Science.gov (United States)

    Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto

    2017-08-01

    Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.

  14. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: a dual approach based on radiocarbon and levoglucosan

    Directory of Open Access Journals (Sweden)

    L. Bonvalot

    2016-11-01

    valleys. The non-fossil carbon concentrations are strongly correlated with the levoglucosan concentrations in winter samples, suggesting that almost all of the non-fossil carbon originates from wood combustion used for heating during winter. For summer samples, the joint use of 14C and levoglucosan measurements leads to a new model to separately quantify the contributions of biomass burning and biogenic emissions in the non-fossil fraction. The comparison of the biogenic fraction with polyols (a proxy for primary soil biogenic emissions and with the temperature suggests a major influence of the secondary biogenic aerosols. Significant correlations are found between the NOx concentration and the fossil carbon concentration for all seasons and sites, confirming the relation between road traffic emissions and fossil carbon. Overall, this dual approach combining radiocarbon and levoglucosan analyses strengthens the conclusion concerning the impact of biomass burning. Combining these geochemical data serves both to detect and quantify additional carbon sources. The Arve River valley provides the first illustration of aerosols of this model.

  15. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation...... formation in suspension fired boilers. The presentation provides an overview of the knowledge obtained with respect to ash species behavior insuspension fired biomass boilers. A mechanistic understanding of the fly ash formation process in biomass fired PF boilers isobtained today. A high fraction of alkali...... salt species are released to the gas phase during the initial fuel combustion process. The salt species are present in gas phase in the boil chamberand upon cooling in the convective pass aerosols are formed. Recent studies indicates that a large fraction of the residual condensed phase ash fragments...

  16. Fly ash as a soil ameliorant for improving crop production--a review.

    Science.gov (United States)

    Jala, Sudha; Goyal, Dinesh

    2006-06-01

    Fly ash, a resultant of combustion of coal at high temperature, has been regarded as a problematic solid waste all over the world. Many possible beneficial applications of fly ash are being evaluated to minimize waste, decrease cost of disposal and provide value-added products. The conventional disposal methods for fly ash lead to degradation of arable land and contamination of the ground water. However fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of problem soils and is a source of readily available plant macro and micronutrients. In conjunction with organic manure and microbial inoculants, fly ash can enhance plant biomass production from degraded soils. Detailed studies on the nature and composition of fly ash, conducted during the latter half of the 20th century have helped in repeatedly confirming the various useful applications of this hitherto neglected industrial waste. The purpose of this paper is to review the available information on various attributes of fly ash and explore the possibility of exploiting them for agronomic advantage.

  17. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  18. A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Rathbone; Thomas L. Robl

    2002-04-11

    Work completed in this reporting period focused primarily on continuing measurements of the rate of ammonia loss from concrete, and the measurement of ammonia gas in the air above concrete and flowable fill immediately after placement. Concrete slabs were prepared to monitor the loss of ammonia during mixing, the concentration in the airspace above the slabs soon after placement, and the total quantity of ammonia evolved over a longer time period. Variables tested include temperature, ventilation rate, water:cementitious (W:C) ratio, and fly ash source. Short-term data indicate that for concrete placed in areas with poor air ventilation the fly ash NH{sub 3} concentration should not exceed about 90 to 145 mg/kg ash, depending on the water:cement ratio and the fly ash replacement rate, if a concentration of 10 ppm NH{sub 3} in the air is assumed to be the maximum acceptable level. Longer-term experiments showed that the ammonia loss rate is dependent on ammonia source (that is ammoniated ash vs. non-ammoniated ash with ammonia added to the water), and is also dependent on W:C ratio and temperature. Experiments were also conducted to study the loss of ammonia from fresh concrete during mixing. It was found that a high water:cementitious mix lost a greater percentage of ammonia than a low W:C mix, with a medium W:C mix losing an amount intermediate between these two. However, a larger batch size resulted in a smaller percentage of ammonia lost. The data suggest that a significant quantity of ammonia could be lost from Ready Mix concrete during transit, depending on the transit time, batch size, and mix proportions.

  19. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  20. Health effects engineering of coal and biomass combustion particulates: influence of zinc, sulfur and process changes on potential lung injury from inhaled ash

    Energy Technology Data Exchange (ETDEWEB)

    Art Fernandez; Jost O.L. Wendt; Mark L. Witten [University of Arizona, Tucson, AZ (US). Department of Chemical and Environmental Engineering

    2005-07-01

    This paper is concerned with health effects of the ash aerosol formed from the co-combustion of municipal sewage sludge with pulverized coal. By employing the methods of Health Effects Engineering, one can determine not only which fuel attributes are likely to contribute to lung injury, but also how tendencies of the ash to cause lung injury can be engineered out of the combustion process. Initial results showed that inhalation of ash from the co-combustion of municipal sewage sludge (MSS) and pulverized coal caused much greater lung damage in mice, as measured by lung permeability increase, than that of coal ash, or MSS ash, alone. MSS contains substantial quantities of zinc but little sulfur, while coal contains sulfur but littlezinc. Experiments were conducted to determine the health effects of combustion generated zinc particles and zinc plus sulfur particles. Zinc without sulfur led to normal behavior as far as lung permeability was concerned. Zinc with sulfur added led to the abnormal behavior noted also in the coal+MSS experiments. Therefore, the bad actor was identified to be zinc together with sulfur, and that was why the co-combustion of coal and MSS caused greater lung injury than the combustion of either fuel alone. Injection of a kaolinite sorbent downstream of the flame, but above the Zn dew point, can sequester the Zn, and react it to form a new species which was shown to be relatively benign. 18 refs., 9 figs., 1 tab.

  1. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  2. Chemical reactions in combustion of peat and biomass in two fluidized-bed boilers, CFB (25 MW) and BFB (25 MW) at Oestersund. The effect on SO2- and NOx-emissions by operating conditions and type of fuel

    International Nuclear Information System (INIS)

    Nordin, A.

    1991-03-01

    Most of the air pollutants are emitted from different combustion processes and much work is therefore needed to reduce these emissions. The processes are however extremely complex and to be able to study them, fundamental chemical and physical principles have to be taken into account. The aim of the present work has been to show the importance of equilibrium chemistry to improve the knowledge of specific combustion problems as well as the processes as a whole. This will also increase the possibilities to reduce the pollutants. The measured values from two combustion units (CFB and BFB, 25 MW) show good agreement with the corresponding calculated equilibrium values. The following are some of the more important results obtained: - By co-firing peat with biomass, the total SO 2 emissions can be reduced. The effects of variations in temperature and oxygen level on the SO 2 emissions are also reported; - The NO x emission levels agree well with the equilibrium levels, that is they increase with temperature and oxygen levels. Therefore, the amount of nitrogen in the fuel has shown to have insignificant effect in these experiments; - Initial levels of N 2 O are effectively reduced by high temperatures (> 950 deg Centigrade). (Orig.). ( 36 refs., 26 figs., 18 tabs.)

  3. Kaliophilite from fly ash: synthesis, characterization and stability

    Indian Academy of Sciences (India)

    Administrator

    hydrogen production, ammonia synthesis and catalytic combustion of diesel soot (Juntgen 1985). As for the syn- thesis, kaliophilite was mostly synthesized using flint clay or sodalite (Juntgen 1985) as raw materials and syn- thesis from fly ash has not been reported yet. Fly ash is a by-product derived from the combustion of.

  4. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sludge combustion in fluidized bed reactors at laboratory scale

    International Nuclear Information System (INIS)

    Chirone, R.; Cammarota, A.

    2001-01-01

    The combustion of a dried sewage sludge in laboratory scale fluidized bed has been studied in Naples by the Istituto di ricerche sulla combustione (Irc) in the framework of a National project named Thermal Process with Energy Recovery to be used in laboratory and pre-pilot scale apparatus. The attention has been focused on emissions of unreacted carbon as elutriated fines, on the emissions of pollutant gases and on the assessment of the inventory of fly- and bottom ashes. The combustion behaviour of sewage sludge has been compared with those of a market available Tyre Derived Fuel (TDF) and a biomass from Mediterranean area (Robinia Pseudoacacia) and with that of a South African bituminous coal. Stationary combustion tests were carried out at 850 0 C by feeding particles in the size range 0-1 mm into a bed of silica sand without any sorbent addition. The fluidized bed combustor has been operated, at a superficial gas velocity of 0.4 m/s and different excesses of air ranging between 14 and 98%. Relatively high combustion efficiency, larger than 98.9% has been obtained in experiments carried out with sewage sludge and excess of air larger than 20%. These values, are comparable with those obtained in previously experimental activity carried out under similar operative conditions with a South Africa Bituminous coal (97-98%). It is larger than those obtained by using a Tyre Derived Fuel (89-90%) and the Robinia Pseudoacacia Biomass (93-93%). The relative importance of carbon fines elutriation, CO emissions and volatile bypassing the bed in determining the loss of combustion efficiency has been evaluated for the different fuels tested [it

