WorldWideScience

Sample records for biology research tool

  1. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  2. Stable isotopes: essential tools in biological and medical research

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P. D.; Hachey, D. L.; Kreek, M. J.; Schoeller, D. A.

    1977-01-01

    Recent developments in the use of the stable isotopes, /sup 13/C, /sup 15/N, /sup 17/O, and /sup 18/O, as tracers in research studies in the fields of biology, medicine, pharmacology, and agriculture are briefly reviewed. (CH)

  3. The Systems Biology Research Tool: evolvable open-source software

    OpenAIRE

    Wright, J; Wagner, A

    2008-01-01

    Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput) experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform calle...

  4. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Campbell, A. Malcolm; Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The "Vision and Change" report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area…

  5. Making Research Fly in Schools: "Drosophila" as a Powerful Modern Tool for Teaching Biology

    Science.gov (United States)

    Harbottle, Jennifer; Strangward, Patrick; Alnuamaani, Catherine; Lawes, Surita; Patel, Sanjai; Prokop, Andreas

    2016-01-01

    The "droso4schools" project aims to introduce the fruit fly "Drosophila" as a powerful modern teaching tool to convey curriculum-relevant specifications in biology lessons. Flies are easy and cheap to breed and have been at the forefront of biology research for a century, providing unique conceptual understanding of biology and…

  6. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  7. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  8. NCCR Chemical Biology: Interdisciplinary Research Excellence, Outreach, Education, and New Tools for Switzerland.

    Science.gov (United States)

    Sturzenegger, Susi; Johnsson, Kai; Riezman, Howard

    2011-01-01

    Funded by the Swiss National Science Foundation to promote cutting edge research as well as the advancement of young researchers and women, technology transfer, outreach and education, the NCCR (Swiss National Centre of Competence in Research) Chemical Biology is co-led by Howard Riezman, University of Geneva and Kai Johnsson, École Polytechnique Fédérale de Lausanne (EPFL).

  9. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    Science.gov (United States)

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. SIMS applications in biological research

    International Nuclear Information System (INIS)

    Prince, K.E.; Burke, P.T.; Kelly, I.J.

    2000-01-01

    Full text: SIMS has been utilised as a tool for biological research since the early 1970's. SIMS' abilities in isotopic detection with high sensitivity, imaging capabilities at a subcellular level, and the possibility of molecular imaging have been the main areas of interest for biological development. However, whilst hundreds of instruments are available in industrial and university laboratories for semiconductor and materials analysis, only a handful successfully perform biological research. For this reason there is generally a lack of awareness of SIMS by the biological community. Biological SIMS analysis requires a working knowledge of both biology and SIMS. Sample preparation is a critical and time consuming prerequisite for any successful biological SIMS study. In addition, for quantification to be possible a homogeneous, matrix matched standard must be available. Once these difficulties are more widely understood and overcome there will be a greater motivation for the biological community to embrace SIMS as a unique tool in their research. This paper provides an overview of some of the more successful biological SIMS application areas internationally, and summarises the types of biological SIMS requests received by ANSTO

  11. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  12. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    Science.gov (United States)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  13. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  14. PAC research in biology

    Energy Technology Data Exchange (ETDEWEB)

    Chain, C. Y., E-mail: yamil@fisica.unlp.edu.ar [Universidad Nacional de La Plata, IFLP (Argentina); Ceolin, M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, Dto de Quimica, Fac. Cs. Exactas, UNLP (Argentina); Pasquevich, A. F. [Universidad Nacional de La Plata, IFLP (Argentina)

    2008-01-15

    In this paper possible applications of the Perturbed Angular Correlations (PAC) technique in Biology are considered. Previous PAC experiments in biology are globally analyzed. All the work that appears in the literature has been grouped in a few research lines, just to make the analysis and discussion easy. The commonly used radioactive probes are listed and the experimental difficulties are analyzed. We also report applications of {sup 181}Hf and {sup 111}In isotopes in life sciences other than their use in PAC. The possibility of extending these studies using the PAC technique is discussed.

  15. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    International Nuclear Information System (INIS)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; Niekerk, Johannes van; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service

  16. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Chris [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Pajon, Anne [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Griffiths, Susanne L. [University of York, Heslington, York YO10 5DD (United Kingdom); Daniel, Ed [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Savitsky, Marc [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Lin, Bill [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Diprose, Jonathan M. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wilter da Silva, Alan [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Pilicheva, Katya [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Troshin, Peter [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Niekerk, Johannes van [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Isaacs, Neil [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Naismith, James [University of St Andrews, St Andrews, Fife KY16 9ST, Scotland (United Kingdom); Nave, Colin; Blake, Richard [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wilson, Keith S. [University of York, Heslington, York YO10 5DD (United Kingdom); Stuart, David I. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Henrick, Kim [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Esnouf, Robert M., E-mail: robert@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2011-04-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  17. Microsoft Biology Initiative: .NET Bioinformatics Platform and Tools

    Science.gov (United States)

    Diaz Acosta, B.

    2011-01-01

    The Microsoft Biology Initiative (MBI) is an effort in Microsoft Research to bring new technology and tools to the area of bioinformatics and biology. This initiative is comprised of two primary components, the Microsoft Biology Foundation (MBF) and the Microsoft Biology Tools (MBT). MBF is a language-neutral bioinformatics toolkit built as an extension to the Microsoft .NET Framework—initially aimed at the area of Genomics research. Currently, it implements a range of parsers for common bioinformatics file formats; a range of algorithms for manipulating DNA, RNA, and protein sequences; and a set of connectors to biological web services such as NCBI BLAST. MBF is available under an open source license, and executables, source code, demo applications, documentation and training materials are freely downloadable from http://research.microsoft.com/bio. MBT is a collection of tools that enable biology and bioinformatics researchers to be more productive in making scientific discoveries.

  18. "Research Tools": Tools for supporting research and publications

    OpenAIRE

    Ebrahim, Nader Ale

    2014-01-01

    Research Tools” can be defined as vehicles that broadly facilitate research and related activities. “Research Tools” enable researchers to collect, organize, analyze, visualize and publicized research outputs. Dr. Nader has collected over 700 tools that enable students to follow the correct path in research and to ultimately produce high-quality research outputs with more accuracy and efficiency. It is assembled as an interactive Web-based mind map, titled “Research Tools”, which is updated ...

  19. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  20. An online model composition tool for system biology models.

    Science.gov (United States)

    Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2013-09-05

    There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.

  1. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-05

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.

  2. Research tools | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Through training materials and guides, we aim to build skills and knowledge to enhance the quality of development research. We also offer free access to our database of funded research projects, known as IDRIS+, and our digital library. Our research tools include. Guide to research databases at IDRC: How to access and ...

  3. Biological Defense Research Program

    Science.gov (United States)

    1989-04-01

    difference between life and death. Some recent examples are: BDRP developed VEE vaccine used in Central America, Mexico , and Texas (1969- 1971.) and Rift...Complex, is adn area owned by the Bureau of Land Management, which is available for grazina, and with specific permission, for use by DPG. 2.3...2.01 A Large European Laboratory, 1944-1950 50.00 Tuberculosis Laboratory 4 Technicians, Canada, 1947-1954 19.00 Research Institutes, 1930-1950 4.10

  4. RESEARCH CENTRIFUGE- ADVANCED TOOL SEPERATION

    OpenAIRE

    Mahajan Ashwini; Prof. B.V. Jain; Dr Surajj Sarode

    2015-01-01

    A centrifuge is a critical piece of equipment for the laboratory. Purpose of this study was to study research centrifuge in detail, its applications, uses in different branches and silent features. Their are two types of research centrifuge study here revolutionary research centrifuge and microprocessor research centrifuge. A centrifuge is a device that separates particles from a solution through use of a rotor. In biology, the particles are usually cells, sub cellular organelles, or large mo...

  5. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias) provides a molecular tool for biological research and reveals new genes involved in osmoregulation

    DEFF Research Database (Denmark)

    Chana Munoz, Andres; Jendroszek, Agnieszka; Sønnichsen, Malene

    2017-01-01

    The spiny dogfish shark (Squalus acanthias) is one of the most commonly used cartilaginous fishes in biological research, especially in the fields of nitrogen metabolism, ion transporters and osmoregulation. Nonetheless, transcriptomic data for this organism is scarce. In the present study, a multi......-tissue RNA-seq experiment and de novo transcriptome assembly was performed in four different spiny dogfish tissues (brain, liver, kidney and ovary), providing an annotated sequence resource. The characterization of the transcriptome greatly increases the scarce sequence information for shark species. Reads...... and provides a new molecular tool to assist biological research in cartilaginous fishes....

  6. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  7. Nanotechnology: emerging tools for biology and medicine.

    Science.gov (United States)

    Wong, Ian Y; Bhatia, Sangeeta N; Toner, Mehmet

    2013-11-15

    Historically, biomedical research has been based on two paradigms. First, measurements of biological behaviors have been based on bulk assays that average over large populations. Second, these behaviors have then been crudely perturbed by systemic administration of therapeutic treatments. Nanotechnology has the potential to transform these paradigms by enabling exquisite structures comparable in size with biomolecules as well as unprecedented chemical and physical functionality at small length scales. Here, we review nanotechnology-based approaches for precisely measuring and perturbing living systems. Remarkably, nanotechnology can be used to characterize single molecules or cells at extraordinarily high throughput and deliver therapeutic payloads to specific locations as well as exhibit dynamic biomimetic behavior. These advances enable multimodal interfaces that may yield unexpected insights into systems biology as well as new therapeutic strategies for personalized medicine.

  8. [Biological research and security institutes].

    Science.gov (United States)

    Darsie, G; Falczuk, A J; Bergmann, I E

    2006-04-01

    The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.

  9. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  10. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  11. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  12. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  13. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  14. Using systems and structure biology tools to dissect cellular phenotypes.

    Science.gov (United States)

    Floratos, Aris; Honig, Barry; Pe'er, Dana; Califano, Andrea

    2012-01-01

    The Center for the Multiscale Analysis of Genetic Networks (MAGNet, http://magnet.c2b2.columbia.edu) was established in 2005, with the mission of providing the biomedical research community with Structural and Systems Biology algorithms and software tools for the dissection of molecular interactions and for the interaction-based elucidation of cellular phenotypes. Over the last 7 years, MAGNet investigators have developed many novel analysis methodologies, which have led to important biological discoveries, including understanding the role of the DNA shape in protein-DNA binding specificity and the discovery of genes causally related to the presentation of malignant phenotypes, including lymphoma, glioma, and melanoma. Software tools implementing these methodologies have been broadly adopted by the research community and are made freely available through geWorkbench, the Center's integrated analysis platform. Additionally, MAGNet has been instrumental in organizing and developing key conferences and meetings focused on the emerging field of systems biology and regulatory genomics, with special focus on cancer-related research.

  15. Review of domestic radiation biology research

    International Nuclear Information System (INIS)

    Zheng Chun; Song Lingli; Ai Zihui

    2011-01-01

    Radiation biology research in China during the past ten years are reviewed. It should be noticed that radiation-biology should focus on microdosimetry, microbeam application, and radiation biological mechanism. (authors)

  16. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  17. A practical workflow for making anatomical atlases for biological research.

    Science.gov (United States)

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  18. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  19. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  20. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  1. Biological research for radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  2. Developments in the Tools and Methodologies of Synthetic Biology

    Science.gov (United States)

    Kelwick, Richard; MacDonald, James T.; Webb, Alexander J.; Freemont, Paul

    2014-01-01

    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community. PMID:25505788

  3. Developments in the tools and methodologies of synthetic biology

    Directory of Open Access Journals (Sweden)

    Richard eKelwick

    2014-11-01

    Full Text Available Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices or systems. However, biological systems are generally complex and unpredictable and are therefore intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a ‘body of knowledge’ from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled and its functionality tested. At each stage of the design cycle an expanding repertoire of tools is being developed. In this review we highlight several of these tools in terms of their applications and benefits to the synthetic biology community.

  4. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. [ed.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  5. Plant biology research and training for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K. (ed.)

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  6. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...... synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead....

  8. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  9. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  10. Diazo Compounds: Versatile Tools for Chemical Biology

    OpenAIRE

    Mix, Kalie A.; Aronoff, Matthew R.; Raines, Ronald T.

    2016-01-01

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modificatio...

  11. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  12. Biological data integration: wrapping data and tools.

    Science.gov (United States)

    Lacroix, Zoé

    2002-06-01

    Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. Building a digital library for scientific data requires accessing and manipulating data extracted from flat files or databases, documents retrieved from the Web as well as data generated by software. We present an approach to wrapping web data sources, databases, flat files, or data generated by tools through a database view mechanism. Generally, a wrapper has two tasks: it first sends a query to the source to retrieve data and, second builds the expected output with respect to the virtual structure. Our wrappers are composed of a retrieval component based on an intermediate object view mechanism called search views mapping the source capabilities to attributes, and an eXtensible Markup Language (XML) engine, respectively, to perform these two tasks. The originality of the approach consists of: 1) a generic view mechanism to access seamlessly data sources with limited capabilities and 2) the ability to wrap data sources as well as the useful specific tools they may provide. Our approach has been developed and demonstrated as part of the multidatabase system supporting queries via uniform object protocol model (OPM) interfaces.

