WorldWideScience

Sample records for biomass allocation patterns

  1. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    Science.gov (United States)

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  2. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    Science.gov (United States)

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  3. Carbon Storage and Allocation Pattern in Plant Biomass among Different Forest Plantation Stands in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2015-03-01

    Full Text Available In order to understand how carbon storage and allocation patterns vary among plantation types, we estimated carbon allocation between above- and below-ground compartments in four subtropical plantations and a naturally recovered shrubland (as a control. Results indicated that the carbon storage and allocation pattern varied greatly among forest types and was highly dependent on specific traits of trees and understory vegetation. The fast-growing species, such as Eucalyptus urophylla, accumulated more carbon in plant biomass. The biomass carbon was about 1.9- and 2.2-times greater than the 10-species mixed plantation and Castanopsis hystrix plantations, respectively. Meanwhile, the plantations sequestered 1.5- to 3-times more carbon in biomass than naturally recovered shrubland. The carbon allocation pattern between above- and below-ground compartments also varied with plantation type and stand age. The ratio of tree root carbon to tree aboveground carbon decreased with stand age for Eucalyptus urophylla and the 10-species mixed plantation. In contrast, the ratio increased for Acacia crassicarpa. Our data suggested that planting the fast-growing species in the degraded land of subtropical China was an effective choice in terms of carbon sequestration. The information about carbon allocation patterns was also valuable for decision making in sustainable forest management and climate change mitigation.

  4. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  5. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    Science.gov (United States)

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  6. Biomass Resource Allocation among Competing End Uses

    Energy Technology Data Exchange (ETDEWEB)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  7. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  8. Do plants modulate biomass allocation in response to petroleum pollution?

    Science.gov (United States)

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  9. Biomass for biorefining: Resources, allocation, utilization, and policies

    Science.gov (United States)

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  10. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    Directory of Open Access Journals (Sweden)

    Luciano Velázquez

    2017-11-01

    Full Text Available Increased transpiration efficiency (the ratio of biomass to water transpired, TE could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  11. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    Science.gov (United States)

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  12. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    Science.gov (United States)

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  13. Carbon Storage and Allocation Pattern in Plant Biomass among Different Forest Plantation Stands in Guangdong, China

    OpenAIRE

    Chen, Yuanqi; Liu, Zhanfeng; Rao, Xingquan; Wang, Xiaoling; Liang, Chenfei; Lin, Yongbiao; Zhou, Lixia; Cai, Xi-an; Fu, Shenglei

    2015-01-01

    In order to understand how carbon storage and allocation patterns vary among plantation types, we estimated carbon allocation between above- and below-ground compartments in four subtropical plantations and a naturally recovered shrubland (as a control). Results indicated that the carbon storage and allocation pattern varied greatly among forest types and was highly dependent on specific traits of trees and understory vegetation. The fast-growing species, such as Eucalyptus urophylla, accumul...

  14. Shoot and root biomass allocation and competitive hierarchies of ...

    African Journals Online (AJOL)

    Shoot and root biomass allocation and competitive hierarchies of four South African grass species on light, soil resources and cutting gradients. ... Aristida junciformis, produced nearly double the biomass of taller species such as Hyparrhenia hirta and Eragrostis curvula in the low-nutrient treatments, with the reverse being ...

  15. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.

    Science.gov (United States)

    Crosby, Sarah C; Ivens-Duran, Morgan; Bertness, Mark D; Davey, Earl; Deegan, Linda A; Leslie, Heather M

    2015-05-01

    Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. We examined temporal and spatial patterns in flowering and seed production in S. alterniflora at a latitudinal scale (along the U.S. Atlantic coast), regional scale (within New England), and local scale (among subhabitats within marshes) and determined the impact of flowering on growth allocation using field and greenhouse studies. Flowering stem density did not vary along a latitudinal gradient, while at the local scale plants in the less submerged panne subhabitats produced fewer flowers and seeds than those in more frequently submerged subhabitats. We also found that a shift in biomass allocation from above to belowground was temporally related to flowering phenology. We expect that environmental change will affect seed production and that the phenological relationship with flowering will result in limitations to belowground production and thus affect marsh elevation gain. Salt marshes provide an excellent model system for exploring the interactions between plant ecology and ecosystem functioning, enabling better predictions of climate change impacts. © 2015 Botanical Society of America, Inc.

  16. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  17. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.

    Science.gov (United States)

    Zhang, Ke; Su, YongZhong; Yang, Rong

    2017-07-01

    The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

  18. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

    NARCIS (Netherlands)

    Slot, M.; Janse-ten Klooster, S.H.; Sterck, F.J.; Sass-Klaassen, U.; Zweifel, R.

    2012-01-01

    Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct

  19. The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, S. E.; Magni, C. R.; Martinez, V. A.; Ivkovic, M.

    2013-05-01

    Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don. Area of study: Seedlings of 69 families of P. radiata belonging to five different sites in Central Chile, ranging from coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to watering. Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded. Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed. Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local land race of P. radiata in Chile originating from contrasting environments possess distinct morphological responses to water deficit which in turn leads to phenotypic plasticity. Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas, selecting those with high root: shoot ratio. (Author) 46 refs.

  20. Effects of aspect on clonal reproduction and biomass allocation of layering modules of Nitraria tangutorum in nebkha dunes.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha.

  1. Effects of aspect on clonal reproduction and biomass allocation of layering modules of Nitraria tangutorum in nebkha dunes.

    Science.gov (United States)

    Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing

    2013-01-01

    The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha.

  2. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    in the growing season. Compared to CON, ET and ETC increased LMF and SMF, and decreased RMF over the whole growing season under NW and HW. Under LW, ET and ETC decreased LMF and increased RMF throughout the growing season, and increased SMF in early periods and then decreased later in the growing season. EC decreased the LMF and SMF and increased the RMF over the growing season but did not significantly affect the seasonal biomass allocation pattern between plant organs. The LMF was higher and the RMF was lower throughout the growing season in response to the higher groundwater level, while the effect of groundwater level on the SMF depended on the developmental phase of the plants. Our results show that climatic treatments affected biomass growth and biomass allocation to each of the three plant organs, while the direction and extent of climate-related changes in biomass growth and allocation depended on the availability of groundwater. The influence of groundwater level appeared to be crucial for the carbon gain regarding the production of RCG biomass for energy purposes and the concurrent sequestration of carbon in soils under changing climates in the mire sites used to cultivate RCG. (orig.)

  3. Carbon allocation in forest ecosystems

    Science.gov (United States)

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  4. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  5. See the forest for the trees: Whole-plant allocation patterns and regulatory mechanisms in Norway spruce

    Science.gov (United States)

    Huang, Jianbei; Behrendt, Thomas; Hammerbacher, Almuth; Weinhold, Alexander; Hellén, Heidi; Reichelt, Michael; Wisthaler, Armin; Dam, Nicole; Trumbore, Susan; Hartmann, Henrik

    2017-04-01

    For more than 40 years plant carbon (C) allocation have been of central interest to plant scientists. Most studies on C allocation focus on either biomass partitioning (e.g., root:shoot ratios), particular fluxes (e.g., non-structural carbohydrate, NSC; biogenic emissions of volatile organic compounds, VOCs) or short-term proportional allocation patterns (e.g., pulse-chase studies using isotopic tracers). However, a thorough understanding of C allocation priorities, especially at the whole-plant level, requires assessing all of these aspects together. We investigated C allocation trade-off in Norway spruce (Picea abies) saplings by assessing whole-plant fluxes (assimilation, respiration and VOCs) and biomass partitioning (structural biomass; NSC; secondary metabolites, SMs). The study was carried out over 8 weeks and allowed us, by modifying atmospheric CO2 concentrations ([CO2]), manipulating plant carbon (C) availability. Treatments included control (400 ppm), carbon compensation (down to 120 ppm) and starvation (down to 50 ppm) C availability levels. Reductions in [CO2] aimed to reveal plant allocation strategies assuming that pools receiving more C than others under C limitation have a high allocation priority. Respiration was less sensitive to declining [CO2] compared to assimilation, NSC and SMs. Strong declines in NSC at low [CO2] suggest that respiration was maintained by using stored NSC. Furthermore, reduced NSC and SMs concentrations also indicate preferential C allocation to growth over NSC and SMs at low C availability. SMs decreased to a lesser extent than NSC in old needles, and remained relatively constant in branches until death from starvation. These results suggest that pools of stored NSC may serve as a buffer for respiration or growth under C limitation but also that SMs remain largely inaccessible for metabolism once they are stored in tissues. VOCs emissions, however, showed contrasting responses to [CO2]; oxygenated VOCs (methanol and

  6. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.

    Science.gov (United States)

    Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A

    2017-05-01

    Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant

  7. Changes in biomass allocation in species rich meadow after abandonment: Ecological strategy or allometry?

    Czech Academy of Sciences Publication Activity Database

    Bartušková, Alena; Doležal, Jiří; Janeček, Štěpán; Lanta, V.; Klimešová, Jitka

    2015-01-01

    Roč. 17, č. 5 (2015), s. 379-387 ISSN 1433-8319 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Biomass allocation * species-rich meadow * abandonment Subject RIV: EF - Botanics Impact factor: 3.578, year: 2015

  8. Resource Allocation Patterns and Student Achievement

    Science.gov (United States)

    James, Lori; Pate, James; Leech, Donald; Martin, Ellice; Brockmeier, Lantry; Dees, Elizabeth

    2011-01-01

    This quantitative research study was designed to examine the relationship between system resource allocation patterns and student achievement, as measured by eighth grade Criterion-Referenced Competency Test (CRCT) mathematics, eighth grade CRCT reading, eleventh grade Georgia High School Graduation Test (GHSGT) mathematics, eleventh grade and…

  9. Stochastic modelling of tree architecture and biomass allocation: application to teak (Tectona grandis L. f.), a tree species with polycyclic growth and leaf neoformation.

    Science.gov (United States)

    Tondjo, Kodjo; Brancheriau, Loïc; Sabatier, Sylvie; Kokutse, Adzo Dzifa; Kokou, Kouami; Jaeger, Marc; de Reffye, Philippe; Fourcaud, Thierry

    2018-06-08

    For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.

  10. Identifying Memory Allocation Patterns in HEP Software

    Science.gov (United States)

    Kama, S.; Rauschmayr, N.

    2017-10-01

    HEP applications perform an excessive amount of allocations/deallocations within short time intervals which results in memory churn, poor locality and performance degradation. These issues are already known for a decade, but due to the complexity of software frameworks and billions of allocations for a single job, up until recently no efficient mechanism has been available to correlate these issues with source code lines. However, with the advent of the Big Data era, many tools and platforms are now available to do large scale memory profiling. This paper presents, a prototype program developed to track and identify each single (de-)allocation. The CERN IT Hadoop cluster is used to compute memory key metrics, like locality, variation, lifetime and density of allocations. The prototype further provides a web based visualization back-end that allows the user to explore the results generated on the Hadoop cluster. Plotting these metrics for every single allocation over time gives a new insight into application’s memory handling. For instance, it shows which algorithms cause which kind of memory allocation patterns, which function flow causes how many short-lived objects, what are the most commonly allocated sizes etc. The paper will give an insight into the prototype and will show profiling examples for the LHC reconstruction, digitization and simulation jobs.

  11. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  12. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Brix, Hans

    2010-01-01

    The effects of inorganic nitrogen (N) source (NH4+, NO3- or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g-1 d-1), biomass allocation...

  13. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  14. Anthropogenic disturbances affect population size and biomass allocation of two alpine species from the headwater area of the Urumqi River, China

    International Nuclear Information System (INIS)

    Zhao, R.; Zhang, H.; An, L.

    2018-01-01

    The survival of alpine plants are seriously threatened by increasing anthropogenic activity. Saussurea involucrata and Rhodiola quadrifida are particularly affected because of their high medicinal value. To assess the impact of anthropogenic disturbance on the two species, their population size and biomass allocation were examined at three levels of disturbance at low and high altitudes. Anthropogenic disturbance was the most serious threat to the populations and changed the population density, biomass, and biomass allocation of both species significantly (p<0.05). The changes differed with the species and the altitude, and were also affected by the interaction between these two factors. Population density and biomass of the two species decreased with an increase in the level of anthropogenic disturbance. These results imply that the decrease in population size and in biomass allocation to reproductive organs due to anthropogenic disturbances may make the plant populations even smaller and scarce. Meanwhile, change of making their survival dependent on the extent of anthropogenic disturbance: unless such disturbance is checked and the species are protected, they will probably disappear from the headwater area of the Urumqi River. This influence of anthropogenic disturbances may be potential threats to population ability of survival and reproduction. (author)

  15. Phytohormonal regulation of biomass allocation and morphological and physiological traits of leaves in response to environmental changes in Polygonum cuspidatum

    Directory of Open Access Journals (Sweden)

    Daisuke Sugiura

    2016-08-01

    Full Text Available Plants plastically change their morphological and physiological traits in response to environmental changes, which are accompanied by changes in endogenous levels of phytohormones. Although roles of phytohormones in various aspects of plant growth and development were elucidated, their importance in the regulation of biomass allocation was not fully investigated. This study aimed to determine causal relationships among changes in biomass allocation, morphological and physiological traits, and endogenous levels of phytohormones such as gibberellins (GAs and cytokinins (CKs in response to environmental changes in Polygonum cuspidatum. Seedlings of P. cuspidatum were grown under two light intensities, each at three nitrogen availabilities. The seedlings grown in high light intensity and high nitrogen availability (HH were subjected to three additional treatments: defoliating half of the leaves (Def, transferral to low nitrogen availability (LowN or low light intensity (LowL. Biomass allocation at the whole-plant level, morphological and physiological traits of each leaf, and endogenous levels of phytohormones in each leaf and shoot apex were measured. Age-dependent changes in leaf traits were also investigated. After the treatments, endogenous levels of GAs in the shoot apex and leaves significantly increased in Def, decreased in LowN, and did not change in LowL compared with HH seedlings. Among all of the seedlings, the levels of GAs in the shoot apex and leaves were strongly correlated with biomass allocation ratio between leaves and roots. The levels of GAs in the youngest leaves were highest, while the levels of CKs were almost consistent in each leaf. The levels of CKs were positively correlated with leaf nitrogen content in each leaf, whereas the levels of GAs were negatively correlated with the total non-structural carbohydrate content in each leaf. These results support our hypothesis that GAs and CKs are key regulatory factors that control

  16. Running Title: C and N Allocation in Pine; FINAL

    International Nuclear Information System (INIS)

    Ball, J. Timothy

    1996-01-01

    A long standing challenge has been understanding how plants and ecosystems respond to shifts in the balance of resource availabilities. The continuing rise in atmospheric CO(sub 2) will induce changes in the availability and use of several terrestrial ecosystem resources. We report on the acquisition and allocation of carbon and nitrogen in Pinus ponderosa Laws. seedlings grown at three levels of atmospheric carbon dioxide (370, 525, and 700(micro)mol mol(sup -1)) and three levels of soil nitrogen supply in a controlled environment experiment. Nitrogen was applied (0, 100, and 200(micro)g N g soil(sup -1)) at planting and again at week 26 of a 58-week, 4-harvest experiment. At the final harvest, plants grown with variety low available soil nitrogen showed no significant response to atmospheric CO(sub 2). Plants at higher N levels responded positively to CO(sub 2) with the highest biomass at the middle CO(sub 2) level. Plants growing at the lowest N levels immediately allocated a relatively large portion of their nitrogen and biomass to roots. Plants growing at near present ambient CO(sub 2) levels allocated relatively little material to roots when N was abundant but moved both carbon and nitrogen below-ground when N was withheld. Plants growing at higher CO(sub 2) levels, allocated more C and N to roots even when N was abundant, and made only small shifts in allocation patterns when N was no longer supplied. In general, allocation of C and N to roots tended to increase when N supply was restricted and also with increasing atmospheric CO(sub 2) level. These allocation responses were consistent with patterns suggesting a functional balance in the acquisition of above-ground versus below-ground resources. In particular, variation in whole tree average nitrogen concentration can explain 68% of the variation ratio of root biomass to shoot biomass across the harvests. The capability to respond to temporal variation in nutrient conditions, the dynamics of nutrient uptake

  17. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  18. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Directory of Open Access Journals (Sweden)

    D. Zanotelli

    2013-05-01

    Full Text Available Carbon use efficiency (CUE, the ratio of net primary production (NPP over gross primary production (GPP, is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010. We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71

  19. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested

  20. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  1. Spatial patterns of fish standing biomass across Brazilian reefs.

    Science.gov (United States)

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  2. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    NARCIS (Netherlands)

    Tomlinson, K.W.; Langevelde, van F.; Ward, D.; Bongers, F.J.J.M.; Alves da Silva, D.; Prins, H.H.T.; Bie, de S.; Sterck, F.J.

    2013-01-01

    Background and Aims - Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this

  3. Aboveground and belowground biomass allocation in native Prosopis caldenia Burkart secondaries woodlands in the semi-arid Argentinean pampas

    International Nuclear Information System (INIS)

    Risio, Lucia; Herrero, Celia; Bogino, Stella M.; Bravo, Felipe

    2014-01-01

    The woodlands in the south-west of the Argentinean pampas are dominated by Prosopis Caldenia Burkart (calden). The current deforestation rate of this woodlands is 0.82% per year. Different compensation initiatives have begun that recognize the role of forests as environmental service providers. The financial incentives they offer make it necessary to quantify the amount of carbon stored in the forest biomass. A model for estimating calden biomass was developed. Thirty-eight trees were selected, felled and divided into sections. An equation system was fitted using joint generalized regression to ensure the additivity property. A weighted regression was used to avoid heteroscedasticity. In these woodlands fire is the main disturbance and it can modify tree allometry, due this all models included the area of the base of the stem and tree height as independent variables since it indirectly collects this variability. Total biomass and the stem fraction had the highest R2 A dj. values (0.75), while branches with a diameter less than 7 cm had the lowest (0.58). Tree biomass was also analyzed by partitioning into the basic fractions of stem, crown, roots, and the root/shoot ratio. Biomass allocation was greatest in the crown fraction and the mean root/shoot ratio was 0.58. The carbon stock of the caldenales considering only calden tree biomass is 20.2 Mg ha −1 . While the overall carbon balance of the region is negative (deforestation and biomass burning, the remnant forested area has increased their calden density and in an indirect way his carbon sequestration capacity could also be increased. - Highlights: • A model for estimating aboveground and belowground Prosopis caldenia biomass was developed. • Biomass allocation into the tree and the root/shoot ratio were analyzed. • The equation systems presented had made it possible to more accurately estimate the biomass stored in calden woodlands

  4. Assessing the Impact of Model Parameter Uncertainty in Simulating Grass Biomass Using a Hybrid Carbon Allocation Strategy

    Science.gov (United States)

    Reyes, J. J.; Adam, J. C.; Tague, C.

    2016-12-01

    Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in

  5. Allometric growth and allocation in forests: a perspective from FLUXNET.

    Science.gov (United States)

    Wolf, Adam; Field, Christopher B; Berry, Joseph A

    2011-07-01

    To develop a scheme for partitioning the products of photosynthesis toward different biomass components in land-surface models, a database on component mass and net primary productivity (NPP), collected from FLUXNET sites, was examined to determine allometric patterns of allocation. We found that NPP per individual of foliage (Gfol), stem and branches (Gstem), coarse roots (Gcroot) and fine roots (Gfroot) in individual trees is largely explained (r2 = 67-91%) by the magnitude of total NPP per individual (G). Gfol scales with G isometrically, meaning it is a fixed fraction of G ( 25%). Root-shoot trade-offs were manifest as a slow decline in Gfroot, as a fraction of G, from 50% to 25% as stands increased in biomass, with Gstem and Gcroot increasing as a consequence. These results indicate that a functional trade-off between aboveground and belowground allocation is essentially captured by variations in G, which itself is largely governed by stand biomass and only secondarily by site-specific resource availability. We argue that forests are characterized by strong competition for light, observed as a race for individual trees to ascend by increasing partitioning toward wood, rather than by growing more leaves, and that this competition stronglyconstrains the allocational plasticity that trees may be capable of. The residual variation in partitioning was not related to climatic or edaphic factors, nor did plots with nutrient or water additions show a pattern of partitioning distinct from that predicted by G alone. These findings leverage short-term process studies of the terrestrial carbon cycle to improve decade-scale predictions of biomass accumulation in forests. An algorithm for calculating partitioning in land-surface models is presented.

  6. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    Science.gov (United States)

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  8. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    Science.gov (United States)

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  9. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.; Zanotti, R.F.; Deflers, C.; Fernandez, L.G.; Castro, De R.D.; Ligterink, W.; Hilhorst, H.W.M.

    2015-01-01

    Ricinus communis is becoming an important crop for oil production, and studying the physiological and biochemical aspects of seedling development may aid in the improvement of crop quality and yield. The objective of this study was to assess the effect of temperature on biomass allocation in two R.

  10. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy.

    Science.gov (United States)

    Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie

    2018-05-01

    This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.

  11. Modeling biomass competition and invasion in a schematic wetland

    Science.gov (United States)

    Ursino, N.

    2010-08-01

    Plants growing along hydrologic gradients adjust their biomass allocation and distribution in response to interspecific competition. Furthermore, susceptibility of a community to invasion is to some extent mediated by differences in growth habit, including root architecture and canopy hight. With reference to the study of a schematic wetland, the aim of this paper is (1) to test, via numerical modeling, the capacity of native plants to counteract an alien dominant species and cause eco-hydrological shifts of the ecosystem by changing their growth habit (e.g. allocating biomass below ground and by so doing changing the evapotranspiration locally) and (2) to test the impact on biodiversity of management practices that alter nutrient supply. The results demonstrated that unique combinations of vegetation types characterized by different growth habits may lead to different vegetation patterns under the same hydrologic forcing, and additionally, the vegetation patterns may change in response to major hydrological shifts, which could be related to diverse wetland management and restoration practices.

  12. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    Science.gov (United States)

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress

    Czech Academy of Sciences Publication Activity Database

    Pompeiano, Antonio; Landi, M.; Meloni, G.; Vita, F.; Guglielminetti, L.; Guidi, L.

    2017-01-01

    Roč. 151, č. 4 (2017), s. 613-622 ISSN 1126-3504 Institutional support: RVO:67179843 Keywords : biomass allocation * giant reed * photoinhibition * proline * salt stress Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.390, year: 2016

  14. Spatial allocation of future landscape patterns for biomass and alleviation of hydrologic impacts of climate change

    Science.gov (United States)

    Ssegane, H.; Negri, M. C.

    2015-12-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.

  15. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    Science.gov (United States)

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  16. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1997-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  17. Carbon-nitrogen interactions and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T. [Helsinki Univ. (Finland). Dept. of Ecology and Systematics

    1996-12-31

    Biomass and production of vascular plants constitutes a major source of carbon input in peatlands. As rates of decomposition vary considerably with depth, the vertical distribution of biomass may substantially affect accumulation of carbon in peatlands. Therefore, allocation patterns between shoot and roots are particularly important when considering carbon balance of peatland ecosystems. The stimulatory effect of increasing atmospheric concentration of CO{sub 2} or photosynthesis may increase availability of carbon to most C3 plants. Availability of nitrogen may also alter both due to increased atmospheric deposition and changer in mineralisation rates associated with climate change. Most root-shoot partitioning models predict that allocation of biomass is dependent of the availability and uptake of carbon and nitrogen. A decrease in supply of carbon would favour allocation to shoots and a decrease in supply of nitrogen would increase allocation to roots. At a cellular level, non structural carbohydrates and free amino acids are thought to represent the biochemically available fraction of carbon and nitrogen, respectively. The aim of this work is study the long-term growth responses of Carex rostrata to changes in the availability of nitrogen. Special attention is paid to soluble sugars ant free amino acids, which may control partitioning of biomass. (10 refs.)

  18. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    Science.gov (United States)

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  19. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  20. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    Science.gov (United States)

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  1. Allocation pattern in the financing of colleges of legal and Islamic ...

    African Journals Online (AJOL)

    Makerere Journal of Higher Education ... This study investigated the allocation pattern in the financing of colleges of Legal and Islamic Studies in Nigeria with special regard to the adequacy of the funding. The sample ... The findings showed that there is general under-funding of these colleges within the period considered.

  2. Local behavioral rules sustain the cell allocation pattern in the combs of honey bee colonies (Apis mellifera).

    Science.gov (United States)

    Montovan, Kathryn J; Karst, Nathaniel; Jones, Laura E; Seeley, Thomas D

    2013-11-07

    In the beeswax combs of honey bees, the cells of brood, pollen, and honey have a consistent spatial pattern that is sustained throughout the life of a colony. This spatial pattern is believed to emerge from simple behavioral rules that specify how the queen moves, where foragers deposit honey/pollen and how honey/pollen is consumed from cells. Prior work has shown that a set of such rules can explain the formation of the allocation pattern starting from an empty comb. We show that these rules cannot maintain the pattern once the brood start to vacate their cells, and we propose new, biologically realistic rules that better sustain the observed allocation pattern. We analyze the three resulting models by performing hundreds of simulation runs over many gestational periods and a wide range of parameter values. We develop new metrics for pattern assessment and employ them in analyzing pattern retention over each simulation run. Applied to our simulation results, these metrics show alteration of an accepted model for honey/pollen consumption based on local information can stabilize the cell allocation pattern over time. We also show that adding global information, by biasing the queen's movements towards the center of the comb, expands the parameter regime over which pattern retention occurs. © 2013 Published by Elsevier Ltd. All rights reserved.

  3. Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L.

    Directory of Open Access Journals (Sweden)

    Łukasz Chachulski

    2014-01-01

    Full Text Available The influence of environmental factors on biomass partitioning of annual arable weed Centaurea cyanus was analysed. We investigated the effect of fertilisation, density and competition with the winter rye crop on the reproductive investment. Three fertiliser treatments and three density levels were applied. In Centaurea cyanus differences in the pattern of biomass allocation to reproduction are related to plant size. The relationship between reproductive and vegetative mass is close to linear. It is consistent with the model of linear size-dependent reproductive output. In Centaurea cyanus this model worked well for size differences that have been generated by interspecific competition, nutrients supply and density. Our data support the hypothesis that plastic changes in relationship between vegetative and generative biomass are environmentally-induced. Significantly different relationship between vegetative and reproductive biomass were detected among populations growing at different density and fertility levels. The fertilisation with mineral fertiliser and manure resulted in an increase of generative biomass allocated to flowerheads and a decrease of reproductive effort. Generative dry weight increased more rapidly with plant size in higher densities of population and at lower fertility levels. The experiment showed that the rate of weight allocated to reproductive structures was bigger under the pressure of competition with cereal crop. At low fertility level and high density, when the individuals were small, generative biomass increased faster with plant size. The production of seeds was not directly dependent on biomass allocated into total reproductive structures. At low level, of nutrient supply C. cyanus gave more offspring per gram of its biomass. We discuss the results in context of life-history theory. From the strategic point of view, size-dependent variation in reproductive effort and in efficiency of reproduction can be

  4. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  5. Transport Infrastructure Slot Allocation

    NARCIS (Netherlands)

    Koolstra, K.

    2005-01-01

    In this thesis, transport infrastructure slot allocation has been studied, focusing on selection slot allocation, i.e. on longer-term slot allocation decisions determining the traffic patterns served by infrastructure bottlenecks, rather than timetable-related slot allocation problems. The

  6. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  7. [Spatial pattern of forest biomass and its influencing factors in the Great Xing'an Mountains, Heilongjiang Province, China].

    Science.gov (United States)

    Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng

    2014-04-01

    Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.

  8. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  9. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  10. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish

    Science.gov (United States)

    Hoey, J.; McCormick, M. I.; Hoey, A. S.

    2007-09-01

    The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5-39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output.

  11. The biomass, abundance, and distribution pattern of starfish Asterias sp. (Echinodermata: Asteroidea) in East Coast of Surabaya

    Science.gov (United States)

    Dewi, N. N.; Pursetyo, K. T.; Aprilianitasari, L.; Zakaria, M. H.; Ramadhan, M. R.; Triatmaja, R. A.

    2018-04-01

    This study aims to determine the biomass, density, and distribution patterns of Asterias sp. Samples were collected from three locations such as Wonokromo, Dadapan and Juanda, each divided into 3 zones. In each zone, samples were taken as many as 5 repetitions using swept area method. Temporarily, the highest biomass of starfish was 2.95 gr/m2 in Dadapan Zone on January. Spatially, biomass of starfish was found in Dadapan Zone (3,35 gr/m2). Similarly, the high density was also found in Dadapan Zone on January (9 ind/10 m2). In general, the distributionpattern of starfish in East Coast Surabaya throughspatial and temporal showed that the pattern of starfish was grouping distribution (Id value > 1) for Dadapan and Juanda, and uniform for Wonokromo. Oceanographic condition, antropogenic activity, and water quality in East Cost of Surabaya become important things which is affected the biomass, densityand distribution pattern of starfish. The knowledge of starfish biomass and density is very important given that this biota has ecological value as a balancing ecosystem in the waters.

  12. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  13. Global patterns and predictions of seafloor biomass using random forests.

    Directory of Open Access Journals (Sweden)

    Chih-Lin Wei

    Full Text Available A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM, seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes. Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

  14. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence.

    Science.gov (United States)

    Bachelot, Benedicte; Lee, Charlotte T

    2018-02-01

    Evidence accumulates about the role of arbuscular mycorrhizal (AM) fungi in shaping plant communities, but little is known about the factors determining the biomass and coexistence of several types of AM fungi in a plant community. Here, using a consumer-resource framework that treats the relationship between plants and fungi as simultaneous, reciprocal exploitation, we investigated what patterns of dynamic preferential plant carbon allocation to empirically-defined fungal types (on-going partner choice) would be optimal for plants, and how these patterns depend on successional dynamics. We found that ruderal AM fungi can dominate under low steady-state nutrient availability, and competitor AM fungi can dominate at higher steady-state nutrient availability; these are conditions characteristic of early and late succession, respectively. We also found that dynamic preferential allocation alone can maintain a diversity of mutualists, suggesting that on-going partner choice is a new coexistence mechanism for mutualists. Our model can therefore explain both mutualist coexistence and successional strategy, providing a powerful tool to derive testable predictions. © 2017 by the Ecological Society of America.