  6. Health effects engineering of coal and biomass combustion particulates: influence of zinc, sulfur and process changes on potential lung injury from inhaled ash

    Energy Technology Data Exchange (ETDEWEB)

    Art Fernandez; Jost O.L. Wendt; Mark L. Witten [University of Arizona, Tucson, AZ (United States). Department of Chemical and Environmental Engineering

    2003-07-01

    This paper is concerned with health effects of the ash aerosol formed from the co-combustion of municipal sewage sludge with pulverized coal. To study, and mitigate, possible lung injury caused by inhalation of these ash particles, it is useful to employ 'Health Effects Engineering', which attempts to build connections between mechanisms that form particulates during the combustion process and mechanisms that cause these ill health effects. Initial results showed that inhalation of ash from the co-combustion of municipal sewage sludge (MSS) and pulverized coal caused much greater lung damage in mice, as measured by lung permeability increase, than that of coal ash, or MSS ash, alone. MSS contains substantial quantities of zinc but little sulfur, while coal contains sulfur but little zinc. Therefore, systematic experiments were conducted to determine the health effects of combustion generated zinc particles and zinc plus sulfur particles. Zinc without sulfur led to 'normal' behavior as far as lung permeability was concerned. Zinc with sulfur added led to the 'abnormal' behavior noted also in the coal +MSS experiments. Therefore the bad actor was identified to be zinc together with sulfur, and that was why the co-combustion of coal and MSS caused greater lung injury than the combustion of either fuel alone. Health effects engineering can also be employed to diminish this health risk caused by burning fuels containing both zinc and sulfur. Injection of a kaolinite sorbent downstream of the flame, but above the Zn dew point, can sequester the Zn, and react to form a new species which was shown to be relatively benign. 18 refs., 9 figs., 1 tab.

  7. Utilização de biomassa na secagem de produtos agrícolas via gaseificação com combustão adjacente dos gases produzidos Using biomass as a fuel for drying agricultural products with a close coupled gasification/combustion system

    Directory of Open Access Journals (Sweden)

    Jadir N. Silva

    2004-08-01

    Full Text Available Este estudo determinou a viabilidade do uso de um gaseificador/combustor que utiliza tocos de eucalipto, resíduos de serraria, cavacos de lenha e sabugo de milho como combustível na secagem de produtos agrícolas. Utilizou-se o gaseificador desenvolvido por SILVA (1988 com modificações na câmara de gaseificação; área da grelha reduzida de 0,21 para 0,06 m²; adição de um revestimento envolvendo a parte superior do gaseificador, e foi colocado um registro tipo borboleta na saída da câmara de combustão. O ar aquecido no combustor foi enviado para um secador que possuía câmaras metálicas que eram removíveis, içadas por um sistema de roldanas, facilitando a homogeneização da secagem. Como teste do sistema, secou-se café com umidade inicial de 54,5% bu até 11,1 ± 1,6% bu, utilizando-se de cavacos de lenha. A temperatura do ar de secagem foi de 60 ºC, pressão estática do ar na saída do ventilador de 9 mmca e velocidade de 46,3 m³ min-1. Concluiu-se que o gaseificador, usando cavacos de eucalipto como combustível, consumiu entre 15,3 e18,8 kg h-1 de biomassa, que o equipamento é viável para a secagem de café despolpado e para outros produtos agrícolas, não o impregnando de fumaça ou outras partículas, geradas nas fornalhas de fogo direto, e que todos os combustíveis de biomassa testados são viáveis na utilização do sistema via gasificação com adjacente combustão dos gases gerados.The main objective of this research was to verify the feasibility of the use of a close coupled biomass gasification/combustion system for drying agricultural products. It was used eucalyptus stubs, hogged wood manufacturing residue, saw dust and corncobs as fuel. A gasifier developed by SILVA (1988 was modified to handle those different types of fuel. Gasification chamber was reduced by using a smaller grate of 0.06 m² and also a jacket was added to the top of the reactor to use residual heat. Heated air generated within combustor

  8. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat

    Science.gov (United States)

    Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M. O.; Helas, G.; Parmar, R.; Herrmann, H.

    2007-04-01

    We carried out a detailed size-resolved chemical characterization of particle emissions from the combustion of European conifer species, savanna grass, African hardwood, and German and Indonesian peat. Combustion particles were sampled using two sets of five-stage Berner-type cascade impactors after a buffer volume and a dilution tunnel. We determined the emission factors of water-soluble organic carbon (WSOC, 46-6700 mg kg-1, sum of five stages), water-insoluble organic carbon (WISOC, 1300-6100 mg kg-1), (apparent) elemental carbon (ECa, 490-1800 mg kg-1), inorganic ions (68-400 mg kg-1), n-alkanes (0.38-910 mg kg-1), n-alkenes (0.45-180 mg kg-1), polycyclic aromatic hydrocarbons (PAHs) (1.4-28 mg kg-1), oxy-PAHs (0.08-1.0 mg kg-1), lignin decomposition products (59-620 mg kg-1), nitrophenols (1.4-31 mg kg-1), resin acids (0-110 mg kg-1), and cellulose and hemicellulose decomposition products (540-5900 mg kg-1). The combustion and particle emission characteristics of both of peat were significantly different from those of the other biofuels. Peat burning yielded significantly higher emission factors of total fine particles in comparison to the other biofuels. Very high emission factors of n-alkanes and n-alkenes were observed from peat combustion, which may be connected to the concurrently observed "missing" CCN in peat smoke. A high level of monosaccharide anhydrides, especially levoglucosan, was detected from all types of biofuel combustion. The fractions of monosaccharide anhydrides in the emitted total carbon were higher in smaller particles (aerodynamic diameter, Dpa < 0.42 μm).

  9. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  10. Design and construction of a hybrid system of heating air by combustion of biomass and solar radiation, using phase change material (PCM as a source of thermal storage, for cassava drying

    Directory of Open Access Journals (Sweden)

    Ramiro Torres-Gallo

    2017-05-01

    Full Text Available This study consisted of designing, building and validation a hybrid system of heating air by combustion of biomass and solar radiation, using phase change material (PCM as a thermal storage source, for cassava drying, a small scale. The dryer consists of a centrifugal fan, two solar collectors, a fuel burner solid (rice husk and a tray dryer. System validation was performed drying up Yucca. The PCM allowed to follow the drying process, even when the solar radiation was below 116,22 ± 31,94 W / m2, being able to maintain drying air temperatures in the two solar collectors at 46 ± 4, 29 ° C and 51 ± 4.08 ° C for an additional 45 min. The drying time was 10 h and 45 min, the efficiency of the solar collectors was 43.91 % and the rice husk burner of 36.72 %.

  11. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  12. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    Kuprianov, Vladimir I.; Kaewklum, Rachadaporn; Chakritthakul, Songpol

    2011-01-01

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NO x emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and C x H y emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas C x H y emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O 2 , CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  13. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    Science.gov (United States)

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  15. Availability of potassium in biomass combustion ashes and gasification biochars after application to soils with variable pH and clay content

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2017-01-01

    The expansion of the bioenergy sector and adoption of novel thermal conversion technologies produce increasingly large amounts of biomass ashes and biochars. Before returning such products to agricultural soil, the plant availability of nutrients when mixing with soil should be assessed...

  16. The Effect of Applied Organic Fertilizers on the Bioavailability of Heavy Metals in Lolium Perenne, Cultivated on Fly Ash Deposits

    Directory of Open Access Journals (Sweden)

    Smaranda Mâşu

    2011-10-01

    Full Text Available The study aims to monitor the capacity of certain organic fertilizers (volcanic tuff and municipal sludge, applied as such and mixed with volcanic rocks with a high content in clinoptilolite, to determine the covering with vegetation of fly ash deposits resulted from the combustion of lignite in thermal plants. Both biosolids (20 t/ha and volcanic rock with high clinoptilolite content (5 t/ha determined the installation of a vegetative layer and diminished the soil metal bioavailability to the Lolium prerenne plant biomass. When using the organic-zeolite mixture, a synergistic effect is recorded of the two components of the treatment agent and an increase of the biomass with 448%. Moreover, the resulted biomass shows the highest reductions of metal bioaccumulations, of 38-46% for Zn and Fe, of 62% for Cu and between 82-89% for Cr, Ni and Pb.