  13. Diazo Compounds: Versatile Tools for Chemical Biology.

    Science.gov (United States)

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  14. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    Science.gov (United States)

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  15. INTELLECTUAL PROPERTY RIGHTS ISSUES FOR RESEARCH TOOLS IN BIOTECHNOLOGY RESEARCH

    Directory of Open Access Journals (Sweden)

    Rekha Chaturvedi

    2015-09-01

    Full Text Available The research tools refer to the resources researchers need to use in experimental work. In Biotechnology, these can include cell lines, monoclonal antibodies, reagents, animal models, growth factors, combinatorial chemistry libraries, drug and drug targets, clones and cloning tools (such as PCR, method, laboratory equipment and machines, database and computer software. Research tools therefore serve as basis for upstream research to improve the present product or process. There are several challenges in the way of using patented research tools. IP issues with regard to research tools are important and may sometime pose hindrance for researchers. Hence in the case of patented research tools, IPR issues can compose a major hurdle for technology development. In majority instances research tools are permitted through MTAs for academic research and for imparting education. TRIPS provides a provision for exception to patent rights for experimental use of patented technology in scientific research and several countries including India have included this provision in their patent legislation. For commercially important work, licensing of research tools can be based on royalty or one time lump sum payment. Some patent owners of important high-end research tools for development of platform technology create problems in licensing which can impede research. Usually cost of a commercially available research tool is built up in its price.

  16. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  17. Haldane's Contributions to Biological Research in India

    Indian Academy of Sciences (India)

    and Industrial Research, New Delhi, he moved to Bhubaneswar to start his own ... Brown, Foreign Secretary, US National Academy of Sciences, in. 1964, upon .... lectures contained new ideas for biological research that could be conducted in ...

  18. Data integration in biological research: an overview.

    Science.gov (United States)

    Lapatas, Vasileios; Stefanidakis, Michalis; Jimenez, Rafael C; Via, Allegra; Schneider, Maria Victoria

    2015-12-01

    Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration. The quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide background on what is data integration from a computational science point of view, how it has been applied to biological research, which key aspects contributed to its success and future directions.

  19. A Tool for Evaluating Strategies for Grouping of Biological Data

    OpenAIRE

    Jakoniene, Vaida; Lambrix, Patrick

    2007-01-01

    During the last decade an enormous amount of biological data has been generated and techniques and tools to analyze this data have been developed. Many of these tools use some form of grouping and are used in, for instance, data integration, data cleaning, prediction of protein functionality, and correlation of genes based on microarray data. A number of aspects influence the quality of the grouping results: the data sources, the grouping attributes and the algorithms implementing the groupin...

  20. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  1. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias provides a molecular tool for biological research and reveals new genes involved in osmoregulation.

    Directory of Open Access Journals (Sweden)

    Andres Chana-Munoz

    transcriptome assemblies and the derived annotations generated in this study will support the ongoing research for this particular animal model and provides a new molecular tool to assist biological research in cartilaginous fishes.

  2. Multi-tissue RNA-seq and transcriptome characterisation of the spiny dogfish shark (Squalus acanthias) provides a molecular tool for biological research and reveals new genes involved in osmoregulation.

    Science.gov (United States)

    Chana-Munoz, Andres; Jendroszek, Agnieszka; Sønnichsen, Malene; Kristiansen, Rune; Jensen, Jan K; Andreasen, Peter A; Bendixen, Christian; Panitz, Frank

    2017-01-01

    assemblies and the derived annotations generated in this study will support the ongoing research for this particular animal model and provides a new molecular tool to assist biological research in cartilaginous fishes.

  3. [Application of microelectronics CAD tools to synthetic biology].

    Science.gov (United States)

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  4. South African antarctic biological research programme

    CSIR Research Space (South Africa)

    SASCAR

    1981-07-01

    Full Text Available This document provides a description of the past, current and planned South African biological research activities in the sub-Antarctic and Antarctic regions. Future activities will fall under one of the five components of the research programme...

  5. iTools: a framework for classification, categorization and integration of computational biology resources.

    Directory of Open Access Journals (Sweden)

    Ivo D Dinov

    2008-05-01

    Full Text Available The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long

  6. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  7. TinkerCell: modular CAD tool for synthetic biology

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2009-01-01

    Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily

  8. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  9. Radioactive 63Ni in biological research

    International Nuclear Information System (INIS)

    Kasprzak, K.S.; Sunderman, F.W. Jr.

    1979-01-01

    Applications of 63 Ni in biological research are reviewed, with emphasis upon recent investigations of nickel metabolism and toxicology in experimental animals. The radiochemistry of 63 Ni is summarized, including consideration of the preparation of certain 63 Ni compounds (e.g. 63 Ni(CO) 4 and 63 Ni 3 S 2 ) that are of current interest in toxicology, teratology and cancer research. Practical guidance is given regarding the detection and determination of 63 Ni in biological materials by autoradiography and liquid scintillation spectrometry. (author)

  10. 75 FR 6651 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Biological and Environmental Research Advisory Committee AGENCY: Department... meeting of the Biological and Environmental Research Advisory Committee (BERAC). Federal Advisory.... Department of Energy, Office of Science, Office of Biological and Environmental Research, SC-23/Germantown...

  11. 77 FR 4028 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY Biological and Environmental Research Advisory Committee AGENCY: Department... meeting of the Biological and Environmental Research Advisory Committee (BERAC). The Federal Advisory.... Department of Energy, Office of Science, Office of Biological and Environmental Research, SC-23/Germantown...

  12. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  13. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  14. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  15. Software tool for portal dosimetry research.

    Science.gov (United States)

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  16. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  17. Drawing as a user experience research tool

    DEFF Research Database (Denmark)

    Fleury, Alexandre

    2011-01-01

    such previous work, two case studies are presented, in which drawings helped investigate the relationship between media technology users and two specific devices, namely television and mobile phones. The experiment generated useful data and opened for further consideration of the method as an appropriate HCI...... research tool....

  18. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  19. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  20. 78 FR 6087 - Biological and Environmental Research Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Biological and Environmental Research Advisory Committee AGENCY: Office of... the Biological and Environmental Research Advisory Committee (BERAC). The Federal Advisory Committee... Federal Officer, BERAC, U.S. Department of Energy, Office of Science, Office of Biological and...

  1. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  2. Chemical and genetic tools to explore S1P biology.

    Science.gov (United States)

    Cahalan, Stuart M

    2014-01-01

    The zwitterionic lysophospholipid Sphingosine 1-Phosphate (S1P) is a pleiotropic mediator of physiology and pathology. The synthesis, transport, and degradation of S1P are tightly regulated to ensure that S1P is present in the proper concentrations in the proper location. The binding of S1P to five G protein-coupled S1P receptors regulates many physiological systems, particularly the immune and vascular systems. Our understanding of the functions of S1P has been aided by the tractability of the system to both chemical and genetic manipulation. Chemical modulators have been generated to affect most of the known components of S1P biology, including agonists of S1P receptors and inhibitors of enzymes regulating S1P production and degradation. Genetic knockouts and manipulations have been similarly engineered to disrupt the functions of individual S1P receptors or enzymes involved in S1P metabolism. This chapter will focus on the development and utilization of these chemical and genetic tools to explore the complex biology surrounding S1P and its receptors, with particular attention paid to the in vivo findings that these tools have allowed for.

  3. NASA Space Biology Plant Research for 2010-2020

    Science.gov (United States)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.

  4. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  5. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  6. Monitoring biological diversity: strategies, tools, limitations, and challenges

    Science.gov (United States)

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  7. Gordon Research Conference on Mammary Gland Biology

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 conference was the tenth in the series of biennial Gordon Research Conferences on Mammary Gland Biology. Traditionally this conference brings together scientists from diverse backgrounds and experience but with a common interest in the biology of the mammary gland. Investigators from agricultural and medical schools, biochemists, cell and molecular biologists, endocrinologists, immunologists, and representatives from the emerging biotechnology industries met to discuss current concepts and results on the function and regulation of the normal and neoplastic mammary gland in a variety of species. Of the participants, approximately three-fourths were engaged in studying the normal mammary gland function, whereas the other quarter were engaged in studying the neoplastic gland. The interactions between scientists, clinicians, veterinarians examining both normal and neoplastic cell function serves to foster the multi-disciplinary goals of the conference and has stimulated many cooperative projects among participants in previous years

  8. National Biological Service Research Supports Watershed Planning

    Science.gov (United States)

    Snyder, Craig D.

    1996-01-01

    The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.

  9. [Radar as imaging tool in ecology and conservation biology].

    Science.gov (United States)

    Matyjasiak, Piotr

    2017-01-01

    Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.

  10. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    Science.gov (United States)

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  11. FOSS Tools for Research Data Management

    Science.gov (United States)

    Stender, Vivien; Jankowski, Cedric; Hammitzsch, Martin; Wächter, Joachim

    2017-04-01

    Established initiatives and organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. These infrastructures aim the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. In this regard, Research Data Management (RDM) gains importance and thus requires the support by appropriate tools integrated in these infrastructures. Different projects provide arbitrary solutions to manage research data. However, within two projects - SUMARIO for land and water management and TERENO for environmental monitoring - solutions to manage research data have been developed based on Free and Open Source Software (FOSS) components. The resulting framework provides essential components for harvesting, storing and documenting research data, as well as for discovering, visualizing and downloading these data on the basis of standardized services stimulated considerably by enhanced data management approaches of Spatial Data Infrastructures (SDI). In order to fully exploit the potentials of these developments for enhancing data management in Geosciences the publication of software components, e.g. via GitHub, is not sufficient. We will use our experience to move these solutions into the cloud e.g. as PaaS or SaaS offerings. Our contribution will present data management solutions for the Geosciences developed in two projects. A sort of construction kit with FOSS components build the backbone for the assembly and implementation of projects specific platforms. Furthermore, an approach is presented to stimulate the reuse of FOSS RDM solutions with cloud concepts. In further projects specific RDM platforms can be set-up much faster, customized to the individual needs and tools can be added during the run-time.

  12. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  13. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  14. Synergy between medicinal chemistry and biological research.

    Science.gov (United States)

    Moncada, Salvador; Coaker, Hannah

    2014-09-01

    Salvador Moncada studied medicine at the University of El Salvador (El Salvador) before coming to the UK in 1971 to work on a PhD with Professor John Vane at the Institute of Basic Medical Sciences, Royal College of Surgeons (UK). After a short period of research at the University of Honduras (Honduras), he joined the Wellcome Research Laboratories (UK) where he became Head of the Department of Prostaglandin Research and later, Director of Research. He returned to academic life in 1996 as founder and director of the Wolfson Institute for Biomedical Research at University College London (UK). Moncada played a role in the discovery of the mechanism of action of aspirin-like drugs and later led the teams which discover prostacyclin and identified nitric oxide as a biological mediator. In his role as a Director of Research of the Wellcome Laboratories, he oversaw the discovery and development of medicines for epilepsy, migraine, malaria and cancer. Currently, he is working on the regulation of cell proliferation as Director of the Institute of Cancer Sciences at the University of Manchester (UK). Moncada has won numerous awards from the international scientific community and in 2010, he received a knighthood from Her Majesty Queen Elizabeth II for his services to science.

  15. Straightforward statistics understanding the tools of research

    CERN Document Server

    Geher, Glenn

    2014-01-01

    Straightforward Statistics: Understanding the Tools of Research is a clear and direct introduction to statistics for the social, behavioral, and life sciences. Based on the author's extensive experience teaching undergraduate statistics, this book provides a narrative presentation of the core principles that provide the foundation for modern-day statistics. With step-by-step guidance on the nuts and bolts of computing these statistics, the book includes detailed tutorials how to use state-of-the-art software, SPSS, to compute the basic statistics employed in modern academic and applied researc

  16. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  17. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  18. Division of Biological and Medical Research annual research summary, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology. (ACR)

  19. Division of Biological and Medical Research annual research summary, 1983

    International Nuclear Information System (INIS)

    Barr, S.H.

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology

  20. PDBlocal: A web-based tool for local inspection of biological macromolecular 3D structures

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2018-03-01

    Full Text Available Functional research on biological macromolecules must focus on specific local regions. PDBlocal is a web-based tool developed to overcome the limitations of traditional molecular visualization tools for three-dimensional (3D inspection of local regions. PDBlocal provides an intuitive and easy-to-manipulate web page interface and some new useful functions. It can keep local regions flashing, display sequence text that is dynamically consistent with the 3D structure in local appearance under multiple local manipulations, use two scenes to help users inspect the same local region with different statuses, list all historical manipulation statuses with a tree structure, allow users to annotate regions of interest, and save all historical statuses and other data to a web server for future research. PDBlocal has met expectations and shown satisfactory performance for both expert and novice users. This tool is available at http://labsystem.scuec.edu.cn/pdblocal/.

  1. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  2. Invited Review Article: Advanced light microscopy for biological space research

    International Nuclear Information System (INIS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  3. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  4. Basic Research Tools for Earthworm Ecology

    Directory of Open Access Journals (Sweden)

    Kevin R. Butt

    2010-01-01

    Full Text Available Earthworms are responsible for soil development, recycling organic matter and form a vital component within many food webs. For these and other reasons earthworms are worthy of investigation. Many technologically-enhanced approaches have been used within earthworm-focused research. These have their place, may be a development of existing practices or bring techniques from other fields. Nevertheless, let us not overlook the fact that much can still be learned through utilisation of more basic approaches which have been used for some time. New does not always equate to better. Information on community composition within an area and specific population densities can be learned using simple collection techniques, and burrowing behaviour can be determined from pits, resin-insertion or simple mesocosms. Life history studies can be achieved through maintenance of relatively simple cultures. Behavioural observations can be undertaken by direct observation or with low cost webcam usage. Applied aspects of earthworm research can also be achieved through use of simple techniques to enhance population development and even population dynamics can be directly addressed with use of relatively inexpensive, effective marking techniques. This paper seeks to demonstrate that good quality research in this sphere can result from appropriate application of relatively simple research tools.

  5. Basic Research Tools for Earthworm Ecology

    International Nuclear Information System (INIS)

    Butt, K.R.; Grigoropoulou, N.