  15. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  16. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  17. Biomass partitioning and root morphology of savanna trees across a water gradient

    NARCIS (Netherlands)

    Tomlinson, K.W.; Sterck, F.J.; Bongers, F.; Silva, da D.A.; Barbosa, E.R.; Ward, D.; Bakker, F.T.; Kaauwen, van M.P.W.; Prins, H.H.T.; Bie, de S.; Langevelde, van F.

    2012-01-01

    1. Plant organ biomass partitioning has been hypothesized to be driven by resources, such that species from drier environments allocate more biomass to roots than species from wetter environments to access water at greater soil depths. In savanna systems, fire may select for greater allocation to

  18. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  19. Trophic diversity, size and biomass spectrum of Bay of Bengal nematodes: A study case on depth and latitudinal patterns

    Science.gov (United States)

    Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke

    2017-09-01

    Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.

  20. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: ccharest@uottawa.ca

    2008-11-15

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress.

  1. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2008-01-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress

  2. GIS Methodology for Location of Biomass Power Plants Via Multi -Criteria Evaluation and Network Analysis. Location-Allocation Models for Forest Biomass Use; Metodologia SIG para la Localizacion de Centrales de Biomasa mediante Evaluacion Multicriterio y Analisis de Redes. Modelos de Localizacion-Asignacion para el Aprovechamiento de Biomasa Forestal

    Energy Technology Data Exchange (ETDEWEB)

    Paz, C de la; Dominguez, J; Perez, M E

    2013-02-01

    The main purpose of this study is to find optimal areas for the installation of Biomass Plants for electric generation and grid connected. In order to achieve this goal, a methodology based on Multi-Criteria Evaluation (MCE) and implemented by means a Geographic Information System (GIS) has been developed. Factors and restrictions for biomass resource and power plants location of biomass have been obtained through the dataset. The methodology output includes maps of greater aptitude areas for resource use (forest biomass available), as well as suitable locations for the placement of Forest Biomass facilities. Both cartographic products have been related by means Network Analysis. It generates Location-Allocation Models which allows locating Forest Biomass Facilities according with an optimization of the supply chain from the resource areas. (Author)

  3. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  4. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant...

  5. Biomass Allocation and Growth Data of Seeded Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant portion derived...

  6. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    Science.gov (United States)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  7. Comparison of model microbial allocation parameters in soils of varying texture

    Science.gov (United States)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  8. Winter wheat optimizes allocation in response to carbon limitation

    Science.gov (United States)

    Huang, Jianbei; Hammerbacher, Almuth; Trumbore, Susan; Hartmann, Henrik

    2016-04-01

    • Plant photosynthesis is not carbon-saturated at current atmospheric CO2 concentration ([CO2]) thus carbon allocation priority is of critical importance in determining plant response to environmental changes, including increasing [CO2]. • We quantified the percentage of daytime net assimilation (A) allocated to whole-plant nighttime respiration (R) and structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during winter wheat (Triticum aestivum) vegetative growth (over 4 weeks) at glacial, ambient, and elevated [CO2] (170, 390 and 680 ppm). • We found that R/A remained relatively constant (11-14%) across [CO2] treatments, whereas plants allocated less C to growth and more C to export at low [CO2] than elevated [CO2]; low [CO2] grown plants tended to invest overall less C into NSC and SMs than to SG due to reduced NSC availability; while leaf SMs/NSC was greater at 170 ppm than at 680 ppm [CO2] this was the opposite for root SMs/NSC; biomass, especially NSC, were preferentially allocated to leaves instead of stems and roots, likely to relieve C limitation induced by low [CO2]. • We conclude that C limitation may force plants to reduce C allocation to long-term survival in order to secure short-term survival. Furthermore, they optimized allocation of the available resource by concentrating biomass and storage to those tissues responsible for assimilation.

  9. Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G.E.; Hinckley, T.M.; Stettler, R.F. [Washington Univ., College of Forest Resources, Seattle, WA (United States)

    1999-09-01

    A study was carried out to compare highly productive cones, in the Pacific Northwest, in terms of contrasting growth and morphology. The objective of the study was to determine seasonal differences in carbon allocation patterns among 1- and 2-year old trees of Populus deltoides Bartr, and 2 of their interspecific hybrids. The study examined if there are different patterns of carbon allocation associated with the more productive poplar clones, how these patterns vary over the course of the growing season and from the first and the second year, if sylleptic branches vary from proleptic branches in their carbon allocation patterns, if there are the translocation patterns within branches and the degree of branch autonomy that exists with sylleptic and proleptic branches and if these patterns vary during the growing season. Previous findings on general patterns of carbon allocation in poplar clones were confirmed, and new dimensions were introduced regarding differences among branch types and clones. In the first year, carbon export from sylleptic branches increased over the growing season, and they export primarily toward the lower stem and roots. In the second year, important differences in translocation efficiency occurred among branch types with the sylleptic branches contributing more than proleptic branches, on a per unit mass basis, to the growth of the tree. Transport patterns, within branches and among branches of different order, were similar to those in the main stem, with phenology playing an important role in controlling the sink activity of the apical portion of the growing axis. Exchange of photosynthates between adjacent branches of the same order or between branches and main stem leaves are minimal, supporting an hypothesis of branch autonomy. 29 refs., 5 tabs., 4 figs.

  10. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Science.gov (United States)

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  11. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  12. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  13. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra-annual fruiting affects plant traits and herbivory?

    Science.gov (United States)

    da Costa, Fernanda Vieira; de Queiroz, Antônio César Medeiros; Maia, Maria Luiza Bicalho; Júnior, Ronaldo Reis; Fagundes, Marcilio

    2016-06-01

    Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development

  14. Lipid-rich and protein-poor carbon allocation patterns of phytoplankton in the northern Chukchi Sea, 2011

    Science.gov (United States)

    Yun, Mi Sun; Joo, Hui Tae; Park, Jung Woo; Kang, Jae Joong; Kang, Sung-Ho; Lee, Sang H.

    2018-04-01

    The carbon allocations of phytoplankton into different photosynthetic end products (lipids, LMWM, polysaccharides, and proteins) were determined to understand physiological conditions of phytoplankton in the northern Chukchi Sea during the Korean Arctic expedition, 2011, using the 13C isotope tracer technique. The carbon allocation rates of lipids, LMWM, polysaccharides, and proteins were 0.00009-0.00062 h-1, 0.00001-0.00049 h-1, 0.00001-0.00025 h-1, and 0.00001-0.00062 h-1 within the euphotic depths from surface to 1% light depths during our cruise period, respectively. Significant relationships between protein production rates and chlorophyll a concentrations (large and total) were found in this study. Moreover, we found a significant negative relationship between lipid production rates and ammonium concentrations. These relationships match well with the previous results for environmental/physiological conditions for phytoplankton growth. Overall, phytoplankton allocated more photosynthetic carbon into lipids (42.5 ± 17.7%) whereas relatively lower to proteins (20.4 ± 15.5%) in this study. The lipid-rich and protein-poor allocation patterns in this study suggest that phytoplankton in the northern Chukchi Sea were in a stationary growth phase under nutrient deficient condition based on biological and environmental conditions observed during our study period. Based on comparison with the previous studies in the northern Bering Sea and southern Chukchi Sea, we found that the photosynthetic carbon allocation patterns depending on physiological status of phytoplankton under the different growth and/or nutrient conditions could be largely vary at different regions in the Arctic Ocean. More intensive research on the physiological status of phytoplankton is further required to determine how phytoplankton response to the changing environmental conditions and consequently how they impact on higher trophic levels in marine ecosystems in the Arctic Ocean.

  15. Economic and Technical Efficiency of the Biomass Industry in China: A Network Data Envelopment Analysis Model Involving Externalities

    Directory of Open Access Journals (Sweden)

    Qingyou Yan

    2017-09-01

    Full Text Available This paper proposes the network data envelopment analysis (DEA model accounting for negative externalities and applies it for decomposition of profit inefficiency in the biomass-agriculture circular system (Bio-AG system. A circular structure of the Bio-AG system which is different from the previously applied network structures is assumed. Since the negative externalities (i.e., pollutant emissions from the biomass industry occur in the Bio-AG system, the property rights are taken into consideration to model the externalities-adjusted profits. Therefore, the changes in profits due to changes in the property rights (assuming no property rights, allocating property rights to agricultural sector, and allocating property rights to biomass power generation sector are quantified. Further, the decomposition shows that the biomass power generation sector is less affected by technical inefficiency if contrasted to allocative inefficiency in terms of the profit loss. The findings suggest that the biomass power generation technology influences the profits of the biomass industry. What is more, the inefficient allocation of resources is now the key factor undermining performance of the biomass industry. Therefore, the government should adopt measures to improve the allocation of resources and prevent excessive investments or development of less efficient technologies.

  16. Sex allocation and functional bias of quaternary and quinary flowers on same inflorescence in the hermaphrodite Ruta graveolens

    Science.gov (United States)

    Tang, Jing-Yu; Ren, Ming-Xun

    2011-09-01

    Intra-inflorescence variation in floral traits is important to understand the pollination function of an inflorescence and the real reproductive outputs of a plant. Ruta graveolens (Rutaceae) produce both quaternary (four petals and eight stamens) and quinary (five petals and ten stamens) flowers on the same cymes, while their pollination roles and the effects on the reproductive success remained unexplored. We experimentally examined the biomass of female versus male organs and pollen viability and stigma receptivity to explore the sex allocation patterns between the flowers. The breeding systems and reproductive outputs through either female function (seed set) or male function (pollen dispersal) were also studied for quinary and quaternary flowers to determine whether there was functional bias. The results showed that R. graveolens was protandrous, with a mixed mating system. Its stamens could slowly move one by one and only dehisce when positioning at the flower center, which could greatly enhance pollen dispersal. The first-opened quinary flower allocated significantly higher resources (dry biomass) in female organs while quaternary flowers allocated more resource in male organs. The quaternary flowers experienced higher pollen limitation in seed production but were more successful in pollen dispersal and the quinary flowers reproduced both through female and male functions. Our data suggested that quinary and quaternary flower on same inflorescence in R. graveolens functioned mainly as the sex role that most resources were allocated, which probably reflect an adaptation for floral phenology and pollination process in this plant.

  17. Preference and consumption pattern of biomass fuel in some disregarded villages of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Jashimuddin, M.; Masum, K.M.; Salam, M.A. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong 4331 (Bangladesh)

    2006-05-15

    Consumer's preference and consumption pattern of biomass fuel, fuel types and energy use category has been studied in the disregarded villages of Bangladesh. The study was conducted both in the inland and island areas. Biomass energy in the study area was used in domestic cooking, tea stalls, brickfields, bakeries, paddy parboiling and pottery. Assessment of consumption in domestic cooking was done by means of multistage random sampling and that in the tea stalls, brickfields, bakeries, paddy parboiling and pottery by means of complete enumeration of the sampling unit. Based on the homestead size respondents were categorized into small, medium and large and a total of 60 homesteads (30 from inland and another 30 from island areas), 20 from each category were selected randomly for the study. The study revealed that natural gas was quite absent and stems, branches and twigs, leaves of trees, agricultural residues, shell and coir of coconut, saw dust, brush wood, rhizomes of bamboo, and cowdung were the biomass fuel used by the respondent. Nine fuelwood species were identified as the most preferred in the study area. Consumption pattern was mostly traditional. Each year preceding the rainy season cyclonic action damages a large quantity of biomass energy sources. Though at the initial stage of rainy season (April-May) there remain a more or less good collection of fuelwood to the user as the byproduct of cyclones and storms, the last part of the rainy season (July-August) was identified as the fuel shortage period. (author)

  18. Modelling traditional household use of biomass policy changes for a commercial sustainable alternative

    International Nuclear Information System (INIS)

    Audinet, P.; Fages, E.

    1997-01-01

    Feasible policy alternatives are searched for, which could tackle the job market problem, thus achieving the first step towards solving the biomass dependency issue. To do this, an economic model is built which includes specific characteristics of biomass collection and use, such as non-monetary income, determinants of time allocation between formal and informal activities, and energy sources substitutability. The economic features of biomass production and use is studied in order to understand the underlying principles at work at the cross-roads between rural labour market and energy consumption patterns. The issue of fuelwood plantation is examined on a commercial basis using a spread-sheet model to assess its viability and the constraints for the policy maker. An economic model is developed to test the effects of a variety of policy changes on the local economy as described in the spread-sheet framework. The case of India is studied. (K.A.)

  19. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Science.gov (United States)

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  20. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.

    Science.gov (United States)

    Zhao, Jinlong; Kang, Fengfeng; Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  1. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis forests.

    Directory of Open Access Journals (Sweden)

    Jinlong Zhao

    Full Text Available Patterns of biomass and carbon (C storage distribution across Chinese pine (Pinus tabulaeformis natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb, and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  2. Global patterns of socioeconomic biomass flows in the year 2000. A comprehensive assessment of supply, consumption and constraints

    International Nuclear Information System (INIS)

    Krausmann, Fridolin; Erb, Karl-Heinz; Gingrich, Simone; Lauk, Christian; Haberl, Helmut

    2008-01-01

    Human use of biomass has become a major component of the global biogeochemical cycles of carbon and nitrogen. The use of land for biomass production (e.g. cropland) is among the most important pressures on biodiversity. At the same time, biomass is indispensable for humans as food, animal feed, raw material and energy source. In order to support research into these complex issues, we here present a comprehensive assessment of global socioeconomic biomass harvest, use and trade for the year 2000. We developed country-level livestock balances and a consistent set of factors to estimate flows of used biomass not covered by international statistics (e.g. grazed biomass, crop residues) and indirect flows (i.e. biomass destroyed during harvest but not used). We found that current global terrestrial biomass appropriation amounted to 18.7 billion tonnes dry matter per year (Pg/yr) or 16% of global terrestrial NPP of which 6.6 Pg/yr were indirect flows. Only 12% of the economically used plant biomass (12.1 Pg/yr) directly served as human food, while 58% were used as feed for livestock, 20% as raw material and 10% as fuelwood. There are considerable regional variations in biomass supply and use. Distinguishing 11 world regions, we found that extraction of used biomass ranged from 0.3 to 2.8 t/ha/yr, per-capita values varied between 1.2 and 11.7 t/cap/yr (dry matter). Aggregate global biomass trade amounted to 7.5% of all extracted biomass. An analysis of these regional patterns revealed that the level of biomass use per capita is determined by historically evolved patterns of land use and population density rather than by affluence or economic development status. Regions with low population density have the highest level of per-capita biomass use, high-density regions the lowest. Livestock, consuming 30-75% of all harvested biomass, is another important factor explaining regional variations in biomass use. Global biomass demand is expected to grow during the next decades

  3. Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G. E. [Univ. of Tuscia, Viterbo, (Italy); Ceulemans, R. [Antwerp Univ., Wilrijk (Belgium); Heilman, P. E. [Washington State Univ., Olympia, WA (United States); Isebrands, J. G.; Stettler, R. F.; Hinckley, T. M. [Forest Service, Rhinelander, WI (United States). North Central Forest Experiment Station

    1997-03-01

    Growth and biomass components of four poplar clones were studied during four consecutive years of short-rotation culture in western Washington, U.S.A. Results confirmed previous observations indicating the high productive potential of hybrid clones. In two of the hybrid clones tested, large differences in biomass distribution among tree components and in the pattern of growth were evident, as indicated by harvest index and root/shoot ratios. Results suggest that the clonal differences shown in total biomass, in allocation to different tree components, and in harvest index, have important implications for future poplar breeding programs. 39 refs., 4 tabs., 4 figs.

  4. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    Science.gov (United States)

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  5. Accumulation and distribution characteristics of biomass and nitrogen in bitter gourd (Momordica charantia L.) under different fertilization strategies.

    Science.gov (United States)

    Zhang, Baige; Li, Mingzhu; Li, Qiang; Cao, Jian; Zhang, Changyuan; Zhang, Fusuo; Song, Zhao; Chen, Xinping

    2018-05-01

    The elemental uptake and allocation patterns of crops create insight for nutrient management. Two-year field experiments were conducted to determine the growth and nitrogen (N) uptake patterns of bitter gourd and to evaluate different N management strategies. Two N practices during the nursery stage, namely the conventional fertilizer method (Scon) and the controlled-release fertilizer management method (Scrf), combined with three N management strategies after transplanting, namely zero N fertilizer application (Nno), the conventional strategy (Ncon) and the systematic N management strategy (Nopt), were assessed. Averaged over two years, the Scrf-Nopt treatment performed best, producing 33.1 t ha -1 fruit yield with 310 kg N ha -1 , indicating that the yield was 22.6% greater by using 18.8% less fertilizer N than in the Scon-Ncon treatment. The Scrf-Nopt treatment facilitated plant growth by accumulating 20.0% more total dry weight and prioritized its allocation to productive organs (57.2%), while the Scon-Ncon strategy was biased toward leaves (56.3%) over fruits (43.8%). Nitrogen uptake and distribution closely followed the pattern of biomass. The Scrf-Nopt fertilization strategy coordinated the important role that N plays in total accumulation and well proportion of biomass and N in bitter gourd developmental processes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling

    International Nuclear Information System (INIS)

    Vivin, P.; Guehl, J.M.

    1997-01-01

    A semi-closed (CO2)-C-13 labelling system (1.5% C-13) was used to assess both carbon uptake and allocation within pedunculate oak seedlings (Quercus robur L) grown under ambient (350 vpm) and elevated (700 vpm) atmospheric CO2 concentration ([CO2]) and in either well-watered or droughted conditions. Pulse-chase C-13 labelling data highlighted the direct positive effect of elevated CO2 on photosynthetic carbon acquisition. Consequently, in well-watered conditions, CO2-enriched plants produced 1.52 times more biomass (dry mass at harvest) and 1.33 times more dry root matter (coarse plus fine roots) over the 22-week growing period than plants grown under ambient [CO2]. The root/shoot biomass ratio was decreased both by drought and [CO2], despite lower N concentrations in CO2-enriched plants. However, both long-term and short-term C allocation to fine roots were not altered by CO2, and relative specific allocation (RSA), a parameter expressing sink strength, was hip her in all plant organs under 700 vpm compared to 350 vpm. Results showed that C availability for growth and metabolic processes was greater in fine roots of oaks grown under an elevated CO2 atmosphere irrespective of soil water availability [fr

  7. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae

    Directory of Open Access Journals (Sweden)

    Flávia Freitas Coelho

    2005-09-01

    Full Text Available Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant’s vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one. Rev. Biol. Trop. 53(3-4: 369-376. Epub 2005 Oct 3.Pistias strariotes es una macrófita acuática que crece en charcas estacionales en el Pantanal sureño de Brasil. Se reproduce tanto sexual como asexualmente y se obsrva generalmente que forma densas parches sobre la superficie del agua, una condicion que favorecida por la reproduccion vegetativa de la

  8. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China].

    Science.gov (United States)

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu

    2015-10-01

    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.

  9. Environmental correlates underlying elevational richness, abundance, and biomass patterns of multi-feeding guilds in litter invertebrates across the treeline.

    Science.gov (United States)

    Xu, Guorui; Zhang, Shuang; Zhang, Yuxin; Ma, Keming

    2018-08-15

    Elevational richness patterns and underlying environmental correlates have contributed greatly to a range of general theories of biodiversity. However, the mechanisms underlying elevational abundance and biomass patterns across several trophic levels in belowground food webs remain largely unknown. In this study, we aimed to disentangle the relationships between the elevational patterns of different trophic levels of litter invertebrates and their underlying environmental correlates for two contrasting ecosystems separated by the treeline. We sampled 119 plots from 1020 to 1770 asl in forest and 21 plots from 1790 to 2280 asl in meadow on Dongling Mountain, northwest of Beijing, China. Four functional guilds were divided based on feeding regime: omnivores, herbivores, predators, and detritivores. We used eigenvector-based spatial filters to account for spatial autocorrelation and multi-model selection to determine the best environmental correlates for the community attributes of the different feeding guilds. The results showed that the richness, abundance and biomass of omnivores declined with increasing elevation in the meadow, whereas there was a hump-shaped richness pattern for detritivores. The richness and abundance of different feeding guilds were positively correlated in the forest, while not in the meadow. In the forest, the variances of richness in omnivores, predators, and detritivores were mostly correlated with litter thickness, with omnivores being best explained by mean annual temperature in the meadow. In conclusion, hump-shaped elevational richness, abundance and biomass patterns driven by the forest gradient below the treeline existed in all feeding guilds of litter invertebrates. Climate replaced productivity as the primary factor that drove the richness patterns of omnivores above the treeline, whereas heterogeneity replaced climate for herbivores. Our results highlight that the correlated elevational richness, abundance, and biomass patterns of

  10. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  11. Task mapping for non-contiguous allocations.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Vitus Joseph; Bunde, David P.; Ebbers, Johnathan; Price, Nicholas W.; Swank, Matthew.; Feer, Stefan P.; Rhodes, Zachary D.

    2013-02-01

    This paper examines task mapping algorithms for non-contiguously allocated parallel jobs. Several studies have shown that task placement affects job running time for both contiguously and non-contiguously allocated jobs. Traditionally, work on task mapping either uses a very general model where the job has an arbitrary communication pattern or assumes that jobs are allocated contiguously, making them completely isolated from each other. A middle ground between these two cases is the mapping problem for non-contiguous jobs having a specific communication pattern. We propose several task mapping algorithms for jobs with a stencil communication pattern and evaluate them using experiments and simulations. Our strategies improve the running time of a MiniApp by as much as 30% over a baseline strategy. Furthermore, this improvement increases markedly with the job size, demonstrating the importance of task mapping as systems grow toward exascale.

  12. Influence of plant size on female-biased sex allocation in a single-flowered, nectarless herb

    Science.gov (United States)

    Xiong, Ying-Ze; Xie, Meng; Huang, Shuang-Quan

    2016-01-01

    Relative allocation to female and male function in hermaphroditic species often departs from strict equisexuality. Increased femaleness with plant size in animal-pollinated species has been proposed in theory and demonstrated in empirical studies. However, such size-dependent sex allocation (SDS) has not been observed in some insect-pollinated species, throwing doubt on the generalization of SDS, that large plants have decelerated male function investment. Himalayan mayapple Podophyllum hexandrum (Berberidaceae) produces a single terminal flower and no nectar, providing a simple system for studying SDS without the confounding effects of flower number and nectar production. To investigate the SDS in P. hexandrum, plant size, biomass of floral organs (stamens, pistils and petals) and gamete production (pollen and ovule number) were measured in four populations in Yunnan Province, northwest China. Isometric allocation to female and male function with plant size was found in two populations, but the prediction of SDS was supported in the other two populations. Using pollen and ovule production as the allocation currency, allocation to female and male function was isometric in all studied populations. Resources allocated to attractive (petals) and sexual (pistils and stamens) structures did not show a significantly disproportionate increase with plant size in three of the four studied populations. The general pattern of isometric allocation to female and male function and to attractive and sexual structures could be attributed to the species being capable of automatic self-pollination, related to low pollen loss, minor deleterious effect of selfing and low importance of attractive structures. However, in further studies, careful consideration should be given to the different currencies used to estimate sex allocation. PMID:26602988

  13. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?

    Science.gov (United States)

    Vondráčková, Stanislava; Tlustoš, Pavel; Száková, Jiřina

    2017-08-01

    Willows (Salix spp.) are considered to be effective for the phytoremediation of trace elements from contaminated soils, but their efficiency is limited in heavily polluted soils because of poor growth. Liming can be a desirable measure to decrease the plant availability of elements, resulting in improved plant development. Notably, large root area and maximum soil penetration are basic parameters that improve the efficiency of phytoremediation. The impact of soil chemical properties on willow root anatomy and the distribution of trace elements below-ground have rarely been studied. The effect of liming on root parameters, biomass allocation and trace element distribution in non-harvestable (coarse roots, fine roots, stumps) and harvestable plant parts (twigs and leaves) of Salix × smithiana was assessed at the end of a 4-year pot experiment with two trace element-polluted soils that differed in terms of soil pH. Stump biomass predominated in weakly acidic soil. In neutral soil, the majority of biomass was located in fine roots and stumps; the difference from other plant parts was minor. Trace elements were the most concentrated in fine roots. Translocation to above-ground biomass increased as follows: Pb roots roots). Lime application decreased the concentrations of mobile Cd and Zn and related levels in plants, improved biomass production and root parameters and increased the removal of all trace elements in weakly acidic soil. None or minimum differences in the monitored parameters were recorded for dolomite treatments in both soils. The dose and source of liming had crucial effects on root anatomy. Growing willows in limed trace element-polluted soils is a suitable measure for combination of two remediation strategies, i.e. phytoextraction of Cd and Zn and assisted phytostabilization of As and Pb.

  14. Sorption-reduction coupled gold recovery process boosted by Pycnoporus sanguineus biomass: Uptake pattern and performance enhancement via biomass surface modification.

    Science.gov (United States)

    Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong

    2017-09-01

    Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2  = 0.9988) and Langmuir isotherm model (R 2  = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.

  15. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006

    Directory of Open Access Journals (Sweden)

    Jiangzhou Xia

    2014-02-01

    Full Text Available Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production. The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  16. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    Science.gov (United States)

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (pRhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  17. Effects of Elevated CO2 Concentration on the Biomasses and Nitrogen Concentrations in the Organs of Sainfoin(Onobrychis viciaefolia Scop.)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zheng-chao; SHANGGUAN Zhou-ping

    2009-01-01

    In forage grasses,the nitrogen concentration is directly related to the nutritional value.The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass,nitrogen(N)concentration,and allocation and distribution patterns in the organs of forage grasses.While sainfoin(Onobrychis viciaefolia Scop.)seedlings grew on a low nutrient soil in closed chambers for 90 days,they were exposed to two CO2 concentrations(ambient or ambient+350μmol mol-1 CO2)without adding nutrients to them.After 90 days exposure to CO2,the biomasses of leaves,stems,and roots,and N concentrations and contents of different parts were measured.Compared with the ambient CO2 concentration,the elevated CO2 concentration increased the total dry matter by 25.07%,mainly due to the root and leaf having positive response to the elevated CO2 concentration.However,the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration.The elevated CO2 concentration lowered the N concentrations of the plant parts.Because the dry matter was higher,the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration.The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part.The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.

  18. Tradeoffs around crop residue biomass in smallholder crop-livestock systems - What's next?

    NARCIS (Netherlands)

    Tittonell, P.A.; Gérard, B.; Erenstein, O.

    2015-01-01

    Much has been written on the tradeoffs that smallholder farmers face when having to allocate their biomass resources among competing objectives such as feed, fuel, mulch, compost or the market. This paper summarises yet a new body of evidence from 10 studies on tradeoffs in the allocation of cereal

  19. Coal + Biomass → Liquids + Electricity (with CCS)

    Science.gov (United States)

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  20. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China

    Directory of Open Access Journals (Sweden)

    Jun-Wei Yue

    2018-05-01

    Full Text Available Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate

  1. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    Science.gov (United States)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  2. Modeling efficient resource allocation patterns for arable crop ...

    African Journals Online (AJOL)

    optimum plans. This should be complemented with strong financial support, farm advisory services and adequate supply of modern inputs at fairly competitive prices would enhance the prospects of the small holder farmers. Keywords: efficient, resource allocation, optimization, linear programming, gross margin ...

  3. Genotypic Diversity for Biomass Accumulation and Shoot-Root Allometry in the Grass Brachypodium distachyon

    Science.gov (United States)

    Jansson, C.; Handakumbura, P. P.; Fortin, D.; Stanfill, B.; Rivas-Ubach, A.

    2017-12-01

    Predicting carbon uptake, assimilation and allocation for current and future biogeographical environments, including climate, is critical for our ability to select and/or design plant genotypes to meet increasing demand for plant biomass going into food, feed and energy production, while at the same time maintain or increase soil organic matter (SOM for soil fertility and carbon storage, and reduce emission of greenhouse gasses. As has been demonstrated for several plant species allometric relationships may differ between plant genotypes. Exploring plant genotypic diversity for biomass accumulation and allometry will potentially enable selection of genotypes with high CO2 assimilation and favorable allocation of recent photosynthate into above-ground and below-ground biomass. We are investigating genotypic diversity for PFTs in natural accessions of the annual C3 grass Brachypodium distachyon under current and future climate scenarios and how genotypic diversity correlates with metabolite profiles in aboveground and below-ground biomass. In the current study, we compare effects from non-stressed and drought conditions on biomass accumulation and shoot-root allometry.

  4. Root distribution pattern and their contribution in photosynthesis and biomass in Jerusalem artichoke under drought

    International Nuclear Information System (INIS)

    Puangbut, D.; Vorasoot, N.