  17. Biomass Pyrolysis in DNS of Turbulent Particle-Laden Flow

    NARCIS (Netherlands)

    Russo, E; Fröhlich, Jochen; Kuerten, Johannes G.M.; Geurts, Bernardus J.; Armenio, Vincenzo

    2015-01-01

    Biomass is important for co-firing in coal power plants thereby reducing CO2 emissions. Modeling the combustion of biomass involves various physical and chemical processes, which take place successively and even simultaneously [1, 2]. An important step in biomass combustion is pyrolysis, in which

  18. Long-term leaching of nutrients and contaminants from wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Hyks, J.; Astrup, Thomas Fruergaard

    2018-01-01

    -term leaching from these residues are needed in order to assess potential environmental impacts associated with their utilisation. Two Danish wood ash samples, one fly ash and one mixed ash (a combination of fly ash and bottom ash), were evaluated in long-term percolation column tests (up to L/S ∼2000 L......With increasing amounts of woody biomass being combusted for energy purposes worldwide, more wood ash is being generated and needs management. As an alternative to landfilling, residues may be utilised for liming and fertilising purposes on forest soils. Comprehensive evaluations of long...... and Rb were at 40–100% of their respective solid contents, followed by Ba, Cr, Sb, Sr and V at 15–40% and Al, Mg, Zn, Cd, Co, Fe, Pb, Tl, Mn and P at 

  19. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    Science.gov (United States)

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  20. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  1. Flying Scared

    DEFF Research Database (Denmark)

    Dal Sie, Marco; Josiassen, Alexander

    service quality expectations and fear of flying affect travellers' flight choices on long-haul flights. The study was set in Bangkok and primary data were obtained from a large sample of travelers departing from Suvarnabhumi Airport. While service quality emerged as a relevant factor, fear of flying didn......’t turn out as a variable affecting travellers’ choices....

  2. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  3. The UK biomass industry

    International Nuclear Information System (INIS)

    Billins, P.

    1998-01-01

    A brief review is given of the development of the biomass industry in the UK. Topics covered include poultry litter generation of electricity, gasification plants fuelled by short-rotation coppice, on-farm anaerobic digestion and specialized combustion systems, e.g. straw, wood and other agricultural wastes. (UK)

  4. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  5. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  6. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  7. Combustion noise

    Science.gov (United States)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  8. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  9. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  10. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  11. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  12. Biomass Conversion to Hydrocarbon Fuels Using the MixAlcoTM Process Conversion de la biomasse en combustibles hydrocarbonés au moyen du procédé MixAlcoTM

    Directory of Open Access Journals (Sweden)

    Taco-Vasquez S.

    2013-04-01

    Full Text Available The MixAlcoTM process converts biomass to hydrocarbons (e.g., gasoline using the following generic steps: pretreatment, fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, oligomerization and saturation. This study describes the production of bio-gasoline from chicken manure and shredded office paper, both desirable feedstocks that do not require pretreatment. Using a mixed culture of microorganisms derived from marine soil, the biomass was fermented to produce a dilute aqueous solution of carboxylate salts, which were subsequently descummed and dried. The dry salts were thermally converted to raw ketones, which were distilled to remove impurities. Using Raney nickel catalyst, the distilled ketones were hydrogenated to mixed secondary alcohols ranging from C3 to C12. Using zeolite HZSM-5 catalyst, these alcohols were oligomerized to hydrocarbons in a plug -flow reactor. Finally, these unsaturated hydrocarbons were hydrogenated to produce a mixture of hydrocarbons that can be blended into commercial gasoline. Le procédé MixAlcoTM convertit la biomasse en hydrocarbures (par exemple, en essence selon les étapes génériques suivantes : prétraitement, fermentation, écumage, déshydratation, cétonisation thermique, distillation, hydrogénation, oligomérisation et saturation. Cette étude décrit la production de bioessence à partir de fumier de poulet et de papier en lambeaux, ces deux sources étant des matières premières convoitées ne nécessitant pas de prétraitement. À l’aide d’une culture mixte de microorganismes dérivés de sols marins, la biomasse a été soumise à une fermentation de manière à produire une solution aqueuse diluée de sels de carboxylates, ultérieurement écumés et séchés. Les sels séchés ont été thermiquement convertis en cétones brutes, ensuite distillées afin d’éliminer les impuretés. À l’aide du catalyseur à base de nickel de Raney, les c

  13. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  14. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  15. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  16. Quantification of Release of Critical Elements, Formation of Fly Ash and Aerosols: Status on Current Understanding and Research Needs

    DEFF Research Database (Denmark)

    Jappe Frandsen, Flemming

    2017-01-01

    is that there are still in 2017, a number of big gaps in our current understanding of these phenomena, and that we need focus on these points, in order to be able to describe, understand, and, quantify the processes of ash and deposit formation completely [Frandsen, 2009].This paper provide a brief outline of the current......) shedding of deposits. Some of the steps may be repetitive, as the process is partly cyclic [Frandsen, 2011]. The inorganic fraction of solid fuels, may cause several problems during combustion, most importantly formation of particulate matter (aerosols and fly ashes). These may subsequently induce deposit...... of combustion units.Through several years, high quality research has been conducted on characterization of fuels, ashes and deposit formation in utility boilers fired with coal, biomass and waste fractions. Huge amounts of experimental data have been reported, from such work, but the fact...

  17. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil

    Directory of Open Access Journals (Sweden)

    Beatriz Fátima Alves de Oliveira

    2011-09-01

    Full Text Available The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources.

  18. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil.

    Science.gov (United States)

    Oliveira, Beatriz Fátima Alves de; Ignotti, Eliane; Hacon, Sandra S

    2011-09-01

    The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM) and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources.

  19. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  20. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied ...

  1. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  2. Biomass living energy

    International Nuclear Information System (INIS)

    2005-01-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  3. Biomass stoves in dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    and analyzed in this session. Experimental results regarding the performance of biomass combustion stoves and the effects of real-life practices in terms of thermal efficiency, particulate and gaseous emissions will be addressed. This research is based on the development of a new testing approach that combines...... laboratory and field measurements established in the context of the implications of the upcoming eco-design directive. The communication will cover technical aspects concerning the operating performance of different types of biomass stoves and building envelopes, in order to map the ongoing opportunities...

  4. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  5. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    Science.gov (United States)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (-48.4%), Ni (-41.4%), Co (-36.9%), Cu (-35.7%), Mn (-34.3%), Cd (-33.2%), and Pb (-30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the combined

  6. Flying Cities

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Lasserre, Sebastien; Ciger, Jan

    2008-01-01

    Flying Cities is an artistic installation which generates imaginary cities from the speech of its visitors. Thanks to an original interactive process analyzing people's vocal input to create 3D graphics, a tangible correspondence between speech and visuals opens new possibilities of interaction. ...... and a potential application. We believe that it could become a new medium for creativity, and a way to visually perceive a vocal performance in the context of the rehabilitation of people with reduced mobility or language impairments....

  7. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  8. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  9. Treatment of fly ash from power plants using thermal plasma

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Mayman

    2017-05-01

    Full Text Available Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  10. Physical, chemical and mineralogical properties of fly ash

    International Nuclear Information System (INIS)

    Khairul Nizar Ismail; Kamaruddin Hussin; Mohd Sobri Idris

    2007-01-01

    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ) and iron oxide (Fe 2 O 3 ). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F. (Author)

  11. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  12. IV. International Slovak Biomass Forum

    International Nuclear Information System (INIS)

    2004-03-01

    The publication has been set up as proceedings of the conference dealing with use of biomass for energy production. The main conference topics are focused on the following scopes: Session 1: Strategies, politics, legislation tools, implementation issues; Session 2: Bioenergy market and business; Session 3: Biomass resources and fuel production; Session 4: Combustion and boiler system, technology; Session 5: Utilisation of biomass, practical examples (CHP, WWTP, DH, Central heating, Stakeholders); Session 6: Application of R + D in praxis in the short term horizont. In these proceedings 44 contributions are included

  13. Fly Sings

    OpenAIRE

    Osmond, Matthew

    2015-01-01

    Fly Sings (winner of the Bitish Library's 2015 Michael Marks Poetry Illustration award) forms the first installment of a prequel to the deadman and hare stories. It concerns how hare first came to be ‘summoned to the world below’, to look for deadman.\\ud \\ud Strandline Books chapbooks are produced as signed and numbered editions of 48, printed in black inkjet on 90gsm off-white recycled paper. They sell at £8 + £2 p&p. If interested, please email Mat Osmond at

  14. Flying Cities

    DEFF Research Database (Denmark)

    Ciger, Jan

    2006-01-01

    of providing a tangible correspondence between the two spaces. This interaction mean has proved to suit the artistic expression well but it also aims at providing anyone with a pleasant and stimulating feedback from speech activity, a new medium for creativity and a way to visually perceive a vocal performance......The Flying Cities artistic installation brings to life imaginary cities made from the speech input of visitors. In this article we describe the original interactive process generating real time 3D graphics from spectators' vocal inputs. This example of cross-modal interaction has the nice property...

  15. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly...... identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of wood because of their similar surface area to volume ratios. The ignition, devolatilisation and burnout times of particles were...

  16. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  17. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  18. Biofuels Combustion

    Science.gov (United States)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  19. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. Isotope Dilution - Thermal Ionisation Mass Spectrometric Analysis for Tin in a Fly Ash Material; Analisis de Estano en una Ceniza de Combustion mediante Espectrometria de Masas de Ionizacion Termica con Dilucion Isotopica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.; Fernandez, M.; Quejido, A. L.