    2010-01-01

    Earthworms are responsible for soil development, recycling organic matter and form a vital component within many food webs. For these and other reasons earthworms are worthy of investigation. Many technologically-enhanced approaches have been used within earthworm-focused research. These have their place, may be a development of existing practices or bring techniques from other fields. Nevertheless, let us not overlook the fact that much can still be learned through utilisation of more basic approaches which have been used for some time. New does not always equate to better. Information on community composition within an area and specific population densities can be learned using simple collection techniques, and burrowing behaviour can be determined from pits, resin-insertion or simple mesocosms. Life history studies can be achieved through maintenance of relatively simple cultures. Behavioural observations can be undertaken by direct observation or with low cost we became usage. Applied aspects of earthworm research can also be achieved through use of simple techniques to enhance population development and even population dynamics can be directly addressed with use of relatively inexpensive, effective marking techniques. This paper seeks to demonstrate that good quality research in this sphere can result from appropriate application of relatively simple research tools.

  6. Use of synchrotron radiation in radiation biology research

    International Nuclear Information System (INIS)

    Yamada, Takeshi

    1981-01-01

    Synchrotron radiation (SR) holds great expectation as a new research tool in the new areas of material science, because it has the continuous spectral distribution from visible light to X-ray, and its intensity is 10 2 to 10 3 times as strong as that of conventional radiation sources. In the National Laboratory for High Energy Physics, a synchrotron radiation experimental facility has been constructed, which will start operation in fiscal 1982. With this SR, the photons having the wavelength in undeveloped region from vacuum ultraviolet to soft X-ray are obtained as intense mono-wavelength light. The SR thus should contribute to the elucidation of the fundamentals in the biological action of radiation. The following matters are described: synchrotron radiation, experimental facility using SR, electron storage ring, features of SR, photon factory plan and synchrotron radiation experimental facility, utilization of SR in radiation biology field. (J.P.N.)

  7. The Learning of Biology: A Structural Basis for Future Research

    Science.gov (United States)

    Murray, Darrel L.

    1977-01-01

    This article reviews recent research studies and experiences relating the learning theories of Ausubel to biology instruction. Also some suggestions are made for future research on the learning of biology. (MR)

  8. Organizing principles as tools for bridging the gap between system theory and biological experimentation.

    Science.gov (United States)

    Mekios, Constantinos

    2016-04-01

    Twentieth-century theoretical efforts towards the articulation of general system properties came short of having the significant impact on biological practice that their proponents envisioned. Although the latter did arrive at preliminary mathematical formulations of such properties, they had little success in showing how these could be productively incorporated into the research agenda of biologists. Consequently, the gap that kept system-theoretic principles cut-off from biological experimentation persisted. More recently, however, simple theoretical tools have proved readily applicable within the context of systems biology. In particular, examples reviewed in this paper suggest that rigorous mathematical expressions of design principles, imported primarily from engineering, could produce experimentally confirmable predictions of the regulatory properties of small biological networks. But this is not enough for contemporary systems biologists who adopt the holistic aspirations of early systemologists, seeking high-level organizing principles that could provide insights into problems of biological complexity at the whole-system level. While the presented evidence is not conclusive about whether this strategy could lead to the realization of the lofty goal of a comprehensive explanatory integration, it suggests that the ongoing quest for organizing principles is pragmatically advantageous for systems biologists. The formalisms postulated in the course of this process can serve as bridges between system-theoretic concepts and the results of molecular experimentation: they constitute theoretical tools for generalizing molecular data, thus producing increasingly accurate explanations of system-wide phenomena.

  9. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    Science.gov (United States)

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378

  10. Scalable Combinatorial Tools for Health Disparities Research

    Directory of Open Access Journals (Sweden)

    Michael A. Langston

    2014-10-01

    Full Text Available Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual’s genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.

  11. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-02-01

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

  12. Tav4SB: integrating tools for analysis of kinetic models of biological systems.

    Science.gov (United States)

    Rybiński, Mikołaj; Lula, Michał; Banasik, Paweł; Lasota, Sławomir; Gambin, Anna

    2012-04-05

    Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  13. Visualization in simulation tools: requirements and a tool specification to support the teaching of dynamic biological processes.

    Science.gov (United States)

    Jørgensen, Katarina M; Haddow, Pauline C

    2011-08-01

    Simulation tools are playing an increasingly important role behind advances in the field of systems biology. However, the current generation of biological science students has either little or no experience with such tools. As such, this educational glitch is limiting both the potential use of such tools as well as the potential for tighter cooperation between the designers and users. Although some simulation tool producers encourage their use in teaching, little attempt has hitherto been made to analyze and discuss their suitability as an educational tool for noncomputing science students. In general, today's simulation tools assume that the user has a stronger mathematical and computing background than that which is found in most biological science curricula, thus making the introduction of such tools a considerable pedagogical challenge. This paper provides an evaluation of the pedagogical attributes of existing simulation tools for cell signal transduction based on Cognitive Load theory. Further, design recommendations for an improved educational simulation tool are provided. The study is based on simulation tools for cell signal transduction. However, the discussions are relevant to a broader biological simulation tool set.

  14. New tools for redox biology: From imaging to manipulation.

    Science.gov (United States)

    Bilan, Dmitry S; Belousov, Vsevolod V

    2017-08-01

    Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Biological research for the radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Chan Kug; Shim, Hae Won; Jung, Il Lae; Byun, Hee Sun; Moon, Myung Sook; Cho, Hye Jeong; Kim, Jin Sik

    2003-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H 2 O 2 and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H 2 O 2 )- induced apoptosis, we utilized α-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H 2 O 2 , ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H 2 O 2 because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H 2 O 2 (or chemicals)-induced macromolecular damage or cell death

  16. Telerehabilitation: Policy Issues and Research Tools

    Directory of Open Access Journals (Sweden)

    Katherine D. Seelman

    2009-09-01

    Full Text Available The importance of public policy as a complementary framework for telehealth, telemedicine, and by association telerehabilitation, has been recognized by a number of experts. The purpose of this paper is to review literature on telerehabilitation (TR policy and research methodology issues in order to report on the current state of the science and make recommendations about future research needs. An extensive literature search was implemented using search terms grouped into main topics of telerehabilitation, policy, population of users, and policy specific issues such as cost and reimbursement. The availability of rigorous and valid evidence-based cost studies emerged as a major challenge to the field. Existing cost studies provided evidence that telehomecare may be a promising application area for TR. Cost studies also indicated that telepsychiatry is a promising telepractice area. The literature did not reference the International Classification on Functioning, Disability and Health (ICF. Rigorous and comprehensive TR assessment and evaluation tools for outcome studies are tantamount to generating confidence among providers, payers, clinicians and end users. In order to evaluate consumer satisfaction and participation, assessment criteria must include medical, functional and quality of life items such as assistive technology and environmental factors. Keywords: Telerehabilitation, Telehomecare, Telepsychiatry, Telepractice

  17. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  18. Radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    During the establishment and development of radiation biology, radiation chemistry acts like bridge which units the spatial and temporal insight coming from radiation physics with radiation biology. The theory, model, and methodology of radiation chemistry play an important role in promoting research and development of radiation biology. Following research development of radiation biology effects towards systems radiation biology the illustration and exploration both diversity of biological responses and complex process of biological effect occurring remain to need the theory, model, and methodology come from radiation chemistry. (authors)

  19. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research.

    Science.gov (United States)

    Baum, Bruce J.

    1991-01-01

    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  20. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Oliver Y. Martin

    2012-09-01

    Full Text Available It is now generally acknowledged that climate change has wide-ranging biological consequences, potentially leading to impacts on biodiversity. Environmental factors can have diverse and often strong effects on reproduction, with obvious ramifications for population fitness. Nevertheless, reproductive traits are often neglected in conservation considerations. Focusing on animals, recent progress in sexual selection and sexual conflict research suggests that reproductive costs may pose an underestimated hurdle during rapid climate change, potentially lowering adaptive potential and increasing extinction risk of certain populations. Nevertheless, regime shifts may have both negative and positive effects on reproduction, so it is important to acquire detailed experimental data. We hence present an overview of the literature reporting short-term reproductive consequences of exposure to different environmental factors. From the enormous diversity of findings, we conclude that climate change research could benefit greatly from more coordinated efforts incorporating evolutionary approaches in order to obtain cross-comparable data on how individual and population reproductive fitness respond in the long term. Therefore, we propose ideas and methods concerning future efforts dealing with reproductive consequences of climate change, in particular by highlighting the advantages of multi-generational experimental evolution experiments.

  1. VAO Tools Enhance CANDELS Research Productivity

    Science.gov (United States)

    Greene, Gretchen; Donley, J.; Rodney, S.; LAZIO, J.; Koekemoer, A. M.; Busko, I.; Hanisch, R. J.; VAO Team; CANDELS Team

    2013-01-01

    The formation of galaxies and their co-evolution with black holes through cosmic time are prominent areas in current extragalactic astronomy. New methods in science research are building upon collaborations between scientists and archive data centers which span large volumes of multi-wavelength and heterogeneous data. A successful example of this form of teamwork is demonstrated by the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) and the Virtual Astronomical Observatory (VAO) collaboration. The CANDELS project archive data provider services are registered and discoverable in the VAO through an innovative web based Data Discovery Tool, providing a drill down capability and cross-referencing with other co-spatially located astronomical catalogs, images and spectra. The CANDELS team is working together with the VAO to define new methods for analyzing Spectral Energy Distributions of galaxies containing active galactic nuclei, and helping to evolve advanced catalog matching methods for exploring images of variable depths, wavelengths and resolution. Through the publication of VOEvents, the CANDELS project is publishing data streams for newly discovered supernovae that are bright enough to be followed from the ground.

  2. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  3. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  4. Some tooling for manufacturing research reactor fuel plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment. (author)

  5. Some Tooling for Manufacturing Research Reactor Fuel Plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment

  6. XPS - an essential tool in biomaterial research

    Energy Technology Data Exchange (ETDEWEB)

    StJohn, H.A.W.; Greisser, H.J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC (Australia). Molecular Science

    1999-12-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be `biocompatible`, such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving `biocompatibility` is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a `foreign` material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the `bulk` chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  7. XPS - an essential tool in biomaterial research

    International Nuclear Information System (INIS)

    StJohn, H.A.W.; Greisser, H.J.

    1999-01-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be 'biocompatible', such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving 'biocompatibility' is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a 'foreign' material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the 'bulk' chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  8. A Hierarchical Biology Concept Framework: A Tool for Course Design

    OpenAIRE

    Khodor, Julia; Halme, Dina Gould; Walker, Graham C.

    2004-01-01

    A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult ...

  9. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  10. Postharvest biology and technology research and development ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... The applications of biological control agents in pre- and post-harvest operations and .... production, with regards to food safety, operator health and the ... and to work out sustainable compliance modalities for small-scale ...

  11. Using Femtosecond Laser Subcellular Surgery as a Tool to Study Cell Biology

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Colvin, M E; Huser, T

    2007-02-27

    Research on cellular function and regulation would be greatly advanced by new instrumentation using methods to alter cellular processes with spatial discrimination on the nanometer-scale. We present a novel technique for targeting submicrometer sized organelles or other biologically important regions in living cells using femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we can vaporize cellular material inside the cell through nonlinear optical processes. This technique enables non-invasive manipulation of the physical structure of a cell with sub-micrometer resolution. We propose to study the role mitochondria play in cell proliferation and apoptosis. Our technique provides a unique tool for the study of cell biology.

  12. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Directory of Open Access Journals (Sweden)

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  13. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  14. Recontextualising Cellular Respiration : Designing an learning-and-teaching strategy for developing biological concepts as flexible tools

    NARCIS (Netherlands)

    Wierdsma, M.D.M.

    2012-01-01

    This thesis reports on a design-research study on recontextualising biological concepts. The term ‘recontextualising’ is based in socio-cultural activity theory and was proposed by van Oers in 1998 as a change of perspective on the idea of knowledge-transfer. Within this view concepts are tools to

  15. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas

    : Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies...... and experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf...... of Finland, Gulf of Riga, Gulf of Gdansk and the Belt Sea, most of which are characterised by scarce data on biological effects of hazardous substances. The data acquired will be combined with previous data (e.g. national monitoring activities, case studies, EU BEEP project) to reach the goals of WP2 and WP3...

  16. Streamlining Research by Using Existing Tools

    OpenAIRE

    Greene, Sarah M.; Baldwin, Laura-Mae; Dolor, Rowena J.; Thompson, Ella; Neale, Anne Victoria

    2011-01-01

    Over the past two decades, the health research enterprise has matured rapidly, and many recognize an urgent need to translate pertinent research results into practice, to help improve the quality, accessibility, and affordability of U.S. health care. Streamlining research operations would speed translation, particularly for multi-site collaborations. However, the culture of research discourages reusing or adapting existing resources or study materials. Too often, researchers start studies and...

  17. Forum Theater’s potential as a Research Tool

    Directory of Open Access Journals (Sweden)

    Andrea Calsamiglia Madurga

    2016-03-01

    Full Text Available We present a theoretical and epistemological reflection on Forum Theater’s potential as a Research Tool. Our presence on social action and research has led us to a double reflection on qualitative research’s limitations on the affect studies and the Forum Theater’s potential as a research tool to tackle research about affects. After some specific experiences in action research (qualitative research on romantic love and gender violence, and the creation process of the Forum Theater “Is it a joke?”, we explore Forum Theatre’s possibilities as a research tool in the feminist epistemology framework.

  18. Market research companies and new product development tools

    NARCIS (Netherlands)

    Nijssen, E.J.; Frambach, R.T.

    1998-01-01

    This research investigates (1) the share of new product development (NPD) research services in market research (MR) companies’ turnover, (2) MR companies’ awareness and use of NPD tools and the modifications made to these NPD tools, and (3) MR company managers’ perceptions of the influence of client

  19. Market research companies and new product development tools

    NARCIS (Netherlands)

    Nijssen, Edwin J.; Frambach, Ruud T.