    2018-01-01

    Root length density and rooting depth have been established as drought resistant traits and these could be used as selection criteria for drought resistant genotype in many plant species. However, information on deep rooting and the root distribution pattern of Jerusalem artichoke under drought conditions is not well documented in the literature. The objective of this study was to investigate the root distribution pattern in Jerusalem artichoke genotypes under irrigated and drought conditions. This experiment was conducted within a greenhouse using rhizoboxes. Three Jerusalem artichoke genotypes were tested under two water regimes (irrigated and drought). A 2 × 3 factorial experiment was arranged in a randomized complete block design with three replications over two years. Data were recorded for root traits, photosynthesis and biomass at 30 days after imposing drought. The drought decreased root length, root surface area and root dry weight, while increased the root: shoot ratio, root distribution in the deeper soil and the percentage of root length at deeper in the soil, when compared to the irrigated conditions JA-5 and JA-60 showed high root length in the lower soil profile under drought conditions, indicating these genotypes could be identified as drought resistant genotype. The highest positive correlation was found between root length at deeper soil layer with relative water content (RWC), net photosynthetic rate (Pn) and biomass. It is expected that selection of Jerusalem artichoke with high root length coupled with maintaining high RWC and their promotion to Pn could improve the biomass and tuber yield under drought conditions. (author)

  5. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  6. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  7. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  8. Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2014-01-01

    In this work, the grid design and optimal allocation of wind and biomass resources for renewable electricity supply chains under uncertainties is studied. Due to wind intermittency, generation of wind electricity is not uniform and cannot be counted on to be readily available to meet the demand. Biomass represents a type of stored energy and is the only renewable resource that can be used for producing biofuels and generating electricity whenever required. However, amount of biomass resources are finite and might not be sufficient to meet the demand for electricity and biofuels. Potential of wind and biomass resources is therefore jointly analyzed for electricity generation. Policies are proposed and evaluated for optimal allocation of finite biomass resources for electricity generation. A stochastic programming model is proposed that optimally balances the electricity demand across the available supply from wind and biomass resources under uncertainties in wind speed and electricity sale price. A case study set in the American Midwest is presented to demonstrate the effectiveness of the proposed model by determining the optimal decisions for generation and transmission of renewable electricity. Sensitivity analysis shows that level of subsidy for renewable electricity production has a major impact on the decisions. - Highlights: • Stochastic optimization model for wind/biomass renewable electricity supply chain. • Multiple uncertainties in wind speeds and electricity sale price. • Proposed stochastic model outperforms the deterministic model under uncertainties. • Uncertainty affects grid connectivity and allocation of power generation capacity. • Location of wind farms is found to be insensitive to the stochastic environment

  9. Growth and biomass allocation of the C4 grasses Brachiaria brizantha and B. humidicola under shade Crescimento e alocação de biomassa nas gramíneas C4 Brachiaria brizantha e B. humidicola sob sombreamento

    Directory of Open Access Journals (Sweden)

    MOACYR BERNARDINO DIAS-FILHO

    2000-12-01

    Full Text Available The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.O crescimento e a alocação de biomassa das gramíneas forrageiras tropicais Brachiaria brizantha cv. Marandu e B. humidicola foram comparados, em plantas cultivadas em vasos, a pleno sol e a 70% de interceptação da luz solar, durante um período de 30 dias. O objetivo foi avaliar a capacidade de aclimatação dessas espécies ao sombreamento. Ambas as espécies mostraram-se capazes de desenvolver rapidamente ajustes fenotípicos em resposta ao sombreamento. A área foliar específica e a razão de área foliar foram maiores durante todo o período experimental, nas plantas cultivadas à sombra. As plantas sombreadas alocaram significativamente menos biomassa nas raízes e mais nas folhas do que as plantas cultivadas à sombra. No entanto, a alocação de biomassa no colmo foi

  10. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    Science.gov (United States)

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  11. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Nordlinger, D.E.; Shaw, F.C.

    1995-01-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  12. Introduction to biomass energy project financing, funding sources and government strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinger, D E [Skadden, Arps, Slate, Meagher and Flom, London (United Kingdom); Shaw, F C [Skadden, Arps, Slate, Meagher and Flom, Washington, D.C. (United States)

    1995-12-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  13. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest.

    Science.gov (United States)

    Cheng, Dongliang; Zhong, Quanlin; Niklas, Karl J; Ma, Yuzhu; Yang, Yusheng; Zhang, Jianhua

    2015-02-01

    Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents

  14. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5 on carbon fluxes, pools, and turnover in temperate forests

    Directory of Open Access Journals (Sweden)

    F. Montané

    2017-09-01

    Full Text Available How carbon (C is allocated to different plant tissues (leaves, stem, and roots determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI measurements to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM, the Community Land Model (CLM4.5. We ran CLM4.5 for nine temperate (including evergreen and deciduous forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5" with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP; ii. an alternative dynamic C allocation scheme (named "D-Litton", where, similar to (i, C allocation is a dynamic function of annual NPP, but unlike (i includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen" and the other of observations in deciduous forests (named "F-Deciduous". D-CLM4.5 generally overestimated gross primary production (GPP and ecosystem respiration, and underestimated net ecosystem exchange (NEE. In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m−2 for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011 was highly underestimated (between 1222 and 7557 g C m−2 for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the

  15. Utilization of the biomass in Japan: state of the researches and involvement of the enterprises; Utilisation de la biomasse au Japon: etat des recherches et implication des entreprises

    Energy Technology Data Exchange (ETDEWEB)

    Gabet, A.

    2003-09-01

    Following the Kyoto demands the budgets allocated to the renewable energies researches are more and more important. Among these energies the biomass is very popular in Japan because it does not increase the carbon dioxide level in the atmosphere. Since the years 1990 the Japan implemented three ministries to promote the biomass energy in the country. This document presents the biomass situation in the world and more specially in the Japan and the researches programs with the NEDO, the New Energy and Industrial Technology Development Organization). (A.L.B.)

  16. Establishment of Alleycropped Hybrid Aspen “Crandon” in Central Iowa, USA: Effects of Topographic Position and Fertilizer Rate on Aboveground Biomass Production and Allocation

    Directory of Open Access Journals (Sweden)

    Richard B. Hall

    2013-07-01

    Full Text Available Hybrid poplars have demonstrated high productivity as short rotation woody crops (SRWC in the Midwest USA, and the hybrid aspen “Crandon” (Populus alba L. × P. grandidenta Michx. has exhibited particularly promising yields on marginal lands. However, a key obstacle for wider deployment is the lack of economic returns early in the rotation. Alleycropping has the potential to address this issue, especially when paired with crops such as winter triticale which complete their growth cycle early in the summer and therefore are expected to exert minimal competition on establishing trees. In addition, well-placed fertilizer in low rates at planting has the potential to improve tree establishment and shorten the rotation, which is also economically desirable. To test the potential productivity of “Crandon” alleycropped with winter triticale, plots were established on five topographic positions with four different rates of fertilizer placed in the planting hole. Trees were then harvested from the plots after each of the first three growing seasons. Fertilization resulted in significant increases in branch, stem, and total aboveground biomass across all years, whereas the effects of topographic position varied by year. Allocation between branches and stems was found to be primarily a function of total aboveground biomass.

  17. Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Fanesi, Andrea; Wilhelm, Christian

    2017-09-05

    In microalgae, the photosynthesis-driven CO 2 assimilation delivers cell building blocks that are used in different biosynthetic pathways. Little is known about how the cell regulates the subsequent carbon allocation to, for example, cell growth or for storage. However, knowledge about these regulatory mechanisms is of high biotechnological and ecological importance. In diatoms, the situation becomes even more complex because, as a consequence of their secondary endosymbiotic origin, the compartmentation of the pathways for the primary metabolic routes is different from green algae. Therefore, the mechanisms to manipulate the carbon allocation pattern cannot be adopted from the green lineage. This review describes the general pathways of cellular energy distribution from light absorption towards the final allocation of carbon into macromolecules and summarizes the current knowledge of diatom-specific allocation patterns. We further describe the (limited) knowledge of regulatory mechanisms of carbon partitioning between lipids, carbohydrates and proteins in diatoms. We present solutions to overcome the problems that hinder the identification of regulatory elements of carbon metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  18. Estimating patterns in Spartina alterniflora belowground biomass within salt marshes

    Science.gov (United States)

    O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.

    2017-12-01

    Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.

  19. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Optimal defense resource allocation in scale-free networks

    Science.gov (United States)

    Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang

    2018-02-01

    The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.

  2. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata.

    Science.gov (United States)

    Pankoke, Helga; Höpfner, Ingo; Matuszak, Agnieszka; Beyschlag, Wolfram; Müller, Caroline

    2015-10-01

    Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence

  3. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  4. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    Chapter 2 focuses on the competition between traditional agricultural production and growing demand for biomass plantations. The aim of this chapter is to investigate the effects of various energy policies, aimed at both reducing the emissions of greenhouse gases (GHG) and increasing the share of bioelectricity, on the production of biomass and agricultural commodities. A partial equilibrium model is developed to illustrate some of the potential impacts of these policies on greenhouse gas emissions, land reallocation and prices of food and electricity. A partial framework is used, because it provides a transparent and consistent structure and enables to concentrate on only the relevant economic sectors (agriculture, biomass, conventional electricity, and bioelectricity). In the model, GHG emissions depend on land use patterns and fossil fuel use. The innovative element of this model is that it integrates two distinct analyses, namely an analysis of substitution mechanisms between energy from biomass and from fossil fuels, and an analysis of the effects of changes in demand for biomass on land use and GHG emissions. Chapter 3 deals with the impact of climate policies on land use and land cover change and possible impacts on reestablishment of semi-natural areas, mainly forestry and willow plantations. The aim of this chapter is to investigate the impact of climate policies to reduce greenhouse gas emissions by means of promoting biomass and bioelectricity. In this context, the analysis is performed on how these policies might affect production of agricultural commodities and trade patterns of biomass and bioelectricity. To this purpose, an applied general equilibrium model (AGE) is developed with special attention to biomass and agricultural crops for a small open economy, with an Armington specification for international trade. Chapter 4 focuses on the multiproductivity issues of agriculture, biomass, and forestry sectors resulting in additional production inputs

  5. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China

    Science.gov (United States)

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia. PMID:27002822

  6. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China.

    Science.gov (United States)

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.

  7. Leaf allocation patterns and 13C and 15N natural abundances of tropical lianas (Passiflora sp.) as dependent on external climbing support.

    Science.gov (United States)

    Werth, Martin; Spiegel, Ann-Kathrin; Kazda, Marian

    2013-01-01

    The transformation from self-supporting lianas to host-supported climbing lianas is related to re-allocation of biomass and nutrients among plant organs. Therefore, first, variations in leaf mass per area (LMA), leaf carbon and nitrogen allocation and (13)C and (15)N natural abundances were analysed among three tropical Passiflora species (P. edulis, P. ligularis, and P. tripartita) in a greenhouse study. Second, the influence of a climbing support was considered for each species and parameter. P. ligularis leaves were most enriched in (13)C in both treatments when compared with the other two species. This enrichment was caused by a high LMA, which is related to a high internal resistance to CO(2) diffusion. For P. edulis and P. tripartita, δ(13)C was additionally increasing with nitrogen content per area. Generally, there were no differences when considering carbon and nitrogen allocation to leaves of host-supported and self-supporting lianas. The only hints towards increased investment into leaves after the transition from self-supporting to host-supported stages could be seen by a trend to increased leaf areas and masses. δ(13)C values of supported P. edulis or P. tripartita plants were significantly increasing faster than those of non-supported plants once the interactions of leaf mass or nitrogen content per area were accounted for. Hence, the offer of a climbing support had only a minor impact on δ(13)C or δ(15)N values in vitro, but this could be different with increasing age of lianas in vivo.

  8. Sex allocation promotes the stable co-occurrence of competitive species

    Science.gov (United States)

    Kobayashi, Kazuya

    2017-03-01

    Biodiversity has long been a source of wonder and scientific curiosity. Theoretically, the co-occurrence of competitive species requires niche differentiation, and such differences are well known; however, the neutral theory, which assumes the equivalence of all individuals regardless of the species in a biological community, has successfully recreated observed patterns of biodiversity. In this research, the evolution of sex allocation is demonstrated to be the key to resolving why the neutral theory works well, despite the observed species differences. The sex allocation theory predicts that female-biased allocation evolves in species in declining density and that this allocation improves population growth, which should lead to an increase in density. In contrast, when the density increases, a less biased allocation evolves, which reduces the population growth rate and leads to decreased density. Thus, sex allocation provides a buffer against species differences in population growth. A model incorporating this mechanism demonstrates that hundreds of species can co-occur over 10,000 generations, even in homogeneous environments, and reproduces the observed patterns of biodiversity. This study reveals the importance of evolutionary processes within species for the sustainability of biodiversity. Integrating the entire biological process, from genes to community, will open a new era of ecology.

  9. Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae).

    Science.gov (United States)

    Jiao, Lihong; Amunugama, Kaushalya; Hayes, Matthew B; Jennings, Michael; Domingo, Azriel; Hou, Chen

    2015-08-01

    Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

  10. Integrating spatial and biomass planning for the United States

    International Nuclear Information System (INIS)

    Wang, Sicong; Wang, Shifeng

    2016-01-01

    Biomass is low-carbon energy and has tremendous potential as an alternative to fossil fuels. However, the significant role of biomass in future low-carbon energy portfolio depends heavily on its consumption. The paper presents a first attempt to examine the spatial-temporal patterns of biomass consumption in the United States (US), using a novel method-spatial Seemingly Unrelated Regression (SUR) model, in order to strengthen the link between energy planning and spatial planning. In order to obtain the robust parameters of spatial SUR models and estimate the parameters efficiently, an iterative maximum likelihood method, which takes full advantage of the stationary characteristic of maximum likelihood estimation, has been developed. The robust parameters of models can help draw a proper inference for biomass consumption. Then the spatial-temporal patterns of biomass consumption in the US at the state level are investigated using the spatial SUR models with the estimation method developed and data covering the period of 2000–2012. Results show that there are spatial dependences among biomass consumption. The presence of spatial dependence in biomass consumption has informative implications for making sustainable biomass polices. It suggests new efforts to adding a cross-state dimension to state-level energy policy and coordinating some elements of energy policy across states are still needed. In addition, results consistent with classic economic theory further proves the correctness of applying the spatial SUR models to investigate the spatial-temporal patterns of biomass consumption. - Highlights: • A spatial model is suggested as framework to investigate biomass consumption. • A new estimation method is developed to obtain the robust parameters of model. • There are spatial dependences among biomass consumption. • The spatial dependence can contribute to making sustainable biomass policies. • Efforts to adding cross-state dimension to state

  11. Prospects of biomass energy in Bangladesh: an alternative development

    International Nuclear Information System (INIS)

    Salahuddin, Ahmed

    1998-01-01

    Biomass plays an important and complex role in the lives of the people of rural Bangladesh, where more than 80 per cent of the country's population live. The problems relating to biomass do not have to do merely with the question of supply of wood, or of food or of fuel; the problems are linked to competition in the variegations of land-use and to differing end-uses of by-products that may compete with or complement each other. The paper discusses the present pattern and amount of biomass consumption with a view to assessing the future prospect of biomass supply in meeting various needs. Regarding biomass energy supply, several important conclusions can be drawn: a) the energy consumption pattern in Bangladesh is characterized by heavy dependence on traditional fuel; b) the domestic sector uses 80 per cent of the total biomass fuel and c) in the industrial sector, about 76 per cent of the energy used consists of biomass fuel, mainly for processing agricultural products. Several observations are made pertaining to different sectors of biomass fuel demand. (author)

  12. Variation in allocation of time, water and energy in Hoopoe Larks from the Arabian Desert

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Visser, GH

    2003-01-01

    1. Patterns of resource allocation in different times of the year can provide insights into the effects of simultaneous environmental constraints on reproduction and survival of desert birds. Field metabolic rate (FMR), water influx rate (WIR) and patterns of time allocation of Hoopoe Larks (Alaemon

  13. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    Science.gov (United States)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  14. Temporal species richness-biomass relationships along successional gradients

    Science.gov (United States)

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other over time (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  15. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    Science.gov (United States)

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Partição da biomassa e qualidade da forragem de Bahiagrass: Paspalun notatum cv. pensacola no centro-norte da Flórida = Biomass allocation and forage quality in a pensacola Bahiagrass pasture in north central Florida

    Directory of Open Access Journals (Sweden)

    Marcia Mascarenhas Grise

    2006-10-01

    Full Text Available Visando medir efeitos do manejo da Bahiagrass cv. pensacola (Paspalum notatum Flüggeé na repartição de biomassa (kg ha-1 das folhas+colmos, serrapilheira, raízes+rizomas, e valor nutritivo da forragem, foi instalado um experimento próximo a Gainesville, Flórida,EUA. Tratamentos: três manejos contínuos (não intensivo, moderadamente intensivo, altamente intensivo, recebendo 40, 120, e 360 kg N ha -1 ano-1 e com lotação de 1,2; 2,4 e 3,6 UA ha-1, respectivamente e um tratamento de manejo rotacionado (7 dias de pastejo e 21 dias de descanso, recebendo 360 kg N ha-1 ano-1 e 3,6 UA ha-1 (1 U A= 500 kg. A biomassa de raízes+rizomas foi superior a de folhas+colmos. Não houve efeito dos tratamentos na biomassa de raízes+rizomas. A biomassa de raízes+rizomas decresceu durante a estação de pastejo. A maior intensidade de manejo dos tratamentos altamente intensivo e rotacionado resultou em maior biomassa de folhas+colmos. A relação raiz/parte aérea decresceu com a intensificação do manejo. A biomassa de serrapilheira foi superior a de folhas+colmos nos tratamentos altamente intensivo e rotacionado, privilegiando a ciclagem de nutrienes via excreção animal. Os tratamentos não afetaram a FDN nem a DIVMO da forragem, masintensificação do manejo tende a elevar a DIV MO da forragem.This experiment evaluated a pensacola Bahiagrass pasture (Paspalum notatum Flüggeé. It was conducted near Gainesville, Florida, U SA, to measure the effect of pasture management on biomass allocation (kg ha -1 of herbage, litter, root+rhizome, as well as forage quality. Treatments were three continuously stocked (low, moderate, and high,receiving 40, 120, and 360 kg N fertilizer ha -1 yr-1and with stocking rates of 1.2, 2.4, and 3.6 AU ha-1, respectively and one rotationally stocked (RS; 7 -d grazing and 21-d rest periods; N rate of 360 kg ha-1 yr-1, 1 AU = 500 kg pasture. The root+rhizome biomass was 4 to 12 times greater than herbage biomass. There was

  18. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.

    Science.gov (United States)

    Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying

    2005-07-01

    A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.

  19. Impact of interspecific competition and drought on the allocation of new assimilates in trees.

    Science.gov (United States)

    Hommel, R; Siegwolf, R; Zavadlav, S; Arend, M; Schaub, M; Galiano, L; Haeni, M; Kayler, Z E; Gessler, A

    2016-09-01

    In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of (13) C labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  1. Effect of microbial enzyme allocation strategies on stoichiometry of soil organic matter (SOM) decomposition

    Science.gov (United States)

    Wutzler, Thomas

    2014-05-01

    We explored different strategies of soil microbial community to invest resources into extracellular enzymes by conceptual modelling. Similar to the EEZY model by Moorhead et al. (2012), microbial community can invest into two separate pools of enzymes that depolymerize two different SOM pools. We show that with assuming that a fixed fraction of substrate uptake is allocated to enzymes, the microbial dynamics decouples from decomposition dynamics. We propose an alternative formulation where investment into enzymes is proportional to microbial biomass. Next, we show that the strategy of optimizing stoichiometry of decomposition flux according to microbial biomass stoichiometry yield less microbial growth than the strategy of optimizing revenue of the currently limiting element. However, both strategies result in better usage of the resources, i.e. less C overflow or N mineralization, than the strategy of equal allocation to both enzymes. Further, we discuss effects of those strategies on decomposition of SOM and priming at different time scales and discuss several abstractions from the detailed model dynamics for usage in larger scale models.

  2. Phenotypic plasticity in plants of Lippia dulcis (verbenaceae) subjected to water deficit

    International Nuclear Information System (INIS)

    Villamizar Cujar, Javier Mauricio; Rodriguez Lopez, Nelson Facundo; Tezara Fernandez, Wilmer

    2012-01-01

    Phenotypic plasticity (FP) is one of the mechanisms by which plants can respond to environmental heterogeneity by adjusting their morphology and physiology. This study tested and quantified the FP of Lippia dulcis plants in response to water availability in soil (low, medium and high), on morphologic and biomass allocation traits during the vegetative ontogeny (days 39, 45, 59 and 66). We hypothesized that in response to water availability, a higher FP should be expected in morphological compared to biomass allocation traits. The leaf mass fraction, leaf area ratio, branch length, number of leaves and root mass/leaf mass ratio, showed the largest capacity of plastic adjustment in the L. dulcis plants to water deficit, whereas the specific leaf area represented the trait with the lowest FP along vegetative ontogeny. The magnitude and pattern of FP changed depending on trait, water availability and ontogenic development. Contrary to our hypothesis the morphological traits and biomass allocation traits showed equivalent FP. The models of optimum allocation and optimum foraging are not mutually exclusive under water deficit. L. dulcis changed its pattern of biomass allocation, leaf and root morphology and as an adaptive advantage optimized the balance between organs involved in water acquisition and use. L. dulcis showed a remarkable ability to avoid water deficit.

  3. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Science.gov (United States)

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  4. Prediction of Commuter’s Daily Time Allocation

    Directory of Open Access Journals (Sweden)

    Fang Zong

    2013-10-01

    Full Text Available This paper presents a model system to predict the time allocation in commuters’ daily activity-travel pattern. The departure time and the arrival time are estimated with Ordered Probit model and Support Vector Regression is introduced for travel time and activity duration prediction. Applied in a real-world time allocation prediction experiment, the model system shows a satisfactory level of prediction accuracy. This study provides useful insights into commuters’ activity-travel time allocation decision by identifying the important influences, and the results are readily applied to a wide range of transportation practice, such as travel information system, by providing reliable forecast for variations in travel demand over time. By introducing the Support Vector Regression, it also makes a methodological contribution in enhancing prediction accuracy of travel time and activity duration prediction.

  5. Assessing the Significance of Above- and Belowground Carbon Allocation of Fast- and Slow-Growing Families of Loblolly Pine - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Topa, M. A.; Weinstein, D. A.; Retzlaff, W. A.

    2001-03-01

    During this project we experimentally evaluated the below-ground biomass and carbon allocation and partitioning of four different fast- and slow-growing families of loblolly pine located in Scotland County, NC, in an effort to increase the long-term performance of the crop. The trees were subjected to optimal nutrition and control since planting in 1993. Destructive harvests in 1998 and 2000 were used for whole?plant biomass estimates and to identify possible family differences in carbon acquisition (photosynthesis) and water use efficiency. At regular intervals throughout each year we sampled tissues for carbohydrate analyses to assess differences in whole-tree carbon storage. Mini rhizotron observation tubes were installed to monitor root system production and turnover. Stable isotope analysis was used to examine possible functional differences in water and nutrient acquisition of root systems between the various families. A genetic dissection of root ontogenic and architectural traits, including biomass partitioning, was conducted using molecular markers to better understand the functional implications of these traits on resource acquisition and whole-plant carbon allocation.

  6. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Sosa, Amanda; McDonnell, Kevin; Devlin, Ger

    2016-01-01

    The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions. - Highlights: • Life cycle assessment of biomass co-firing and CHP systems in Ireland is carried out. • GWP, acidification and eutrophication potentials, and energy demand are assessed. • Biomass supply is optimised based on minimising GHG emissions. • CHP systems cause lower environmental impacts than biomass co-firing with peat. • Displacing peat achieves higher GHG emission reductions than replacing fossil heat.

  7. Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales

    Science.gov (United States)

    Angeler, David G.; Allen, Criag R.; Johnson, Richard K.

    2012-01-01

    Understanding the social and ecological consequences of species invasions is complicated by nonlinearities in processes, and differences in process and structure as scale is changed. Here we use discontinuity analyses to investigate nonlinear patterns in the distribution of biomass of an invasive nuisance species that could indicate scale-specific organization. We analyze biomass patterns in the flagellate Gonyostomum semen (Raphidophyta) in 75 boreal lakes during an 11-year period (1997-2007). With simulations using a unimodal null model and cluster analysis, we identified regional groupings of lakes based on their biomass patterns. We evaluated the variability of membership of individual lakes in regional biomass groups. Temporal trends in local and regional discontinuity patterns were analyzed using regressions and correlations with environmental variables that characterize nutrient conditions, acidity status, temperature variability, and water clarity. Regionally, there was a significant increase in the number of biomass groups over time, indicative of an increased number of scales at which algal biomass organizes across lakes. This increased complexity correlated with the invasion history of G. semen and broad-scale environmental change (recovery from acidification). Locally, no consistent patterns of lake membership to regional biomass groups were observed, and correlations with environmental variables were lake specific. The increased complexity of regional biomass patterns suggests that processes that act within or between scales reinforce the presence of G. semen and its potential to develop high-biomass blooms in boreal lakes. Emergent regional patterns combined with locally stochastic dynamics suggest a bleak future for managing G. semen, and more generally why invasive species can be ecologically successful.

  8. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  9. A bottom-up approach of stochastic demand allocation in water quality modelling

    NARCIS (Netherlands)

    Blokker, E.J.M.; Vreeburg, J.H.G.; Beverloo, H.; Klein Arfman, M.; Van Dijk, J.C.

    2010-01-01

    An “all pipes” hydraulic model of a drinking water distribution system was constructed with two types of demand allocations. One is constructed with the conventional top-down approach, i.e. a demand multiplier pattern from the booster station is allocated to all demand nodes with a correction factor

  10. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress

    DEFF Research Database (Denmark)

    Cabral, Carmina; Ravnskov, Sabine; Tringovska, Ivanka

    2016-01-01

    - and micronutrient concentrations in aboveground biomass; evaluation of AM fungal structures in roots and assessment of light-use efficiency of plants. Results AM increased grain number in wheat under heat-stress, and altered nutrient allocation and tiller nutrient composition. Heat increased number of arbuscules...... in wheat root, whereas number of vesicles and total colonization were unaffected. Heat increased photosystem II yield and the electron transfer rate, whereas non-photochemical quenching decreased during the first 2 days of heat-stress. Conclusions Nutrient allocation and –composition in wheat grown under...

  11. The morphological /settlement pattern classification of South African settlements based on a settlement catchment approach, to inform facility allocation and service delivery

    CSIR Research Space (South Africa)

    Sogoni, Z

    2016-07-01

    Full Text Available / settlement pattern classification of South African settlements based on a settlement catchment approach, to inform facility allocation and service delivery Zukisa Sogoni Planning Africa Conference 2016 4 July 2Project Focus and Background • CSIR... services. • Purpose is to support application & planning for new investment & prevent “unsustainable” investments / White elephants. 3Outputs • National set of service delivery catchments • Profile information per individual catchment • Ranking...

  12. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)

    The usual biomass partitioning by BB at pH=4.5 deserves further investigation. Different patterns of biomass partitioning notwithstanding, results of this study strongly suggest that BB could complement SG, the model biofuel feedstock, especially under acidic substrate conditions. Key words: Big bluestem; switchgrass; ...

  13. Estimation of carbon allocation of Macauba palm (Acrocomia aculeata) - A new Brazilian biofuel alternative

    Science.gov (United States)

    Imbuzeiro, H. A.; Moreira, S. L. S.; Motoike, S. Y.; Fernandes, R. B. A.

    2017-12-01

    The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation.

  14. Global Climate Mitigation Finance: The Determinants of its Provision and Allocation

    OpenAIRE

    Halimanjaya, Aidy Steveany

    2014-01-01

    In" recent" years" development" aid" (also" commonly" referred" to" as" Overseas" Development" Assistance" or" ODA)" has" increasingly" been" allocated" for" the" mitigation"of"climate"change,"often"diverting"funding"from"more"traditional" development" purposes" such" as" poverty" alleviation." To" the" author’s" knowledge" no" other" study" identifies" the" determinants" of" the" increasing" provision" of" official" mitigation" finance" and" the" patterns" of" its" allocation"...

  15. A hybrid model for mapping relative differences in belowground biomass and root: Shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh

    Science.gov (United States)

    Jessica L. O'Connell,; Byrd, Kristin B.; Maggi Kelly,

    2015-01-01

    Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA). We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients) and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS) regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  16. GIS-BASED location optimization of a biomass conversion plant on contaminated willow in the Campine region (Belgium)

    International Nuclear Information System (INIS)

    Voets, Thomas; Neven, An; Thewys, Theo; Kuppens, Tom

    2013-01-01

    The Campine region is diffusely contaminated with heavy metals like cadmium. Since traditional excavation techniques are too expensive, phytoremediation is preferred as a remediation technique. In a previous study, the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium was assessed. Based on recently upgraded figures of willow potential from phytoremediation on agricultural land in the seven most contaminated municipalities of the Belgian Campine region, the current paper uses GIS-knowledge to investigate which of three previously identified locations is most suitable for a biomass plant, taking into account the spatial distribution of the contaminated willow supply and the total cost of willow transport. Biomass transport distance from the centroid of each contaminated agricultural parcel to each of the three potential biomass plant locations was determined following Euclidian distance calculations and distance calculations over the existing road network. A transport cost model consisting of distance fixed and distance dependent biomass transport costs was developed. Of the locations identified, the Overpelt Fabriek site results in the lowest biomass transport distance and costs. When willow allocation for each parcel occurs based on the nearest potential plant location, transport costs are on average 23% lower than when all biomass is transported to the single Overpelt Fabriek site location. Therefore, when only considering transport costs, installing a smaller plant at each of the three potential plant locations would be less expensive than when installing a single biomass plant at the Overpelt Fabriek site. -- Highlights: ► Overpelt Fabriek site most attractive for time frames considered. ► Average tortuosity factor in Campine region between 1.27 and 1.42. ► Share of willow transport costs in willow supply costs 21%. ► Optimal allocation of willow results in lower transport costs

  17. Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning in SiBCASA

    Science.gov (United States)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; van der Werf, G. R.; Krol, M. C.; Peters, W.