    2006-07-01

    Isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) analysis has been applied to the determination of tin in a fly ash sample supplied by the EC Joint Research Centre (Ispra, Italy). The proposed procedure includes the silica gel/phosphoric acid technique for tin thermal ionisation activation and a strict heating protocol for isotope ratio measurements. Instrumental mass discrimination factor has been previously determined measuring a natural tin standard solution. Spike solutions has been prepared from 112Sn-enriched metal and quantified by reverse isotope dilution analysis. Two sample aliquots were spiked and tin was extracted with 4,5 M HCI during 25 min ultrasound exposure time. Due to the complex matrix of this fly ash material, a two-step purification stage using ion-exchange chromatography was required prior TIMS analysis. Obtained results for the two sample-spike blends (10,10 + - 0,55 y 10,50 + - 0,64 imolg-1) are comprarable, both value and uncertainty. Also a good reproducibility is observed between measurements. The proposed ID-TIMS procedure, as a primary method and due to the lack of fly ash reference material certified for tin content, can be used to validate more routine methodologies applied to tin determination in this kind of materials. (Author) 75 refs.

  1. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  2. Biomass burning fuel consumption rates: a field measurement database

    NARCIS (Netherlands)

    van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Ruecker, G.; French, N.H.F.; Archibald, S.; Carvalho Jr., J.A.; Cook, G.D.; de Groot, J.W.; Hely, C.; Kasischke, E.S.; Kloster, S.; McCarty, J.L.; Pettinari, M.L.; Savadogo, P.

    2014-01-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions.

  3. Use Of Fly Iarvae In Space Agriculture

    Science.gov (United States)

    Katayama, Naomi; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    The concept of space agriculture is full use of biological and ecological components ot drive materials recycle loop. In an ecological system, producers, consumers and decomposers are its member. At limited resources acailable for space agriculture, full use of members' function is required to avoid food shortage and catastrophe.Fly is categrized to a decomposer at its eating excreta and rotten materials. However, is it could be edible, certainly it is eaten in several food culture of the world, it functions as a converter of inedible biomass ot edible substance. This conversion enhances the efficiency of usage of resource that will be attributed to space agriculture. In this context, we examine the value of melon fly, Dacus cucurbitae, as a candidate fly species ofr human food. Nutrients in 100g of melon fly larvae were protein 12g, lipid 4.6g Fe 4.74mg, Ca 275mg, Zn 6.37mg, Mn 4.00mg. Amino acids compositon in 100g of larvae was glutamic acid 1.43g and aspartic acid 1.12g. Because of high contents of these amino acids taste of fly larva might be good. Life time of adult melon fly is one to two month, and lays more than 1,000 eggs in total during the life. Larvae hatch after one to two days, and metamorphose after 8 to 15 days to pupae. Srxual maturity is reached after 22 days the earliest from it egg. Sixteen generations could be succeeded in a year for melon fly at maximum. The rate of proliferation of fly is quite high compared to silkworm that can have 8.7 generations per year. The wide food habit of fly, compared to mulberry leaf for silkworm, is another advantage to choose fly for entomophage. Rearing technology of melon fly is well established, since large scaled production of sterile male fly has been conducted in order ot exterminate melon fly in the field. Feeding substance for melon fly larvae in production line is a mixture of wheat, bran, raw sugar, olara, beer yeast, tissue paper, and additive chemicals. A 1 kg of feed substance can be converted to

  4. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  5. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  6. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  7. Biomass energy: status and future trends for Quebec

    International Nuclear Information System (INIS)

    Bissonnette, V.

    1996-01-01

    The current status of biomass energy in the Province of Quebec was reviewed. For electrical energy production uses, biomass combustibles include peat, forestry, agro-food and urban waste products. These materials are used directly as combustibles in the production of electricity, or are first processed through gasification, pyrolysis, anaerobic digestion or fermentation into combustible products. In Quebec, 176.2 MW of electricity is produced yearly from biomass materials, mostly waste products of the forestry industry. New biomass avenues are actively being explored, including bio- gases produced from municipal landfill sites, gasification of used automobile tires and combustion of demolition waste. Although their contribution is minimal, biomass materials can nevertheless contribute a few hundred megawatts of energy to the Province's overall energy budget. 2 figs

  8. Stereoscopic pyrometer for char combustion characterization.

    Science.gov (United States)

    Schiemann, M; Vorobiev, N; Scherer, V

    2015-02-10

    For many pulverized fuels, especially coal and biomass, char combustion is the time determining step. Based on intensified ICCD cameras, a novel setup has been developed to study pulverized fuel combustion, mainly in a laminar flow reactor. For char burning characterization, the typical measurement parameters are particle temperature, size, and velocity. The working principle of the camera setup is introduced and its capabilities are discussed by examination of coal particle combustion under CO(2)-enriched, so-called oxy-fuel atmospheres with varying O(2) content.

  9. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Explosibility boundaries for fly ash/pulverized fuel mixtures.

    Science.gov (United States)

    Dastidar, A G; Amyotte, P R

    2002-05-27

    Incomplete combustion and subsequent fuel contamination of a waste stream can pose a serious explosion hazard. An example of this type of incident is the contamination of fly ash with unburned pulverized coal. The coal, if present in sufficient quantities in the mixture, can act as a fuel source for a potential explosion. Experiments were conducted in a 20l Siwek explosibility test chamber to determine the minimum fuel contamination of fly ash required to form an explosible mixture. A sample of fly ash from Ontario Power Generation (OPG) (Ont., Canada) was artificially contaminated with Pittsburgh pulverized coal dust (the surrogate used to represent unburned fuel dust). Additionally, the influence of fly ash particle size on the amount of fuel contaminant required to form an explosible mixture was examined. Fine and coarse size fractions of fly ash were obtained by screening the original sample of OPG fly ash. The results show that at least 21% Pittsburgh pulverized coal (or 10% volatile matter) was required to form an explosible mixture of the original fly ash sample and coal dust. The results also illustrate that fly ash particle size is important when examining the explosibility of the mixture. The fine size fraction of fly ash required a minimum of 25% coal dust (12% volatile matter) in the mixture for explosibility, whereas the coarse fly ash required only 10% coal dust (7% volatile matter). Thus, the larger the particle size of the inert fly ash component in the mixture, the greater the hazard.

  11. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    This report covers work that has been carried out in the combustion chemistry group at the Dept. of Environmental Inorganic Chemistry, Chalmers, within the STEM project 12859-1, during the period 2000-07-01 to 2002-06-30. The work was comprised of the following parts: Sulphur chemistry under pressurised and atmospheric conditions; Gas/solid reactions related to sintering and fouling; Chemistry of volatile metals in combustion; Ash leaching properties; Theoretical modelling of the interactions between ions in a solution and mineral surfaces; Some related issues and co-operations with other departments. The work on sulphur chemistry has been a central issue in our group and it has now been finalised with a PhD thesis discussing some aspects of the sulphation of limestone under pressurised conditions. The influence of a number of parameters on the sulphation efficiency was investigated and compared with similar studies under atmospheric conditions. In a special study it was shown that the influence of alternating calcining - non-calcining conditions on the conversion was substantial. In addition, the oxidation of CaS and sulphided limestone was studied and a regeneration method for the sulphide sorbent was proposed. In the project part concerning gas - solid reactions that are relevant to sintering and fouling, the application of an on-line measurement technique for the study of alkali metal capture by kaolin or other sorbents is described. A new reactor set-up has been constructed and the initial results from this set up are promising. The chemistry of cadmium in combustion of MSW and biomass is the object of a PhD project. This work has been concentrated on the task of identifying Cd-compounds in fly ash samples. It has now come to a point where enough data has been collected to make it possible to give an indication about the Cd speciation in some ash types. In MSW ash particles, cadmium seem to occur mainly as chloride, oxide and sulphate. The work will continue

  12. Minimum emissions from biomass FBC. Improved energy generation based on biomass FBC with minimum emission. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, A. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-02-01

    The primary aim of the project is to improve the performance of biomass fired FBC (fluidised bed combustion) through a concurrent detailed experimental and modelling approach. The expected results shall establish in experimental investigations, the thermochemical performance of a selection of fuels separately and in combination with suitable bed materials, stipulate recommendations, based on labscale via test rig and pilot scale to commercial scale investigations, how to repress agglomeration and defluidisation in fluidised bed combustion systems, indicate, based on the experimental findings, how to utilise primary measures to minimise the formation of nitrogen oxide compounds in the FB and provide a logistic assessment, based on case studies, identifying optimum logistic strategies for the selected fuels in commercial heat and power production. The investigation programme comprises straw, meat and bone meal (MBM) and forest residues as biofuels, quartz sand, bone ash, magnesium oxide and mullite as bed materials, sodium and ammonia carbonate as NO{sub x} reduction additives, and dolomite, kaolinite and coal ash for suppression of bed defluidisation. All materials have undergone a very detailed characterisation programme generating basic data on their chemical and structural composition as well as their sintering propensities. Combustion residues such as bottom and fly ashes have run through the same characterisation programme. The knowledge obtained by the characterisation programme supports the experimental combustion campaigns which are performed at 20, 90 and 350 kW FBC reactors. The information produced is validated in a 3 MW and 25 MW commercial FBC reactor. NO{sub x} formation and destruction mechanisms and rates have been included in a 3-D CFD software code used for NO{sub x} formation modelling. Parameter assessments confirmed the theoretical achievement of a 20-30 % reduction of NO{sub x} formation through implementation of the alkali injection concept as