    1998-01-01

    This research investigates (1) the share of new product development (NPD) research services in market research (MR) companies' turnover, (2) MR companies' awareness and use of NPD tools and the modifications made to these NPD tools, and (3) MR company managers' perceptions of the influence of client

  20. Tools for Ephemeral Gully Erosion Process Research

    Science.gov (United States)

    Techniques to quantify ephemeral gully erosion have been identified by USDA Natural Resources Conservation Service (NRCS) as one of gaps in current erosion assessment tools. One reason that may have contributed to this technology gap is the difficulty to quantify changes in channel geometry to asses...

  1. Caenorhabditis elegans, a Biological Model for Research in Toxicology.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Olivero-Verbel, Jesus

    2016-01-01

    Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode

  2. EPA EcoBox Tools by Stressors - Biological

    Science.gov (United States)

    Eco-Box is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  3. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

    Science.gov (United States)

    Rose, Peter W; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F; Christie, Cole H; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S; Westbrook, John D; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M; Bourne, Philip E; Burley, Stephen K

    2015-01-01

    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. THE EVALUATION OF A TOOL FOR DISSEMINATION OF BIOTECHNOLOGY AND MOLECULAR BIOLOGY CONCEPTS IN FORMAL EDUCATION

    Directory of Open Access Journals (Sweden)

    F.M. Escanhoela

    2007-05-01

    Full Text Available Since 2003, the CBME Scientific Dissemination Coordination hasdeveloped a project related to the production and distribution of a scientificdissemination newspaper, called CBME InFORMAÇÃO, directed to high-schoolstudents and teachers. It is a quarterly publication and shows the concepts andadvances of studies in molecular biology and biotechnology. In order to evaluatethe newspaper, a research was accomplished in 2005. It involved 177 studentsfrom six high schools of São Carlos and region. In addition, opinions of fivescience teachers that worked with the newspaper in their classrooms, as well aseight Biology undergraduates were collected. The teachers received somequestionnaires that had to be answered by them and their students after a specifyactivity with the periodical – basically, the activities consisted of three stages:individual reading of the newspaper; formulation of questions by the teacher and,finally, group discussion on the chosen theme. The research confirmed theimportance of the use of the periodical as a tool in the formation of critical readersof facts related to the biotechnology and molecular biology, what should contributewith the citizenship development in the students. Moreover, it provided a possibilityto reorganize the periodical.

  5. Monitoring biological diversity: strategies, tools, limitations, and challenges.

    Science.gov (United States)

    Erik A. Beever

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...

  6. Research Collaboration Workshop for Women in Mathematical Biology

    CERN Document Server

    Miller, Laura

    2017-01-01

    Inspired by the Research Collaboration Workshop for Women in Mathematical Biology, this volume contains research and review articles that cover topics ranging from models of animal movement to the flow of blood cells in the embryonic heart. Hosted by the National Institute for Mathematics and Biological Synthesis (NIMBioS), the workshop brought together women working in biology and mathematics to form four research groups that encouraged multidisciplinary collaboration and lifetime connections in the STEM field. This volume introduces many of the topics from the workshop, including the aerodynamics of spider ballooning; sleep, circadian rhythms, and pain; blood flow regulation in the kidney; and the effects of antimicrobial therapy on gut microbiota and microbiota and Clostridium difficile. Perfect for students and researchers in mathematics and biology, the papers included in this volume offer an introductory glimpse at recent research in mathematical biology. .

  7. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  8. Primer on consumer marketing research : procedures, methods, and tools

    Science.gov (United States)

    1994-03-01

    The Volpe Center developed a marketing research primer which provides a guide to the approach, procedures, and research tools used by private industry in predicting consumer response. The final two chapters of the primer focus on the challenges of do...

  9. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  10. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  11. Soil-biological parameters as tools in biomonitoring

    International Nuclear Information System (INIS)

    Kinzel, H.

    1992-01-01

    Soil-biological parameters (enzyme activities, content of metabolites) are sensitive indicators of environmental changes. On the one hand, we tested the possibilities of this method in the vicinity of the trunks of beeches, where most of the pollutants are washed into the soil with the runoff of precipitation water from the tree trunks. On the other hand, we compared soils used for intensive agriculture with more natural soils in the vicinity. In the first of these cases, especially the activities of dehydrogenase and alkaline phosphatase were influenced by atmospheric pollution. In the latter case, a marked effect of agricultural management on the entire soil-biological state was to be noted. The results are derived from investigations by A. Baumgarten, O. Linher, K. Spadinger and S. Zechmeister-Boltenstern. (orig.) [de

  12. The CATS Service: An Astrophysical Research Tool

    Directory of Open Access Journals (Sweden)

    O V Verkhodanov

    2009-03-01

    Full Text Available We describe the current status of CATS (astrophysical CATalogs Support system, a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS (http://cats.sao.ru allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 109 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via Web-interface and e-mail. Since its creation in 1997 CATS has managed about 105requests. Currently CATS is used by external users about 1500 times per day and since its opening to the public in 1997 has received about 4000 requests for its selection and matching tasks.

  13. Moving research tools into practice: the successes and challenges in promoting uptake of classification tools.

    Science.gov (United States)

    Cunningham, Barbara Jane; Hidecker, Mary Jo Cooley; Thomas-Stonell, Nancy; Rosenbaum, Peter

    2018-05-01

    In this paper, we present our experiences - both successes and challenges - in implementing evidence-based classification tools into clinical practice. We also make recommendations for others wanting to promote the uptake and application of new research-based assessment tools. We first describe classification systems and the benefits of using them in both research and practice. We then present a theoretical framework from Implementation Science to report strategies we have used to implement two research-based classification tools into practice. We also illustrate some of the challenges we have encountered by reporting results from an online survey investigating 58 Speech-language Pathologists' knowledge and use of the Communication Function Classification System (CFCS), a new tool to classify children's functional communication skills. We offer recommendations for researchers wanting to promote the uptake of new tools in clinical practice. Specifically, we identify structural, organizational, innovation, practitioner, and patient-related factors that we recommend researchers address in the design of implementation interventions. Roles and responsibilities of both researchers and clinicians in making implementations science a success are presented. Implications for rehabilitation Promoting uptake of new and evidence-based tools into clinical practice is challenging. Implementation science can help researchers to close the knowledge-to-practice gap. Using concrete examples, we discuss our experiences in implementing evidence-based classification tools into practice within a theoretical framework. Recommendations are provided for researchers wanting to implement new tools in clinical practice. Implications for researchers and clinicians are presented.

  14. Development of a data capture tool for researching tech entrepreneurship

    DEFF Research Database (Denmark)

    Andersen, Jakob Axel Bejbro; Howard, Thomas J.; McAloone, Tim C.

    2014-01-01

    . This paper elucidates the requirements for such tools by drawing on knowledge of the entrepreneurial phenomenon and by building on the existing research tools used in design research. On this basis, the development of a capture method for tech startup processes is described and its potential discussed....

  15. Narratives and Activity Theory as Reflective Tools in Action Research

    Science.gov (United States)

    Stuart, Kaz

    2012-01-01

    Narratives and activity theory are useful as socially constructed data collection tools that allow a researcher access to the social, cultural and historical meanings that research participants place on events in their lives. This case study shows how these tools were used to promote reflection within a cultural-historical activity theoretically…

  16. Data Integration Tool: From Permafrost Data Translation Research Tool to A Robust Research Application

    Science.gov (United States)

    Wilcox, H.; Schaefer, K. M.; Jafarov, E. E.; Strawhacker, C.; Pulsifer, P. L.; Thurmes, N.

    2016-12-01

    The United States National Science Foundation funded PermaData project led by the National Snow and Ice Data Center (NSIDC) with a team from the Global Terrestrial Network for Permafrost (GTN-P) aimed to improve permafrost data access and discovery. We developed a Data Integration Tool (DIT) to significantly speed up the time of manual processing needed to translate inconsistent, scattered historical permafrost data into files ready to ingest directly into the GTN-P. We leverage this data to support science research and policy decisions. DIT is a workflow manager that divides data preparation and analysis into a series of steps or operations called widgets. Each widget does a specific operation, such as read, multiply by a constant, sort, plot, and write data. DIT allows the user to select and order the widgets as desired to meet their specific needs. Originally it was written to capture a scientist's personal, iterative, data manipulation and quality control process of visually and programmatically iterating through inconsistent input data, examining it to find problems, adding operations to address the problems, and rerunning until the data could be translated into the GTN-P standard format. Iterative development of this tool led to a Fortran/Python hybrid then, with consideration of users, licensing, version control, packaging, and workflow, to a publically available, robust, usable application. Transitioning to Python allowed the use of open source frameworks for the workflow core and integration with a javascript graphical workflow interface. DIT is targeted to automatically handle 90% of the data processing for field scientists, modelers, and non-discipline scientists. It is available as an open source tool in GitHub packaged for a subset of Mac, Windows, and UNIX systems as a desktop application with a graphical workflow manager. DIT was used to completely translate one dataset (133 sites) that was successfully added to GTN-P, nearly translate three datasets

  17. Computational tools for high-throughput discovery in biology

    OpenAIRE

    Jones, Neil Christopher

    2007-01-01

    High throughput data acquisition technology has inarguably transformed the landscape of the life sciences, in part by making possible---and necessary---the computational disciplines of bioinformatics and biomedical informatics. These fields focus primarily on developing tools for analyzing data and generating hypotheses about objects in nature, and it is in this context that we address three pressing problems in the fields of the computational life sciences which each require computing capaci...

  18. Current research in Radiation Biology and Biochemistry Division

    International Nuclear Information System (INIS)

    Tarachand, U.; Singh, B.B.

    1995-01-01

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented

  19. Current research in Radiation Biology and Biochemistry Division

    Energy Technology Data Exchange (ETDEWEB)

    Tarachand, U; Singh, B B [eds.; Bhabha Atomic Research Centre, Bombay (India). Radiation Biology and Biochemistry Div.

    1996-12-31

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented.

  20. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  1. LITERATURE REVIEWING WITH RESEARCH TOOLS, Part 3: Writing Literature Review

    OpenAIRE

    Ebrahim, Nader Ale

    2017-01-01

    Research Tools” enable researchers to collect, organize, analyze, visualize and publicized research outputs. Dr. Nader has collected over 700 tools that enable students to follow the correct path in research and to ultimately produce high-quality research outputs with more accuracy and efficiency. It is assembled as an interactive Web-based mind map, titled “Research Tools”, which is updated periodically. “Research Tools” consists of a hierarchical set of nodes. It has four main nodes: (1)...

  2. LITERATURE REVIEWING WITH RESEARCH TOOLS, Part 2: Finding proper articles

    OpenAIRE

    Ebrahim, Nader Ale

    2017-01-01

    Research Tools” enable researchers to collect, organize, analyze, visualize and publicized research outputs. Dr. Nader has collected over 700 tools that enable students to follow the correct path in research and to ultimately produce high-quality research outputs with more accuracy and efficiency. It is assembled as an interactive Web-based mind map, titled “Research Tools”, which is updated periodically. “Research Tools” consists of a hierarchical set of nodes. It has four main nodes: (1)...

  3. Biological profiling and dose-response modeling tools ...

    Science.gov (United States)

    Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number of concentration-response data sets. Standard processing of these data sets involves finding a best fitting mathematical model and set of model parameters that specify this model. The model parameters include quantities such as the half-maximal activity concentration (or “AC50”) that have biological significance and can be used to inform the efficacy or potency of a given chemical with respect to a given assay. All of this data is processed and stored in an online-accessible database and website: http://actor.epa.gov/dashboard2. Results from these in vitro assays are used in a multitude of ways. New pathways and targets can be identified and incorporated into new or existing adverse outcome pathways (AOPs). Pharmacokinetic models such as those implemented EPA’s HTTK R package can be used to translate an in vitro concentration into an in vivo dose; i.e., one can predict the oral equivalent dose that might be expected to activate a specific biological pathway. Such predicted values can then be compared with estimated actual human exposures prioritize chemicals for further testing.Any quantitative examination should be accompanied by estimation of uncertainty. We are developing met

  4. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1980-05-01

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  5. Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics.

    Science.gov (United States)

    Gendrault, Yves; Madec, Morgan; Lallement, Christophe; Haiech, Jacques

    2014-04-01

    Nowadays, synthetic biology is a hot research topic. Each day, progresses are made to improve the complexity of artificial biological functions in order to tend to complex biodevices and biosystems. Up to now, these systems are handmade by bioengineers, which require strong technical skills and leads to nonreusable development. Besides, scientific fields that share the same design approach, such as microelectronics, have already overcome several issues and designers succeed in building extremely complex systems with many evolved functions. On the other hand, in systems engineering and more specifically in microelectronics, the development of the domain has been promoted by both the improvement of technological processes and electronic design automation tools. The work presented in this paper paves the way for the adaptation of microelectronics design tools to synthetic biology. Considering the similarities and differences between the synthetic biology and microelectronics, the milestones of this adaptation are described. The first one concerns the modeling of biological mechanisms. To do so, a new formalism is proposed, based on an extension of the generalized Kirchhoff laws to biology. This way, a description of all biological mechanisms can be made with languages widely used in microelectronics. Our approach is therefore successfully validated on specific examples drawn from the literature.