    2014-12-01

    We present an enhanced version of the SiBCASA terrestrial biosphere model that is extended with (a) biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from the Global Fire Emissions Database (GFED), (b) an isotopic discrimination scheme that calculates 13C signatures of photosynthesis and autotrophic respiration, and (c) a separate set of 13C pools to carry isotope ratios into heterotrophic respiration. We quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. The implementation of biomass burning yields similar fluxes as CASA-GFED both in magnitude and spatial patterns. The implementation of isotope exchange gives a global mean discrimination value of 15.2‰, ranges between 4 and 20‰ depending on the photosynthetic pathway in the plant, and compares favorably (annually and seasonally) with other published values. Similarly, the isotopic disequilibrium is similar to other studies that include a small effect of biomass burning as it shortens the turnover of carbon. In comparison to measurements, a newly modified starch/sugar storage pool propagates the isotopic discrimination anomalies to respiration much better. In addition, the amplitude of the drought response by SiBCASA is lower than suggested by the measured isotope ratios. We show that a slight increase in the stomatal closure for large vapor pressure deficit would amplify the respired isotope ratio variability. Our study highlights the importance of isotope ratio observations of 13C to assess and improve biochemical models like SiBCASA, especially with regard to the allocation and turnover of carbon and the responses to drought.

  18. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    Science.gov (United States)

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  19. Zinc allocation and re-allocation in rice

    Science.gov (United States)

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  20. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Science.gov (United States)

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  1. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis.

    Science.gov (United States)

    Neumann, Kerstin; Zhao, Yusheng; Chu, Jianting; Keilwagen, Jens; Reif, Jochen C; Kilian, Benjamin; Graner, Andreas

    2017-08-10

    Genetic mapping of phenotypic traits generally focuses on a single time point, but biomass accumulates continuously during plant development. Resolution of the temporal dynamics that affect biomass recently became feasible using non-destructive imaging. With the aim to identify key genetic factors for vegetative biomass formation from the seedling stage to flowering, we explored growth over time in a diverse collection of two-rowed spring barley accessions. High heritabilities facilitated the temporal analysis of trait relationships and identification of quantitative trait loci (QTL). Biomass QTL tended to persist only a short period during early growth. More persistent QTL were detected around the booting stage. We identified seven major biomass QTL, which together explain 55% of the genetic variance at the seedling stage, and 43% at the booting stage. Three biomass QTL co-located with genes or QTL involved in phenology. The most important locus for biomass was independent from phenology and is located on chromosome 7HL at 141 cM. This locus explained ~20% of the genetic variance, was significant over a long period of time and co-located with HvDIM, a gene involved in brassinosteroid synthesis. Biomass is a dynamic trait and is therefore orchestrated by different QTL during early and late growth stages. Marker-assisted selection for high biomass at booting stage is most effective by also including favorable alleles from seedling biomass QTL. Selection for dynamic QTL may enhance genetic gain for complex traits such as biomass or, in the future, even grain yield.

  2. PATTERNS OF PREY BIOMASS CONSUMPTION BY SMALL ODONTOCETES IN THE NORTHEASTERN COAST OF VENEZUELA

    Directory of Open Access Journals (Sweden)

    Lenin E. Oviedo Correa

    2011-07-01

    Full Text Available Trophic relationships are conditioned by population dynamics of interacting species in the community (species present, food web connections among them, and the strength of interactions, and on the consequences of these species interactions depend various ecosystem processes such as productivity and nutrient flux. Odontocetes target a wide range of prey items and are adapted to feeding at different depths. The aim of this report is to describe the patterns of prey consumption by small odontocetes, incorporating natural predatory patterns into a potential management scheme of strategic food sources, for both human and marine predators. Using the geo-statistical analysis tool of ArcGIS 9.2, maps illustrating the intensity and location of prey consumption were made for species with a sighting index (SPUE > 0.15. The biomass consumption emphasized the differences in habitat use by species. The trends in distribution of prey biomass removal by odontocetes particularly suggest a stratification of prey consumption primarily in shelf waters, with a prey biomass that is comprised basically by demersal fish and small pelagics (including Sardinella aurita, and into transition-oceanic depths where most of the predatory pattern would potentially rely on pelagic - mesopelagic squid and myctophids. Overall the spatial tendencies in regionalization presented in this contribution will serve as a base-line to assess ecosystem health and evaluate management scenarios.   Las relaciones tróficas son reguladas por la dinámica poblacional de las especies que interactúan dentro de la comunidad (especies presentes, conexiones interespecíficas, y nivel de interacción y de las consecuencias de esas interacciones para procesos del ecosistema como la productividad y el flujo de nutrientes. El objetivo de este reporte es evaluar el patrón de consumo de biomasa por odontocetos de menor tamaño en la costa Nororiental de Venezuela, incorporando patrones de depredaci

  3. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  4. Problems associated with modelling future biomass use in developing countries

    International Nuclear Information System (INIS)

    Turkson, J.; Fenhann, J.

    1997-01-01

    One of the main objectives of modelling biomass consumption is to obtain accurate assessment of current and future biomass supply and demand patterns. Some problems associated with biomass modelling in the developing countries are discussed, the focus is put on Africa. The wood fuel and charcoal consumption in households are investigated. Differences between rural and urban areas are pointed out. (K.A.)

  5. Allocating Scarce Resources Strategically - An Evaluation and Discussion of the Global Fund's Pattern of Disbursements

    Science.gov (United States)

    McCoy, David; Kinyua, Kelvin

    2012-01-01

    Background The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE), government health expenditure (GHE), income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. Methods This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. Findings Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support). Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. Discussion The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a) reduce the extent to which funds are allocated on a demand-driven basis; and b) align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases. PMID:22590496

  6. Allocating scarce resources strategically--an evaluation and discussion of the Global Fund's pattern of disbursements.

    Directory of Open Access Journals (Sweden)

    David McCoy

    Full Text Available BACKGROUND: The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE, government health expenditure (GHE, income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. METHODS: This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. FINDINGS: Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support. Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. DISCUSSION: The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a reduce the extent to which funds are allocated on a demand-driven basis; and b align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases.

  7. Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey.

    Science.gov (United States)

    Zhang, Kai; Batterman, Stuart A

    2009-10-15

    Traffic congestion increases air pollutant exposures of commuters and urban populations due to the increased time spent in traffic and the increased vehicular emissions that occur in congestion, especially "stop-and-go" traffic. Increased time in traffic also decreases time in other microenvironments, a trade-off that has not been considered in previous time activity pattern (TAP) analyses conducted for exposure assessment purposes. This research investigates changes in time allocations and exposures that result from traffic congestion. Time shifts were derived using data from the National Human Activity Pattern Survey (NHAPS), which was aggregated to nine microenvironments (six indoor locations, two outdoor locations and one transport location). After imputing missing values, handling outliers, and conducting other quality checks, these data were stratified by respondent age, employment status and period (weekday/weekend). Trade-offs or time-shift coefficients between time spent in vehicles and the eight other microenvironments were then estimated using robust regression. For children and retirees, congestion primarily reduced the time spent at home; for older children and working adults, congestion shifted the time spent at home as well as time in schools, public buildings, and other indoor environments. Changes in benzene and PM(2.5) exposure were estimated for the current average travel delay in the U.S. (9 min day(-1)) and other scenarios using the estimated time shifts coefficients, concentrations in key microenvironments derived from the literature, and a probabilistic analysis. Changes in exposures depended on the duration of the congestion and the pollutant. For example, a 30 min day(-1) travel delay was determined to account for 21+/-12% of current exposure to benzene and 14+/-8% of PM(2.5) exposure. The time allocation shifts and the dynamic approach to TAPs improve estimates of exposure impacts from congestion and other recurring events.

  8. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, C.; De Angelis, P.; Scarascia-Mungozza, G.; Gielen, B.; Ceulemans, R.; Galema, A. N. J.; Lukac, M.; Moscatelli, M. C.

    2003-01-01

    The possible contribution of short rotation cultures (SRC) to carbon sequestration in both current and elevated carbon dioxide concentrations was investigated using the free-air carbon dioxide enrichment (FACE) technique. Three poplar species were grown in an SRC plantation for three growing seasons. Above-ground and below-ground biomass increased by 15 to 27 per cent and by 22 to 38 per cent, respectively; light-efficiency also increased as a result. Depletion of inorganic nitrogen from the soil increased after three growing seasons at elevated carbon dioxide levels, but carbon dioxide showed no effect on stem wood density. Stem wood density also differed significantly from species to species. These results confirmed inter-specific differences in biomass production in poplar, and demonstrated that elevated carbon dioxide enhanced biomass productivity and light-use efficiency of a poplar short rotation cultivation ecosystem without changing biomass allocation. The reduction in soil nitrogen raises the possibility of reduced long-term biomass productivity. 60 refs., 4 tabs., 4 figs

  9. Research on allocation efficiency of the daisy chain allocation algorithm

    Science.gov (United States)

    Shi, Jingping; Zhang, Weiguo

    2013-03-01

    With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.

  10. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  11. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  13. Global patterns and predictions of seafloor biomass using random forests

    Digital Repository Service at National Institute of Oceanography (India)

    Wei, Chih-Lin; Rowe, G.T.; Escobar-Briones, E.; Boetius, A; Soltwedel, T.; Caley, M.J.; Soliman, Y.; Huettmann, F.; Qu, F.; Yu, Z.; Pitcher, C.R.; Haedrich, R.L.; Wicksten, M.K.; Rex, M.A; Baguley, J.G.; Sharma, J.; Danovaro, R.; MacDonald, I.R.; Nunnally, C.C.; Deming, J.W.; Montagna, P.; Levesque, M.; Weslawsk, J.M.; Wlodarska-Kowalczuk, M.; Ingole, B.S.; Bett, B.J.; Billett, D.S.M.; Yool, A; Bluhm, B.A; Iken, K.; Narayanaswamy, B.E.

    A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model...

  14. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  15. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  16. Zinc allocation and re-allocation in rice

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Putten, van der P.E.L.; Struik, P.C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation

  17. Herbaceous biomass predication from environmental and remote sensing indicators

    CSIR Research Space (South Africa)

    Dudeni-Tlhone, N

    2012-11-01

    Full Text Available Feeding patterns and distribution of herbivores animals are known to be influenced by quality and quantity of forage such as grass. Modelling indicators of grass quality and biomass are critical in understanding such patterns and for decision makers...

  18. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  19. Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation.

    Science.gov (United States)

    Wirth, Christian; Schumacher, Jens; Schulze, Ernst-Detlef

    2004-02-01

    To facilitate future carbon and nutrient inventories, we used mixed-effect linear models to develop new generic biomass functions for Norway spruce (Picea abies (L.) Karst.) in Central Europe. We present both the functions and their respective variance-covariance matrices and illustrate their application for biomass prediction and uncertainty estimation for Norway spruce trees ranging widely in size, age, competitive status and site. We collected biomass data for 688 trees sampled in 102 stands by 19 authors. The total number of trees in the "base" model data sets containing the predictor variables diameter at breast height (D), height (H), age (A), site index (SI) and site elevation (HSL) varied according to compartment (roots: n = 114, stem: n = 235, dry branches: n = 207, live branches: n = 429 and needles: n = 551). "Core" data sets with about 40% fewer trees could be extracted containing the additional predictor variables crown length and social class. A set of 43 candidate models representing combinations of lnD, lnH, lnA, SI and HSL, including second-order polynomials and interactions, was established. The categorical variable "author" subsuming mainly methodological differences was included as a random effect in a mixed linear model. The Akaike Information Criterion was used for model selection. The best models for stem, root and branch biomass contained only combinations of D, H and A as predictors. More complex models that included site-related variables resulted for needle biomass. Adding crown length as a predictor for needles, branches and roots reduced both the bias and the confidence interval of predictions substantially. Applying the best models to a test data set of 17 stands ranging in age from 16 to 172 years produced realistic allocation patterns at the tree and stand levels. The 95% confidence intervals (% of mean prediction) were highest for crown compartments (approximately +/- 12%) and lowest for stem biomass (approximately +/- 5%), and

  20. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Carriero, G.; Emiliani, G.; Giovannelli, A.; Hoshika, Y.; Manning, W.J.; Traversi, M.L.; Paoletti, E.

    2015-01-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O 3 ). Effects of long-term ambient O 3 exposure (23 ppm h AOT40) on biomass of an O 3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (−51%) and below-ground biomass (−47%) was reduced by O 3 although the effect was significant only for stem and coarse roots. Ambient O 3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O 3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated. - Highlights: • 6-y ambient O 3 exposure was investigated in a sensitive poplar clone. • EDU irrigation protected poplar against ambient O 3 exposure. • O 3 reduced biomass of roots and stem, but did not change biomass allocation. • O 3 decreased stem diameter only in the lower third of the stem. • O 3 increased moisture content of the wood along the stem. - Ozone exposure reduced lateral branching, leaves and roots in younger trees, and affected stem and roots in older trees, while shoot/root ratios did not change.

  1. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii.

    Science.gov (United States)

    Lurie, Matthew H; Barton, Kasey E; Daehler, Curtis C

    2017-12-01

    Plant-herbivore interactions have been predicted to play a fundamental role in plant invasions, although support for this assertion from previous research is mixed. While plants may escape from specialist herbivores in their introduced ranges, herbivory from generalists is common. Tolerance traits may allow non-native plants to mitigate the negative consequences of generalist herbivory that they cannot avoid in their introduced range. Here we address whether tolerance to herbivory, quantified as survival and compensatory growth, is associated with plant invasion success in Hawaii and investigate traits that may enhance tolerance in seedlings, the life stage most susceptible to herbivory. In a greenhouse experiment, we measured seedling tolerance to simulated herbivory through mechanical damage (50% leaf removal) of 16 non-native woody plant species differing in invasion status (invasive vs. non-invasive). Seedlings were grown for 2 weeks following damage and analyzed for biomass to determine whether damaged plants could fully compensate for the lost leaf tissue. Over 99% of all seedlings survived defoliation. Although species varied significantly in their levels of compensation, there was no consistent difference between invasive and non-invasive species. Seedlings of 11 species undercompensated and remained substantially smaller than control seedlings 2 weeks after damage; four species were close to compensating, while one species overcompensated. Across species, compensation was positively associated with an increased investment in potential storage reserves, specifically cotyledons and roots, suggesting that these organs provide resources that help seedlings re-grow following damage. Our results add to a growing consensus that pre-damage growth patterns determine tolerance to damage, even in young seedlings which have relatively low biomass. The lack of higher tolerance in highly invasive species may suggest that invaders overcome herbivory barriers to invasion

  2. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    Science.gov (United States)

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Pattern and levels of spending allocated to HIV prevention programs in low- and middle-income countries

    Directory of Open Access Journals (Sweden)

    Amico Peter

    2012-03-01

    Full Text Available Abstract Background AIDS continues to spread at an estimated 2.6 new million infections per year, making the prevention of HIV transmission a critical public health issue. The dramatic growth in global resources for AIDS has produced a steady scale-up in treatment and care that has not been equally matched by preventive services. This paper is a detailed analysis of how countries are choosing to spend these more limited prevention funds. Methods We analyzed prevention spending in 69 low- and middle-income countries with a variety of epidemic types, using data from national domestic spending reports. Spending information was from public and international sources and was analyzed based on the National AIDS Spending Assessment (NASA methods and classifications. Results Overall, prevention received 21% of HIV resources compared to 53% of funding allocated to treatment and care. Prevention relies primarily on international donors, who accounted for 65% of all prevention resources and 93% of funding in low-income countries. For the subset of 53 countries that provided detailed spending information, we found that 60% of prevention resources were spent in five areas: communication for social and behavioral change (16%, voluntary counselling and testing (14%, prevention of mother-to-child transmission (13%, blood safety (10% and condom programs (7%. Only 7% of funding was spent on most-at-risk populations and less than 1% on male circumcision. Spending patterns did not consistently reflect current evidence and the HIV specific transmission context of each country. Conclusions Despite recognition of its importance, countries are not allocating resources in ways that are likely to achieve the greatest impact on prevention across all epidemic types. Within prevention spending itself, a greater share of resources need to be matched with interventions that approximate the specific needs and drivers of each country's epidemic.

  4. Linking root hydraulic properties to carbon allocation patterns in annual plant

    Science.gov (United States)

    Hosseini, A.; Ewers, B. E.; Adjesiwor, A. T.; Kniss, A. R.

    2017-12-01

    Incorporation of root structure and function into biophysical models is an important tool to predict plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils. Most of the models describing root water uptake (RWU) are based on semi-empirical (i.e. built on physiological hypotheses, but still combined with empirical functions) approaches and hydraulic parameters involved are hardly available. Root conductance is essential to define the interaction between soil-to-root and canopy-to-atmosphere. Also root hydraulic limitations to water flow can impact gas exchange rates and plant biomass partitioning. In this study, sugar beet (B. vulgaris) seeds under two treatments, grass (Kentucky bluegrass) and no grass (control), were planted in 19 L plastic buckets in June 2016. Photosynthetic characteristics (e.g. gas exchange and chlorophyll fluorescence), leaf morphology and anatomy, root morphology and above and below ground biomass of the plants was monitored at 15, 30, 50, 70 and 90 days after planting (DAP). Further emphasis was placed on the limits to water flow by coupling of hydraulic conductance (k) whole root-system with water relation parameters and gas exchange rates in fully established plants.

  5. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis.

    Science.gov (United States)

    Cook, Nicola; Pannebakker, Bart A; Tauber, Eran; Shuker, David M

    2015-10-01

    The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.

  6. Transnational Energy Companies' Investment Allocation Decisions

    International Nuclear Information System (INIS)

    Osmundsen, Petter; Emhjellen, Magne; Halleraker, Morten

    2001-10-01

    When making international capital budgeting decisions, energy companies are often faced with capital and organisational constraints. The constraints may be real or management imposed. In addition, when entering into a new country or region the companies will incur fixed new area costs that must be considered before investment approval. The decision problem is therefore not a linear problem where the standard net present value rule applies, but a non-linear problem of selecting the combination of projects with the maximum aggregate net present value. New project investments will therefore be selected based on the size of the net present value (often referred to as financial volume or materiality) compared to the projects' use of capital and scarce personnel and organisational capacity. Consequently, projects with a positive net present value, but with low materiality, may not be approved. The portfolio choice has a parallel to the company's choice of core areas. Instead of complex portfolio models, the companies often apply simpler allocation mechanisms, e.g., combinations of fixed investment budgets and materiality requirements. Analysing petroleum cases, we compare the allocations decisions generated by portfolio models and simpler mechanisms. We also discuss the implications of this capital allocation pattern for governments' design of tax systems and license conditions. (author)

  7. 2009 Biomass Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s 2009 peer review meeting, held on July 14–15, 2009, in Arlington, Virginia. The document also includes summary information from the six separate platform reviews conducted between March and April 2009 in the Washington, D.C., and Denver, Colorado, areas. The platform reviews provide evaluations of the program‘s projects in applied research, development, and demonstration as well as analysis and deployment activities. The July program peer review was an evaluation of the program‘s overall strategic planning, management approach, priorities across research areas, and resource allocation.

  8. Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild.

    Directory of Open Access Journals (Sweden)

    Katherine Sinacore

    Full Text Available The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB and carbon (C. Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB, coarse root belowground biomass (BGB, and total biomass (TB. We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree's TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling.

  9. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  10. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  11. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    Science.gov (United States)

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  12. Demographic controls of aboveground forest biomass across North America.

    Science.gov (United States)

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.

  13. Waste biomass-to-energy supply chain management: a critical synthesis.

    Science.gov (United States)

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Optimization Analysis of Supply Chain Resource Allocation in Customized Online Shopping Service Mode

    Directory of Open Access Journals (Sweden)

    Jianming Yao

    2015-01-01

    Full Text Available For an online-shopping company, whether it can provide its customers with customized service is the key to enhance its customers’ experience value and its own competence. A good customized service requires effective integration and reasonable allocation of the company’s supply chain resources running in the background. Based on the analysis of the allocation of supply chain resources in the customized online shopping service mode and its operational characteristics, this paper puts forward an optimization model for the resource allocation and builds an improved ant algorithm to solve it. Finally, the effectiveness and feasibility of the optimization method and algorithm are demonstrated by a numerical simulation. This paper finds that the special online shopping environments lead to many dynamic and uncertain characters of the service demands. Different customized service patterns and their combination patterns should match with different supply chain resource allocations. The optimization model not only reflects the required service cost and delivery time in the objective function, but also considers the service scale effect optimization and the relations of integration benefits and risks. The improved ant algorithm has obvious advantages in flexibly balancing the multiobjective optimizations, adjusting the convergence speed, and adjusting the operation parameters.

  15. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  16. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  17. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems

    Science.gov (United States)

    Díaz-Astudillo, Macarena; Cáceres, Mario A.; Landaeta, Mauricio F.

    2017-09-01

    The patterns of abundance, composition, biomass and vertical migration of zooplankton in short-time scales (ADCP device mounted on the hull of a ship were used to obtain vertical profiles of current velocity data and intensity of the backscattered acoustic signal, which was used to study the migratory strategies and to relate the echo intensity with zooplankton biomass. Repeated vertical profiles of temperature, salinity and density were obtained with a CTD instrument to describe the density patterns during both experiments. Zooplankton were sampled every 3 h using a Bongo net to determine abundance, composition and biomass. Migrations were diel in the stratified station, semi-diel in the mixed station, and controlled by light in both locations, with large and significant differences in zooplankton abundance and biomass between day and night samples. No migration pattern associated with the effect of tides was found. The depth of maximum backscatter strength showed differences of approximately 30 m between stations and was deeper in the mixed station. The relation between mean volume backscattering strength (dB) computed from echo intensity and log10 of total dry weight (mg m-3) of zooplankton biomass was moderate but significant in both locations. Biomass estimated from biological samples was higher in the mixed station and determined by euphausiids. Copepods were the most abundant group in both stations. Acoustic methods were a useful technique to understand the detailed patterns of migratory strategies of zooplankton and to help estimate zooplankton biomass and abundance in the inner waters of southern Chile.

  18. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Directory of Open Access Journals (Sweden)

    Alyne Oliveira Lavinsky

    2015-10-01

    Full Text Available Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS, starch (S, phenolics (PHE, and lignin (LIG. Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710 (sensitive genotypes and DKB390 and BRS1055 (tolerant genotypes under two soil water tensions: field capacity (FC, − 18 kPa and water deficit (WD, − 138 kPa. WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  19. Two mire species respond differently to enhanced ultraviolet-B radiation: effects on biomass allocation and root exudation

    DEFF Research Database (Denmark)

    Rinnan, Riikka Tiivi Mariisa; Gehrke, Carola; Michelsen, Anders

    2006-01-01

    •  Increased ultraviolet-B (UV-B) radiation arising from stratospheric ozone depletion may influence soil microbial communities via effects on plant carbon allocation and root exudation. •  Eriophorum angustifolium and Narthecium ossifragum plants, grown in peatland mesocosms consisting of Sphagnum...

  20. Linking biomass fuel consumption and improve cooking stove: A study from Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sohel, Md. Shawkat Islam; Rana, Md. Parvez; Akhter, Sayma

    2010-09-15

    The study determines the biomass fuel consumption pattern and environmental consequences of biomass fuel usage in the traditional and improve cooking stove. The introduction of improved cooking stove minimizes people's forest dependence by reducing the amount of fuelwood required to meet their household needs. Firewood was the most frequently used biomass fuel. It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. While improve cooking stove help to reduce such consequences.

  1. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew; Liu, Yi; Evans, Jason; De Jeu, Richard; van Dijk, Albert

    2013-01-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  2. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew

    2013-12-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  3. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    Science.gov (United States)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  4. Curvilinear relationships between resource allocation and life domain-specific interference.

    Science.gov (United States)

    Waldrop, Jessica S; Erb, Kaitlyn R; Grawitch, Matthew J

    2017-10-01

    This study investigated the inherent complexities of the work-life interface (WLI) by examining the relationship between resource allocation (i.e., time and energy dedicated to a particular domain) and perceived interference of individual life domains. Much of the research on the WLI is based on the assumption that a linear pattern best describes the relationship between resource allocation and the interference caused by various life domains; however, this study examined the possibility that curvilinear relationships may be a more appropriate representation. Results indicated that resource allocation is a meaningful predictor of interference, and for many life domains a curvilinear relationship accounts for more variance than a linear one; a breakdown of the sample also revealed this relationship varies by gender. Overall, findings suggest that the nature of the WLI is more individualized and complex than is currently conceptualized in the field. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress.

    Science.gov (United States)

    Aronson, J; Kigel, J; Shmida, A

    1993-03-01

    Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.

  6. Uptake and allocation of 15N in alpine plants. Implications for the importance of competitive ability in predicting community structure in a stressful environment

    International Nuclear Information System (INIS)

    Theodose, T.A.; Jaeger, C.H.; Bowman, W.D.; Schardt, J.C.

    1996-01-01

    Several potential components of competitive ability were determined for 13 plant species in a N-limited alpine moist meadow community in order to determine if competition had an influence on relative abundance in this stressful environment. The components of competitive ability examined were 15 N uptake rate, 15 N allocation, whole plant biomass, root:shoot ratio, and tissue N concentrations. It was hypothesized that 15 N uptake rate would be the component most correlated with relative abundance. However, 15 N uptake rate was negatively correlated with percent cover in the community. In contrast, whole plant biomass and root:shoot ratio were positively correlated with relative abundance. Tissue N concentrations and 15 N allocation were not important predictors of relative abundance. These results suggest that in a harsh environment, high resource uptake rates are not indicative of competitive ability, but may instead by a mechanism by which rare species are able to coexist with competitive dominants. (au) 47 refs

  7. Biomass power. Exploring the diffusion challenges in Spain

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2009-01-01

    The use of biomass resources for power generation offers numerous benefits of interest for political decision-makers: fuel security, rural and industrial development, ecological benefits. In Spain, policy instruments have been used since 1980 to stimulate biomass power generation. However, the diffusion outcome by 2007 was very disappointing: only 525 MW. This paper argues that two factors lie at the core of this: the conceptualization of biomass resources by political decision-makers in the instruments used, and the desire that policy instruments be in line with market liberalization principles. These generated a persistent economic obstacle for biomass power generation, and impeded the development of markets for the supply of biomass resources. The policy learning regarding the heterogeneity of biomass resources, and the investors' expectations on risks, profitability and resource markets was very slow among political decision-makers. The paper contributes to the understanding of diffusion outcomes by proposing to analyse diffusion by means of five indicators: types of resources, technologies, developers, motivations to invest and project sizes. Besides, the paper shows the usefulness of investigating policy instruments in terms of their risk and profitability characteristics. This enables a better understanding of the diffusion patterns and outcomes. (author)

  8. Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke

    Directory of Open Access Journals (Sweden)

    Ubaid Yaqoob

    2017-01-01

    Full Text Available Ferula jaeschkeana Vatke is an important threatened medicinal plant of the Himalayan region. The present study was carried out to determine the impact of the habitat variability and altitudinal gradient on the morphological and reproductive features of the species under study. The species exhibited great variability in its morphological traits under different environmental conditions. The plants were more vigorous and taller at a low altitude site, Kashmir University Botanical Garden (KUBG while the plants of a high altitude site, Gulmarg were shorter. With increased altitude, a significant reduction in the number of umbels per flowering stem, umbellules per umbel and flowers per umbellule occurred. An increase in the number of stigma and anthers was also observed in some plants at higher altitudes. Principal component analysis (PCA revealed that the habitat of KUBG and Dachigam proved relatively better for the growth of F. jaeschkeana. Maximum resources were allocated to the growth and development of the stem followed by root tubers, leaves and inflorescence. Reproductive success of the plant species varied along the altitudinal gradient and ranged from 64% to 72%. Increasing altitude resulted in a decrease in the allocation of biomass to reproductive structures in the form of decreasing dry weight. The total resource budget per plant was maximum in low altitude Drang (572.6 ± 158.36 g and Dachigam (568.4 ± 133.42 g populations and was least in the Gulmarg population (333.4 ± 82.89 g. The reproductive effort was higher (50.83% for the high altitude Gulmarg population. The regression analysis revealed a positive correlation and predicts that plant height has a direct impact on the umbel diameter and leaf length. Our results present a detailed account on the variation of growth characteristics, reproductive success and changes in allocation patterns in relation to the environmental conditions of this valuable medicinal plant species

  9. Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns.

    Directory of Open Access Journals (Sweden)

    Yan Geng

    Full Text Available The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1 belowground biomass (BGB is most closely related to spatial variation in Rs due to high root biomass density, and (2 soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO(2 m(-2 s(-1, ranging from 0.39 to 12.88 µmol CO(2 m(-2 s(-1, with average daily mean Rs of 2.01 and 5.49 µmol CO(2 m(-2 s(-1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB, SOC, soil moisture (SM, and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80% of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82% of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale.

  10. Faculty Time Allocation: A Study of Change over Twenty Years.

    Science.gov (United States)

    Milem, Jeffrey F.; Berger, Joseph B.; Dey, Eric L.

    2000-01-01

    Examined changes in amounts of time faculty spent in teaching, advising, and research activities over the past 20 years. Found institutions are becoming more similar in their patterns of faculty time allocation, particularly regarding time spend on research. However, time spent advising and interacting informally with students appears to be…

  11. Transnational Energy Companies' Investment Allocation Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Osmundsen, Petter; Emhjellen, Magne; Halleraker, Morten

    2001-10-01

    When making international capital budgeting decisions, energy companies are often faced with capital and organisational constraints. The constraints may be real or management imposed. In addition, when entering into a new country or region the companies will incur fixed new area costs that must be considered before investment approval. The decision problem is therefore not a linear problem where the standard net present value rule applies, but a non-linear problem of selecting the combination of projects with the maximum aggregate net present value. New project investments will therefore be selected based on the size of the net present value (often referred to as financial volume or materiality) compared to the projects' use of capital and scarce personnel and organisational capacity. Consequently, projects with a positive net present value, but with low materiality, may not be approved. The portfolio choice has a parallel to the company's choice of core areas. Instead of complex portfolio models, the companies often apply simpler allocation mechanisms, e.g., combinations of fixed investment budgets and materiality requirements. Analysing petroleum cases, we compare the allocations decisions generated by portfolio models and simpler mechanisms. We also discuss the implications of this capital allocation pattern for governments' design of tax systems and license conditions. (author)

  12. Characterization of the loss allocation techniques for radial systems with distributed generation

    International Nuclear Information System (INIS)

    Carpaneto, Enrico; Chicco, Gianfranco; Sumaili Akilimali, Jean

    2008-01-01

    In the restructured electricity industry, meaningful loss allocation methods are required in order to send correct signals to the market taking into account the location and characteristics of loads and generations, including the local sources forming the distributed generation (DG). This paper addresses the issues related to loss allocation in radial distribution systems with DG, with a three-fold focus. First, the key differences in the formulation of the loss allocation problem for radial distribution systems with respect to transmission systems are discussed, specifying the modeling and computational issues concerning the treatment of the slack node in radial distribution systems. Then, the characteristics of derivative-based and circuit-based loss allocation techniques are presented and compared, illustrating the arrangements used for adapting the various techniques to be applied to radial distribution systems with DG. Finally, the effects of introducing voltage-controllable local generation on the calculation of the loss allocation coefficients are discussed, proposing the adoption of a ''reduced'' representation of the system capable of taking into proper account the characteristics of the nodes containing voltage-controllable DG units. Numerical results are provided to show the time evolution of the loss allocation coefficients for distribution systems with variable load and local generation patterns. (author)

  13. Portraits of Principal Practice: Time Allocation and School Principal Work

    Science.gov (United States)

    Sebastian, James; Camburn, Eric M.; Spillane, James P.