  13. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  14. VALORISATION ENERGETIQUE DE LA BIOMASSE

    Directory of Open Access Journals (Sweden)

    Adrian BADEA

    2009-05-01

    Full Text Available L’article présente un “state of the art” des solutions pour la conversion thermochimique en énergie de la biomasse. Les processus de pyro gazéification intégrées aux cycles thermodynamiques Brayton ou moteurs thermiques en utilisant le gaz de synthèse ensemble avec les pilles de combustion à hydrogène représente des alternatives à la production d’énergie avec une efficience supérieure au couplage classique combustion – cycle Rankine Hirn. L’analyse qualitative des solutions au stade pilote semi industriel est complété par l’étude expérimental sur la cinétique de réaction de dévolatilisation de la biomasse, étape commune au processus de combustion ainsi qu’au processus de gazéification. Le travail présente une image globale des variantes possibles pour la valorisation énergétique de la biomasse et dans une acception plus large des combustibles « de surface » dans le contexte européen de développement soutenable des ressources énergétiques par l’utilisation des sources renouvelables.

  15. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    and the utilization of a waste-derived material as an additive; 3) the combustion of a biomass residue rich in phosphorus. Co-combustion of coal and SRF was conducted in an entrained flow reactor (EFR). The work revealed that when coal was co-fired with up to 25 wt% SRF, the burnout and the emissions of SO2...

  16. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2015-01-01

    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  17. Biomass Energy Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Edward [Cedar Falls Utilities, Cedar Falls, IA (United States)

    2017-05-15

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  18. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  19. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialy......Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...... the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even...... consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted...

  1. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly

  2. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The European (EU 25) wish to substitute solid biomass origin energy consumption (principally wood and wood waste, but also straw, crop harvest residues, vegetal and animal waste) for a part of that of fossil fuel origin (petrol, gas and coal) is beginning to pay off. 58,7 million tons oil equivalent (Mtoe) of solid biomass was produced in 2005, i.e. a 3.1 Mtoe increase with respect to 2004. Production of primary energy coming from direct combustion of renewable municipal solid waste in incineration plants should also be added on to this figure. The 0,2 Mtoe increase in this production with respect to 2004 brings valorization of this type of waste up to 5,3 Mtoe in 2005. (author)

  3. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. WASTE MANAGEMENT OPTIONS FOR THE COMBUSTION BY-PRODUCTS IN THE CONTEXT OF THE RETARDATION OF SOIL RESOURCES’ DEPLETION

    Directory of Open Access Journals (Sweden)

    Małgorzata Śliwka

    2017-09-01

    Full Text Available This paper presents the results of the preliminary experiments conducted on fly ash and bottom ash samples that were collected from a fluidised-bed boiler after biomass combustion. The purpose of the research was to determine potential possibilities of the introduction of such types of waste to soil, in accordance with the ecological engineering assumptions. The following physical and chemical properties of the analysed waste were determined: particle size distribution, pH, chemical composition, and leaching. The chemical properties of the tested power-generation waste were essentially different, depending on the time of waste sample collection from the installation, despite the fact that other identical sampling conditions were observed: the same installation, the same combustion process, and the same type of fuel. To determine the eco-toxicity of the tested waste samples, the vegetation experiments were conducted that allowed to evaluate the influence of the tested waste samples on selected test plant species. The tests concerned for example the influence of fly ash and bottom ash on such physiological processes as seed germination and plant growth (the growth of both roots and shoots. The experiments indicated certain options of the introduction of the tested waste into soil. However, due to a considerable changeability of the waste composition and structure that presented a risk of the introduction of undesired pollutants into soil, including heavy metals, such use would be possible upon previous regular evaluation of the waste’s physical, chemical, and eco-toxic properties.

  5. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  6. Microscale modelling of ambient air concentrations resulting from the increased combustion of biomass firing systems within the 1{sup st} Ordinance for the Implementation of the Federal Immission Control Act (1. BImSchV); Modellrechnungen zu den Immissionsbelastungen bei einer verstaerkten Verfeuerung von Biomasse in Feuerungsanlagen der 1. BImSchV

    Energy Technology Data Exchange (ETDEWEB)

    Baumbach, Guenter; Struschka, Michael; Juschka, Winfried; Carrasco, Maria; Ang, Keng Been; Hu, Lupin [Stuttgart Univ. (DE). Inst. fuer Verfahrenstechnik und Dampfkesselwesen (IVD); Baechlin, Wolfgang; Soergel, Christine [Ingenieurbuero Lohmeyer GmbH und Co. KG, Karlsruhe (Germany)

    2010-06-15

    By means of a detailed emissions modelling with subsequent highly resolved ambient air pollutant dispersion modelling an assessment method has been developed. This method is a tool for city planners to assess the effects of an increased usage of biomass in heating firings on the air quality situation in different residential areas. Emission simulations have been carried out for the combustion of wood pellets, log wood, wood chips and grain residues as well as for natural gas and heating oil. The emissions depend on the ambient temperature, the building and user specific heat demand and on the operation conditions of the firing. For the operation conditions different emission factors have been set for nominal and partial load as well as for unsteady conditions like boiler start or for shutdown of the firing. The following firings have been considered for burning the above mentioned fuels: Central heating boilers, decentralised heating networks with pellet and wood chip boilers, single stoves for additional heating and grain residue furnaces. Dependent on the ambient temperature for different regions of Germany and for a reference year of the Deutsche Wetterdienst annual emission time series with 1h resolution have been calculated for the different firing fuel combinations. Using these modelled emission data dispersion modelling was carried out for different meteorological and building specific frame conditions. A rural and an urban model area have been investigated. The emissions time series which were calculated for the individual buildings with 1h time resolution were spatially allocated and each single chimney was simulated as point source. For modelling the flow field coined by the building structure the flow model MISKAM has been applied. For dispersion simulation the model AUSTAL2000 has been used. Simulations have been carried out with three different wind and dispersion class distributions typical for many regions of Germany. A further parameter variation

  7. A review of the interference of carbon containing fly ash with air entrainment in concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard; Jensen, Anker Degn; Skjøth-Rasmussen, Martin Skov

    2008-01-01

    Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash...... may interfere with air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased with implementation of low-NOx combustion technologies. This review presents the past...... on the adsorption capacity of AEAs. The type of fuel used in the combustion process influences the amount and properties of the residual carbon. Fly ash derived from bituminous coal has generally higher carbon content compared with fly ash produced from subbituminous coal or lignite, but shows a lower AEA...

  8. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  9. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S.; Krumm, W. [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  10. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  11. Advanced Fuels and Combustion Processes for Propulsion

    Science.gov (United States)

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  12. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  13. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  14. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  15. Combustion Characterization of Individual Bio-oil Droplets

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Jensen, Peter Arendt

    2015-01-01

    Single droplet combustion characteristics has been investigated for bio-oil slurries, containing biomass residue, and compared to conventional fuels for pulverized burners, such as fuel oil (start up) and wood chips (solid biomass fuel). The investigated fuels ignition delays and pyrolysis behavior...

  16. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    Campylobacter in flies Flies of the Muscidae family forage on all kind of faeces – various fly species have different preferences. M domestica prefer pigs, horses and cattle faeces, animals which are all known to frequently excrete Campylobacter. As a result, the insects pick up pathogenic micro...... organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... of several species of flies collected outside broiler houses, merely ~1% of the flies were found Campylobacter positive. However, the prevalence varied considerably with fly species, time of the year, and availability of Campylobacter sources. Influx of flies to broiler houses As the influx of flies...

  17. Fuel and Combustion Characteristics of Organic Wastes

    Science.gov (United States)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  18. Mercury Retention by Fly Ashes from Oxy-fuel Processes

    OpenAIRE

    Fernández Miranda, Nuria; Villamil Rumayor, Marta; López Antón, María Antonia; Díaz Somoano, Mercedes; Martínez Tarazona, María Rosa

    2015-01-01

    The objective of this study is to determine the mechanism of mercury retention in fly ashes, the main solid waste from coal combustion power plants, and to evaluate the interactions between the type of mercury and fly ashes. The work was based on the results of mercury speciation in the gas and the solid fly ash before and after mercury retention. The identification of the mercury species in the gas was performed using previously validated methods, but the speciation of the mercury retained i...

  19. Geoenvironmental impacts of using high carbon fly ash in structural fill applications : [research summary].

    Science.gov (United States)

    2013-03-01

    Coal power plants generate approximately 50% of the electricity in the : United States. As a result, large amounts of coal combustion byproducts, : especially fly ash, are produced annually. Only 40% of the fly ash : (mainly C and F-type classificati...