  6. Equity Audit: A Teacher Leadership Tool for Nurturing Teacher Research

    Science.gov (United States)

    View, Jenice L.; DeMulder, Elizabeth; Stribling, Stacia; Dodman, Stephanie; Ra, Sophia; Hall, Beth; Swalwell, Katy

    2016-01-01

    This is a three-part essay featuring six teacher educators and one classroom teacher researcher. Part one describes faculty efforts to build curriculum for teacher research, scaffold the research process, and analyze outcomes. Part two shares one teacher researcher's experience using an equity audit tool in several contexts: her teaching practice,…

  7. Synthesis on biological soil crust research

    Science.gov (United States)

    Weber, Bettina; Belnap, Jayne; Buedel, Burkhard

    2016-01-01

    In this closing chapter, we summarize the advances in biocrust research made during the last 1.5 decades. In the first part of the chapter, we discuss how in some research fields, such as the microbial diversity of fungi, bacteria, and microfauna; the interaction between biocrusts and vascular plants; and in the rehabilitation of biocrusts; particularly large achievements have been made. In other fields, previously established knowledge of overall patterns has been corroborated and refined by additional studies, e.g., in the fields of soil stabilization and disturbance effects. In the second part of the chapter, we outline the research gaps and challenges foreseen by us. We identify multiple knowledge gaps, including many understudied geographic regions, the largely missing link between genetic and morphological species identification data, and the answers to some mechanistic questions, such as the overall role of biocrusts in hydrology and nutrient cycles. With some ideas on promising new research questions and approaches we close this chapter and the overall book.

  8. Contribution to researches in biophysics and biology

    International Nuclear Information System (INIS)

    Luccioni, Catherine

    2000-01-01

    In this accreditation to supervise research, the author indicates its curriculum and scientific works which mainly dealt with the different agents used in chemotherapy. Scientific works addressed anti-carcinogenic pharmacology, applied biophysics, and researches in oncology and radiobiology. Current research projects deal with mechanisms of cellular transformation and the implication of the anti-oxidising metabolism and of nucleotide metabolism in cell radio-sensitivity. Teaching and research supervising activities are also indicated. Several articles are proposed in appendix: Average quality factor and dose equivalent meter based on microdosimetry techniques; Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancers in relation to their chromosomal patterns; Nucleotide metabolism in human gliomas, relation to the chromosomal profile; Pyrimidine nucleotide metabolism in human colon carcinomas: comparison of normal tissues, primary tumors and xenografts; Modifications of the antioxidant metabolism during proliferation and differentiation of colon tumours cell lines; Modulation of the antioxidant enzymes, p21 and p53 expression during proliferation and differentiation of human melanoma cell lines; Purine metabolism in 2 human melanoma cell lines, relation with proliferation and differentiation; Radiation-induced changes in nucleotide metabolism of 2 colon cancer cell lines with different radio-sensitivities

  9. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  10. NCI RNA Biology 2017 symposium recap | Center for Cancer Research

    Science.gov (United States)

    The recent discovery of new classes of RNAs and the demonstration that alterations in RNA metabolism underlie numerous human cancers have resulted in enormous interest among CCR investigators in RNA biology. In order to share the latest research in this exciting field, the CCR Initiative in RNA Biology held its second international symposium April 23-24, 2017, in Natcher Auditorium. Learn more...

  11. NCI RNA Biology 2017 symposium recap | Center for Cancer Research

    Science.gov (United States)

    The recent discovery of new classes of RNAs and the demonstration that alterations in RNA metabolism underlie numerous human cancers have resulted in enormous interest among CCR investigators in RNA biology. In order to share the latest research in this exciting field, the CCR Initiative in RNA Biology held its second international symposium April 23-24, 2017, in Natcher

  12. Using biological effects tools to define Good Environmental Status under the Marine Strategy Framework Directive

    NARCIS (Netherlands)

    Lyons, B.P.; Thain, J.E.; Hylland, K.; Davis, I.; Vethaak, A.D.

    2010-01-01

    The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status

  13. Web-Site as an Educational Tool in Biology Education: A Case of Nutrition Issue

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol; Usak, Muhammet

    2010-01-01

    The purpose of the study was to evaluate the efficacy and feasibility of using website in biology education. We have explored the World Wide Web as a possible tool for education about health and nutrition. The websites were teaching tools for primary school students. Control groups used the traditional educational materials as books or worksheets,…

  14. International Research and Development in Systems Biology

    Science.gov (United States)

    2005-10-01

    Genetics Berlin, Germany Hans Lehrach, Edda Klipp, Silke Sperling Yeast stress response and mitochondrial damage; Downs syndrome; cardiac...molgen.mpg.de, Dr. Edda Klipp, Axel Kowald, Christoph Wierling, Dr. Silke Sperling BACKGROUND The Max Planck Institute for Molecular Genetics was...the cardiovascular genetics group. RESEARCH PROJECTS Dr. Edda Klipp is the head of the kinetic modeling group. She described her group’s

  15. Images as tools. On visual epistemic practices in the biological sciences.

    Science.gov (United States)

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper. ... South African Medical Journal ... In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research ...

  17. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    Science.gov (United States)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  18. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  19. Can a Multimedia Tool Help Students' Learning Performance in Complex Biology Subjects?

    Science.gov (United States)

    Koseoglu, Pinar; Efendioglu, Akin

    2015-01-01

    The aim of the present study was to determine the effects of multimedia-based biology teaching (Mbio) and teacher-centered biology (TCbio) instruction approaches on learners' biology achievements, as well as their views towards learning approaches. During the research process, an experimental design with two groups, TCbio (n = 22) and Mbio (n =…

  20. [Research progress of mammalian synthetic biology in biomedical field].

    Science.gov (United States)

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  1. New evaluation tool now available to assess research quality | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-25

    Apr 25, 2016 ... New evaluation tool now available to assess research quality ... Ratings on a scale defined by rubrics, to indicate the level at which a project ... Report: The value-for-money discourse: risks and opportunities for research for development ... Copyright · Open access policy · Privacy policy · Research ethics ...

  2. Reflective Drawing as a Tool for Reflection in Design Research

    Science.gov (United States)

    Calvo, Mirian

    2017-01-01

    This article explores the role of drawing as a tool for reflection. It reports on a PhD research project that aims to identify and analyse the value that co-design processes can bring to participants and their communities. The research is associated with Leapfrog, a three-year project funded by the UK Arts and Humanities Research Council (AHRC).…

  3. The Value of Open Source Software Tools in Qualitative Research

    Science.gov (United States)

    Greenberg, Gary

    2011-01-01

    In an era of global networks, researchers using qualitative methods must consider the impact of any software they use on the sharing of data and findings. In this essay, I identify researchers' main areas of concern regarding the use of qualitative software packages for research. I then examine how open source software tools, wherein the publisher…

  4. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  5. Using smartphones in survey research: a multifunctional tool

    OpenAIRE

    Nathalie Sonck; Henk Fernee

    2013-01-01

    Smartphones and apps offer an innovative means of collecting data from the public. The Netherlands Institute for Social Research | SCP has been engaged in one of the first experiments involving the use of a smartphone app to collect time use data recorded by means of an electronic diary. Is it feasible to use smartphones as a data collection tool for social research? What are the effects on data quality? Can we also incorporate reality mining tools in the smartphone app to replace traditional...

  6. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    Science.gov (United States)

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  7. Process models as tools in forestry research and management

    Science.gov (United States)

    Kurt Johnsen; Lisa Samuelson; Robert Teskey; Steve McNulty; Tom Fox

    2001-01-01

    Forest process models are mathematical representations of biological systems that incorporate our understanding of physiological and ecological mechanisms into predictive algorithms. These models were originally designed and used for research purposes, but are being developed for use in practical forest management. Process models designed for research...

  8. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, John [Dept. of Energy (DOE), Washington DC (United States); Weatherwax, Sharlene [Dept. of Energy (DOE), Washington DC (United States); Ferrell, John [Dept. of Energy (DOE), Washington DC (United States)

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  9. Serious Games are a Serious Tool for Team Research

    Directory of Open Access Journals (Sweden)

    Michael D. Coovert

    2017-03-01

    Full Text Available Serious games are an attractive tool for education and training, but their utility is even broader. We argue serious games provide a unique opportunity for research as well, particularly in areas where multiple players (groups or teams are involved. In our paper we provide background in several substantive areas. First, we outline major constructs and challenges found in team research. Secondly, we discuss serious games, providing an overview and description of their role in education, training, and research. Thirdly, we describe necessary characteristics for game engines utilized in team research, followed by a discussion of the value added by utilizing serious games. Our goal in this paper is to argue serious games are an effective tool with demonstrated reliability and validity and should be part of a research program for those engaged in team research. Both team researchers and those involved in serious game development can benefit from a mutual partnership which is research focused.

  10. Validation of a new assessment tool for qualitative research articles

    DEFF Research Database (Denmark)

    Schou, Lone; Høstrup, Helle; Lyngsø, Elin

    2012-01-01

    schou l., høstrup h., lyngsø e.e., larsen s. & poulsen i. (2011) Validation of a new assessment tool for qualitative research articles. Journal of Advanced Nursing00(0), 000-000. doi: 10.1111/j.1365-2648.2011.05898.x ABSTRACT: Aim.  This paper presents the development and validation of a new...... assessment tool for qualitative research articles, which could assess trustworthiness of qualitative research articles as defined by Guba and at the same time aid clinicians in their assessment. Background.  There are more than 100 sets of proposals for quality criteria for qualitative research. However, we...... is the Danish acronym for Appraisal of Qualitative Studies. Phase 1 was to develop the tool based on a literature review and on consultation with qualitative researchers. Phase 2 was an inter-rater reliability test in which 40 health professionals participated. Phase 3 was an inter-rater reliability test among...

  11. Quarterly report of Biological and Medical Research Division, April 1955

    Energy Technology Data Exchange (ETDEWEB)

    Brues, A.M.

    1955-04-01

    This report is a compilation of 48 investigator prepared summaries of recent progress in individual research programs of the Biology and Medical Division of the Argonne National Laboratory for the quarterly period ending April,1955. Individual reports are about 3-6 pages in length and often contain research data.

  12. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  13. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  14. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  15. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  16. Spec Tool; an online education and research resource

    Science.gov (United States)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  17. CyBy(2): a structure-based data management tool for chemical and biological data.

    Science.gov (United States)

    Höck, Stefan; Riedl, Rainer

    2012-01-01

    We report the development of a powerful data management tool for chemical and biological data: CyBy(2). CyBy(2) is a structure-based information management tool used to store and visualize structural data alongside additional information such as project assignment, physical information, spectroscopic data, biological activity, functional data and synthetic procedures. The application consists of a database, an application server, used to query and update the database, and a client application with a rich graphical user interface (GUI) used to interact with the server.

  18. Facilitating the use of large-scale biological data and tools in the era of translational bioinformatics

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Shublaq, Nour; Brunak, Søren

    2014-01-01

    As both the amount of generated biological data and the processing compute power increase, computational experimentation is no longer the exclusivity of bioinformaticians, but it is moving across all biomedical domains. For bioinformatics to realize its translational potential, domain experts need...... access to user-friendly solutions to navigate, integrate and extract information out of biological databases, as well as to combine tools and data resources in bioinformatics workflows. In this review, we present services that assist biomedical scientists in incorporating bioinformatics tools...... into their research.We review recent applications of Cytoscape, BioGPS and DAVID for data visualization, integration and functional enrichment. Moreover, we illustrate the use of Taverna, Kepler, GenePattern, and Galaxy as open-access workbenches for bioinformatics workflows. Finally, we mention services...

  19. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    1984-01-01

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG) [de

  20. The value of closed-circuit rebreathers for biological research

    Science.gov (United States)

    Pyle, Richrad L.; Lobel, Phillip S.; Tomoleoni, Joseph

    2016-01-01

    Closed-circuit rebreathers have been used for underwater biological research since the late 1960s, but have only started to gain broader application within scientific diving organizations within the past two decades. Rebreathers offer certain specific advantages for such research, especially for research involving behavior and surveys that depend on unobtrusive observers or for a stealthy approach to wildlife for capture and tagging, research that benefits from extended durations underwater, and operations requiring access to relatively deep (>50 m) environments (especially in remote locations). Although many institutions have been slow to adopt rebreather technology within their diving programs, recent developments in rebreather technology that improve safety, standardize training requirements, and reduce costs of equipment and maintenance, will likely result in a trend of increasing utilization of rebreathers for underwater biological research.

  1. Bibliographical review on the teaching of Biology and research

    Directory of Open Access Journals (Sweden)

    Mª Luz Rodríguez Palmero

    2000-09-01

    Full Text Available This review complements another one done by the same author, in 1997, regarding the role of comprehending the concept of cell in the learning of Biology. In addition, some general papers on science education that provide a better understanding of research approaches used in the investigation of this topic have been included. The reviewed papers have been organized into categories according to the object of study, the relevance assigned to the cell concept, and the framework of analysis. The review shows that the concept of cell is very important in the biological conceptualization, however, it also shows the need of additional research on this matter, from theoretical frameworks that pay more attention to the psychological level, in order to provide some guidance to improve the teaching and learning processes of the biological content that presupose the comprehension of living beings.

  2. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  3. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synthetic Biology Tools for the Membrane – Targeted Localisation and Elucidation of Protein Interactions

    DEFF Research Database (Denmark)

    Wendel, Sofie; Seppala, Susanna; Nørholm, Morten

    2014-01-01

    To meet the need for new, green production scenarios, development of biological cell factories is becoming increasingly important. In order for cell factories to compete with traditional production means, it is essential to expand the available toolbox. We are developing tools for the E. coli cel...

  5. Exploring Cystic Fibrosis Using Bioinformatics Tools: A Module Designed for the Freshman Biology Course

    Science.gov (United States)

    Zhang, Xiaorong

    2011-01-01

    We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…

  6. Biomedical Research Experiences for Biology Majors at a Small College

    Science.gov (United States)

    Stover, Shawn K.; Mabry, Michelle L.