    2018-01-01

    Purpose: The purpose of this study was to examine how school principals in urban settings distributed their time working on critical school functions. We also examined who principals worked with and how their time allocation patterns varied by school contextual characteristics. Research Method/Approach: The study was conducted in an urban school…

  14. An integrated pan-tropical biomass map using multiple reference datasets.

    Science.gov (United States)

    Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B M; Lewis, Simon L; Phillips, Oliver L; Asner, Gregory P; Armston, John; Ashton, Peter S; Banin, Lindsay; Bayol, Nicolas; Berry, Nicholas J; Boeckx, Pascal; de Jong, Bernardus H J; DeVries, Ben; Girardin, Cecile A J; Kearsley, Elizabeth; Lindsell, Jeremy A; Lopez-Gonzalez, Gabriela; Lucas, Richard; Malhi, Yadvinder; Morel, Alexandra; Mitchard, Edward T A; Nagy, Laszlo; Qie, Lan; Quinones, Marcela J; Ryan, Casey M; Ferry, Slik J W; Sunderland, Terry; Laurin, Gaia Vaglio; Gatti, Roberto Cazzolla; Valentini, Riccardo; Verbeeck, Hans; Wijaya, Arief; Willcock, Simon

    2016-04-01

    We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets. © 2015 John Wiley & Sons Ltd.

  15. Residency Allocation Database

    Data.gov (United States)

    Department of Veterans Affairs — The Residency Allocation Database is used to determine allocation of funds for residency programs offered by Veterans Affairs Medical Centers (VAMCs). Information...

  16. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    Science.gov (United States)

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  17. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    Science.gov (United States)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and 3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  18. Induction of Metamorphosis Causes Differences in Sex-Specific Allocation Patterns in Axolotls (Ambystoma mexicanum) that Have Different Growth Histories.

    Science.gov (United States)

    Clarkson, Pamela M; Beachy, Christopher K

    2015-12-01

    We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.

  19. Forest biomass and Armington elasticities in Europe

    International Nuclear Information System (INIS)

    Lundmark, Robert; Shahrammehr, Shima

    2011-01-01

    The purpose of this paper is to provide estimated Armington elasticities for selected European countries and for three forest biomass commodities of main interest in many energy models: roundwood, chips and particles and wood residues. The Armington elasticity is based on the assumption that a specific forest biomass commodity is differentiated by its origin. The statistically significant estimated Armington elasticities range from 0.52 for roundwood in Hungary to approximately 4.53 for roundwood in Estonia. On average, the statistically significant Armington elasticity for chips and particles over all countries is 1.7 and for wood residues and roundwood 1.3 and 1.5, respectively. These elasticities can provide benchmark values for simulation models trying to assess trade patterns of forest biomass commodities and energy policy effects for European countries or for the EU as a whole.

  20. Allocation of energy resources for power generation in India: Business as usual and energy efficiency

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2010-01-01

    This paper deals with MARKAL allocations for various energy sources, in India, for Business As Usual (BAU) scenario and for the case of exploitation of energy saving potential in various sectors of economy. In the BAU scenario, the electrical energy requirement will raise up to 5000 bKwh units per year or 752 GW of installed capacity with major consumers being in the industry, domestic and service sectors. This demand can be met by a mix of coal, hydro, nuclear and wind technologies. Other reneawbles i.e. solar and biomass will start contributing from the year 2040 onwards. By full exploitation of energy saving potential, the annual electrical energy demand gets reduced to 3061 bKwh (or 458 GW), a reduction of 38.9%.The green house gas emissions reduce correspondingly. In this scenario, market allocations for coal, gas and large hydro become stagnant after the year 2015.

  1. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  2. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  3. Air quality on biomass harvesting operations

    Science.gov (United States)

    Dana Mitchell

    2011-01-01

    The working environment around logging operations can be very dusty. But, air quality around logging operations is not well documented. Equipment movements and trafficking on the landing can cause dust to rise into the air. The addition of a biomass chipper creates different air flow patterns and may stir up additional dust. This project addresses two topics related to...

  4. Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae).

    Science.gov (United States)

    Munguía-Rosas, Miguel A; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J Carlos

    2012-02-01

    Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.

  5. The influence of nitrogen inputs on biomass and trophic structure of ocean plankton: a study using biomass and stable isotope size-spectra

    KAUST Repository

    Mompeán, Carmen

    2016-08-18

    Large scale patterns in planktonic food web structure were studied by applying continuous size-scaled models of biomass and δ15N to plankton samples, collected at 145 stations during the Malaspina-2010 Expedition across three ocean basins and including major biomes. Carbon biomass and δ15N were determined in size-fractionated samples (40 to 5000 μm) collected by vertical hauls (0–200 m). Biomass-normalized size-spectra were constructed to summarize food web structure and spatial patterns in spectral parameters were analyzed using geographically-weighted regression analysis. Except in the northwestern Atlantic, size-spectra showed low variability, reflecting a homogeneity in nitrogen sources and food web structure for the central oceans. Estimated predator-to-prey mass ratios <104 and mean trophic transfer efficiency values between 16% (coastal biome) and >20% (Trades and Westerlies biomes) suggested that oceanic plankton food webs may support a larger number of trophic levels than current estimates based on high efficiency values. The largest changes in spectral parameters and nitrogen sources were related to inputs of atmospheric nitrogen, either from diazotrophic organisms or dust deposition. These results suggest geographic homogeneity in the net transfer of nitrogen up the food web.

  6. Spatial pattern enhances ecosystem functioning in an African savanna.

    Directory of Open Access Journals (Sweden)

    Robert M Pringle

    2010-05-01

    Full Text Available The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity. Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity: insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced. This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  7. Spatial pattern enhances ecosystem functioning in an African savanna.

    Science.gov (United States)

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  8. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Directory of Open Access Journals (Sweden)

    Rocio Urrutia-Jalabert

    Full Text Available Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP, carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1 and 448-517 Mg C ha(-1 in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1 year(-1 in AC and 2.22-2.54 Mg C ha(-1 year(-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1 year(-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  9. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

    Science.gov (United States)

    Urrutia-Jalabert, Rocio; Malhi, Yadvinder; Lara, Antonio

    2015-01-01

    Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

  10. Towards predicting basin-wide invertebrate organic biomass and production in marine sediments from a coastal sea.

    Directory of Open Access Journals (Sweden)

    Brenda J Burd

    Full Text Available Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69-74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30% variance in biomass and production. We now have the tools for basin

  11. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  12. Biomass Development in SRI Field Under Unmaintained Alternate Wetting-Drying Irrigation

    Science.gov (United States)

    Ardiansyah; Chusnul, A.; Krissandi, W.; Asna, M.

    2018-05-01

    The aim of this research is to observe biomass development of SRI on farmers practice in three plots with different level. This research observes the farmer practice of SRI and Non-SRI during the uncertainty of irrigation water supply and its effects on paddy biomass development during growth stages and final stage of crop. A farmer group that already understand the principle of SRI, applied this method into several plots of their rented paddy field. Researcher interventions were eliminated from their action, so it is purely on farmers decision on managing their SRI plots. Three plots from both SRI and Non-SRI were chosen based on the position of the plot related their access to water. First plots had direct access to water from tertiary irrigation channel (on farm). Second plots were received water from previous upper plots and drainage water into other plots. Third plots were in the bottom position, where they received water from upper plot, and drainage water into farm drainage channel. Result shows there are similar patterns of root, straw, and leaves of biomass during crop growth. On the other hand, during generative phase, grain development shows different pattern and resulting different biomass in harvest time. Second plot, (of SRI) that has water from first plot has the average of biomass grain per plant of 54.4, higher than first plot and third plot, which are 33.8 g and 38.4. Average biomass in second plot is 74.6 g, higher than first and third plot, which are 49.9 g and 52.3 g.

  13. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  14. The influence of nitrogen inputs on biomass and trophic structure of ocean plankton: a study using biomass and stable isotope size-spectra

    KAUST Repository

    Mompeá n, Carmen; Bode, Antonio; Latasa, Mikel; Ferná ndez-Castro, Bieito; Mouriñ o-Carballido, Beatriz; Irigoien, Xabier

    2016-01-01

    Large scale patterns in planktonic food web structure were studied by applying continuous size-scaled models of biomass and δ15N to plankton samples, collected at 145 stations during the Malaspina-2010 Expedition across three ocean basins

  15. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.

    Science.gov (United States)

    Colesie, Claudia; Green, T G Allan; Haferkamp, Ilka; Büdel, Burkhard

    2014-10-01

    Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using (14)CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.

  16. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    great opportunities for a sustainable supply of energy and materials, but on the other hand it bears large ecological and economical risks, such as deforestation and competition with food production. It is therefore of the utmost importance to formulate minimum requirements for large-scale bio-energy projects and international trade in biomass energy. For international trade in biomass energy it is important to identify regions with a future biomass energy surplus, related to their own energy consumption. Exporting this surplus would have to be done as efficiently as possible, with regard to CO2 emission reduction. Transatlantic shipments of wood have to be balanced against local conversion and shipping the fuel. An important recommendation to the Netherlands government about the possible future import of biomass is therefore: increase the knowledge and insights in the possible consequences of large scale import of biomass energy. This can be done by setting up a limited number of pilot projects for the trade in bio-energy, and by monitoring these projects very carefully, supported by research activities. Such pilot projects can also provide a better understanding in how broad the support for these activities is, both in the Netherlands as well in exporting countries. In the long run much more knowledge and information is required about which regions would be most suited for a sustainable production and trade in biomass energy. It will be necessary to develop and introduce a 'FSC' type mark for biomass-based energy carriers. There are still a number of crucial research questions in areas such as: economic drivers of land use, competition of biomass with other land uses, and competition with other sources of energy and materials. These interactions need to be studied at local/regional level, taking into account the effect of technological and economical changes in time. In addition there are complex questions in the field of optimising the allocation of biomass resources

  17. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro

    2014-12-01

    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  18. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  19. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  20. Cost allocation with limited information

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    This article investigates progressive development of Aumann-Shapley cost allocation in a multilevel organizational or production structure. In particular, we study a linear parametric programming setup utilizing the Dantzig-Wolfe decomposition procedure. Typically cost allocation takes place after...... all activities have been performed, for example by finishing all outputs. Here the allocation is made progressively with suggestions for activities. I other words cost allocation is performed in parallel for example with a production planning process. This development does not require detailed...... information about some technical constraints in order to make the cost allocation....

  1. Risk capital allocation

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Smilgins, Aleksandrs

    Risk capital allocation problems have been widely discussed in the academic literature. We consider a company with multiple subunits having individual portfolios. Hence, when portfolios of subunits are merged, a diversification benefit arises: the risk of the company as a whole is smaller than...... the sum of the risks of the individual sub-units. The question is how to allocate the risk capital of the company among the subunits in a fair way. In this paper we propose to use the Lorenz set as an allocation method. We show that the Lorenz set is operational and coherent. Moreover, we propose a set...... of new axioms related directly to the problem of risk capital allocation and show that the Lorenz set satisfies these new axioms in contrast to other well-known coherent methods. Finally, we discuss how to deal with non-uniqueness of the Lorenz set....

  2. Analysis of proteins involved in biodegradation of crop biomass

    Science.gov (United States)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  3. Relationships of Biomass with Environmental Factors in the Grassland Area of Hulunbuir, China

    Science.gov (United States)

    Liu, Miao; Liu, Guohua; Gong, Li; Wang, Dongbo; Sun, Jian

    2014-01-01

    Many studies have focused on the relationship between vegetation biomass and environmental factors in grassland. However, several questions remain to be answered, especially with regards to the spatial pattern of vegetation biomass. Thus, the distributed mechanism will be explored in the present study. Here, plant biomass was measured at 23 sites along a transect survey during the peak growing season in 2006. The data were analyzed with a classification and regression tree (CART) model. The structural equation modeling (SEM) was conducted to explicitly evaluate the both direct and indirect effects of these critical environmental elements on vegetation biomass. The results demonstrated that mean annual temperature (MAT) affected aboveground biomass (AGB) scored at −0.811 (Pbiomass (BGB) was −0.490 (Pbiomass distribution. PMID:25032808

  4. A comparative study of resource allocation in Pteridium in different Brazilian ecosystems and its relationship with European studies

    Directory of Open Access Journals (Sweden)

    DM Silva Matos

    Full Text Available Pteridium is a cosmopolitan genus that acts as an invasive species in many parts of the world. Most research on this genus has occurred in Europe, and there is a lack of data on it from South America, in spite of causing considerable conservation problems. We compared the biomass allocation of P. esculentum subsp. arachnoideum in two ecosystems in Brazil - Atlantic forest and Brazilian savanna. We measured the biomass of fronds, rhizomes and above-ground litter. We also compared the density, length and biomass of fronds from this Brazilian study with similar data of P. esculentumsubsp. arachnoideum derived from Venezuela and P. aquilinum from Europe. P. esculentum subsp. arachnoideum showed a wide response range. We found a negative relationship between frond and necromass, indicating a negative feedback effect, while a positive relationship was observed between frond and rhizome biomass. The continental comparison of relationships showed that Pteridium responds in a different way in both Brazil and Europe, and that in Brazil fronds tend to be longer and heavier, presumably as a result of the continuous growing season in South America while is shortened in Europe by frost. The paper shows the ability of Pteridium to adapt to different ecosystems.

  5. Online Job Allocation with Hard Allocation Ratio Requirement (Author’s Manuscript)

    Science.gov (United States)

    2016-04-14

    server divided by its capacity. Specifically , let nj be the number of jobs that have already been allocated to server j. When job i arrives, it is...decisions solely based on current system state is needed. The problem of online job allocation has attracted much attention . Most current studies study...closed-form expressions for their performance. Specifically , we prove that, in order to allocate at least 1− 1θ of jobs , the two policies only need to

  6. The role of physical formidability in human social status allocation.

    Science.gov (United States)

    Lukaszewski, Aaron W; Simmons, Zachary L; Anderson, Cameron; Roney, James R

    2016-03-01

    Why are physically formidable men willingly allocated higher social status by others in cooperative groups? Ancestrally, physically formidable males would have been differentially equipped to generate benefits for groups by providing leadership services of within-group enforcement (e.g., implementing punishment of free riders) and between-group representation (e.g., negotiating with other coalitions). Therefore, we hypothesize that adaptations for social status allocation are designed to interpret men's physical formidability as a cue to these leadership abilities, and to allocate greater status to formidable men on this basis. These hypotheses were supported in 4 empirical studies wherein young adults rated standardized photos of subjects (targets) who were described as being part of a white-collar business consultancy. In Studies 1 and 2, male targets' physical strength positively predicted ratings of their projected status within the organization, and this effect was mediated by perceptions that stronger men possessed greater leadership abilities of within-group enforcement and between-group representation. Moreover, (a) these same patterns held whether status was conceptualized as overall ascendancy, prestige-based status, or dominance-based status, and (b) strong men who were perceived as aggressively self-interested were not allocated greater status. Finally, 2 experiments established the causality of physical formidability's effects on status-related perceptions by manipulating targets' relative strength (Study 3) and height (Study 4). In interpreting our findings, we argue that adaptations for formidability-based status allocation may have facilitated the evolution of group cooperation in humans and other primates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    Science.gov (United States)

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future. © 2015 John Wiley & Sons Ltd.

  8. Responses in chemical traits and biomass allocation of Arundo donax L. to deficit resources in the establishment year

    Directory of Open Access Journals (Sweden)

    Antonio Pompeiano

    2013-12-01

    Full Text Available A large expansion in renewable energy production is underway with an increasing focus on sustainable second-generation biofuels. Fast growing rhizomatous perennial grasses are leading candidates for lignocellulosic feedstock thanks to their positive energy balance, and low ecological/agro-management demands. Biomass accumulation is favored by the efficient use of available resources. The aim of this study was to identify which accumulation processes were most affected in the establishment year of a giant reed (Arundo donax L. field crop grown under water and N deficiencies. The relative plasticity of growth of A. donax in response to various levels of resource availability was evaluated. A field scale experiment was carried out, and treatments were arranged as a randomized complete block, strip-plot design with irrigation treatments as the main plot factor and pre-planting N rate as the sub-plot factor. Biometric relationships between variables were assessed to understand how agro-management factors influence the above ground biomass of giant reed, as well as yield over time. Evidence is presented indicating that growth is strongly enhanced by water availability (+97% dry weight biomass. Changes in composition were not significant within or among fixed treatments, rather changes were observed over time. A high content of glucans and xylans were detected from early stage, and as the mobilization of minerals increased, lignin content significantly increased as well (from 12% to 36% w/w. These results suggest that an increase in the growth of A. donax in the establishment year is accomplished by a limited use of the water input

  9. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  10. Can observed ecosystem responses to elevated CO2 and N fertilisation be explained by optimal plant C allocation?

    Science.gov (United States)

    Stocker, Benjamin; Prentice, I. Colin

    2016-04-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant

  11. Resource Allocation and Resident Outcomes In Nursing Homes: Comparisons between the Best and Worst1

    Science.gov (United States)

    Anderson, Ruth A.; Hsieh, Pi-Ching; Su, Hui-Fang

    2005-01-01

    The purpose of this study was to identify patterns of resource allocation that related to resident outcomes in nursing homes. Data on structure, staffing levels, salaries, cost, casemix, and resident outcomes were obtained from state-level, administrative databases on 494 nursing homes. We identified two sets of comparison groups and showed that the group of homes with the greatest percentage of improvement in resident outcomes had higher levels of RN staffing and higher costs. However, comparison groups based on best/worst average outcomes did not differ in resource allocation patterns. Additional analysis demonstrated that when controlling for RN staffing, resident outcomes in high and low cost homes did not differ. The results suggest that, although RN staffing is more expensive, it is key to improving resident outcomes. PMID:9679807

  12. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    Science.gov (United States)

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  14. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy

    2011-01-01

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  15. Numerical approaches to model perturbation fire in turing pattern formations

    Science.gov (United States)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  16. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  17. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): physiological basis and effects of maternal family and environment.

    Science.gov (United States)

    Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z

    2008-11-01

    Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.

  18. Emissions allocation in transportation routes

    NARCIS (Netherlands)

    Leenders, B.P.J.; Velázquez Martínez, J.; Fransoo, J.C.

    2017-01-01

    This article studies the allocation of CO2 emissions to a specific shipment in routing transportation. The authors show that this problem differs from a cost allocation problem specifically because the concavity condition does not hold necessarily in the CO2 allocation problem. This implies that a

  19. An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2015-11-01

    Full Text Available An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1 application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2 algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2 incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making.

  20. [Carbon storage of forest vegetation and allocation for main forest types in the east of Da-xing'an Mountains based on additive biomass model].

    Science.gov (United States)

    Peng, Wei; Dong, Li Hu; Li, Feng Ri

    2016-12-01

    Based on the biomass investigation data of main forest types in the east of Daxing'an Mountains, the additive biomass models of 3 main tree species were developed and the changes of carbon storage and allocation of forest community of tree layer, shrub layer, herb layer and litter layer from different forest types were discussed. The results showed that the carbon storage of tree layer, shrub layer, herb layer and litter layer for Rhododendron dauricum-Larix gmelinii forest was 71.00, 0.34, 0.05 and 11.97 t·hm -2 , respectively. Similarly, the carbon storage of the four layers of Ledum palustre-L. gmelinii forest was 47.82, 0.88, 0, 5.04 t·hm -2 , 56.56, 0.44, 0.04, 8.72 t·hm -2 for R. dauricum-mixed forest of L. gmelinii-Betula platyphylla, 46.21, 0.66, 0.07, 6.16 t·hm -2 for L. palustre-mixed forest of L. gmelinii-B. platyphylla, 40.90, 1.37, 0.04, 3.67 t·hm -2 for R. dauricum-B. platyphylla forest, 36.28, 1.12, 0.18, 4.35 t·hm -2 for L. palustre-B. platyphylla forest. The carbon storage of forest community for the understory vegetation of R. dauricum was higher than that of the forest with L. palustre. In the condition of similar circumstances for the understory, the order of carbon storage for forest community was L. gmelinii forest > the mixed forest of L. gmelinii-B. platyphylla > B. platyphylla forest. The carbon storage of different forest types was different with the order of R. dauricum-L. gmelinii forest (83.36 t·hm -2 )> R. dauricum-mixed forest of L. gmelinii-B. platyphylla (65.76 t·hm -2 ) > L. palustre-L. gmelinii forest (53.74 t·hm -2 )> L. palustre-mixed forest of L. gmelinii-B. platyphylla (53.10 t·hm -2 )> R. dauricum-B. platyphylla forest (45.98 t·hm -2 ) > L. palustre-B. platyphylla forest (41.93 t·hm -2 ). The order of carbon storage for the vertical distribution in forest communities with diffe-rent forest types was the tree layer (85.2%-89.0%) > litter layer (8.0%-14.4%) > shrub layer (0.4%-2.7%) > herb layer (0-0.4%).

  1. Effect of regionalization on the allocation of third-party peace operations

    Directory of Open Access Journals (Sweden)

    Dagmar Zakopalová

    2011-06-01

    Full Text Available The paper “Effect of regionalization on the allocation of third-party peace operations” aims to discuss and then empirically test on large-N data what is the effect of the joint activity of the United Nations, regional organizations and ad hoc coalitions of states on the allocation of peace operations in the world. It is argued that after the end of the Cold War, all the actors have become much more active in organizing peace operations in intrastate armed conflicts, but it remains rather unclear to what extent they actually share the burden of peace operations at the macro level and especially whether the United Nations focuses on the regions that are rather overlooked by the other actors. The analysis shows that there are remarkable differences among various regions as regards the involvement of international actors and in fact, regional organizations as well as the ad hoc coalitions of states tend to follow similar patterns in allocation of peace operations as the United Nations.

  2. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  3. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy.

    Science.gov (United States)

    Palacio, S; Paterson, E; Sim, A; Hester, A J; Millard, P

    2011-02-01

    Current knowledge on tree carbon (C) allocation to wood is particularly scarce in plants subjected to disturbance factors, such as browsing, which affects forest regeneration worldwide and has an impact on the C balance of trees. Furthermore, quantifying the degree to which tree rings are formed from freshly assimilated vs. stored carbohydrates is highly relevant for our understanding of tree C allocation. We used (13)C labelling to quantify seasonal allocation of stored C to wood formation in two species with contrasting wood anatomy: Betula pubescens Ehrh. (diffuse-porous) and Quercus petraea [Matt.] Liebl. (ring-porous). Clipping treatments (66% shoot removal, and unclipped) were applied to analyse the effect of browsing on C allocation into tree rings, plus the effects on tree growth, architecture, ring width and non-structural carbohydrates (NSCs). The relative contribution of stored C to wood formation was greater in the ring-porous (55-70%) than in the diffuse-porous species (35-60%), although each species followed different seasonal trends. Clipping did not cause a significant depletion of C stores in either species. Nonetheless, a significant increase in the proportion of stored C allocated to earlywood growth was observed in clipped birches, and this could be explained through changes in tree architecture after clipping. The size of C pools across tree species seems to be important in determining the variability of seasonal C allocation patterns to wood and their sensibility to disturbances such as browsing. Our results indicate that the observed changes in C allocation to earlywood in birch were not related to variations in the amount or concentration of NSC stores, but to changes in the seasonal availability of recently assimilated C caused by modifications in tree architecture after browsing.

  4. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  5. Physical Cues Controlling Seasonal Immune Allocation in a Natural Piscine Model

    Directory of Open Access Journals (Sweden)

    Alexander Stewart

    2018-03-01

    Full Text Available Seasonal patterns in immunity are frequently observed in vertebrates but are poorly understood. Here, we focused on a natural piscine model, the three-spined stickleback (Gasterosteus aculeatus, and asked how seasonal immune allocation is driven by physical variables (time, light, and heat. Using functionally-relevant gene expression metrics as a reporter of seasonal immune allocation, we synchronously sampled fish monthly from the wild (two habitats, and from semi-natural outdoors mesocosms (stocked from one of the wild habitats. This was repeated across two annual cycles, with continuous within-habitat monitoring of environmental temperature and implementing a manipulation of temperature in the mesocosms. We also conducted a long-term laboratory experiment, subjecting acclimated wild fish to natural and accelerated (×2 photoperiodic change at 7 and 15°C. The laboratory experiment demonstrated that immune allocation was independent of photoperiod and only a very modest effect, at most, was controlled by a tentative endogenous circannual rhythm. On the other hand, experimentally-determined thermal effects were able to quantitatively predict much of the summer–winter fluctuation observed in the field and mesocosms. Importantly, however, temperature was insufficient to fully predict, and occasionally was a poor predictor of, natural patterns. Thermal effects can thus be overridden by other (unidentified natural environmental variation and do not take the form of an unavoidable constraint due to cold-blooded physiology. This is consistent with a context-dependent strategic control of immunity in response to temperature variation, and points to the existence of temperature-sensitive regulatory circuits that might be conserved in other vertebrates.

  6. The flux-based PIN allocation mechanism can generate either canalyzed or diffuse distribution patterns depending on geometry and boundary conditions.

    Directory of Open Access Journals (Sweden)

    Michael Luke Walker

    Full Text Available Growth and morphogenesis in plants require controlled transport of the plant hormone auxin. An important participant is the auxin effluxing protein PIN, whose polarized subcellular localization allows it to effectively transport auxin large distances through tissues. The flux-based model, in which auxin flux through a wall stimulates PIN allocation to that wall, is a dominant contender among models determining where and in what quantity PIN is allocated to cell walls. In this paper we characterise the behaviour of flux-based PIN allocation models in various tissues of the shoot apical meristem. Arguing from both mathematical analysis and computer simulations, we describe the natural behaviours of this class of models under various circumstances. In particular, we demonstrate the important dichotomy between sink- and source- driven systems, and show that both diffuse and canalized PIN distributions can be generated simultaneously in the same tissue, without model hybridization or variation of PIN-related parameters. This work is performed in the context of the shoot apical and floral meristems and is applicable to the construction of a unified PIN allocation model.

  7. Peer-Allocated Instant Response (PAIR): Computional allocation of peer tutors in learning communities

    NARCIS (Netherlands)

    Westera, Wim

    2009-01-01

    Westera, W. (2007). Peer-Allocated Instant Response (PAIR): Computational allocation of peer tutors in learning communities. Journal of Artificial Societies and Social Simulation, http://jasss.soc.surrey.ac.uk/10/2/5.html

  8. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  9. Changes in diversity, biomass and abundance of soil macrofauna, Parrotio-Carpinetum forest at organic and semi-organic horizons

    Directory of Open Access Journals (Sweden)

    Masomeh Izadi

    2016-07-01

    Full Text Available Present study evaluates diversity, abundance and biomass of soil macrofauna in organic and semi-organic horizons in Parrotia persica-Carpinus betulus forest in Shast kola area. Totally 70 sample points were randomly selected from organic and semi-organic horizons then sampling was done by a rectangle 100 cm2 area. Soil macrofauna were separated from soil samples by hand sorting and using Berlese funnel then dried at 60°C for 72h and weighted in 0.001 gr. With using taxonomic classification key, thirteen macrofauna orders were identified. Most of abundance of soil macrofauna in both soil horizons were allocated to Millipedes order. Changes in diversity, abundance and biomass of macrofauna in both soil horizons were calculated. The results showed Shannon diversity index, Simpson evenness and Margalef richness indices in semi-organic horizon were more than organic horizon. Abundance and biomass of macrofauna in semi-organic horizon were more than organic horizon.

  10. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  11. Cost allocation review : staff discussion paper

    International Nuclear Information System (INIS)

    2005-09-01

    This report addressed the need for updated cost allocation studies filed by local electricity distribution companies because they ensure that distribution rates for each customer class remain just and reasonable. According to the 2001 Electricity Distribution Rate Handbook, the Ontario Energy Board requires new cost allocation studies before implementing any future incentive regulation plans. A review of cost allocations allows the Board to consider the need for adjustments to the current share of distribution costs paid by different classes of ratepayers. This report included 14 sections to facilitate consultations with stakeholders on financial information requirements for cost allocation; directly assignable costs; functionalization; categorization; allocation methods; allocation of other costs; load data requirements; cost allocation implementation issues; addition of new rate class and rate design for scattered unmetered loads; addition of new rate class for larger users; rates to charge embedded distributors; treatment of the rate sub-classification identified as time-of-use; and, rate design implementation issues. 1 fig., 7 appendices

  12. Effects of inorganic nitrogen form on growth, morphology, N uptake, and nutrient allocation in hybrid Napier grass (Pennisetum purpureum × Pennisetum americanum cv. Pakchong1)

    DEFF Research Database (Denmark)

    Jampeetong, Arunothai; Brix, Hans; Kantawanichkul, Suwasa

    2014-01-01

    in such systems. We studied the effects of inorganic nitrogen form (NH4 +, NH4NO3 or NO3 -) on growth, morphology, N uptake, water content and mineral allocation in this species under hydroponic conditions at equimolar concentrations (500μmolNL-1). Generally, the N-form significantly affected growth, biomass...