  20. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  1. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  2. Fly ash as a liming material for cotton.

    Science.gov (United States)

    Stevens, Gene; Dunn, David

    2004-01-01

    A field experiment was conducted to determine the effect of fly ash from a coal combustion electric power facility on soil acidity in a cotton (Gossypium hirsutum L.) field. Fresh fly ash was applied to a Bosket fine sandy loam (fine-loamy, mixed, thermic Mollic Hapludalf) soil with an initial soil pH(salt) of 4.8. The fly ash was equivalent to 42 g kg(-1) calcium carbonate with 97% passing through a 60 mesh (U.S. standard) sieve. Fly ash was applied one day before cotton planting in 1999 at 0, 3.4, 6.7, and 10.1 Mg ha(-1). No fly ash was applied in 2000. Within 60 d of fly ash application in 1999, all rates of fly ash significantly increased soil pH above 6.0. Manganese levels in cotton petioles were reduced significantly by 6.7 and 10.1 Mg ha(-1) of fly ash. Soil boron (B) and sodium (Na) concentrations were significantly increased with fly ash. In 1999, B in cotton leaves ranged from 72 to 84 mg kg(-1) in plots with fly ash applications. However, no visual symptoms of B toxicity in plants were observed. In 1999, cotton lint yield decreased on average 12 kg ha(-1) for each Mg of fly ash applied. In 2000, cotton yields were significantly greater for the residual 3.4 and 6.7 Mg fly ash ha(-1) plots than the untreated check. Due to the adverse yield effects measured in the first year following application, fly ash would not be a suitable soil amendment for cotton on this soil at this time.

  3. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  4. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  5. Co-firing coal and biomass in a fluidised bed boiler

    CSIR Research Space (South Africa)

    North, BC

    2005-11-01

    Full Text Available of biomass is “CO2 Neutral”. The CSIR was approached by one of its licensees, International Combustion (Africa) Ltd (ICAL), to design the fluidised bed combustion (FBC) zone for a biomass waste and coal co-fired boiler. This boiler had been requested by a...

  6. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    -2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...

  7. MSW fly ash stabilized with coal ash for geotechnical application.

    Science.gov (United States)

    Kamon, M; Katsumi, T; Sano, Y

    2000-09-15

    The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.

  8. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  9. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  10. Impact evaluation of biomass used in small combustion activities sector on air emissions: Analyses of emissions from Alpine, Adriatic-Ionian and Danube EU macro-regions by using the EDGAR emissions inventory

    OpenAIRE

    MUNTEAN MARILENA; JANSSENS-MAENHOUT GREET; GUIZZARDI DIEGO; CRIPPA MONICA; SCHAAF EDWIN; POLJANAC MIRELA; LOGAR MARTINA; ZEMKO MARCEL; CRISTEA-GASSLER CORINA

    2017-01-01

    The emissions from small stationary combustion activities sector, in particular from the energy needs for residential buildings, have significant shares in total emissions of EU28. Therefore, measures to mitigate the emissions from this less regulated sector related to implementation checking are needed. In this study, we analysed the changes in fuel mix for this sector over 1990-2012 period, the emissions and their distribution over the areas covered by European Union Strategy for Alpine mac...

  11. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...... for power production, such as sun, wind or nuclear power. However, presently and in the near future the most important technology to reduce SO2 emissions from power production is flue gas desulphurization (FGD). There are several methods of FGD, but the majority of the plants are wet scrubbers...

  12. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  13. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  14. Equation for Combustion Noise

    Science.gov (United States)

    Liu, T. M.

    1982-01-01

    Mathematical relationship derived for interactions between turbulent flame and combustion noise. Relationship is rigorous theoretical correlation of combustion noise and combustion process. Establishes foundation for acoustic measurements as tool for investigating structure of turbulent flames. Mathematical relationship is expected to aid researchers in field of noise generated by combustion.

  15. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    Science.gov (United States)

    Bharadwaj, Anshu

    Wh) and also lower NOx and SO2. However, efficiency derating of the boilers caused by unburnt carbon in the fly ash is a major concern of the utilities. We develop a computational fluid dynamics (CFD) based model to understand the impact of co-firing on utility boilers. A detailed biomass devolatilization sub-model is also developed to study the importance of intra-particle heat and mass transport. Finally, we conduct an experimental study of the pyrolysis of rice husk. We conducted single particle experiments in a Confocal Scanning Laser Microscope (CSLM) at the Department of Material Science and Engineering, Carnegie Mellon University coupled with Scanning Electron Microscope (SEM) analysis of partially and fully combusted particles. Our results seem to indicate that the role of silica fibers is not merely to act as geometric shields for the carbon atoms. Instead there appears to be a strong and thermally resistant inter-molecular bonding that prevents carbon conversion. Therefore, it may not be possible to achieve full carbon conversion.

  16. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    Directory of Open Access Journals (Sweden)

    Horváth Jozef

    2015-06-01

    Full Text Available With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m−2 and 50 kW.m−2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  17. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  18. Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis

    Science.gov (United States)

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  19. RELATIONSHIPS BETWEEN COMPOSITION AND PULMONARY TOXICITY OF PROTOTYPE PARTICLES FROM COAL COMBUSTION AND PYROLYSIS (MONTREAL, CANADA)

    Science.gov (United States)

    The hypothesis that health effects associated with coal combustion fly-ash particles are exacerbated by the simultaneous presence of iron and soot was tested through two sets of experiments. The first set created prototype particles from complete and partial combustion, or oxygen...

  20. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co...

  1. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  2. Equipment for biomass. Wood burners; Materiels pour la biomasse, les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R., 63 - Arlanc (France)

    1997-12-31

    A review of the French classification of biomass wastes (and more especially wood and wood wastes) concerning classified burning equipment, is presented: special authorization is thus needed for burning residues from wood second transformation processes. Limits for combustion product emission levels are detailed and their impact on wood burning and process equipment is examined: feeder, combustion chamber, exchanger, fume treatment device, residue disposal. Means for reducing pollutant emissions are reviewed

  3. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it ca...

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  5. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and

  6. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    In Denmark, biomass such as straw or woodchip is utilised as a fuel for generating energy. Biomass is a "carbon dioxide neutral fuel" and therefore does not contribute to the greenhouse effect. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which c...

  7. Methodology for sizing, energy analysis and selection of equipment for a biomass gasifier to drive an internal combustion engine; Metodologia de dimensionamento, analise energetica e selecao de equipamentos de um gaseificador de biomassa para o acionamento de um motor de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, Christian Rodriguez; Silveira, Jose Luz [Universidade Estadual Paulista (FEG/UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia], e-mails: christian@feg.unesp.br, joseluz@feg.unesp.br; Arauzo, Jesus Perez [University of Zaragoza (UNIZAR), Zaragoza (Spain). Centro Politecnico Superior. Chemical and Environmental Engineering Dept.], e-mail: qtarauzo@unizar.es

    2006-07-01

    Alter both oil crisis, of 1973 and 1979, a bad effect of the elevated costs and continuously increment of the oil prices was noted, for this reason, the interest for renewable energies sources widely available in developing countries was increased. All over the world, governments have formulated main objectives for energies savings and search for friendly technologies, taking into account the effects related with the environment. The imminent scarcity of fossil fuels has made humanity the rational use of primary energies, as a result of these; new plants with improved technology have been conceived taking into account energy savings and efficiency improvement. In this context, biomass gasification technologies are important, since they consist in techniques of parallel production of electricity and heat from just one fuel. This work consists in the development of a gasifier down draft of 100 kW for an internal combustion engine, which includes its sizing process and its energy analysis. The sizing includes design facts and the parameters of the conditioning systems for the exhaust gas. This part is mainly based in the experience of a work group of the Zaragoza State University - Spain, UNIZAR, specialists in the construction of small down draft gasifiers, for every case, air will be used as a gasifier agent and as biomass forestall. The availability of biomass resources and the application of the national energetic view system are relevant. The gasifier will have a 100 kg/h of feeding, the energetic analysis includes the matter and energy balance and the respective efficient such cold as hot efficient of the exhaust gas. Moreover it will be tried the equipment recommended for the cleaning and conditioning of this gas fuel for this equipment in particular. (author)

  8. Gas Emissions in Combustion of Biofuel

    Directory of Open Access Journals (Sweden)

    Vitázek Ivan

    2014-10-01

    Full Text Available Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.

  9. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    Ash deposition on boiler surfaces is a major problem encountered during biomass combustion. Ash deposition adversely influences the boiler efficiency, may corrode heat transfer surfaces, and may even completely block flue gas channels in severe cases, causing expensive unscheduled boiler shutdown...