    2010-01-01

    A program-level assessment of the biology curriculum at a small liberal arts college validates a previous study demonstrating success in achieving learning outcomes related to content knowledge and communication skills. Furthermore, research opportunities have been provided to complement pedagogical strategies and give students a more complete…

  7. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  8. Biological field stations: research legacies and sites for serendipity

    Science.gov (United States)

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  9. Researchers study decontamination of chemical, biological warfare agents

    OpenAIRE

    Trulove, Susan

    2007-01-01

    The U.S. Army Research Office has awarded Virginia Tech a $680,000 grant over two years to build an instrument that can be used to study the chemistry of gases that will decompose both chemical and biological warfare agents on surfaces.

  10. A PART OF RESEARCH METHODOLOGY COURSE: Introduction to the Research Tools

    OpenAIRE

    Ebrahim, Nader Ale

    2016-01-01

    Research Tools” can be defined as vehicles that broadly facilitate research and related activities. “Research Tools” enable researchers to collect, organize, analyze, visualize and publicized research  outputs. Dr. Nader has collected over 800 tools that enable students to follow the correct path in research and to ultimately produce high-quality research outputs with more accuracy and efficiency. It is assembled as an interactive Web-based mind map, titled “Research Tools”, which is updated...

  11. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  12. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  13. Synthetic glycopeptides and glycoproteins with applications in biological research

    Directory of Open Access Journals (Sweden)

    Ulrika Westerlind

    2012-05-01

    Full Text Available Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL, expressed protein ligation (EPL, and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.

  14. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  15. Software Tools | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The CPTAC program develops new approaches to elucidate aspects of the molecular complexity of cancer made from large-scale proteogenomic datasets, and advance them toward precision medicine.  Part of the CPTAC mission is to make data and tools available and accessible to the greater research community to accelerate the discovery process.

  16. An Introductory "How-to" Guide for Incorporating Microbiome Research into Integrative and Comparative Biology.

    Science.gov (United States)

    Kohl, Kevin D

    2017-10-01

    Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing

    Science.gov (United States)

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293

  18. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  19. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England.

    Science.gov (United States)

    Dallas, Lorna J; Jha, Awadhesh N

    2015-06-30

    Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Sachs, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Petkiewicz, Shayne J. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Barajas, Jesus F. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Blake-Hedges, Jacquelyn M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Thompson, Mitchell G. [Univ. of California, Berkeley, CA (United States). Dept. of Plant & Microbial Biology; Reider Apel, Amanda [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Rasor, Blake J. [Miami Univ., Oxford, Ohio (United States). Dept. of Biology; Katz, Leonard [Univ. of California, Berkeley, CA (United States). QB3 Inst.; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering and Department of Bioengineering; Technical Univ. of Denmark, Kogle Alle (Denmark). Novo Nordisk Foundation Center for Biosustainability

    2016-09-07

    Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promoters and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.

  1. A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines

    Science.gov (United States)

    Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T.

    2018-01-01

    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…

  2. Integrating information technologies as tools for surgical research.

    Science.gov (United States)

    Schell, Scott R

    2005-10-01

    Surgical research is dependent upon information technologies. Selection of the computer, operating system, and software tool that best support the surgical investigator's needs requires careful planning before research commences. This manuscript presents a brief tutorial on how surgical investigators can best select these information technologies, with comparisons and recommendations between existing systems, software, and solutions. Privacy concerns, based upon HIPAA and other regulations, now require careful proactive attention to avoid legal penalties, civil litigation, and financial loss. Security issues are included as part of the discussions related to selection and application of information technology. This material was derived from a segment of the Association for Academic Surgery's Fundamentals of Surgical Research course.

  3. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  4. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    Science.gov (United States)

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. BRIC-60: Biological Research in Canisters (BRIC)-60

    Science.gov (United States)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).

  6. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  7. Recent progress in structural biology: lessons from our research history.

    Science.gov (United States)

    Nitta, Ryo; Imasaki, Tsuyoshi; Nitta, Eriko

    2018-05-16

    The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.

  8. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  9. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    Science.gov (United States)

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  10. Scientific Visualization Tools for Enhancement of Undergraduate Research

    Science.gov (United States)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable

  11. The use of web2 tools in action research

    DEFF Research Database (Denmark)

    Kolbæk, Raymond; Steensgaard, Randi; Angel, Sanne

    2017-01-01

    . Furthermore we try to evidence-based the concept of "Sample handlings" and examines whether this concept can be used as a flexible methodological tool for developing workflow that promotes patient participation in their own rehabilitation. We use a action research design to identify actual problems, develop......, to test, evaluate and implement specific actions to promote patient participation in rehabilitation. Four nurses and four social and health assistants is having a "co-researcher" active role. The interaction with the researchers creates a reflexive and dynamic process with a learning and competence......Abstract Content: Major challenges occurs, when trying to implement research in clinical practice. In the West Danish Center for Spinal Cord Injury, we are doing a practice-based ph.d. project, that involves the practice field's own members as co-researchers. In the management of the project we use...

  12. Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates

    Science.gov (United States)

    Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H.

    2009-01-01

    Biological indicators, particularly benthic macroinvertebrates, are widely used and effective measures of the impact of urbanization on stream ecosystems. A multimetric biological index of urbanization was developed using a large benthic macroinvertebrate dataset (n = 1,835) from the Baltimore, Maryland, metropolitan area and then validated with datasets from Cleveland, Ohio (n = 79); San Jose, California (n = 85); and a different subset of the Baltimore data (n = 85). The biological metrics used to develop the multimetric index were selected using several criteria and were required to represent ecological attributes of macroinvertebrate assemblages including taxonomic composition and richness (number of taxa in the insect orders of Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (number of taxa designated as filterers), and habit (percent of individuals which cling to the substrate). Quantile regression was used to select metrics and characterize the relationship between the final biological index and an urban gradient (composed of population density, road density, and urban land use). Although more complex biological indices exist, this simplified multimetric index showed a consistent relationship between biological indicators and urban conditions (as measured by quantile regression) in three climatic regions of the United States and can serve as an assessment tool for environmental managers to prioritize urban stream sites for restoration and protection.

  13. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  14. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cid, N., E-mail: ncid@ub.edu [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Verkaik, I. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); García-Roger, E.M. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València (Spain); Rieradevall, M.; Bonada, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Sánchez-Montoya, M.M. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin (Germany); Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Demartini, D.; Buffagni, A.; Erba, S. [Instituto di Ricerca Sulle Acque (CNR-IRSA) (Italy); Karaouzas, I.; Skoulikidis, N. [Hellenic Center for Marine Research (HCMR) (Greece); Prat, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain)

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. - Highlights: • The effect of flow connectivity on macroinvertebrate

  15. Division of Biological and Medical Research annual technical report, 1981

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Research in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies

  16. Division of Biological and Medical Research annual technical report, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Research in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  17. Script Towards Research 2.0: The Influence of Digital and Online Tools in Academic Research

    Directory of Open Access Journals (Sweden)

    Gabriela Grosseck

    2016-07-01

    Full Text Available The new Internet technologies have infiltrated in a stunning way the academic environment, both at individual and at institutional level. Therefore, more and more teachers have started educational blogs, librarians are active on Twitter, other educational actors curate web content, students post on Instagram or Flickr, and university departments have Facebook pages and/or YouTube accounts etc. Today, the use of web technology has become “a legitimate activity in many areas of higher education” (Waycott, 2010 and a considerable shift to digital academic research has gradually occurred. Teachers are encouraging students to take up digital tools for research and writing, thus revealing new ways of using information and communication technologies for academic purposes and not just for socializing. The main objective of this paper is to investigate the effects of integrating diverse digital, Web 2.0 tools and resources and OERs/MOOCs in research and in the construction of students’ academic texts. We aim to stress the increasing influence of digital and online tools in academic research and writing. Teachers, specialists, and students alike are affected by this process. In order to show how, we explore the following issues: What is Research 2.0? Which digital/online tools have we used to assist our students? What are the challenges for academic research using digital / web 2.0 tools? And how do digital tools shape academic research?

  18. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.

    Science.gov (United States)

    Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y

    2008-08-12

    New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges

  19. Division of Biological and Medical Research research summary 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  20. Division of Biological and Medical Research research summary 1984-1985

    International Nuclear Information System (INIS)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group

  1. Genephony: a knowledge management tool for genome-wide research

    Directory of Open Access Journals (Sweden)

    Riva Alberto

    2009-09-01

    Full Text Available Abstract Background One of the consequences of the rapid and widespread adoption of high-throughput experimental technologies is an exponential increase of the amount of data produced by genome-wide experiments. Researchers increasingly need to handle very large volumes of heterogeneous data, including both the data generated by their own experiments and the data retrieved from publicly available repositories of genomic knowledge. Integration, exploration, manipulation and interpretation of data and information therefore need to become as automated as possible, since their scale and breadth are, in general, beyond the limits of what individual researchers and the basic data management tools in normal use can handle. This paper describes Genephony, a tool we are developing to address these challenges. Results We describe how Genephony can be used to manage large datesets of genomic information, integrating them with existing knowledge repositories. We illustrate its functionalities with an example of a complex annotation task, in which a set of SNPs coming from a genotyping experiment is annotated with genes known to be associated to a phenotype of interest. We show how, thanks to the modular architecture of Genephony and its user-friendly interface, this task can be performed in a few simple steps. Conclusion Genephony is an online tool for the manipulation of large datasets of genomic information. It can be used as a browser for genomic data, as a high-throughput annotation tool, and as a knowledge discovery tool. It is designed to be easy to use, flexible and extensible. Its knowledge management engine provides fine-grained control over individual data elements, as well as efficient operations on large datasets.

  2. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.

    Science.gov (United States)

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-08-15

    It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  3. FOSS Tools for Research Infrastructures - A Success Story?

    Science.gov (United States)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a

  4. Division of Biological and Medical Research annual report 1978

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projection models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.

  5. Division of Biological and Medical Research annual technical report 1982

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the genetic effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies

  6. Division of Biological and Medical Research annual technical report 1982

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.W. (ed.)

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the genetic effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  7. Division of Biological and Medical Research annual report 1978

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level 60 Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and 60 Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projection models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications

  8. Biologically Weighted Quantities in Radiotherapy: an EMRP Joint Research Project

    Directory of Open Access Journals (Sweden)

    Rabus Hans

    2014-01-01

    Full Text Available Funded within the European Metrology Research Programme (EMRP [1], the joint research project “Biologically weighted quantities in radiotherapy” (BioQuaRT [2] aims to develop measurement and simulation techniques for determining the physical properties of ionising particle tracks on different length scales (about 2 nm to 10 μm, and to investigate the correlation of these track structure characteristics with the biological effects of radiation at the cellular level. Work package 1 develops micro-calorimeter prototypes for the direct measurement of lineal energy and will characterise their response for different ion beams by experiment and modelling. Work package 2 develops techniques to measure particle track structure on different length scales in the nanometre range as well as a measurement device integrating a silicon microdosimeter and a nanodosimeter. Work package 3 investigates the indirect effects of radiation based on probes for quantifying particular radical and reactive oxygen species (ROS. Work package 4 focuses on the biological aspects of radiation damage and will produce data on initial DNA damage and late effects for radiotherapy beams of different qualities. Work package 5 provides evaluated data sets of DNA cross-sections and develops a multi-scale model to address microscopic and nanometric track structure properties. The project consortium includes three linked researchers holding so-called Researcher Excellence Grants, who carry out ancillary investigations such as developing and benchmarking a new biophysical model for induction of early radiation damage and developing methods for the translation of quantities derived from particle track structure to clinical applications in ion beam therapy.

  9. Computational protein design-the next generation tool to expand synthetic biology applications.

    Science.gov (United States)

    Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel

    2018-05-02

    One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.

  10. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  11. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  12. Can a multimedia tool help students' learning performance in complex biology subjects?

    Directory of Open Access Journals (Sweden)

    Pinar Koseoglu

    2015-11-01

    Full Text Available The aim of the present study was to determine the effects of multimedia-based biology teaching (Mbio and teacher-centered biology (TCbio instruction approaches on learners' biology achievements, as well as their views towards learning approaches. During the research process, an experimental design with two groups, TCbio (n = 22 and Mbio (n = 26, were used. The results of the study proved that the Mbio approach was more effective than the TCbio approach with regard to supporting meaningful learning, academic achievement, enjoyment and motivation. Moreover, the TCbio approach is ineffective in terms of time management, engaging attention, and the need for repetition of subjects. Additionally, the results were discussed in terms of teaching, learning, multimedia design as well as biology teaching/learning.

  13. Research in thermal biology: Burning questions for coldwater stream fishes

    Science.gov (United States)

    McCullough, D.A.; Bartholow, J.M.; Jager, H.I.; Beschta, R.L.; Cheslak, E.F.; Deas, M.L.; Ebersole, J.L.; Foott, J.S.; Johnson, S.L.; Marine, K.R.; Mesa, M.G.; Petersen, J.H.; Souchon, Y.; Tiffan, K.F.; Wurtsbaugh, W.A.

    2009-01-01

    With the increasing appreciation of global warming impacts on ecological systems, in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied, and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implications would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem. ?? Taylor and Francis Group, LLC.

  14. Correction Notice: Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom

    Directory of Open Access Journals (Sweden)

    JMBE Production Editor

    2016-05-01

    Full Text Available Correction for Sarah E. Council and Julie E. Horvath, “Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom,” which appeared in the Journal of Microbiology & Biology Education, volume 17, number 1, March 2016, pages 38–40.

  15. Student and Teacher Perceptions of a Mobile-Based Biology Vocabulary Study Tool for English Language Learners

    Science.gov (United States)

    Cruz, Maria B.