  13. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    Science.gov (United States)

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-11-12

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

  14. Impacts of communal fuelwood extraction on lidar-estimated biomass patterns of savanna woodlands

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2012-07-01

    Full Text Available Approximately 54% of rural households in South Africa continue to use wood as their main source of energy, mainly for cooking and heating. The provision of biomass by savanna woodlands is thus of considerable value to rural households and therefore...

  15. Environmental patterns and biomass distribution of gelatinous macrozooplankton. Three study cases in the South-western Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    H. W. Mianzan

    2000-12-01

    Full Text Available Periodic swarms or blooms of gelatinous macrozooplankton have a negative effect on many human activities such as tourism, fisheries, and industry, but for several reasons (sampling procedures, underestimation of their real abundance, etc., they have often been neglected in the local literature. The high spatial resolution exercise of the South-western Atlantic anchovy Engraulis anchoita Recruitment Project (SARP was therefore also suitable for estimating standing stocks of jelly macrozooplankton, attempting to establish particular environmental patterns exerting control on the spatial distribution of these facultative carnivorous predators in coastal frontal environments. These studies were carried out through a sampling programme on board the German R/V Meteor in three different systems, convergence and divergent, in the South-western Atlantic Ocean: Region A (42°S on the Argentine shelf, characterised by tidal mixing fronts; Region B (36°S, the freshwater outflow from Río de la Plata; and Region C (28°S, under upwelling events in subtropical waters on the Brazilian shelf. In general, a dominance of gelatinous macrozooplankton, compared with the other fraction of macrozooplankton and micronekton was observed. Mean standing stock of the gelatinous zooplankton was always greater than 50% of organic carbon (org. C in every section analysed. The lobate ctenophore Mnemiopsis leidyi dominated the zooplankton biomass in Region A, Argentina. It represented 60% of total org. C and was more abundant at the stratified zone of the front. Ctenophores were also dominant in Region B, Río de la Plata, where the related species Mnemiopsis mccradyi and the cydippid ctenophore Pleurobrachia pileus comprised 81% of total org. C. Mnemiopsis was most common in areas of vertical thermal and saline stratification, while Pleurobrachia was dominant in the less stratified areas. Gelatinous zooplankton was also the principal component of the macrozooplankton biomass

  16. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  17. Local breast cancer spatial patterning: a tool for community health resource allocation to address local disparities in breast cancer mortality.

    Directory of Open Access Journals (Sweden)

    Dana M Brantley-Sieders

    Full Text Available Despite available demographic data on the factors that contribute to breast cancer mortality in large population datasets, local patterns are often overlooked. Such local information could provide a valuable metric by which regional community health resources can be allocated to reduce breast cancer mortality. We used national and statewide datasets to assess geographical distribution of breast cancer mortality rates and known risk factors influencing breast cancer mortality in middle Tennessee. Each county in middle Tennessee, and each ZIP code within metropolitan Davidson County, was scored for risk factor prevalence and assigned quartile scores that were used as a metric to identify geographic areas of need. While breast cancer mortality often correlated with age and incidence, geographic areas were identified in which breast cancer mortality rates did not correlate with age and incidence, but correlated with additional risk factors, such as mammography screening and socioeconomic status. Geographical variability in specific risk factors was evident, demonstrating the utility of this approach to identify local areas of risk. This method revealed local patterns in breast cancer mortality that might otherwise be overlooked in a more broadly based analysis. Our data suggest that understanding the geographic distribution of breast cancer mortality, and the distribution of risk factors that contribute to breast cancer mortality, will not only identify communities with the greatest need of support, but will identify the types of resources that would provide the most benefit to reduce breast cancer mortality in the community.

  18. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  19. Tradable permit allocations and sequential choice

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Ian A. [Centre for Economic Research, ETH Zuerich, Zurichbergstrasse 18, 8092 Zuerich (Switzerland)

    2011-01-15

    This paper investigates initial allocation choices in an international tradable pollution permit market. For two sovereign governments, we compare allocation choices that are either simultaneously or sequentially announced. We show sequential allocation announcements result in higher (lower) aggregate emissions when announcements are strategic substitutes (complements). Whether allocation announcements are strategic substitutes or complements depends on the relationship between the follower's damage function and governments' abatement costs. When the marginal damage function is relatively steep (flat), allocation announcements are strategic substitutes (complements). For quadratic abatement costs and damages, sequential announcements provide a higher level of aggregate emissions. (author)

  20. Alternative reproductive tactics in snail shell-brooding cichlids diverge in energy reserve allocation.

    Science.gov (United States)

    von Kuerthy, Corinna; Tschirren, Linda; Taborsky, Michael

    2015-05-01

    Life history theory predicts that the amount of resources allocated to reproduction should maximize an individual's lifetime reproductive success. So far, resource allocation in reproduction has been studied mainly in females. Intraspecific variation of endogenous energy storage and utilization patterns of males has received little attention, although these patterns may vary greatly between individuals pursuing alternative reproductive tactics (ARTs). ARTs are characterized by systematic variation of behavioral, physiological, and often morphological traits among same-sex conspecifics. Some individuals may rely on previously accumulated reserves, because of limited foraging opportunities during reproduction. Others may be able to continue foraging during reproduction, thus relying on reserves to a lesser extent. We therefore predicted that, if male tactics involve such divergent limitations and trade-offs within a species, ARTs should correspondingly differ in energy reserve allocation and utilization. To test this prediction, we studied short-term and long-term reserve storage patterns of males in the shell-brooding cichlid Lamprologus callipterus. In this species, bourgeois males investing in territory defense, courtship, and guarding of broods coexist with two distinct parasitic male tactics: (1) opportunistic sneaker males attempting to fertilize eggs by releasing sperm into the shell opening when a female is spawning; and (2) specialized dwarf males attempting to enter the shell past the spawning female to fertilize eggs from inside the shell. Sneaker males differed from other male types by showing the highest amount of accumulated short-term and long-term fat stores, apparently anticipating their upcoming adoption of the nest male status. In contrast, nest males depleted previously accumulated energy reserves with increasing nest holding period, as they invest heavily into costly reproductive behaviors while not taking up any food. This conforms to a capital

  1. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  2. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  3. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  4. [Need-based resource allocation--experiences with the RAWP formula in Great Britain].

    Science.gov (United States)

    Brand, H; Menke, R

    1997-07-01

    The RAWP formula used for resource allocation in Great Britain between 1976 and 1991 is a morbidity-oriented instrument of controlling, which has so far received only little attention in Germany. The development of this model was supported by the intention to intervene in the regional pattern of hospital supply by means of resource allocation and to refine it according to the guiding principles of equity and efficiency. The basic elements-regional population, average bed use, ICD chapter-specific SMRs-are discussed and the various modifications outlined. The RAWP formula's potentials of controlling resulted in a progressive reduction of the apparent disparities between regions in hospital supply, and knee was considered to be a "qualified success". The future development in the sense of an internal market addressed.

  5. Nitrogen fertilization decouples roots and microbes: Reductions in belowground carbon allocation limit microbial activity

    Science.gov (United States)

    Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.

    2017-12-01

    Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.

  6. Changes of biomass in some perennial grass species. | M.C. ...

    African Journals Online (AJOL)

    Patterns of seasonal herbaceous biomass change in a burned, ungrazed savanna woodland are reported. A standard clipping technique was used and material farmed in the current season was separated from that formed in the previous season for three perennial grass species: Brachiaria nigropedata, Andropogon ...

  7. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  8. IPO Allocations: Discriminatory or Discretionary?

    OpenAIRE

    William Wilhelm; Alexander Ljungqvist

    2001-01-01

    We estimate the structural links between IPO allocations, pre-market information production, and initial underpricing returns, within the context of theories of bookbuilding. Using a sample of both US and international IPOs we find evidence of the following: ? IPO allocation policies favour institutional investors, both in the US and worldwide. ? Increasing institutional allocations results in offer prices that deviate more from the indicative price range established prior to bankers’ efforts...

  9. Holding-time-aware asymmetric spectrum allocation in virtual optical networks

    Science.gov (United States)

    Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.

  10. Distribution of known macrozooplankton abundance and biomass in the global ocean

    Science.gov (United States)

    Moriarty, R.; Buitenhuis, E. T.; Le Quéré, C.; Gosselin, M.-P.

    2013-07-01

    Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 × 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass, to a depth of 350 m, has a mean of 8.4 μg C L-1, median of 0.2 μg C L-1 and a standard deviation of 63.5 μg C L-1. The global annual average estimate of macrozooplankton biomass in the top 350 m, based on the median value, is 0.02 Pg C. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid-latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted by the lack of information on the size of the organism and/or the absence of taxonomic information. Distribution patterns of global

  11. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  12. Intelligent tactical asset allocation support system

    NARCIS (Netherlands)

    Hiemstra, Y.

    1995-01-01

    This paper presents an advanced support system for Tactical Asset Allocation. Asset allocation explains over 90% of portfolio performance (Brinson, Hood and Beebower, 1988). Tactical asset allocation adjusts a strategic portfolio on the basis of short term market outlooks. The system includes

  13. How should INGOs allocate resources?

    Directory of Open Access Journals (Sweden)

    Scott Wisor

    2012-02-01

    Full Text Available International Non-governmental Organizations (INGOs face difficult choices when choosing to allocate resources. Given that the resources made available to INGOs fall far short of what is needed to reduce massive human rights deficits, any chosen scheme of resource allocation requires failing to reach other individuals in great need. Facing these moral opportunity costs, what moral reasons should guide INGO resource allocation? Two reasons that clearly matter, and are recognized by philosophers and development practitioners, are the consequences (or benefit or harm reduction of any given resource allocation and the need (or priority of individual beneficiaries. If accepted, these reasons should lead INGOs to allocate resources to a limited number of countries where the most prioritarian weighted harm reduction will be achieved. I make three critiques against this view. First, on grounds the consequentialist accepts, I argue that INGOs ought to maintain a reasonably wide distribution of resources. Second, I argue that even if one is a consequentialist, consequentialism ought not act as an action guiding principle for INGOs. Third, I argue that additional moral reasons should influence decision making about INGO resource allocation. Namely, INGO decision making should attend to relational reasons, desert, respect for agency, concern for equity, and the importance of expressing a view of moral wrongs.

  14. Dominance patterns in macroalgal and phytoplankton biomass under different nutrient loads in subtropical coastal lagoons of the SE Gulf of California

    International Nuclear Information System (INIS)

    Páez-Osuna, F.; Piñón-Gimate, A.; Ochoa-Izaguirre, M.J.

    2013-01-01

    Highlights: • Nine macroalgal blooms were examined in five lagoons from SE Gulf of California. • Shrimp farms were the main point source of nutrients loads to the lagoons. • Biomass as phytoplankton ranged 40–792 mg m −2 and macroalgal of 1–296 g m −2 . • Biomass (phytoplankton + macroalgae) was the same tendency that nutrient loads. • Phytoplankton and macroalgal biomass were a significant correlation with N:P ratio. -- Abstract: Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m −2 ) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m −2 ). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m −2 and the macroalgal biomass between 1 and 296.0 g m −2 . The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio

  15. A connection between colony biomass and death in Caribbean reef-building corals.

    Directory of Open Access Journals (Sweden)

    Daniel J Thornhill

    Full Text Available Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp. respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007, eleven years in the Exuma Cays, Bahamas (1995-2006, and four years in Puerto Morelos, Mexico (2003-2007. For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m compared to deeper-dwelling conspecifics (12-15 m. Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.

  16. A connection between colony biomass and death in Caribbean reef-building corals.

    Science.gov (United States)

    Thornhill, Daniel J; Rotjan, Randi D; Todd, Brian D; Chilcoat, Geoff C; Iglesias-Prieto, Roberto; Kemp, Dustin W; LaJeunesse, Todd C; Reynolds, Jennifer McCabe; Schmidt, Gregory W; Shannon, Thomas; Warner, Mark E; Fitt, William K

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m) compared to deeper-dwelling conspecifics (12-15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. © 2011 Thornhill et al.

  17. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  18. [Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change].

    Science.gov (United States)

    Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu

    2011-11-01

    This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.

  19. Asset Allocation of Mutual Fund Investors

    OpenAIRE

    Dengpan Luo

    2003-01-01

    This paper studies mutual fund investors' asset allocation decisions using monthly flow data of U.S mutual fund industry from 1984 to 1998. We find that mutual fund investors change their asset allocations between stocks and bonds in reaction to business conditions tracked by changes in expected stock market returns. They tend to allocate less into stock funds during the trough of a business cycle when expected stock market returns are higher and to allocate more into stock funds during the p...

  20. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  1. 40 CFR 60.4142 - Hg allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg allowance allocations. 60.4142... Coal-Fired Electric Steam Generating Units Hg Allowance Allocations § 60.4142 Hg allowance allocations. (a)(1) The baseline heat input (in MMBtu) used with respect to Hg allowance allocations under...

  2. An intelligent allocation algorithm for parallel processing

    Science.gov (United States)

    Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.

    1988-01-01

    The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.

  3. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  4. 18 CFR 367.28 - Methods of allocation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Methods of allocation... Instructions § 367.28 Methods of allocation. Indirect costs and compensation for use of capital must be... allocation. Both direct and allocated indirect costs on projects must be assigned among those companies in...

  5. Importance measures and resource allocation

    International Nuclear Information System (INIS)

    Guey, C.N.; Morgan, T.; Hughes, E.A.

    1987-01-01

    This paper discusses various importance measures and their practical relevance to allocating resources. The characteristics of importance measures are illustrated through simple examples. Important factors associated with effectively allocating resources to improve plant system performance or to prevent system degradation are discussed. It is concluded that importance measures are only indicative of and not equal to the risk significance of a component, system, or event. A decision framework is suggested to provide a comprehensive basis for resource allocation

  6. Optimal allocation of resources in systems

    International Nuclear Information System (INIS)

    Derman, C.; Lieberman, G.J.; Ross, S.M.

    1975-01-01

    In the design of a new system, or the maintenance of an old system, allocation of resources is of prime consideration. In allocating resources it is often beneficial to develop a solution that yields an optimal value of the system measure of desirability. In the context of the problems considered in this paper the resources to be allocated are components already produced (assembly problems) and money (allocation in the construction or repair of systems). The measure of desirability for system assembly will usually be maximizing the expected number of systems that perform satisfactorily and the measure in the allocation context will be maximizing the system reliability. Results are presented for these two types of general problems in both a sequential (when appropriate) and non-sequential context

  7. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  8. Evaluation of total aboveground biomass and total merchantable biomass in Missouri

    Science.gov (United States)

    Michael E. Goerndt; David R. Larsen; Charles D. Keating

    2014-01-01

    In recent years, the state of Missouri has been converting to biomass weight rather than volume as the standard measurement of wood for buying and selling sawtimber. Therefore, there is a need to identify accurate and precise methods of estimating whole tree biomass and merchantable biomass of harvested trees as well as total standing biomass of live timber for...

  9. BAAD: a biomass and allometry database for woody plants

    Science.gov (United States)

    Daniel S. Falster; Remko A. Duursma; Masae I. Ishihara; Diego R. Barneche; Richard G. FitzJohn; Angelica Varhammar; Masahiro Aiba; Makoto Ando; Niels Anten; Michael J. Aspinwall; Jennifer L. Baltzer; Christopher Baraloto; Michael Battaglia; John J. Battles; Ben Bond-Lamberty; Michiel van Breugel; Yves Claveau; Masako Dannoura; Sylvain Delagrange; Jean-Christophe Domec; Farrah Fatemi; Wang Feng; Veronica Gargaglione; Yoshiaki Goto; Akio Hagihara; Jefferson S. Hall; Steve Hamilton; Degi Harja; Tsutom Hiura; Robert Holdaway; Lindsay S. Hutley; Tomoaki Ichie; Eric J. Jokela; Anu Kantola; Jeff W. G. Kelly; Tanaka Kenzo; David King; Brian D. Kloeppel; Takashi Kohyama; Akira Komiyama; Jean-Paul Laclau; Christopher H. Lusk; Douglas A. Maguire; Guerric Le Maire; Ammikki Makela; Lars Markesteijn; John Marshall; Katherine McCulloh; Itsuo Miyata; Karel Mokany; Shugeta Mori; Randall W. Myster; Masahiro Nagano; Shawna L. Naidu; Yann Nouvellon; Anthony P. O' Grady; Kevin L. O' Hara; Toshiyuki Ohtsuka; Noriyuki Osada; Olusegun O. Osunkoya; Pablo Luis Peri; Any Mary Petritan; Lourens Poorter; Angelika Portsmuth; Catherine Potvin; Johannes Ransijn; Douglas Reid; Sabina C. Ribeiro; Scott D. Roberts; Rolando Rodriguez; Angela Saldana-Acosta; Ignacio Santa-Regina; Kaichiro Sasa; N. Galia Selaya; Stephen C. Sillett; Frank Sterck; Kentaro Takagi; Takeshi Tange; Hiroyuki Tanouchi; David Tissue; Toru Umehara; Matthew A. Vadeboncoeur; Fernando Valladares; Petteri Vanninen; Jian R. Wang; Elizabeth Wenk; Richard Williams; Fabiano de Aquino Ximenes; Atsushi Yamaba; Toshihiro Yamada; Takuo Yamakura; Ruth D. Yanai; Robert A. York

    2015-01-01

    Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to...

  10. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    Science.gov (United States)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  11. Allocation an indivisible good. A questionnaire-experimental study of intercultural differences

    OpenAIRE

    Schokkaert, E; Devooght, Kurt; Capéau, Bart; Lelli, Sara

    2007-01-01

    We present the results of a questionnaire study in Belgium, Burkina Faso and Indonesia focusing on the problem of the just allocation of an indivisible good. The formal axioms proposed in social choice theory are helpful in structuring the response patterns. Interindividual differences can be interpreted in a meaningful way in terms of basic intuitions about desert, efficiency and compensation. Belgian students are most resourceegalitarian, Burkinese students attach a large weight to innate c...

  12. DUE GlobBiomass - Estimates of Biomass on a Global Scale

    Science.gov (United States)

    Eberle, J.; Schmullius, C.

    2017-12-01

    For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.

  13. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    Science.gov (United States)

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  14. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  15. Allocating multiple units

    DEFF Research Database (Denmark)

    Tranæs, Torben; Krishna, Kala

    2002-01-01

    This paper studies the allocation and rent distribution in multi-unit, combinatorial-bid auctions under complete information. We focus on the natural multi-unit analogue of the first-price auction, where buyers bid total payments, pay their bids, and where the seller allocates goods to maximize his...... auction, which is the multi unit analogue of a second-price auction. Furthermore, we characterize these equilibria when valuations take a number of different forms: diminishing marginal valuations, increasing average valuations, and marginal valuations with single turning points...

  16. ESG Allocations

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the Emergency Solutions Grants (ESG), formerly Emergency Shelter Grants, allocation by jurisdiction. The website allows users to look at...

  17. Photoperiodic effects on short-pulse 14C assimilation and overall carbon and nitrogen allocation patterns in contrasting quinoa cultivars

    DEFF Research Database (Denmark)

    Bendevis, Mira Arpe; Sun, Yujie; Rosenqvist, Eva

    2014-01-01

    ' and photoperiod neutral cv. 'Titicaca' were studied under short (10h) and long (17.5h) days, with respect to C and N distribution as well as partitioning of newly assimilated C to plant organs. An extended photoperiod resulted in 14C decreasingly being allocated to stem growth and lower leaves in 'Titicaca...... with an immediate increase in carbon allocation to upper leaves, and over time to the reproductive structures, resulting in a more than 50% increase in final yield. Collectively the results indicate that even though the photoperiod sensitive cultivar flowered under long photoperiod it did not develop seeds, whereas...

  18. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Directory of Open Access Journals (Sweden)

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  19. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.

    Science.gov (United States)

    Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna

    2010-06-01

    Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex

  20. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  1. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  2. A Novel Eye-Tracking Method to Assess Attention Allocation in Individuals with and without Aphasia Using a Dual-Task Paradigm

    Science.gov (United States)

    Heuer, Sabine; Hallowell, Brooke

    2015-01-01

    Numerous authors report that people with aphasia have greater difficulty allocating attention than people without neurological disorders. Studying how attention deficits contribute to language deficits is important. However, existing methods for indexing attention allocation in people with aphasia pose serious methodological challenges. Eye-tracking methods have great potential to address such challenges. We developed and assessed the validity of a new dual-task method incorporating eye tracking to assess attention allocation. Twenty-six adults with aphasia and 33 control participants completed auditory sentence comprehension and visual search tasks. To test whether the new method validly indexes well-documented patterns in attention allocation, demands were manipulated by varying task complexity in single- and dual-task conditions. Differences in attention allocation were indexed via eye-tracking measures. For all participants significant increases in attention allocation demands were observed from single- to dual-task conditions and from simple to complex stimuli. Individuals with aphasia had greater difficulty allocating attention with greater task demands. Relationships between eye-tracking indices of comprehension during single and dual tasks and standardized testing were examined. Results support the validity of the novel eye-tracking method for assessing attention allocation in people with and without aphasia. Clinical and research implications are discussed. PMID:25913549

  3. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  4. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  5. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  6. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  7. Sex allocation and investment into pre- and post-copulatory traits in simultaneous hermaphrodites: the role of polyandry and local sperm competition.

    Science.gov (United States)

    Schärer, Lukas; Pen, Ido

    2013-03-05

    Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.

  8. Risk spreading, habitat selection and division of biomass in a submerged clonal plant: Responses to heterogeneous copper pollution

    International Nuclear Information System (INIS)

    Yan, Xue; Wang, Haowen; Wang, Qingfeng; Rudstam, Lars G.

    2013-01-01

    Heterogeneity of contaminant-stress can be an important environmental factor for clonal plants. We focused on Cu transport among the clones, the foraging or fugitive behavior and biomass allocation of submerged plant, Vallisneria natans (Lour.) Hara, exposed to heterogeneous sediments. This study was carried out in aquatic mesocosms between March and September 2010. Cu accumulated in contaminated ramets was exported horizontally via stolons to other ramets in uncontaminated patches, and then transported both acropetally to leaves and basipetally to belowground structures. There was no indication that V. natans adopted morphological plasticity in response to heterogeneous contaminated habitat. In contrast to predictions, more biomass was allocated to belowground tissues in contaminated patches. We concluded that risk of Cu stress spread among submerged clones, and V. natans did not actively select habitat in contaminated patchy environment. Furthermore, V. natans adopted compensatory investments instead of division of labor to acquire nutrient and survive. -- Highlights: ► Response of submerged clonal plant in heterogeneous Cu soil was studied. ► Cu can spread among V. natans clones in contaminated patches. ► Ramets of V. natans grow randomly instead of habitat selection actively. ► Individual growth in patchy pollution was relative independent rather than DoL. -- Cu can spread among V. natans clones and the clones grow randomly and relative independent in heterogeneous Cu-contaminated sediment

  9. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  10. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.

    Science.gov (United States)

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung

    2017-04-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.

  11. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  12. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  13. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    Science.gov (United States)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  14. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  15. Trade-offs between reproductive allocation and storage in species of Oenothera L. (Onagraceae) native to Argentina

    Science.gov (United States)

    Vilela, Alejandra; Cariaga, Rodrigo; González-Paleo, Luciana; Ravetta, Damián

    2008-01-01

    A trade-off between reproduction and survival arises because current reproduction diminishes levels of a limiting resource such that less can be placed in storage organs for the survival of an organism during the unfavorable season. Oenothera is a particularly suited genus for studying those kind of trade-offs because it contains species with different life-history strategies (annual, biennial and perennial). Since allocation to leaves is a major factor associated with changes in life-history, here we tested the hypothesis that Oenothera leaf attributes would affect plant reproductive effort and therefore, root reserves. We selected two groups of taxa differing in their leaf area ratio (low- and high-LAR) and we compared their pattern of resource allocation to growth, reproduction and storage. Path analysis confirmed our hypothesis that LAR is the most important variable in explaining variation in allocation to reproduction or storage. The group with high allocation to leaves assigned resources preferentially to storage while the other group allocated more resources to reproduction, as predicted. A trade-off between reproduction and storage was only confirmed for the high-LAR group. The low-LAR group showed the life-history tactic of annual plants, while the high-LAR group exhibited a strategy generally associated with perenniality.

  16. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  17. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized

  18. The effect of air elevated [CO2] on crown architecture and aboveground biomass in Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Radek; Tomášková, Ivana; Slípková, Romana

    2012-01-01

    Roč. 18, č. 1 (2012), s. 2-11 ISSN 1392-1355 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA AV ČR IAA600870701; GA MŠk(CZ) EE2.4.31.0056 Institutional research plan: CEZ:AV0Z60870520 Keywords : thinning * secondary shoots * biomass allocation * long-term experiment * dendrometry Subject RIV: EH - Ecology, Behaviour Impact factor: 0.379, year: 2012

  19. An Analysis and Allocation System for Library Collections Budgets: The Comprehensive Allocation Process (CAP)

    Science.gov (United States)

    Lyons, Lucy Eleonore; Blosser, John

    2012-01-01

    The "Comprehensive Allocation Process" (CAP) is a reproducible decision-making structure for the allocation of new collections funds, for the reallocation of funds within stagnant budgets, and for budget cuts in the face of reduced funding levels. This system was designed to overcome common shortcomings of current methods. Its philosophical…

  20. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  1. Resource Allocation and Time Utilization in IGE and Non-IGE Schools. Technical Paper No. 410.

    Science.gov (United States)

    Rossmiller, Richard A.; Geske, Terry G.

    This study addressed two basic questions; (1) Do individually guided education (IGE) schools cost more or exhibit different expenditure patterns than non-IGE schools? (2) Do instructional personnel in IGE schools allocate their time differently than instructional personnel in non-IGE schools? Data were obtained from a random sample of 41 IGE…

  2. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  3. Endogeneously arising network allocation rules

    NARCIS (Netherlands)

    Slikker, M.

    2006-01-01

    In this paper we study endogenously arising network allocation rules. We focus on three allocation rules: the Myerson value, the position value and the component-wise egalitarian solution. For any of these three rules we provide a characterization based on component efficiency and some balanced

  4. Risk allocation under liquidity constraints

    NARCIS (Netherlands)

    Csóka, P.; Herings, P.J.J.

    2013-01-01

    Risk allocation games are cooperative games that are used to attribute the risk of a financial entity to its divisions. In this paper, we extend the literature on risk allocation games by incorporating liquidity considerations. A liquidity policy specifies state-dependent liquidity requirements that

  5. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  6. Energy from biomass — Some basic physical and related considerations

    Science.gov (United States)

    Gloyne, R. W.

    1983-09-01

    The production of vegetable matter (biomass) by photosynthesis is determined by species and by meteorological factors (especially, but not exclusively, solar radiation). Annual net primary production of land-based biomass corresponds to only about 1/1000 of the intercepted irradiation at ground level, but even so, is 10 times the world's estimated energy needs. The exploitation of this energy potential at any one place is critically influenced by the economic, political and social factors, amongst which are the competition from agriculture (especially food crops), forestry, industrial and urban (including leisure) needs for land and resources. Social factors (e.g. population and population density) also constitute prime influences. Strategies for utilisation range from the cultivation of special energy crops (readily conceivable on the American/ Australasian continents); to the more efficient manipulation of current land-use patterns (including “opportunity” cropping); to the more effective exploitation of biologi cal wastes (e.g. methane from sewage), probably the only immediately practical possibility in any densely populated and highly industrialised country. The spatial pattern of solar irradiation at ground level is complex. In the summer, total daily irradiation in continental high latitudes can exceed that in maritime temperate regions; and this combined with species differences and the almost infinite variety of shape and orientation of plant parts, result in a photosynthetic production of biomass which does not conform completely to a zonal pattern, but in broad terms annual dry matter production varies from a few kg/ha in Arctic Tundra to tens of tonnes in temperate latitudes rising to nearly 100 t/ha for perennial tropical crops. If a species could be developed to grow throughout the year at the current seasonal rate, a yield of 150 t/yr, ha) seems possible.

  7. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.

    Science.gov (United States)

    Rytter, Rose-Marie

    2013-09-01

    The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots water availability. Fine root production (treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.

  8. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Lim, Chun Hsion; Lam, Hon Loong

    2014-01-01

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  9. 24 CFR 791.404 - Field Office allocation planning.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Field Office allocation planning... Allocation of Budget Authority for Housing Assistance § 791.404 Field Office allocation planning. (a) General objective. The allocation planning process should provide for the equitable distribution of available budget...

  10. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  11. The role of gap phase processes in the biomass dynamics of tropical forests

    Science.gov (United States)

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-01-01

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266

  12. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    Science.gov (United States)

    Hickey, S. M.; Callow, N. J.; Phinn, S.; Lovelock, C. E.; Duarte, C. M.

    2018-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha-1 biomass and 45 Mg C ha-1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0-150 m; y = -0.00041x + 0.9613, R2 = 0.96; 150-770 m; y = -0.0008x + 1.6808, R2 = 0.73; lagoon: y = -0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in the arid zone.

  13. Recent Progress in Measuring and Modeling Patterns of Biomass and Soil Carbon Pools Across the Amazon Basin

    Science.gov (United States)

    Potter, Christopher; Malhi, Yadvinder

    2004-01-01

    Ever more detailed representations of above-ground biomass and soil carbon pools have been developed during the LBA project. Environmental controls such as regional climate, land cover history, secondary forest regrowth, and soil fertility are now being taken into account in regional inventory studies. This paper will review the evolution of measurement-extrapolation approaches, remote sensing, and simulation modeling techniques for biomass and soil carbon pools, which together help constrain regional carbon budgets and enhance in our understanding of uncertainty at the regional level.