  10. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  11. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  12. Biomass in the production of electricity in Spain

    OpenAIRE

    Espejo Marín, Cayetano

    2005-01-01

    The generation of electricity using biomass began in Spain in the mid-1990s. In this paper, we examine the combustible products used in the generation of this type of electricity, the legal framework protecting its production, the evolution of the installed power and its territorial distribution, the environmental impact of biomass as a renewable energy, the energy policy supporting this technology and the problems for the development of biomass as a energy source in Spain.

  13. Horn Fly, (L.), Overwintering

    OpenAIRE

    Allan T. Showler; Weste L.A. Osbrink; Kimberly H. Lohmeyer

    2014-01-01

    The horn fly, Haematobia irritans irritans (L.), is an ectoparasitic blood feeder mainly on cattle. Its cosmopolitan distribution extends from boreal and grassland regions in northern and southern latitudes to the tropics. Stress and blood loss from horn flies can reduce cattle weight gain and milk production. Horn flies show substantial plasticity in their response to winter. Populations in warmer, lower latitudes have been reported to overwinter in a state of dormancy, but most overwinter a...

  14. Formation Flying Concept Issues

    Directory of Open Access Journals (Sweden)

    M. V. Palkin

    2015-01-01

    Full Text Available The term “formation flying” implies coordinated movement of at least two satellites on coplanar and non-coplanar orbits with a maximum distance between them being much less than the length of the orbit. Peculiarities of formation flying concept also include:- automatic coordination of satellites;- sub-group specialization of formation flying satellites;- equipment and data exchange technology unification in each specialized group or subgroup.Formation flying satellites can be classified according to the configuration stability level (order (array, cluster («swarm», intergroup specialization rules («central satellite», «leader», «slave», manoeuvrability («active» and «passive» satellites.Tasks of formation flying include:- experiments with payload, distributed in formation flying satellites;- various near-earth space and earth-surface research;- super-sized aperture antenna development;- land-based telescope calibration;- «space advertisement» (earth-surface observable satellite compositions of a logotype, word, etc.;- orbital satellite maintenance, etc.Main issues of formation flying satellite system design are:- development of an autonomous satellite group manoeuvring technology;- providing a sufficient characteristic velocity of formation flying satellites;- ballistic and navigation maintenance for satellite formation flying;- technical and economic assessment of formation flying orbital delivery and deployment;- standardization, unification, miniaturization and integration of equipment;- intergroup and intersatellite function redistribution.

  15. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  16. Economic and policy factors driving adoption of institutional woody biomass heating systems in the United States

    Science.gov (United States)

    Jesse D. Young; Nathaniel M. Anderson; Helen T. Naughton; Katrina Mullan

    2018-01-01

    Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating have received less attention. A zero inflated...

  17. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products

    NARCIS (Netherlands)

    Weijde, van der Tim; Kiesel, Andreas; Iqbal, Yasir; Muylle, Hilde; Dolstra, Oene; Visser, Richard G.F.; Lewandowski, Iris; Trindade, Luisa M.

    2017-01-01

    Miscanthus is a promising fiber crop with high potential for sustainable biomass production for a biobased economy. The effect of biomass composition on the processing efficiency of miscanthus biomass for different biorefinery value chains was evaluated, including combustion, anaerobic digestion

  18. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  19. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  20. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  1. The Fly Printer - Extended

    DEFF Research Database (Denmark)

    Beloff, Laura; Klaus, Malena

    2016-01-01

    points to a divide between the engineered and the organic and shows a human aspiration for control of information and of biological species. Frustratingly, the work does not allow control over the flies and the printing surface; the flies decide whether it is suitable to print on the paper...

  2. Horn Fly, (L., Overwintering

    Directory of Open Access Journals (Sweden)

    Allan T. Showler

    2014-01-01

    Full Text Available The horn fly, Haematobia irritans irritans (L., is an ectoparasitic blood feeder mainly on cattle. Its cosmopolitan distribution extends from boreal and grassland regions in northern and southern latitudes to the tropics. Stress and blood loss from horn flies can reduce cattle weight gain and milk production. Horn flies show substantial plasticity in their response to winter. Populations in warmer, lower latitudes have been reported to overwinter in a state of dormancy, but most overwinter as active adults in normal or reduced numbers. As latitudes increase, winters are generally colder, and correspondingly, larger percentages of horn fly populations become dormant as pharate adults (a post-pupal, pre-emergent stage or die. Reports on the effect of elevation on horn fly dormancy at high elevations were contradictory. When it occurs, dormancy takes place beneath cattle dung pats and in the underlying soil. The horn fly's mode of dormancy is commonly called diapause, but the collective research on horn fly diapause (behavioral and biochemical is not conclusive. Understanding the horn fly's overwintering behaviors can lead to development of pre-dormancy insecticide spray strategies in colder latitudes while other strategies must be determined for warmer regions.

  3. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The overall objective of this research effort was to provide a potentially commercial thermal treatment of fly ash to decrease the interaction between fly ash and the surfactants used to entrain air in concrete when fly ash replaces a portion of the Portland cement in oncrete. The thermal treatment resulting from this research effort, and described in this report, fulfill the above objective. This report describes the thermal treatment developed and applies the treatment to six different fly ashes subsequently used to prepare concrete test cylinders hat show little or no difference in compressibility when compared to concrete test cylinders prepared using untreated fly ash.

  4. Impacts of fly-ash on soil and plant responses.

    Science.gov (United States)

    Gupta, Dharmendra K; Rai, Upendra N; Tripathi, Rudra D; Inouhe, Masahiro

    2002-12-01

    Coal combustion produces carbon dioxides, SO x, NO x and a variety of byproducts, including fly-ash, flue gas and scrubber sludge. Fly-ash consists of minute glass-like particles and its deposition on leaves inhibits the normal transpiration and photosynthesis of plants. Fly-ash also affects the physicochemical characteristics of soil because it is generally very basic, rich in various essential and non-essential elements, but poor in both nitrogen and available phosphorus. The massive fly-ash materials have been a potential resource for the agricultural activities as well as the other industrial purposes. Practical value of fly-ash in agriculture as an 'effective and safe' fertiliser or soil amendment can be established after repeated field experiments. Here remains to be disclosed the biological processes and interactions due to 'lack and excess' of the fly-ash exposures along with abiotic and biotic factors. These may involve the symbiotic fixation of nitrogen and the biological extraction of metals following immobilisation of toxic heavy metal ions, as well as other neutralisation and equilibration processes during weathering. Nitrogen-fixing plants with an apparent heavy metal-tolerance can be helpful as the early colonisers of fly-ash dumps and nearby areas.

  5. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  6. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  7. Mineralogy of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Young; Park, Suk Whan [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); Lee, Moo Seung [Chonbuk National University, Chonju (Korea, Republic of)

    1995-12-01

    This study is focused on mineralogical and chemical characteristics of coal fly ash collected from Boreong, Honam, Samcheonpo, Gunsan, Seocheon power plants. Mineralogical and chemical characters of fly ashes are clarified by experimental studies, using x-ray diffractometer, scanning electron microscope, differential thermal analyzer, grain size analyzer and chemical analysis. The results of this study can be summarized as follows; The coal fly ashes from the all power plants are mainly consisted with mullite and quartz, and minor quantity of hematite. In particular, fly ash from the Honam power plant is converted into the anorthite under the 1200 degree. According to the result grain size analysis, most of the fly ashes are under the 200 mesh except 66% of fly ashes from the Boreong and Honam, 54% from Seocheon, 83% from Gunsan and 31% from Samcheonpo power plants. The unburned carbon contents are decreased in the small grain size of fly ashes. Under the 200 mesh grain size of Honam fly ashes shows particularly less than 1% content of unburned carbon. Chemical components of fly ashes are found to be 49-80% of SiO{sub 2} and Al{sub 2}O{sub 3} contents in the bituminous and anthracite coal ash are 49-69% and 75-80%, respectively. The Fe{sub 2}O{sub 3} and CaO concentrations in the bituminous coal ash are higher than anthracite coal ash. The trace elements such as Pb and Zn are higher anthracite coal ash than bituminous coal ash, which is mainly due to the grain size characteristic. The fly ash from Honam power plant with high CaO content can be used potassium silicate fertilizer and raw materials for cements after separation of 200 mesh. Anorthite are formed after 1200 degree heating of bituminous coal ash, which can be utilized as aggregate and bricks. (author). 21 refs., 32 figs., 7 tabs.

  8. Unsubstituted polyaromatic hydrocarbons (PAH's) in extracts of coal fly ash from the fly ash test cell in Montour, Pennsylvania

    International Nuclear Information System (INIS)

    Applequist, M.D.