    English language learners studying biology face a dual challenge of mastering both content and language. Teaching ELLs how to engage in scientific discourse using appropriate language to ask, answer, explain, and make predictions about science requires a foundational knowledge of content-specific vocabulary. This study used qualitative interviews with intermediate-level ELLs at an American high school to learn how a supplemental iPod-based vocabulary review tool influenced their perceptions of learning biology vocabulary outside of classroom hours. Interviews with their biology teacher were also used to complement student testimony from the point of view of an educational professional with ELL teaching experience. Past studies in the area of mobile learning have primarily employed questionnaires to gather feedback from participants. This research study adds greater participant voice to the body of literature that encompasses mobile language learning, second language acquisition, and science education by presenting nuanced opinions from both students and teachers. This dissertation concludes with a discussion on the influence that this study could have on further research in the fields of mobile learning, academic vocabulary, and student learning behaviors.

  16. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  17. Accounting Research as a didactic tool for a accounting teaching

    Directory of Open Access Journals (Sweden)

    Valeria Gisela Perez

    2016-06-01

    Full Text Available This paper develops a reflection about the importance of the research of accounting subjects in the professional accountants training, this importance is an attribute of research to increase the wealth of discipline under investigation, this can be converted into a skill and/or competence wich accountants are required to demonstrate in their professional practice.Furthermore, accounting is recognized by the authors as a science in constant development, being able to be investigated. This change in knowledge is an element that motivates professionals to be constantly updated, becoming this aspect (constant updating the skill and competence that research can bring to professional training in university classrooms.The reflection is based on the study of documents developed by prestigious authors in accounting theory, teaching and research.Therefore, this paper concludes that research is a useful tool for the professional accounting training, and rewards the important skills and competencies for professional practice; it can be conceived as well as a strategy for technical and educational activities that allows students to recreate knowledge, allowing future updates that will require their professional practice.Key words: Accounting research, university teaching, accounting education. 

  18. "Biology Education"--An Emerging Interdisciplinary Area of Research

    Science.gov (United States)

    Rutledge, Michael

    2013-01-01

    The growing number of faculty positions in biology education, the formation of professional societies focused specifically on biology education, and the increasing number of publications in biology education over the past decade

  19. Electric gun: a new tool for ultrahigh-pressure research

    International Nuclear Information System (INIS)

    Weingart, R.C.; Chau, H.H.; Goosman, D.R.; Hofer, W.W.; Honodel, C.A.; Lee, R.S.; Steinberg, D.J.; Stroud, J.R.

    1979-01-01

    We have developed a new tool for ultrahigh-pressure research at LLL. This system, which we call the electric gun, has already achieved thin flyer plate velocities in excess of 20 km/s and pressures of the order of 2 TPa in tantalum. We believe that the electric gun is competitive with laser- and nuclear-driven methods of producing shocks in the 1-to-5 TPa range because of its precision and ease and economy of operation. Its development is recommended for shock initiation studies, dry runs for Site 300 hydroshots, and as a shock wave generator for surface studies

  20. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  1. Research program on the biological effects of oil pollution

    International Nuclear Information System (INIS)

    Barrett, R.T.

    1991-12-01

    A national research program on the biological effects of oil pollution (FOBO) was initiated by the Norwegian Ministry of Environment in October 1983 in the light of the increasing oil exploration and production activity in the North Sea and northern Norwegian waters. Ambitions were high and five main fields of research were suggested: Seabirds, fish (incl. salmon), marine mammals, the littoral zone and plankton. However, due to the lack of interest on the part of other potential financers, e.g. the Ministry of Fisheries and the oil companies, to participate, the four-year programme had to be limited to the following three topics: Seabirds around bruding colonies and at sea; Higher plants along the shoreline; The littoral zone. The program ran from the autumn of 1985 to the end of 1989 and this report summarizes the main results and conclusions of each project. 95 refs., 52 figs., 9 tabs

  2. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  3. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2013-01-01

    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  4. Methods of 15N tracer research in biological systems

    International Nuclear Information System (INIS)

    Hirschberg, K.; Faust, H.

    1985-01-01

    The application of the stable isotope 15 N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15 N tracer technique. On the basis of the latest results of 15 N tracer research in life sciences and agriculture methods of 15 N tracer research in biological systems are compiled. The 15 N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15 N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15 N analysis and aspects of 15 N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15 N tracer experiments are made. (author)

  5. Evaluating research impact: the development of a ‘RESEARCH for IMPACT’ TOOL

    Directory of Open Access Journals (Sweden)

    Komla Tsey

    2016-08-01

    Full Text Available Introduction: This paper describes the development of a ‘Research for Impact’ Tool against a background of concerns about the over-researching of Aboriginal and Torres Strait Islander people’s issues without demonstrable benefits.Material and Methods: A combination of literature reviews, workshops with researchers and reflections by project team members and partners using participatory snowball techniques.Results: Assessing research impact is difficult, akin to so-called ‘wicked problem’, but not impossible. Heuristic and collaborative approach to research that takes in the expectations of research users, those being researched and the funders of research offers a pragmatic solution to evaluating research impact. The proposed ‘Research for Impact’ Tool is based on the understanding that the value of research is to create evidence and/or products to support smarter decisions so as to improve the human condition.Research is of limited value unless the evidence produced is used to inform smarter decisions. A practical way of approaching research impact is therefore to start with the decisions confronting decision makers whether they are government policymakers, professional practitioners or households and the extent to which the research supports smarter decisions and the knock-on consequences of such smart decisions. Embedded at each step in the impact planning, monitoring and evaluation process is the need for Indigenous leadership and participation, capacity enhancement and collaborative partnerships and participatory learning by doing approaches across partners.Discussion: The tool is designed in the context of Indigenous research but the basic idea that the way to assess research impact is to start upfront by defining the users’ of research and their information needs, the decisions confronting them and the extent to which research informs smarter decisions is equally applicable to research in other settings, both applied and

  6. Basic statistical tools in research and data analysis

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali

    2016-01-01

    Full Text Available Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

  7. ARM Climate Research Facility: Outreach Tools and Strategies

    Science.gov (United States)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  8. Operations other than war: Requirements for analysis tools research report

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III

    1996-12-01

    This report documents the research effort to determine the requirements for new or improved analysis tools to support decisions at the strategic and operational levels for military Operations Other than War (OOTW). The work was performed for the Commander in Chief, U.S. Pacific Command (USCINCPAC). The data collection was based on workshops attended by experts in OOTWs: analysis personnel from each of the Combatant Commands, the Services, the Office of the Secretary of Defense (OSD), the Joint Staff, and other knowledgeable personnel. Further data were gathered from other workshops and conferences and from the literature. The results of this research begin with the creation of a taxonomy of OOTWs: categories of operations, attributes of operations, and tasks requiring analytical support. The tasks are connected to the Joint Staff`s Universal Joint Task List (UJTL). Historical OOTWs are analyzed to produce frequency distributions by category and responsible CINC. The analysis products are synthesized into a list of requirements for analytical tools and definitions of the requirements. The report concludes with a timeline or roadmap for satisfying the requirements.

  9. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    Science.gov (United States)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  10. Division of Biological and Medical Research annual report, 1980

    International Nuclear Information System (INIS)

    Rosenthal, M.W.

    1981-08-01

    The research during 1980 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Research related to nuclear energy includes the delineation, in the beagle, of the responses to continuous low level 60 Co gamma radiation and the development of cellular indicators of preclinical phases of leukemia; comparison of lifetime effects in mice of low level neutron and 60 Co gamma radiation; studies of the genetic effects of high LET radiations; and studies of the gastrointestinal absorption of the actinide elements. Research related to nonuclear energy sources deals with characterization and toxicological evaluation of process streams and effluents of coal gasification; with electrical storage systems; and electric fields associated with energy transmission. Proteins in human urine and selected tissues are examined by two-dimensional electrophoresis to detect disease and pollutant related changes. Assessment of human risk associated with nuclearing collective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  11. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  12. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  13. Advances, gaps, and future prospects in biological soil crust research

    Science.gov (United States)

    Weber, Bettina; Büdel, Burkhard; Belnap, Jayne

    2017-04-01

    Research progress has led to the understanding that biological soil crusts (biocrusts) are often complete miniature ecosystems comprising a variety of photosynthesizers (cyanobacteria, algae, lichens, bryophytes), decomposers like bacteria, fungi, and archaea, and heterotrophic organisms, like protozoa, nematodes, and microarthropods feeding on them. Biocrusts are one of the oldest terrestrial ecosystems, playing central roles in the structure and functioning of dryland ecosystems and presumably also influencing global biogeochemical cycles. On the other hand, biocrusts have been shown to be highly sensitive to global change, being easily destroyed by mechanical disturbance and severely threatened by minor changes in climate patterns. Despite the large increase in biocrust research, we still see major knowledge gaps which need to be tackled. Considering biodiversity studies, there are major regions of potential biocrust occurrence, where hardly any studies have been conducted. Molecular identification techniques are increasingly employed, but genetically characterized entities need to be linked with morphologically identified organisms to identify their ecological roles. Although there is a large body of research on the role of biocrusts in water and nutrient budgets, we are still far from closing the overall cycles. Results suggest that not all mechanisms have been identified, yet, leading to sometimes contradictory results between different studies. Knowledge on how to minimize impact to biocrusts during surface-disturbing activities has hardly been gained, and despite research efforts, instructions on effective biocrust restoration are still exemplary. In order to fill these research gaps, novel scientific approaches are needed. We expect that global research networks could be extremely helpful to answer scientific questions by tackling them within different regions, utilizing the same methodological techniques. Global networks could also be used for long

  14. G‐LoSA: An efficient computational tool for local structure‐centric biological studies and drug design

    Science.gov (United States)

    2016-01-01

    Abstract Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336

  15. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. © 2016 The Protein Society.

  16. Life lines: An art history of biological research around 1800.

    Science.gov (United States)

    Bruhn, Matthias

    2011-12-01

    Around 1800, the scientific "illustrator" emerged as a new artistic profession in Europe. Artists were increasingly sought after in order to picture anatomical dissections and microscopic observations and to translate drawings into artworks for books and journals. By training and technical expertise, they introduced a particular kind of knowledge into scientific perception that also shaped the common image of nature. Illustrations of scientific publications, often undervalued as a biased interpretation of facts and subordinate to logic and description, thus convey an 'art history' of science in its own right, relevant both for the understanding of biological thought around 1800 as well as for the development of the arts and their historiography. The article is based on an analysis of botanical treatises produced for the Göttingen Society of Sciences in 1803, during an early phase of microscopic cell research, in order to determine the constitutive role of artistic knowledge and the media employed for the visualization and conceptualization of biological issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Growth Analysis of Cancer Biology Research, 2000-2011

    Directory of Open Access Journals (Sweden)

    Keshava,

    2015-09-01

    Full Text Available Methods and Material: The PubMed database was used for retrieving data on 'cancer biology.' Articles were downloaded from the years 2000 to 2011. The articles were classified chronologically and transferred to a spreadsheet application for analysis of the data as per the objectives of the study. Statistical Method: To investigate the nature of growth of articles via exponential, linear, and logistics tests. Result: The year wise analysis of the growth of articles output shows that for the years 2000 to 2005 and later there is a sudden increase in output, during the years 2006 to 2007 and 2008 to 2011. The high productivity of articles during these years may be due to their significance in cancer biology literature, having received prominence in research. Conclusion: There is an obvious need for better compilations of statistics on numbers of publications in the years from 2000 to 2011 on various disciplines on a worldwide scale, for informed critical assessments of the amount of new knowledge contributed by these publications, and for enhancements and refinements of present Scientometric techniques (citation and publication counts, so that valid measures of knowledge growth may be obtained. Only then will Scientometrics be able to provide accurate, useful descriptions and predictions of knowledge growth.

  18. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  19. Software Tools for Battery Design | Transportation Research | NREL

    Science.gov (United States)

    Software Tools for Battery Design Software Tools for Battery Design Under the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) project, NREL has developed software tools to help using CAEBAT software tools. Knowledge of the interplay of multi-physics at varied scales is imperative

  20. How the confocal laser scanning microscope entered biological research.

    Science.gov (United States)

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  1. Accelerating cancer systems biology research through Semantic Web technology.

    Science.gov (United States)

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  2. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    Science.gov (United States)

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  4. Development of dosimetry tools for proton therapy research

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Kim, Dogyun

    2010-01-01

    Dosimetry tools for proton therapy research have been developed to measure the properties of a therapeutic proton beam. A CCD camera-scintillation screen system, which can verify the 2D dose distribution of a scanning beam and can be used for proton radiography, was developed. Also developed were a large area parallel-plate ionization chamber and a multi-layer Faraday cup to monitor the beam current and to measure the beam energy, respectively. To investigate the feasibility of locating the distal dose falloff in real time during patient treatment, a prompt gamma measuring system composed of multi-layer shielding structures was then devised. The system worked well for a pristine proton beam. However, correlation between the distal dose falloff and the prompt gamma distribution was blurred by neutron background for a therapy beam formed by scattering method. We have also worked on the design of a Compton camera to image the 2D distribution of prompt gamma rays.

  5. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.

    Science.gov (United States)

    Leggett, Graham J

    2011-03-22

    Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.

  6. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  7. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    Eisenberg, David S.

    2008-01-01

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  8. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  9. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  10. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  11. Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases.