  14. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction.

    Science.gov (United States)

    Bashmakov, Dmitry I; Lukatkin, Alexander S; Anjum, Naser A; Ahmad, Iqbal; Pereira, Eduarda

    2015-10-01

    This work investigated the accumulation, allocation, and impact of zinc (Zn; 1.0 μM-10 mM) in maize (Zea mays L.) seedlings under simulated laboratory conditions. Z. mays exhibited no significant change in its habitus (the physical characteristics of plants) up to 10-1000 μM of Zn (vs 5-10 mM Zn). Zn tolerance evaluation, based on the root test, indicated a high tolerance of Z. mays to both low and intermediate (or relatively high) concentrations of Zn, whereas this plant failed to tolerate 10 mM Zn and exhibited a 5-fold decrease in its Zn tolerance. Contingent to Zn treatment levels, Zn hampered the growth of axial organs and brought decreases in the leaf area, water regime, and biomass accumulation. Nevertheless, at elevated levels of Zn (10 mM), Zn(2+) was stored in the root cytoplasm and inhibited both axial organ growth and water regime. However, accumulation and allocation of Zn in Z. mays roots, studied herein employing X-ray fluorimeter and histochemical methods, were close to Zn accumulator plants. Overall, the study outcomes revealed Zn tolerance of Z. mays, and also implicate its potential role in Zn phytoextraction.

  15. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  16. Organic aerosols from biomass burning in Amazonian rain forest and their impact onto the environment

    International Nuclear Information System (INIS)

    Cecinato, A.; Mabilia, R.; De Castro Vasconcellos, P.

    2001-01-01

    A field campaign performed in Southern Brazilian Amazonia in 1993 has proved that this region is subjected to fallout of particulated exhausts released by fires of forestal biomass. In fact, organic content of aerosols collected at urban sites located on the border of pluvial forest, about 50 km from fires, was similar to that of biomass burning exhausts. Aerosol composition is indicative of dolous origin of fires. However, organic contents seems to be influenced by two additional sources, i. e. motor vehicle and high vegetation emission. Chemical pattern of organic aerosols released by biomass burning of forest seems to promote occurrence of photochemical smog episodes in that region [it

  17. Type monotonic allocation schemes for multi-glove games

    OpenAIRE

    Brânzei, R.; Solymosi, T.; Tijs, S.H.

    2007-01-01

    Multiglove markets and corresponding games are considered.For this class of games we introduce the notion of type monotonic allocation scheme.Allocation rules for multiglove markets based on weight systems are introduced and characterized.These allocation rules generate type monotonic allocation schemes for multiglove games and are also helpful in proving that each core element of the corresponding game is extendable to a type monotonic allocation scheme.The T-value turns out to generate a ty...

  18. Optimal resource allocation for distributed video communication

    CERN Document Server

    He, Yifeng

    2013-01-01

    While most books on the subject focus on resource allocation in just one type of network, this book is the first to examine the common characteristics of multiple distributed video communication systems. Comprehensive and systematic, Optimal Resource Allocation for Distributed Video Communication presents a unified optimization framework for resource allocation across these systems. The book examines the techniques required for optimal resource allocation over Internet, wireless cellular networks, wireless ad hoc networks, and wireless sensor networks. It provides you with the required foundat

  19. 17 CFR 256.01-11 - Methods of allocation.

    Science.gov (United States)

    2010-04-01

    ... applicable and currently effective methods of allocation filed with the Commission. Both direct and allocated... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Methods of allocation. 256.01... HOLDING COMPANY ACT OF 1935 General Instructions § 256.01-11 Methods of allocation. Indirect costs and...

  20. Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar

    International Nuclear Information System (INIS)

    Razakamanarivo, Ramarson H.; Razakavololona, Ando; Razafindrakoto, Marie-Antoinette; Vieilledent, Ghislain; Albrecht, Alain

    2012-01-01

    Short rotations of Eucalyptus plantations under coppice regime are extensively managed for wood production in Madagascar. Nevertheless, little is known about their biomass production and partitioning and their potential in terms of carbon sequestration. If above-ground biomass (AGB) can be estimated based on established allometric relations, below-ground (BGB) estimates are much less common. The aim of this work was to develop allometric equations to estimate biomass of these plantations, mainly for the root components. Data from 9 Eucalyptus robusta stands (47–87 years of plantation age, 3–5 years of coppice-shoot age) were collected and analyzed. Biomass of 3 sampled trees per stand was determined destructively. Dry weight of AGB components (leaves, branches and stems) were estimated as a function of basal area of all shoots per stump and dry weight for BGB components (mainly stump, coarse root (CR) and medium root (MR)) were estimated as a function of stump circumference. Biomass was then computed using allometric equations from stand inventory data. Stand biomass ranged from 102 to 130 Mg ha −1 with more than 77% contained in the BGB components. The highest dry weight was allocated in the stump and in the CR (51% and 42% respectively) for BGB parts and in the stem (69%) for AGB part. Allometric relationships developed herein could be applied to other Eucalyptus plantations which present similar stand density and growing conditions; anyhow, more is needed to be investigated in understanding biomass production and partitioning over time for this kind of forest ecosystem. -- Highlights: ► We studied the potential of old eucalyptus coppices in Madagascar to mitigate global warming. ► Biomass measurement, mainly for below-ground BGB (stump, coarse-medium-and fine roots) was provided. ► BGB allometry relationships for short rotation forestry under coppice were established. ► BGB were found to be important with their 102-130MgC ha -1 (<77% of the C in

  1. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  2. Intelligent tactical asset allocation support system

    OpenAIRE

    Hiemstra, Y.

    1995-01-01

    This paper presents an advanced support system for Tactical Asset Allocation. Asset allocation explains over 90% of portfolio performance (Brinson, Hood and Beebower, 1988). Tactical asset allocation adjusts a strategic portfolio on the basis of short term market outlooks. The system includes aprediction model that forecasts quarterly excess returns on the S and PSOO, an optimization model that adjusts a user-specified strategic portfolio on thebasis of the excess return forecast, and a compo...

  3. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    Science.gov (United States)

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  4. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  5. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  6. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  7. It is desirable allocative function of the food market in a global economy?

    International Nuclear Information System (INIS)

    Leon Rodriguez, Nohra

    2008-01-01

    This article brings forth the free market influence on product patterns, agricultural output quantities and prices in the global economy? casting doubt over the allocative efficiency of markets and intending to outline some risks brought on by excessive reliance on free markets regarding consumer welfare, food security and negative impact on the environment and sustainable economic growth. As the main analytic element it is presented the preeminence of agricultural food multinational producers, as well as the scale of their influence in terms of product supply and commercialization, responding exclusively to profit maximization incentives without taking into account their role in terms of food nutrition patterns and production

  8. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging.

    Science.gov (United States)

    Kotler, Burt P; Brown, Joel; Mukherjee, Shomen; Berger-Tal, Oded; Bouskila, Amos

    2010-05-22

    Foraging animals have several tools for managing the risk of predation, and the foraging games between them and their predators. Among these, time allocation is foremost, followed by vigilance and apprehension. Together, their use influences a forager's time allocation and giving-up density (GUD) in depletable resource patches. We examined Allenby's gerbils (Gerbilus andersoni allenbyi) exploiting seed resource patches in a large vivarium under varying moon phases in the presence of a red fox (Vulpes vulpes). We measured time allocated to foraging patches electronically and GUDs from seeds left behind in resource patches. From these, we estimated handling times, attack rates and quitting harvest rates (QHRs). Gerbils displayed greater vigilance (lower attack rates) at brighter moon phases (full full > new > wane). Finally, gerbils displayed higher QHRs at new and waxing moon phases. Differences across moon phases not only reflect changing time allocation and vigilance, but changes in the state of the foragers and their marginal value of energy. Early in the lunar cycle, gerbils rely on vigilance and sacrifice state to avoid risk; later they defend state at the cost of increased time allocation; finally their state can recover as safe opportunities expand. In the predator-prey foraging game, foxes may contribute to these patterns of behaviours by modulating their own activity in response to the opportunities presented in each moon phase.

  9. A global resource allocation strategy governs growth transition kinetics of Escherichia coli.

    Science.gov (United States)

    Erickson, David W; Schink, Severin J; Patsalo, Vadim; Williamson, James R; Gerland, Ulrich; Hwa, Terence

    2017-11-02

    A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms and they remain a topic of active investigation. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions.

  10. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  11. Ecophysiological differences in tree carbon gain and water use for two fast growing loblolly pine ideotypes that differ in carbon allocation

    Science.gov (United States)

    Maier, C. A.; Johnsen, K. H.; Dougherty, P.; Albaugh, T.; Patterson, S.

    2013-12-01

    We examined the ecophysiological basis for differences in growth efficiency and water-use for two contrasting Pinus taeda (L.) ideotypes: a ';broad-crown' (BC) and a ';narrow crown' (NC) clone, which allocate more growth to leaves and wood, respectively. Tree growth, above and belowground biomass production, fine root turnover, light use efficiency (LUE), and transpiration on a ground (Et) and leaf (EL) basis were measured periodically over eight years. Silviculture treatments were a control consisting of shearing and bedding following local commercial operations and a mulch treatment where chipped logging residue (C/N≈700) was incorporated into the soil during bedding at a rate of 25 Mg ha-1. We hypothesized that: 1) the NC and BC clone would display similar aboveground productivity in the control treatment, but because of lower leaf area and thus lower nitrogen demand, the NC would display higher productivity than BC on the mulch treatment, 2) the NC would have higher LUE, and 3) the NC clone would have lower Et and EL. There were no treatment, clone, or interaction effects on stemwood production. At age eight, standing stem biomass was 80.7 and 86.0 Mg ha-1 (p=0.33), for the NC and BC, respectively. However, there were significant clone effects on carbon allocation. The BC had greater foliage (BC: 8.1, NC: 6.6 Mg ha-1, se=0.2, p=0.01) and branch (BC: 15.0, NC: 12.4 Mg ha-1, se=0.4, p2mm) (BC: 9.7, NC: 11.23 Mg ha-1, se=0.2, Parea to conducting sapwood area (AL/AS) (BC: 0.175 m2 cm-2, NC: 0.150 m2 cm-2) than the NC clone. Growth efficiency, defined as annual stem increment per unit leaf area was 5.36 and 4.70 Mg ha-1 yr-1 LAI-1 in the NC and BC, respectively (parea, which confers greater nutrient use efficiency. In addition, the NC had significantly greater belowground carbon allocation, which could have long-term implications for soil carbon sequestration.

  12. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  13. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    International Nuclear Information System (INIS)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo

    2009-01-01

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W c ; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W a ) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha -1 at a stand age of 1 year to 153 t ha -1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed

  14. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo [Swedish University of Agricultural Sciences, Department of Crop Production Ecology, P.O. Box 7043, 75007 Uppsala (Sweden)

    2009-03-15

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W{sub c}; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W{sub a}) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha{sup -1} at a stand age of 1 year to 153 t ha{sup -1} at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed. (author)

  15. A closer look at cognitive control: Differences in resource allocation during updating, inhibition and switching as revealed by pupillometry

    NARCIS (Netherlands)

    Rondeel, E.W.M.; Steenbergen, H. van; Holland, R.W.; Knippenberg, A.F.M. van

    2015-01-01

    The present study investigated resource allocation, as measured by pupil dilation, in tasks measuring updating (2 Back task), inhibition (Stroop task) and switching (Number Switch task). Because each cognitive control component has unique characteristics, differences in patterns of resource

  16. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  17. Effects of fertilization and competition on plant biomass allocation and internal resources: Does Plantago lanceolata follow the rules of economic theory?

    Czech Academy of Sciences Publication Activity Database

    Janeček, Štěpán; Patáčová, E.; Klimešová, Jitka

    2014-01-01

    Roč. 49, č. 1 (2014), s. 49-64 ISSN 1211-9520 R&D Projects: GA ČR GA526/09/0963; GA ČR GA526/07/0808 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : allocation * Plantago lanceolata * plasticity Subject RIV: EH - Ecology, Behaviour Impact factor: 1.778, year: 2014

  18. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  19. Pollution permits allocation and imperfect competition; Allocation de permis de pollution et concurrence imparfaite

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.

    2004-12-15

    The aim of this thesis is to highlight the imperfections on the permits markets and to analyze their consequences on markets' efficiency. More precisely, we try to identify the implications of the initial allocation of permits when such imperfections are present. We try to draw some conclusions for the regulator concerning the different forms of the permits' allocation. After having described and compared these forms, we define in which circumstances the initial allocation matters in terms of efficiency. Then, we study different forms of imperfections. First, we take into account the information asymmetry between firms and the regulator and we define an optimal mechanism to sell pollution permits. Then, we analyze a market power on a differentiated pollution permits market. At last, we study the exclusionary manipulation of pollution permits market. (author)

  20. Cost allocation in distribution planning

    International Nuclear Information System (INIS)

    Engevall, S.

    1996-01-01

    This thesis concerns cost allocation problems in distribution planning. The cost allocation problems we study are illustrated using the distribution planning situation at the Logistics department of Norsk Hydro Olje AB. The planning situation is modeled as a Traveling Salesman Problem and a Vehicle Routing Problem with an inhomogeneous fleet. The cost allocation problems are the problems of how to divide the transportation costs among the customers served in each problem. The cost allocation problems are formulated as cooperative games, in characteristic function form, where the customers are defined to be the players. The games contain five and 21 players respectively. Game theoretical solution concepts such as the core, the nucleolus, the Shapley value and the τ-value are discussed. From the empirical results we can, among other things, conclude that the core of the Traveling Salesman Game is large, and that the core of the Vehicle Routing Game is empty. In the accounting of Norsk Hydro the cost per m 3 can be found for each tour. We conclude that for a certain definition of the characteristic function, a cost allocation according to this principle will not be included in the core of the Traveling Salesman Game. The models and methods presented in this thesis can be applied to transportation problems similar to that of Norsk Hydro, independent of the type of products that are delivered. 96 refs, 11 figs, 26 tabs

  1. Cost allocation in distribution planning

    Energy Technology Data Exchange (ETDEWEB)

    Engevall, S.

    1996-12-31

    This thesis concerns cost allocation problems in distribution planning. The cost allocation problems we study are illustrated using the distribution planning situation at the Logistics department of Norsk Hydro Olje AB. The planning situation is modeled as a Traveling Salesman Problem and a Vehicle Routing Problem with an inhomogeneous fleet. The cost allocation problems are the problems of how to divide the transportation costs among the customers served in each problem. The cost allocation problems are formulated as cooperative games, in characteristic function form, where the customers are defined to be the players. The games contain five and 21 players respectively. Game theoretical solution concepts such as the core, the nucleolus, the Shapley value and the {tau}-value are discussed. From the empirical results we can, among other things, conclude that the core of the Traveling Salesman Game is large, and that the core of the Vehicle Routing Game is empty. In the accounting of Norsk Hydro the cost per m{sup 3} can be found for each tour. We conclude that for a certain definition of the characteristic function, a cost allocation according to this principle will not be included in the core of the Traveling Salesman Game. The models and methods presented in this thesis can be applied to transportation problems similar to that of Norsk Hydro, independent of the type of products that are delivered. 96 refs, 11 figs, 26 tabs

  2. Cost allocation in distribution planning

    Energy Technology Data Exchange (ETDEWEB)

    Engevall, S

    1997-12-31

    This thesis concerns cost allocation problems in distribution planning. The cost allocation problems we study are illustrated using the distribution planning situation at the Logistics department of Norsk Hydro Olje AB. The planning situation is modeled as a Traveling Salesman Problem and a Vehicle Routing Problem with an inhomogeneous fleet. The cost allocation problems are the problems of how to divide the transportation costs among the customers served in each problem. The cost allocation problems are formulated as cooperative games, in characteristic function form, where the customers are defined to be the players. The games contain five and 21 players respectively. Game theoretical solution concepts such as the core, the nucleolus, the Shapley value and the {tau}-value are discussed. From the empirical results we can, among other things, conclude that the core of the Traveling Salesman Game is large, and that the core of the Vehicle Routing Game is empty. In the accounting of Norsk Hydro the cost per m{sup 3} can be found for each tour. We conclude that for a certain definition of the characteristic function, a cost allocation according to this principle will not be included in the core of the Traveling Salesman Game. The models and methods presented in this thesis can be applied to transportation problems similar to that of Norsk Hydro, independent of the type of products that are delivered. 96 refs, 11 figs, 26 tabs

  3. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  4. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  5. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  6. The Evolution of Organ Allocation for Liver Transplantation: Tackling Geographic Disparity Through Broader Sharing.

    Science.gov (United States)

    Axelrod, David A; Vagefi, Parsia A; Roberts, John P

    2015-08-01

    The liver transplant allocation system has evolved to a ranking system of “sickest-first” system based on objective criteria. Yet, organs continue to be distributed first within OPOs and regions that are largely based on historical practice patterns related to kidney transplantation and were never designed to minimize waitlist death or equalize opportunity for liver transplant. The current proposal is a move to enhance survival though the application of modern mathematical techniques to optimize liver distribution. Like MELDbased allocation, it will never be perfect and should be continually evaluated and revised. However, the disparity in access, which favors those residing in or able to travel to privileged areas, to the detriment of the patients dying on the list in underserved areas, is simply not defensible in 2015.

  7. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  8. Topo-edaphic controls over woody plant biomass in South African savannas

    Directory of Open Access Journals (Sweden)

    M. S. Colgan

    2012-05-01

    Full Text Available The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91. The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87. Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  9. Multifractal spatial patterns and diversity in an ecological succession.

    Directory of Open Access Journals (Sweden)

    Leonardo Ariel Saravia

    Full Text Available We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions D(q. Using D(q we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D(1 as an index of successional stage. We did not find cycles but the values of D(1 showed an increasing trend as the succession developed and the biomass was higher. D(1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D(1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas.

  10. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns

    Science.gov (United States)

    Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.

    2016-06-01

    Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.

  12. Participation behavior and social welfare in repeated task allocations

    NARCIS (Netherlands)

    Ye, Q.C.; Zhang, Y.

    2016-01-01

    Task allocation problems have focused on achieving one-shot optimality. In practice, many task allocation problems are of repeated nature, where the allocation outcome of previous rounds may influence the participation of agents in subsequent rounds, and consequently, the quality of the allocations

  13. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  14. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  15. Characterizing contract-based multiagent resource allocation in networks.

    Science.gov (United States)

    An, Bo; Lesser, Victor

    2010-06-01

    We consider a multiagent resource allocation problem where individual users intend to route traffic by requesting the help of entities across a network, and a cost is incurred at each network node that depends on the amount of traffic to be routed. We propose to study contract-based network resource allocation. In our model, users and nodes in the network make contracts before nodes route traffic for the users. The problem is an interesting self-interested negotiation problem because it requires the complete assembly of a set of distinct resources, and there are multiple combinations of distinct resources that could satisfy the goal of negotiation. First, we characterize the network allocation problem and show that finding optimal allocations is NP-complete and is inapproximable. We take both Nash equilibrium and pairwise Nash equilibrium as the solution concepts to characterize the equilibrium allocations. We find that, for any resource allocation game, Nash equilibrium and pairwise Nash equilibrium always exist. In addition, socially optimal allocations are always supported by Nash equilibrium and pairwise Nash equilibrium. We introduce best-response dynamics in which each agent takes a myopic best-response strategy and interacts with each other to dynamically form contracts. We analyze the convergence of the dynamics in some special cases. We also experimentally study the convergence rate of the dynamics and how efficient the evolved allocation is as compared with the optimal allocation in a variety of environments.

  16. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  17. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  18. The Effect of Land use/cover change on Biomass Stock in Dryland ...

    African Journals Online (AJOL)

    The Effect of Land use/cover change on Biomass Stock in Dryland Areas of Eastern Uganda. ... Journal of Applied Sciences and Environmental Management ... Therefore, there is need for increased use of remote sensing and GIS to quantify change patterns at local scales for essential monitoring and assessment of land ...

  19. Bounds in the location-allocation problem

    DEFF Research Database (Denmark)

    Juel, Henrik

    1981-01-01

    Develops a family of stronger lower bounds on the objective function value of the location-allocation problem. Solution methods proposed to solve problems in location-allocation; Efforts to develop a more efficient bound solution procedure; Determination of the locations of the sources....

  20. Biomass catalysis and solvents; Biomasse catalyse et solvants

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, D [CIRAD-AMIS, programme Agro-Alimentaire, 34 - Montpellier (France); Pouilloux, Y; Barrault, J [Centre National de la Recherche Scientifique (CNRS UMR 6503), ESIP, Lab. de Catalyse en Chimie Organique, 86 - Poitiers (France); and others

    2000-07-01

    How to develop new technics and products and at the same time to respect the environment? The biomass seems to be an interesting domain in this framework and this document allows the selection of performing products obtain by biomass. Among these products the solvents economic and environmental advantages or consequences are discussed. A great part is also devoted to the voc emissions, bound to the solvents.

  1. Basin-scale variability in plankton biomass and community metabolism in the sub-tropical North Atlantic Ocean

    Science.gov (United States)

    Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.

    Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".

  2. Resource allocation based on cost efficiency

    DEFF Research Database (Denmark)

    Dehnokhalaji, Akram; Ghiyasi, Mojtaba; Korhonen, Pekka

    2017-01-01

    -objective linear programming problem using two different strategies. First, we propose an RA model which keeps the cost efficiencies of units unchanged. This is done assuming fixed technical and allocative efficiencies. The approach is based on the assumption that the decision maker (DM) may not have big changes......In this paper, we consider a resource allocation (RA) problem and develop an approach based on cost (overall) efficiency. The aim is to allocate some inputs among decision making units (DMUs) in such way that their cost efficiencies improve or stay unchanged after RA. We formulate a multi...... in the structure of DMUs within a short term. The second strategy does not impose any restrictions on technical and allocative efficiencies. It guarantees that none of the cost efficiencies of DMUs get worse after RA, and the improvement for units is possible if it is feasible and beneficial. Two numerical...

  3. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  4. Extended light exposure increases stem digestibility and biomass production of switchgrass

    Science.gov (United States)

    Zhao, Chunqiao; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Wu, Juying

    2017-01-01

    Switchgrass is a photoperiod-sensitive energy grass suitable for growing in the marginal lands of China. We explored the effects of extended photoperiods of low-irradiance light (7 μmol·m-2·s-1, no effective photosynthesis) on the growth, the biomass dry weight, the biomass allocation, and, especially, the stem digestibility and cell wall characteristics of switchgrass. Two extended photoperiods (i.e., 18 and 24 h) were applied over Alamo. Extended light exposure (18 and 24 h) resulted in delayed heading and higher dry weights of vegetative organs (by 32.87 and 35.94%, respectively) at the expense of reducing the amount of sexual organs (by 40.05 and 50.87%, respectively). Compared to the control group (i.e., natural photoperiod), the yield of hexoses (% dry matter) in the stems after a direct enzymatic hydrolysis (DEH) treatment significantly increased (by 44.02 and 46.10%) for those groups irradiated during 18 and 24 h, respectively. Moreover, the yield of hexoses obtained via enzymatic hydrolysis increased after both basic (1% NaOH) and acid (1% H2SO4) pretreatments for the groups irradiated during 18 and 24 h. Additionally, low-irradiance light extension (LILE) significantly increased the content of non-structural carbohydrates (NSCs) while notably reducing the lignin content and the syringyl to guaiacyl (S/G) ratio. These structural changes were in part responsible for the observed improved stem digestibility. Remarkably, LILE significantly decreased the cellulose crystallinity index (CrI) of switchgrass by significantly increasing both the arabinose substitution degree in xylan and the content of ammonium oxalate-extractable uronic acids, both favoring cellulose digestibility. Despite this LILE technology is not applied to the cultivation of switchgrass on a large scale yet, we believe that the present work is important in that it reveals important relationships between extended day length irradiations and biomass production and quality. Additionally, this

  5. Maintainability allocation

    International Nuclear Information System (INIS)

    Guyot, Christian.

    1980-06-01

    The author gives the general lines of a method for the allocation and for the evaluation of maintainability of complex systems which is to be developed during the conference. The maintainability objective is supposed to be formulated under the form of a mean time to repair (M.T.T.R.) [fr

  6. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  7. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  8. Macrobenthic biomass relations in the Faroe-Shetland Channel: an Arctic-Atlantic boundary environment.

    Directory of Open Access Journals (Sweden)

    Bhavani E Narayanaswamy

    Full Text Available The Faroe-Shetland Channel, located in the NE Atlantic, ranges in depth from 0-1700 m and is an unusual deep-sea environment because of its complex and dynamic hydrographic regime, as well as having numerous different seafloor habitats. Macrofaunal samples have been collected on a 0.5 mm mesh sieve from over 300 stations in a wide area survey and on nested 0.5 and 0.25 mm mesh sieves along a specific depth transect. Contrary to general expectation, macrofauanl biomass in the Channel did not decline with increasing depth. When examined at phylum level, two main biomass patterns with depth were apparent: (a polychaetes showed little change in biomass on the upper slope then increased markedly below 500 m to a depth of 1100 m before declining; and (b other phyla showed enhanced biomass between 300-500 m. The polychaete response may be linked with a seafloor environment change to relatively quiescent hydrodynamic conditions and an increasing sediment mud content that occurs at c. 500 m. In contrast, the mid-slope enhancement of other phyla biomass may reflect the hydrodynamically active interface between the warm and cold water masses present in the Channel at c. 300-500 m. Again contrary to expectation, mean macrofaunal body size did not decline with depth, and the relative contribution of smaller (>0.25 mm0.25 mm macrobenthos did not increase with depth. Overall our total biomass and average individual biomass estimates appear to be greater than those predicted from global analyses. It is clear that global models of benthic biomass distribution may mask significant variations at the local and regional scale.

  9. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  10. Worst-case analysis of heap allocations

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Huber, Benedikt; Schoeberl, Martin

    2010-01-01

    the worst-case heap allocations of tasks. The analysis builds upon techniques that are well established for worst-case execution time analysis. The difference is that the cost function is not the execution time of instructions in clock cycles, but the allocation in bytes. In contrast to worst-case execution...... time analysis, worst-case heap allocation analysis is not processor dependent. However, the cost function depends on the object layout of the runtime system. The analysis is evaluated with several real-time benchmarks to establish the usefulness of the analysis, and to compare the memory consumption...

  11. Resource Allocation for A Mobile Application Oriented Architecture

    NARCIS (Netherlands)

    Guo, Y.; Smit, Gerardus Johannes Maria; Lu, W.W.; Xie, X.

    2005-01-01

    A Montium is a coarse-grained reconfigurable architecture designed by the CADTES group of the University of Twente for mobile applications. This paper presents a resource allocation method to allocate variables to storage places and to schedule data movements for the Montium. The resource allocation

  12. Cognitive allocation and the control room

    International Nuclear Information System (INIS)

    Paradies, M.W.

    1985-01-01

    One of the weakest links in the design of nuclear power plants is the inattention to the needs and capabilities of the operators. This flaw causes decreased plant reliability and reduced plant safety. To solve this problem the designer must, in the earliest stages of the design process, consider the operator's abilities. After the system requirements have been established, the designer must consider what functions to allocate to each part of the system. The human must be considered as part of this system. The allocation of functions needs to consider not only the mechanical tasks to be performed, but also the control requirements and the overall control philosophy. In order for the designers to consider the control philosophy, they need to know what control decisions should be automated and what decisions should be made by an operator. They also need to know how these decisions will be implemented: by an operator or by automation. ''Cognitive Allocation'' is the allocation of the decision making process between operators and machines. It defines the operator's role in the system. When designing a power plant, a cognitive allocation starts the process of considering the operator's abilities. This is the first step to correcting the weakest link in the current plant design

  13. Methodology for allocating reliability and risk

    International Nuclear Information System (INIS)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.

    1986-05-01

    This report describes a methodology for reliability and risk allocation in nuclear power plants. The work investigates the technical feasibility of allocating reliability and risk, which are expressed in a set of global safety criteria and which may not necessarily be rigid, to various reactor systems, subsystems, components, operations, and structures in a consistent manner. The report also provides general discussions on the problem of reliability and risk allocation. The problem is formulated as a multiattribute decision analysis paradigm. The work mainly addresses the first two steps of a typical decision analysis, i.e., (1) identifying alternatives, and (2) generating information on outcomes of the alternatives, by performing a multiobjective optimization on a PRA model and reliability cost functions. The multiobjective optimization serves as the guiding principle to reliability and risk allocation. The concept of ''noninferiority'' is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The final step of decision analysis, i.e., assessment of the decision maker's preferences could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided, and several outstanding issues such as generic allocation, preference assessment, and uncertainty are discussed. 29 refs., 44 figs., 39 tabs

  14. Social aspects of biomass use for development at the local level in the Mediterranean

    International Nuclear Information System (INIS)

    Sarigiannis, D.

    1992-01-01

    The currently dominant pattern of rural development projects is characterized by centrally-controlled, top-bottom schemes. The local sociopolitical structure and the fit of development to local customs and needs are given little attention. The major statement made in this work is the need for technological implementation which is sensitive to its socio-economic context in the case of the introduction of novel uses of the biomass potential of Europe. A learning process approach is introduced as the alternative that could build up a low-cost, sustainable use of biomass technologies. In this context, the identification of the decision-making procedures and centers, as well as the understanding of the principal actors and their interrelations, is of paramount importance to the development of fruitful and socially acceptable biomass utilization policies. (author)

  15. Financial Resources Allocation of Tabriz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Esmaeil Afiyan

    2015-08-01

    Full Text Available ​ Background and Objectives : According to complexity of resource allocation, issue about how to allocate health care resources in an accurate and fair manner has become the subject of discussions and decisions of related groups. Therefore, in this research we aim to study the methods of financial resource allocation of Tabriz University of Medical Sciences in order to identify its strengths and weaknesses for its promotion. Material and Methods : This study is a descriptive, qualitative sectional research and all comments have been collected by focus group discussions with experts and managers involved in the allocation of financial resources of Tabriz University of Medical Sciences. All factors affecting the process of allocation have been reviewd carefully. Results : Results suggested that except the health sector, none of the other sectors use the formulated  and scientific methods for allocating financial resources and despite the emphasize in the 4th development plan for operating funding, the final cost of the services, has no role in allocating financial resources. Conclusion : Regarding to judgmental and subjective method of financial resources allocation of Tabriz University of Medical Sciences and lack of documented and formulated methods, there is an essential need for developing an appropriate and formulated model for scientific allocation of financial resources in order to improve the efficiency and fairness of the allocation.