    1989-01-01

    Isotope Dilution Mass Spectrometry (IDMS) was used to identify and to quantify trace amounts of selected, unsubstituted polyaromatic hydrocarbons (PAH's) present in extracts of coal fly ash from the solid waste disposal test cell at Montour, Pennsylvania. Isotope dilution experiments using deuterated analogs of polyaromatic hydrocarbons demonstrated that the concentrations of benzo[a]pyrene and anthracene were lower than 1 ng/g of fly ash. Isotope dilution experiments demonstrated that benzo[a]pyrene could be detected at concentrations as high as 1 ng/g when an isotopic carrier was used at a concentration of 125 ng/g in the analytical method. Maximum concentrations of fluorene, fluoranthene, pyrene and chrysene were conservatively estimated to be 3 ng/g of fly ash, using a 95 percent confidence interval based on analytical precision of ±1 ng/g of fly ash. Concentrations of phenanthrene were found to range from 6 to 38 ng/g of fly ash with a mean concentration of 14 ng/g of fly ash. Two sources of phenanthrene were speculated: incomplete combustion of phenanthrene in the coal furnace and addition of phenanthrene to the fly ash after collection by electrostatic precipitators

  9. Fly ash: Chemical-physical and mineralogical characterization

    International Nuclear Information System (INIS)

    Paoletti, L.; Diociaiuti, M.; Ziemacki, G.; Viviano, G.; Gianfagna, A.

    1992-01-01

    Fly ash from fossil fuel power plants, municipal waste incinerators and refuse fueled boilers is now being utilized as road construction material. With the aim of facilitating health risk assessments of this practice by providing a sound basis for thorough toxicological examinations, this paper reports on a study in which the crystalline and amorphous constituents of fly ash, according to type of combustion plant and fuel, were identified and analyzed by the use of various analytical techniques which included: scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and absorption, X-ray, and energy loss spectroscopy

  10. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  11. Radiative forcing of iron oxides from combustion sources

    Science.gov (United States)

    Ito, A.; Lin, G.; Penner, J.

    2017-12-01

    Combustion aerosols affect the climate by absorbing and scattering radiation. Iron (Fe) oxides emitted from combustion sources largely reside in supermicron aerosols. Fe oxides on aerosols are known to absorb sun light and heat the atmosphere. However, supermicron aerosols from combustion sources are ignored for radiative forcing in climate models. Here, we use a global chemical transport model and a radiative transfer model to estimate the radiative forcing of Fe oxides from combustion sources. The model results suggest that Fe oxides from combustion sources significantly contribute to a warming effect at the top of the atmosphere over the air polluted regions such as China and India as well as biomass burning source regions. However, the estimates strongly depend on chemical speciation of Fe oxides, which is also important for bioavailability. These results suggest comprehensive observations are needed to fully understand the effects of Fe oxides on the net radiative forcing and ecosystems.

  12. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  13. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  14. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  15. A Path Forward for Low Carbon Power from Biomass

    Directory of Open Access Journals (Sweden)

    Amanda D. Cuellar

    2015-02-01

    Full Text Available The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels or conversion to electricity (i.e., biopower. In the United States (US, biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal (5%–10% biomass, medium co-firing (15%–20% biomass, and dedicated biomass firing (100% biomass. We analyze the economic and greenhouse gas (GHG emissions impact of each of these options, with and without CO2 capture and storage (CCS. Our analysis shows that in the absence of land use change emissions, all biomass co-combustion scenarios result in a decrease in GHG emissions over coal generation alone. The two biggest barriers to biopower are concerns about carbon neutrality of biomass fuels and the high cost compared to today’s electricity prices. This paper recommends two policy actions. First, the need to define sustainability criteria and initiate a certification process so that biomass providers have a fixed set of guidelines to determine whether their feedstocks qualify as renewable energy sources. Second, the need for a consistent, predictable policy that provides the economic incentives to make biopower economically attractive.

  16. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  17. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  18. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  19. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  20. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... period was rather short, as even high doses of Campylobacter remained viable for less than 24 hours in flies, when they were incubated at temperatures from 20 ºC and higher. Lower temperatures are less- or irrelevant, as flies become slow or immobile below 15-20 ºC....

  1. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Damien, Alain

    2013-01-01

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO 2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  2. Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle

    Science.gov (United States)

    Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...

  3. Biomass energy, air pollution and health

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-06-01

    This article reports the negative effects on human health due to the use of biomass for energy. In addition to the emission of nitrogen oxides and of metals, these effects result largely from an incomplete combustion, generating various air pollutants: fine particles, carbon monoxide, volatile organic compounds and aromatic polycyclic hydrocarbons. Four situations are discussed: indoor air pollution due to cooking in developing countries, residential wood combustion for heating, the use of biofuels, and waste incineration. In all cases, negative health effects have been demonstrated, but they can be prevented by appropriate strategies. (author)

  4. Availability of Dutch biomass for electricity and heat in 2020

    International Nuclear Information System (INIS)

    Koppejan, J.; Elbersen, W.; Meeusen, M.; Bindraban, P.

    2009-11-01

    Availability of biomass is an important factor in realizing the Dutch targets for renewable energy. This study maps the availability of Dutch biomass in the framework of alternative applications and sustainability requirements, today and in the future. The conclusion is drawn that there is approximately 13 to 16 million tons of dry biomass available for energy generation in the Netherlands in 2020. This is 30 to 40% of the amount of biomass that is annually used in the Netherlands, generating 53 to 94 PJ of final energy, avoiding 101 to 157 PJ of fossil energy. This availability of biomass and the energy that is generated from the biomass can increase further after 2020. In addition, biomass will also be imported, especially for combustion and co-firing in coal-fired power plants and for the production of transport fuels. [nl

  5. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  6. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  7. Allothermal gasification of biomass using micron size biomass as external heat source.

    Science.gov (United States)

    Cheng, Gong; Li, Qian; Qi, Fangjie; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen

    2012-03-01

    An allothermal biomass gasification system using biomass micron fuel (BMF) as external heat source was developed. In this system, heat supplied to gasifier was generated from combustion of BMF. Biomass feedstock was gasified with steam and then tar in the produced gas was decomposed in a catalytic bed with NiO/γ-Al(2)O(3) catalyst. Finally the production gas was employed as a substitute for civil fuel gas. An overall energy analysis of the system was also investigated. The results showed that the lower heating value of the product gas reached more than 12 MJ/Nm(3). The combusted BMF accounted for 26.8% of the total energy input. Allothermal gasification based on the substituted BMF for conventional energy was an efficient and economical technology to obtain bioenergy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  10. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  11. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  12. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    Science.gov (United States)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  13. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  14. Autonomous Martian flying rover

    Science.gov (United States)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  15. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  16. Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.

    Science.gov (United States)

    Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P

    2015-09-01

    The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fruit fly eradication: Argentina

    International Nuclear Information System (INIS)

    2003-01-01

    Fruit exports account for 9% of Argentina's total agricultural exports and generate annually close to $450 million. This could be increased but for fruit flies that cause damage equivalent to 15% to 20% of present production value of fruit and also deny export access to countries imposing quarantine barriers. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Joint FAO/IAEA Division, to eradicate the Mediterranean fruit fly using the Sterile Insect Technique (SIT). (IAEA)

  18. Biomass - Overview of Swiss Research Programme 2003; Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This overview for the Swiss Federal Office of Energy (SFOE) discusses the results obtained in 2003 in various research projects worked on in Switzerland on the subject of biomass. In the biomass combustion area, subjects discussed include system optimisation for automatic firing, combustion particles, low-particle pellet furnaces, design and optimisation of wood-fired storage ovens, efficiency of filtering techniques and methane generation from wood. Also, an accredited testing centre for wood furnaces is mentioned and measurements made on an installation are presented. As far as the fermentation of biogenic wastes is concerned, biogas production from dairy-product wastes is described. Other projects discussed include a study on eco-balances of energy products, certification and marketing of biogas, evaluation of membranes, a measurement campaign for solar sludge-drying, the operation of a percolator installation for the treatment of bio-wastes, the effects of compost on the environment and the fermentation of coffee wastes. Also, statistics on biogas production in 2002 is looked at. Finally, a preliminary study on biofuels is presented.

  19. Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions

    International Nuclear Information System (INIS)

    Cheong, Kin-Pang; Li, Pengfei; Wang, Feifei; Mi, Jianchun

    2017-01-01

    This paper reports on the NO and CO emission characteristics of counterflow combustion of methane simulated under MILD or/and oxyfuel conditions. Simulations using CHEMKIN are conducted for various injection conditions of fuel and oxidizer. Note that the terms “oxyfuel”, “MILD-N 2 ” and “MILD-CO 2 ” combustion adopted hereafter represent the conventional oxy-combustion and those MILD combustions diluted by N 2 and CO 2 , respectively. It is observed that the NO emission of MILD-CO 2 combustion is ultra-low for all cases of investigation, even when increasing the combustion temperature up to 2000 K or adding more N 2 (up to 20%) to either the fuel stream (to simulate nitrogen-containing fuels like biomass) or the oxidizer stream (to simulate the air-ingress). A higher temperature allowed under MILD-CO 2 combustion suggests the improvement of energy efficiency for the MILD combustion technology. Moreover, the presence of steam in the oxidant reduces both NO and CO emissions of combustion for all cases. The relative importance analysis reveals that the N 2 O-intermediate mechanism for producing NO prevails in MILD-CO 2 combustion while the prompt and thermal mechani