  16. Field biomass as energy resource for the future; Peltobiomassat tulevaisuuden energiaresurssina

    Energy Technology Data Exchange (ETDEWEB)

    Pahkala, K.; Loetjoenen, T. (eds.)

    2012-11-01

    Bioenergy can be derived from biomasses especially produced for bioenergy or from by-products, side streams and waste from wood processing industry, agriculture and forestry, or e.g. municipal waste. In the Nordic countries and Russia forests are a natural source of bioenergy. In many other European countries forests may be too scarce for bioenergy use. Therefore field biomasses form an interesting potential source for bioenergy. Production of field biomasses for non-food purposes has been criticized, especially as there is not enough food for everyone even at present, and in the future more food has to be produced as the world population increases. We studied the field biomass potential in different European countries with different scenarios for development. 'Good development' scenario includes improvements in plant breeding and food production and processing technologies, with increasing yields and decreasing waste of food products and raw materials. 'Bad development' scenario assumes stagnating yields and little improvement in technologies in the OECD countries, and only small improvements in former Soviet Union countries. The foci of the present research were the effects of development of food production, population growth and climate change on regional potential of field biomasses for bioenergy and sustainable use of crop residues and grasses for bioenergy. The field area that could be allocated to energy crops after growing enough food for the citizens of each country depends mostly on the diet. Growing food for vegetarian diet would occupy so little field area that every country under study could set aside at least half of their field area for bioenergy purposes already at present, if the 'good development' scenario was applied. With 'bad development' scenario some of the countries would be unable to set aside fields for bioenergy production even with vegetarian diet. With affluent diet there would be little field

  17. Spectroscopic characterization of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae

    Science.gov (United States)

    Lin, Zhongyu; Wu, Jianming; Xue, Ru; Yang, Yong

    2005-02-01

    Some spectroscopic characteristics of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae have been reported in this paper. The effect of temperature on the correlation parameters of chemical kinetics and thermodynamics of the binding reaction was investigated by using AAS. XRD diffraction pattern of gold-loaded biomass revealed that the Au 3+ bound on the cell wall of the biomass had been reduced into gold particle. FTIR spectrophotometry on blank and gold-loaded biomass demonstrated that active groups such as the hydroxyl group of saccharides, and the carboxylate anion of amino-acid residues, from the peptidoglycan layer on the cell wall seem to be the sites for the Au 3+ binding, and the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides on the peptidoglycan layer, serving as the electron donor, in situ reduced the Au 3+ to Au 0. XPS and IR characterizations of the interaction between glucose and Au 3+ further supported that the reduction of Au 3+ to Au 0 can directly occur at the aldehyde group of the reducing sugars.

  18. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    KAUST Repository

    Hickey, S.M.

    2017-11-10

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha−1 biomass and 45 Mg C ha−1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0–150 m; y = −0.00041x + 0.9613, R2 = 0.96; 150–770 m; y = −0.0008x + 1.6808, R2 = 0.73; lagoon: y = −0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in arid zone.

  19. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  20. Effects of simulated root herbivory and fertilizer application on growth and biomass allocation in the clonal perennialSolidago canadensis.

    Science.gov (United States)

    Schmid, B; Miao, S L; Bazzaz, F A

    1990-08-01

    Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.

  1. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  2. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  3. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  4. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  5. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  6. Prospective Associations between Dietary Patterns and Body Composition Changes in European Children

    DEFF Research Database (Denmark)

    Fernández-Alvira, Juan Miguel; Bammann, Karin; Eiben, Gabriele

    2017-01-01

    pattern or changing from a processed pattern to a sweet pattern presented the most unfavourable changes in fat mass and abdominal fat. These findings support the need to promote overall healthy dietary habits in obesity prevention and health promotion programmes targeting children....... frequencies of consumption of forty-three food items and regression models were fitted to assess the association between dietary patterns and body composition changes. Setting: Primary schools and pre-schools of selected regions in Italy, Estonia, Cyprus, Belgium, Sweden, Hungary, Germany and Spain. Subjects...... consistently allocated to the ‘processed’ cluster presented increased BMI (β=0·050; 95 % CI 0·006, 0·093), increased waist circumference (β=0·071; 95 % CI 0·001, 0·141) and increased fat mass gain (β=0·052; 95 % CI 0·014, 0·090) over time v. children allocated to the ‘healthy’ cluster. Being in the ‘processed...

  7. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  8. Allocation of fixed transmission cost to wheeling transactions by cooperative game theory

    International Nuclear Information System (INIS)

    Tsukamoto, Yukitoki; Iyoda, Isao

    1996-01-01

    This paper describes a methodology to allocate the cost of transmission network facilities to wheeling transactions in decentralized power systems. The authors propose that the responsibility placed on transmission facilities involved in each transaction be according to the transmission usage pattern. Their proposal incorporates MW-mile method and considers economies of scale of transmission network facilities. The authors also incorporate a nucleolus scheme in the cooperative game theory to deal with matters of conflict. The applicability of their method is demonstrated in a numerical example

  9. Accounting of allocation of production enterprises’ overhead costs

    Directory of Open Access Journals (Sweden)

    О.V. Ivaniuta

    2016-12-01

    Full Text Available Taking into account the complexity of engineering technological cycles, the use of traditional approaches to the allocation of overhead costs at the researching enterprises is inexpedient and inefficient. The authors find out that to solve this problem it is not enough to choose only one base of allocation because the formed prime cost with such an approach will not meet the reality. That is why it is suggested to use a multilevel allocation of overhead costs. The proposed approach involves the allocation of overhead costs at the following levels: fixed and variable, with shops of main and auxiliary production, calculation stations, some orders. Each level involves the selection of individual allocation bases that are grouped on economic, technological and integrated ones.

  10. 'Biomass lung': primitive biomass combustion and lung disease

    International Nuclear Information System (INIS)

    Baris, Y. I.; Seyfikli, Z.; Demir, A.; Hoskins, J. A.

    2002-01-01

    Domestic burning of biomass fuel is one of the most important risk factors for the development of respiratory diseases and infant mortality. The fuel which causes the highest level of disease is dung. In the rural areas of developing countries some 80% of households rely on biomass fuels for cooking and often heating as well and so suffer high indoor air pollution. Even when the fire or stove is outside the home those near it are still exposed to the smoke. In areas where the winters are long and cold the problem is aggravated since the fire or stove is indoors for many months of the year. The consequence of biomass burning is a level of morbidity in those exposed to the smoke as well as mortality. The rural areas of Turkey are among many in the world where biomass is the major fuel source. In this case report 8 patients from rural areas, particularly Anatolia, who used biomass are presented. Many of these are non-smoking, female patients who have respiratory complaints and a clinical picture of the chronic lung diseases which would have been expected if they had been heavy smokers. Typically patients cook on the traditional 'tandir' stove using dung and crop residues as the fuel. Ventilation systems are poor and they are exposed to a high level of smoke pollution leading to cough and dyspnoea. Anthracosis is a common outcome of this level of exposure and several of the patients developed lung tumours. The findings from clinical examination of 8 of these patients (2 M, 6 F) are presented together with their outcome where known. (author)

  11. S4HARA: System for HIV/AIDS resource allocation.

    Science.gov (United States)

    Lasry, Arielle; Carter, Michael W; Zaric, Gregory S

    2008-03-26

    HIV/AIDS resource allocation decisions are influenced by political, social, ethical and other factors that are difficult to quantify. Consequently, quantitative models of HIV/AIDS resource allocation have had limited impact on actual spending decisions. We propose a decision-support System for HIV/AIDS Resource Allocation (S4HARA) that takes into consideration both principles of efficient resource allocation and the role of non-quantifiable influences on the decision-making process for resource allocation. S4HARA is a four-step spreadsheet-based model. The first step serves to identify the factors currently influencing HIV/AIDS allocation decisions. The second step consists of prioritizing HIV/AIDS interventions. The third step involves allocating the budget to the HIV/AIDS interventions using a rational approach. Decision-makers can select from several rational models of resource allocation depending on availability of data and level of complexity. The last step combines the results of the first and third steps to highlight the influencing factors that act as barriers or facilitators to the results suggested by the rational resource allocation approach. Actionable recommendations are then made to improve the allocation. We illustrate S4HARA in the context of a primary healthcare clinic in South Africa. The clinic offers six types of HIV/AIDS interventions and spends US$750,000 annually on these programs. Current allocation decisions are influenced by donors, NGOs and the government as well as by ethical and religious factors. Without additional funding, an optimal allocation of the total budget suggests that the portion allotted to condom distribution be increased from 1% to 15% and the portion allotted to prevention and treatment of opportunistic infections be increased from 43% to 71%, while allocation to other interventions should decrease. Condom uptake at the clinic should be increased by changing the condom distribution policy from a pull system to a push

  12. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2018-04-10

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  13. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  14. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  15. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  16. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  17. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  18. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  19. Dynamic Allocation of Sugars in Barley

    Science.gov (United States)

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  20. International Development Aid Allocation Determinants

    OpenAIRE

    Tapas Mishra; Bazoumana Ouattara; Mamata Parhi

    2012-01-01

    This paper investigates the factors explaining aid allocation by bilateral and multilateral donors. We use data for 146 aid recipient countries over the period 1990-2007 and employ Bayesian Averaging of Classical Estimates Approach (BACE) approach and find that both the recipient need and donor interest motives are `significant' determinants of bilateral and multilateral aid allocation process. Our results also indicate that the measures for recipient need and donor interests vary from bilate...

  1. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  2. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  3. Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions

    Science.gov (United States)

    Olson, Sara N.; Ritter, Kimberley B.; Herb, Dustin W.; Karlen, Steven D.; Lu, Fachuang; Ralph, John; Rooney, William L.; Mullet, John E.

    2018-01-01

    This study was conducted to document the extent and basis of compositional variation of shoot biomass of the energy Sorghum bicolor hybrid TX08001 during development under field conditions. TX08001 is capable of accumulating ~40 Mg/ha of dry biomass under good growing conditions and this genotype allocates ~80% of its shoot biomass to stems. After 150 days of growth TX08001 stems had a fresh/dry weight ratio of ~3:1 and soluble biomass accounted for ~30% of stem biomass. A panel of diverse energy sorghum genotypes varied ~6-fold in the ratio of stem structural to soluble biomass after 150 days of growth. Near-infrared spectroscopic analysis (NIRS) showed that TX08001 leaves accumulated higher levels of protein, water extractives and ash compared to stems, which have higher sugar, cellulose, and lignin contents. TX08001 stem sucrose content varied during development, whereas the composition of TX08001 stem cell walls, which consisted of ~45–49% cellulose, ~27–30% xylan, and ~15–18% lignin, remained constant after 90 days post emergence until the end of the growing season (180 days). TX08001 and Della stem syringyl (S)/guaiacyl (G) (0.53–0.58) and ferulic acid (FA)/para-coumaric acid (pCA) ratios were similar whereas ratios of pCA/(S+G) differed between these genotypes. Additionally, an analysis of irrigated versus non-irrigated TX08001 revealed that non-irrigated hybrids exhibited a 50% reduction in total cell wall biomass, an ~2-fold increase in stem sugars, and an ~25% increase in water extractives relative to irrigated hybrids. This study provides a baseline of information to help guide further optimization of energy sorghum composition for various end-uses. PMID:29684037

  4. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  5. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  6. Detailed modelling of biomass pyrolysis: biomass structure and composition

    International Nuclear Information System (INIS)

    Hugony, F.; Migliavacca, G.; Faravelli, T.; Ranzi, E.

    2007-01-01

    The research routes followed in the field of numerical modelling development for biomass devolatilization are here summarised. In this first paper a wide introduction concerning the description of the chemical nature of the main classes of compounds which constitute biomasses is reported, it is the starting point for the subsequent description of the developed models, described in the companion paper [it

  7. Allocation of authority in European health policy.

    Science.gov (United States)

    Adolph, Christopher; Greer, Scott L; Massard da Fonseca, Elize

    2012-11-01

    Although many study the effects of different allocations of health policy authority, few ask why countries assign responsibility over different policies as they do. We test two broad theories: fiscal federalism, which predicts rational governments will concentrate information-intensive operations at lower levels, and redistributive and regulatory functions at higher levels; and "politicized federalism", which suggests a combination of systematic and historically idiosyncratic political variables interfere with efficient allocation of authority. Drawing on the WHO Health in Transition country profiles, we present new data on the allocation of responsibility for key health care policy tasks (implementation, provision, finance, regulation, and framework legislation) and policy areas (primary, secondary and tertiary care, public health and pharmaceuticals) in the 27 EU member states and Switzerland. We use a Bayesian multinomial mixed logit model to analyze how different countries arrive at different allocations of authority over each task and area of health policy, and find the allocation of powers broadly follows fiscal federalism. Responsibility for pharmaceuticals, framework legislation, and most finance lodges at the highest levels of government, acute and primary care in the regions, and provision at the local and regional levels. Where allocation does not follow fiscal federalism, it appears to reflect ethnic divisions, the population of states and regions, the presence of mountainous terrain, and the timing of region creation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Ulva blooms in the southwestern Gulf of California: Reproduction and biomass

    Science.gov (United States)

    Chávez-Sánchez, Tonatiuh; Piñón-Gimate, Alejandra; Serviere-Zaragoza, Elisa; López-Bautista, Juan Manuel; Casas-Valdez, Margarita

    2018-01-01

    Ulvacean blooms are generally characterized by one or more Ulva species, some of which are common to blooms across a broad geographic range. In tropical environments the identified stimuli that induce reproductive development of Ulva are restricted to temperature, salinity, dehydration and fragmentation. Culture studies have been prolific in describing the reproduction of Ulva species, but its reproductive changes in natural environment have not been described yet. Hence, seasonal changes were described in reproductive stages and their relationship with biomass and environmental factors of Ulva species at four macroalgal blooms in a subtropical bay. Eight Ulva species were found: U. acanthophora, U. clathrata, U. flexuosa, U. intestinalis, U. lactuca, U. lobata, U. nematoidea and U. rigida. Reproductive stage and biomass varied according to site and season. Five species showed four reproductive stages (vegetative, thallus with fully differentiated zooids in formation and empty cells after zooids release); for the remaining species only vegetative thalli were found. Ulva rigida showed the highest biomass values, followed by U. acanthophora, following a seasonal pattern.

  9. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  10. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  11. Optimized maritime emergency resource allocation under dynamic demand.

    Directory of Open Access Journals (Sweden)

    Wenfen Zhang

    Full Text Available Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  12. Mapping patterns of pedestrian fatal accidents in Israel

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2012-01-01

    This study intends to provide insight into pedestrian accidents by uncovering their patterns in order to design preventive measures and to allocate resources for identified problems. Kohonen neural networks are applied to a database of pedestrian fatal accidents occurred during the four-year peri...

  13. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  15. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  16. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific

    Science.gov (United States)

    Sherry, Nelson D.; Boyd, Philip W.; Sugimoto, Kugako; Harrison, Paul J.

    1999-11-01

    Heterotrophic bacterial biomass, production, and respiration rates were measured during winter, spring, and summer in the subarctic NE Pacific from September 1995 to June 1997. Sampling took place on six cruises at five hydrographic stations along the east/west line-P transect from slope waters at P4 (1200 m depth) to the open-ocean waters at Ocean Station Papa (OSP) (4250 m depth). Interannual variability was small relative to seasonal and spatial variability. Biomass, derived from cell counts (assuming 20 fg C cell -1), was ca. 12 μg C l -1 in the winter and increased to 20-35 μg C l -1 in the spring and summer all along line-P. Bacterial production from [ 3H]-thymidine and [ 14C]-leucine incorporation rates was lowest in the winter (ca. 0.5 μg C l -1 d -1) with little spatial variability. Production increased 10-fold in spring at P4 (to ca. 4.5 μg C l -1 d -1). In contrast, only a 2-fold increase in bacterial production was observed over this period at the more oceanic stations. Rates of production in late summer were highest over the annual cycle at all stations ranging from ca. 6 at P4 to ca. 2 μg C l -1 d -1 at OSP. Bacterial (rates increased >10-fold to ca. 100 μg C l -1 d -1 at P4 in the summer, but, interestingly, did not increase from spring to summer at the more oceanic stations. Thus bacterial growth efficiency, defined as production/(production+respiration), decreased in the spring westwards from the slope waters (P4) to the open-ocean (OSP), but increased westwards in the summer. Bacterial production was highly correlated with temperature at OSP ( r2=0.88) and less so at P4 ( r2=0.50). The observed temporal and spatial trends presented in this study suggest that seasonal changes in bacterial biomass were greatly affected by changes in loss processes, that bacterial biomass is regulated by different processes than bacterial production, and that bacterial production alone, without respiration measurements, is not a robust proxy for bacterial

  17. Application of an allocation methodology

    International Nuclear Information System (INIS)

    Youngblood, R.

    1989-01-01

    This paper presents a method for allocating resources to elements of a system for the purpose of achieving prescribed levels of defense-in-depth at minimal cost. The method makes extensive use of logic modelling. An analysis of a simplified high-level waste repository is used as an illustrative application of the method. It is shown that it is possible to allocate quality control costs (or demonstrate performance) in an optimal way over elements of a conceptual design

  18. S4HARA: System for HIV/AIDS resource allocation

    Directory of Open Access Journals (Sweden)

    Carter Michael W

    2008-03-01

    Full Text Available Abstract Background HIV/AIDS resource allocation decisions are influenced by political, social, ethical and other factors that are difficult to quantify. Consequently, quantitative models of HIV/AIDS resource allocation have had limited impact on actual spending decisions. We propose a decision-support System for HIV/AIDS Resource Allocation (S4HARA that takes into consideration both principles of efficient resource allocation and the role of non-quantifiable influences on the decision-making process for resource allocation. Methods S4HARA is a four-step spreadsheet-based model. The first step serves to identify the factors currently influencing HIV/AIDS allocation decisions. The second step consists of prioritizing HIV/AIDS interventions. The third step involves allocating the budget to the HIV/AIDS interventions using a rational approach. Decision-makers can select from several rational models of resource allocation depending on availability of data and level of complexity. The last step combines the results of the first and third steps to highlight the influencing factors that act as barriers or facilitators to the results suggested by the rational resource allocation approach. Actionable recommendations are then made to improve the allocation. We illustrate S4HARA in the context of a primary healthcare clinic in South Africa. Results The clinic offers six types of HIV/AIDS interventions and spends US$750,000 annually on these programs. Current allocation decisions are influenced by donors, NGOs and the government as well as by ethical and religious factors. Without additional funding, an optimal allocation of the total budget suggests that the portion allotted to condom distribution be increased from 1% to 15% and the portion allotted to prevention and treatment of opportunistic infections be increased from 43% to 71%, while allocation to other interventions should decrease. Conclusion Condom uptake at the clinic should be increased by

  19. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  20. 30 CFR 206.459 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.459 Section 206... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  1. 30 CFR 206.260 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.260 Section 206... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  2. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    Gardette, Yves-Marie; Dieckhoff, Lea; Lorne, Daphne; Postec, Gwenael; Cherisey, Hugues de; RANTIEN, Caroline

    2014-11-01

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  3. Accumulation of Elements in Salix and Other Species Used in Vegetation Filters with Focus on Wood Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Anneli

    2007-07-01

    Woody or herbaceous perennials used as vegetation filters for treatment of different types of wastes can be suitable for production of solid biofuels when their above ground harvestable biomass yield is sufficiently high and when biomass contains appropriate concentrations of minerals with regard to fuel combustion processes. The concentrations of nitrogen (N), potassium (K) and heavy metals (especially Zn and Cd) in fuel should be low and calcium (Ca) concentrations high to avoid technical problems and environmentally harmful emissions during combustion. Since soil supplementation with essential elements improves biomass yield, a conflict might arise between yield and quality aims. There are various possibilities to influence fuel quality during the growing phase of the life cycle of perennial biomass crops. This study assessed the suitability of two deciduous woody perennials (Salix and Populus) and two summer green herbaceous perennials (Phragmites and Urtica) for phytoremediation in terms of growth and nutrient allocation patterns. Salix and Populus proved suitable as vegetation filters when nutrients were available to plants in near-optimal proportions, but when unbalanced nutrient solutions (wastewater) were applied, stem biomass fraction was strongly reduced. Phragmites was more tolerant to wastewater treatment in terms of plant biomass production and nutrient allocation patterns, so if the N:P ratio of the wastewater is suboptimal, a vegetation filter using Phragmites could be considered. In further studies, a method was developed to determine the proportions of nutrient-rich bark in coppiced Salix, while heavy metal phytoextraction capacity was assessed in two Salix vegetation filters. The relevance of proportion of bark on wood fuel quality and element removal from vegetation filters was also investigated. The concentrations of the elements studied in harvestable Salix shoot biomass were higher, meaning lower wood fuel quality, in plantations where

  4. Analysis of national allocation plans for the EU ETS

    Energy Technology Data Exchange (ETDEWEB)

    Zetterberg, Lars; Nilsson, Kristina; Aahman, Markus; Kumlin, Anna-Sofia; Birgersdotter, Lena

    2004-08-01

    The EU ETS is a Community-wide scheme established by Directive 2003/87/EC for trading allowances to cover the emissions of greenhouse gases from permitted installations. The first phase of the EU ETS runs from 1 January 2005 to 31 December 2007. Each Member State must develop a National Allocation Plan for the first phase stating: the total quantity of allowances that the Member State intends to issue during that phase; and how it proposes to distribute those allowances among the installations which are subject to the scheme In this paper twelve of the national allocation plans have been analysed and compared to the criteria stated in the EU Directive. The twelve allocation plans analysed are: the Austrian, the Danish, the Finnish, the German, the Irish, the Lithuanian, the Luxembourg, the Dutch, the Swedish, the British and the draft Flemish (Belgium) and Portuguese. Generally most countries have allocated generously to the trading sector. The allocation has often been based on future needs. For most sectors the allocation is higher than current emissions. Many countries will have to make large reductions in the non-trading sector and/or buy credits through JI- and CDM-projects in order to fulfil their commitment according to the EU burden sharing agreement of the Kyoto Protocol. In many of the allocation plans the emission reducing measures in the non-trading sector is poorly described and the credibility of the measures are hard to determine. Two sectors have been analysed in more detail, the energy and the mineral oil refining sectors. Figures presenting allocation vs. current emissions for those sectors are given for those countries where data was available in the allocation plan. The energy sector has been considered to have the best possibilities to pass on costs for the allowances to the consumers and hence the allocation to this sector is often more restricted than the allocation to other sectors. The mineral oil refining sector is more exposed to

  5. Cost Allocation and Convex Data Envelopment

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tind, Jørgen

    such as Data Envelopment Analysis (DEA). The convexity constraint of the BCC model introduces a non-zero slack in the objective function of the multiplier problem and we show that the cost allocation rules discussed in this paper can be used as candidates to allocate this slack value on to the input (or output...

  6. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  7. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  8. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  9. Railway Track Allocation: Models and Methods

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    2011-01-01

    Efficiently coordinating the movement of trains on a railway network is a central part of the planning process for a railway company. This paper reviews models and methods that have been proposed in the literature to assist planners in finding train routes. Since the problem of routing trains......, and train routing problems, group them by railway network type, and discuss track allocation from a strategic, tactical, and operational level....... on a railway network entails allocating the track capacity of the network (or part thereof) over time in a conflict-free manner, all studies that model railway track allocation in some capacity are considered relevant. We hence survey work on the train timetabling, train dispatching, train platforming...

  10. Railway Track Allocation: Models and Methods

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    Eciently coordinating the movement of trains on a railway network is a central part of the planning process for a railway company. This paper reviews models and methods that have been proposed in the literature to assist planners in nding train routes. Since the problem of routing trains......, and train routing problems, group them by railway network type, and discuss track allocation from a strategic, tactical, and operational level....... on a railway network entails allocating the track capacity of the network (or part thereof) over time in a con ict-free manner, all studies that model railway track allocation in some capacity are considered relevant. We hence survey work on the train timetabling, train dispatching, train platforming...

  11. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  12. Output-based allocation and investment in clean technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Knut Einar; Storroesten, Halvor Briseid

    2011-07-01

    Allocation of emission allowances may affect firms' incentives to invest in clean technologies. In this paper we show that so-called output-based allocation tends to stimulate such investments as long as individual firms do not assume the regulator to tighten the allocation rule as a consequence of their investments. The explanation is that output-based allocation creates an implicit subsidy to the firms' output, which increases production, leads to a higher price of allowances, and thus increases the incentives to invest in clean technologies. On the other hand, if the firms expect the regulator to tighten the allocation rule after observing their clean technology investment, the firms' incentives to invest are moderated. If strong, this last effect may outweigh the enhanced investment incentives induced by increased output and higher allowance price. (Author)

  13. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments

    International Nuclear Information System (INIS)

    Burd, B.; Macdonald, T.; Bertold, S.

    2013-01-01

    Highlights: • High river particulate flux results in low sediment P/B due to large burrowers. • Sewage deposition results in high P/B from biomass depletion and bacterial increase. • Heterotrophic production was 56% of oxidized OC flux with 35% growth efficiency. • Production was correlated with organic/inorganic flux – biomass was not. • δ 15 N patterns illustrate feeding strategies of key taxa near the outfall. -- Abstract: We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r 2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ 15 N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast

  14. Biomass Data | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5

  15. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  16. Assessing biomass accumulation in second growth forests of Puerto Rico using airborne lidar

    Science.gov (United States)

    Martinuzzi, S.; Cook, B.; Corp, L. A.; Morton, D. C.; Helmer, E.; Keller, M.

    2017-12-01

    Degraded and second growth tropical forests provide important ecosystem services, such as carbon sequestration and soil stabilization. Lidar data measure the three-dimensional structure of forest canopies and are commonly used to quantify aboveground biomass in temperate forest landscapes. However, the ability of lidar data to quantify second growth forest biomass in complex, tropical landscapes is less understood. Our goal was to evaluate the use of airborne lidar data to quantify aboveground biomass in a complex tropical landscape, the Caribbean island of Puerto Rico. Puerto Rico provides an ideal place for studying biomass accumulation because of the abundance of second growth forests in different stages of recovery, and the high ecological heterogeneity. Puerto Rico was almost entirely deforested for agriculture until the 1930s. Thereafter, agricultural abandonment resulted in a mosaic of second growth forests that have recovered naturally under different types of climate, land use, topography, and soil fertility. We integrated forest plot data from the US Forest Service, Forest Inventory and Analysis (FIA) Program with recent lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager to quantify forest biomass across the island's landscape. The G-LiHT data consisted on targeted acquisitions over the FIA plots and other forested areas representing the environmental heterogeneity of the island. To fully assess the potential of the lidar data, we compared the ability of lidar-derived canopy metrics to quantify biomass alone, and in combination with intensity and topographic metrics. The results presented here are a key step for improving our understanding of the patterns and drivers of biomass accumulation in tropical forests.

  17. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  18. Solid biomass barometer 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The winter of 2011 was exceptionally mild, even in Northern Europe, with unusually warm temperatures. As a result the demand for firewood and solid biomass fuel was low. The European Union's primary energy production from solid biomass contracted by 2.9% slipping to 78.8 Mtoe. The first 4 countries are Germany (11.690 Mtoe), France (9.223 Mtoe), Sweden (8.165 Mtoe) and Finland (7.476 Mtoe) and when the production is relative to the population the first 4 countries become: Finland (1.391 toe/inhab.), Sweden (0.867 toe/inhab.), Latvia (0.784 toe/inhab.) and Estonia (0.644 toe/inhab.). Solid biomass electricity production continued to grow, driven by the additional take-up of biomass co-firing, to reach 72.800 TWh at the end of 2011, it means +2.6% compared to 2010. The energy policy of various states concerning solid biomass is analyzed

  19. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  20. Equitable fund allocation, an economical approach for sustainable waste load allocation.

    Science.gov (United States)

    Ashtiani, Elham Feizi; Niksokhan, Mohammad Hossein; Jamshidi, Shervin

    2015-08-01

    This research aims to study a novel approach for waste load allocation (WLA) to meet environmental, economical, and equity objectives, simultaneously. For this purpose, based on a simulation-optimization model developed for Haraz River in north of Iran, the waste loads are allocated according to discharge permit market. The non-dominated solutions are initially achieved through multiobjective particle swarm optimization (MOPSO). Here, the violation of environmental standards based on dissolved oxygen (DO) versus biochemical oxidation demand (BOD) removal costs is minimized to find economical total maximum daily loads (TMDLs). This can save 41% in total abatement costs in comparison with the conventional command and control policy. The BOD discharge permit market then increases the revenues to 45%. This framework ensures that the environmental limits are fulfilled but the inequity index is rather high (about 4.65). For instance, the discharge permit buyer may not be satisfied about the equity of WLA. Consequently, it is recommended that a third party or institution should be in charge of reallocating the funds. It means that the polluters which gain benefits by unfair discharges should pay taxes (or funds) to compensate the losses of other polluters. This intends to reduce the costs below the required values of the lowest inequity index condition. These compensations of equitable fund allocation (EFA) may help to reduce the dissatisfactions and develop WLA policies. It is concluded that EFA in integration with water quality trading (WQT) is a promising approach to meet the objectives.