    Science.gov (United States)

    Noguchi, Noriko

    2016-04-01

    Ebselen is an organoselenium compound with glutathione peroxidase (GPx)-like hydroperoxide reducing activity. Moreover, ebselen has its own unique reactivity, with functions that GPx does not have, since it reacts with many kinds of thiols other than glutathione. Ebselen may affect the thioredoxin systems, through which it may contribute to regulation of cell function. With high reactivity toward thiols, hydroperoxides, and peroxynitrite, ebselen has been used as a useful tool in research on cellular redox mechanisms. Unlike α-tocopherol, ebselen does not scavenge lipid peroxyl radicals, which is another advantage of ebselen for use as a research tool in comparison with radical scavenging antioxidants. Selenium is not released from the ebselen molecule, which explains the low toxicity of ebselen. To further understand the mechanism of cellular redox biology, it should be interesting to compare the effects of ebselen with that of selenoprotein P, which supplies selenium to GPx. New medical applications of ebselen as a drug candidate for human diseases such as cancer and diabetes mellitus as well as brain stroke and ischemia will be expected. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. IMPROVEMENT OF METHODS FOR HYDROBIOLOGICAL RESEARCH AND MODIFICATION OF STANDARD TOOLS FOR SAMPLE COLLECTION

    Directory of Open Access Journals (Sweden)

    M. M. Aligadjiev

    2015-01-01

    Full Text Available Aim. The paper discusses the improvement of methods of hydrobiological studies by modifying tools for plankton and benthic samples collecting. Methods. In order to improve the standard methods of hydro-biological research, we have developed tools for sampling zooplankton and benthic environment of the Caspian Sea. Results. Long-term practice of selecting hydrobiological samples in the Caspian Sea shows that it is required to complete the modernization of the sampling tools used to collect hydrobiological material. With the introduction of Azov and Black Sea invasive comb jelly named Mnemiopsis leidyi A. Agassiz to the Caspian Sea there is a need to collect plankton samples without disturbing its integrity. Tools for collecting benthic fauna do not always give a complete picture of the state of benthic ecosystems because of the lack of visual site selection for sampling. Moreover, while sampling by dredge there is a probable loss of the samples, especially in areas with difficult terrain. Conclusion. We propose to modify a small model of Upstein net (applied in shallow water to collect zooplankton samples with an upper inverted cone that will significantly improve the catchability of the net in theCaspian Sea. Bottom sampler can be improved by installing a video camera for visual inspection of the bottom topography, and use sensors to determine tilt of the dredge and the position of the valves of the bucket. 

  13. The GATO gene annotation tool for research laboratories

    Directory of Open Access Journals (Sweden)

    A. Fujita

    2005-11-01

    Full Text Available Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.

  14. Using biological control research in the classroom to promote scientific inquiry and literacy

    Science.gov (United States)

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  15. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea.

    Science.gov (United States)

    Lehtonen, Kari K; Sundelin, Brita; Lang, Thomas; Strand, Jakob

    2014-02-01

    The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.

  16. Enabling laboratory EUV research with a compact exposure tool

    Science.gov (United States)

    Brose, Sascha; Danylyuk, Serhiy; Tempeler, Jenny; Kim, Hyun-su; Loosen, Peter; Juschkin, Larissa

    2016-03-01

    In this work we present the capabilities of the designed and realized extreme ultraviolet laboratory exposure tool (EUVLET) which has been developed at the RWTH-Aachen, Chair for the Technology of Optical Systems (TOS), in cooperation with the Fraunhofer Institute for Laser Technology (ILT) and Bruker ASC GmbH. Main purpose of this laboratory setup is the direct application in research facilities and companies with small batch production, where the fabrication of high resolution periodic arrays over large areas is required. The setup can also be utilized for resist characterization and evaluation of its pre- and post-exposure processing. The tool utilizes a partially coherent discharge produced plasma (DPP) source and minimizes the number of other critical components to a transmission grating, the photoresist coated wafer and the positioning system for wafer and grating and utilizes the Talbot lithography approach. To identify the limits of this approach first each component is analyzed and optimized separately and relations between these components are identified. The EUV source has been optimized to achieve the best values for spatial and temporal coherence. Phase-shifting and amplitude transmission gratings have been fabricated and exposed. Several commercially available electron beam resists and one EUV resist have been characterized by open frame exposures to determine their contrast under EUV radiation. Cold development procedure has been performed to further increase the resist contrast. By analyzing the exposure results it can be demonstrated that only a 1:1 copy of the mask structure can be fully resolved by the utilization of amplitude masks. The utilized phase-shift masks offer higher 1st order diffraction efficiency and allow a demagnification of the mask structure in the achromatic Talbot plane.

  17. Haystack, a web-based tool for metabolomics research.

    Science.gov (United States)

    Grace, Stephen C; Embry, Stephen; Luo, Heng

    2014-01-01

    Liquid chromatography coupled to mass spectrometry (LCMS) has become a widely used technique in metabolomics research for differential profiling, the broad screening of biomolecular constituents across multiple samples to diagnose phenotypic differences and elucidate relevant features. However, a significant limitation in LCMS-based metabolomics is the high-throughput data processing required for robust statistical analysis and data modeling for large numbers of samples with hundreds of unique chemical species. To address this problem, we developed Haystack, a web-based tool designed to visualize, parse, filter, and extract significant features from LCMS datasets rapidly and efficiently. Haystack runs in a browser environment with an intuitive graphical user interface that provides both display and data processing options. Total ion chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv format can be saved for further statistical analysis or customized graphing. Haystack's core function is a flexible binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal component analysis (PCA) to model class assignment and identify discriminatory features. The validity of this approach is demonstrated by comparison of a dataset from plants grown at two light conditions with manual and automated peak detection methods. Haystack successfully predicted class assignment based on PCA and cluster analysis, and identified discriminatory features based on analysis of EICs of significant bins. Haystack, a new online tool for rapid processing and analysis of LCMS-based metabolomics data is described. It offers users a range of data visualization options and supports non

  18. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    Science.gov (United States)

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  19. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates?

    Science.gov (United States)

    Gopalakrishnan, Ranganath; Frolov, Andrey I; Knerr, Laurent; Drury, William J; Valeur, Eric

    2016-11-10

    Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.

  20. Patient registries: useful tools for clinical research in myasthenia gravis.

    Science.gov (United States)

    Baggi, Fulvio; Mantegazza, Renato; Antozzi, Carlo; Sanders, Donald

    2012-12-01

    Clinical registries may facilitate research on myasthenia gravis (MG) in several ways: as a source of demographic, clinical, biological, and immunological data on large numbers of patients with this rare disease; as a source of referrals for clinical trials; and by allowing rapid identification of MG patients with specific features. Physician-derived registries have the added advantage of incorporating diagnostic and treatment data that may allow comparison of outcomes from different therapeutic approaches, which can be supplemented with patient self-reported data. We report the demographic analysis of MG patients in two large physician-derived registries, the Duke MG Patient Registry, at the Duke University Medical Center, and the INNCB MG Registry, at the Istituto Neurologico Carlo Besta, as a preliminary study to assess the consistency of the two data sets. These registries share a common structure, with an inner core of common data elements (CDE) that facilitate data analysis. The CDEs are concordant with the MG-specific CDEs developed under the National Institute of Neurological Disorders and Stroke Common Data Elements Project. © 2012 New York Academy of Sciences.

  1. Interaction Matrices as a Tool for Prioritizing Radioecology Research

    Energy Technology Data Exchange (ETDEWEB)

    Mora, J.C.; Robles, Beatriz [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT (Spain); Bradshaw, Clare; Stark, Karolina [Stockholm University (Sweden); Sweeck, Liev; Vives i Batlle, Jordi [Belgian Nuclear Research Centre SCK-CEN (Belgium); Beresford, Nick [Centre for Ecology and Hydrology - CEH (United Kingdom); Thoerring, Havard; Dowdall, Mark [Norwegian Radiation Protection Authority - NRPA (Norway); Outola, Iisa; Turtiainen, Tuukka; Vetikko, Virve [STUK - Radiation and Nuclear Safety Authority (Finland); Steiner, Martin [Federal Office for Radiation Protection - BfS (Germany); Beaugelin-Seiller, Karine; Fevrier, Laureline; Hurtevent, Pierre; Boyer, Patrick [Institut de Radioprotection et de Surete Nucleaire - IRSN (France)

    2014-07-01

    Interaction Matrices as a Tool for Prioritizing Radioecology Research J.C. Mora CIEMAT In 2010 the Strategy for Allied Radioecology (STAR) was launched with several objectives aimed towards integrating the radioecology research efforts of nine institutions in Europe. One of these objectives was the creation of European Radioecology Observatories. The Chernobyl Exclusion Zone (CEZ) and the Upper Silesian Coal Basin (USCB), a coal mining area in Poland, have been chosen after a selection process. A second objective was to develop a system for improving and validating the capabilities of predicting the behaviour of the main radionuclides existing at these observatories. Interaction Matrices (IM) have been used since the 1990's as a tool for developing ecological conceptual models and have also been used within radioecology. The Interaction Matrix system relies on expert judgement for structuring knowledge of a given ecosystem at the conceptual level and was selected for use in the STAR project. A group of experts, selected from each institution of STAR, designed two matrices with the main compartments for each ecosystem (a forest in CEZ and a lake in USCB). All the features, events and processes (FEPs) which could affect the behaviour of the considered radionuclides, focusing on radiocaesium in the Chernobyl forest and radium in the Rontok-Wielki lake, were also included in each IM. Two new sets of experts were appointed to review, improve and prioritize the processes included in each IM. A first processing of the various candidate interaction matrices produced a single interaction matrix for each ecosystem which incorporated all experts combined knowledge. During the prioritization of processes in the IMs, directed towards developing a whole predictive model of radionuclides behaviour in those ecosystems, raised interesting issues related to the processes and parameters involved, regarding the existing knowledge in them. This exercise revealed several processes

  2. Evaluating the informatics for integrating biology and the bedside system for clinical research

    Directory of Open Access Journals (Sweden)

    Meystre Stéphane M

    2009-10-01

    Full Text Available Abstract Background Selecting patient cohorts is a critical, iterative, and often time-consuming aspect of studies involving human subjects; informatics tools for helping streamline the process have been identified as important infrastructure components for enabling clinical and translational research. We describe the evaluation of a free and open source cohort selection tool from the Informatics for Integrating Biology and the Bedside (i2b2 group: the i2b2 hive. Methods Our evaluation included the usability and functionality of the i2b2 hive using several real world examples of research data requests received electronically at the University of Utah Health Sciences Center between 2006 - 2008. The hive server component and the visual query tool application were evaluated for their suitability as a cohort selection tool on the basis of the types of data elements requested, as well as the effort required to fulfill each research data request using the i2b2 hive alone. Results We found the i2b2 hive to be suitable for obtaining estimates of cohort sizes and generating research cohorts based on simple inclusion/exclusion criteria, which consisted of about 44% of the clinical research data requests sampled at our institution. Data requests that relied on post-coordinated clinical concepts, aggregate values of clinical findings, or temporal conditions in their inclusion/exclusion criteria could not be fulfilled using the i2b2 hive alone, and required one or more intermediate data steps in the form of pre- or post-processing, modifications to the hive metadata, etc. Conclusion The i2b2 hive was found to be a useful cohort-selection tool for fulfilling common types of requests for research data, and especially in the estimation of initial cohort sizes. For another institution that might want to use the i2b2 hive for clinical research, we recommend that the institution would need to have structured, coded clinical data and metadata available that can be

  3. The rebirth of the morphogenetic field as an explanatory tool in biology

    Directory of Open Access Journals (Sweden)

    Perović Slobodan

    2013-01-01

    Full Text Available I discuss two uses of the concept of the morphogenetic field, a tool of the 19th century biology motivated by particular ontological views of the time, which has been re-emerging and increasingly relevant in explaining microbiological phenomena. I also consider the relation of these uses to the Central Dogma of modern biology as well as Modern Synthesis of Darwinism and genetics. An induced morphogenetic field is determined by a physical (e.g., gravitational field, or it acquires a physical (e.g., visco-elastic field’s characteristics. Such a morphogenetic field presents only a weak challenge to the Central Dogma of Modern Synthesis by indirectly, albeit severely, constraining variability at the molecular level. I discuss explanations that introduce structural inheritance in ciliate protozoa, as well as the experimental evidence on which these arguments are based. The global cellular morphogenetic field is a unit of such inheritance. I discuss relevant cases of structural inheritance in ciliates that bring about internal cellular as well as functional changes and point out that DNA is absent in the cortex and that RNA controls neither intermediary nor the global level of the field. I go on to argue that utilizing knowledge of known physical fields may advance explanations and understanding of the morphogenetic field in ciliates as the unit of both development and inheritance. [Projekat Ministarstva nauke Republike Srbije, br. 179041: Dynamic Systems in nature and society: Philosophical and empirical aspects

  4. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    Science.gov (United States)

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  5. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  6. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; ; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

  7. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    Science.gov (United States)

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  8. Dynamic models in research and management of biological invasions.

    Science.gov (United States)

    Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R

    2017-07-01

    Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  10. Implications of Plasmodium vivax Biology for Control, Elimination, and Research.

    Science.gov (United States)

    Olliaro, Piero L; Barnwell, John W; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C; Shanks, G Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-12-28

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. © The American Society of Tropical Medicine and Hygiene.

  11. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    Science.gov (United States)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  12. PeTTSy: a computational tool for perturbation analysis of complex systems biology models.

    Science.gov (United States)

    Domijan, Mirela; Brown, Paul E; Shulgin, Boris V; Rand, David A

    2016-03-10

    Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have either used parameter sampling, been focused on a restricted set of model observables of interest, studied optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where the changes can be permanent or temporary. Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of mathematical models including free-running and forced oscillators and signalling systems. To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new experiments. It is especially useful in the analysis of large and complex models involving many variables and parameters. PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and

  13. Research tools application for female fashion underwear comfort assesment

    Directory of Open Access Journals (Sweden)

    Andreia Salvan Pagnan

    2016-06-01

    Full Text Available Within the women's clothing of the universe's underwear were long an insignificant plan with regard to the development of new textile materials, shapes and colors. The panties that had been known as breeches or long underwear only became a necessity around the twentieth century with the vaporous dresses Christian Dior in the 50 Technological advances in the textile industry brought spandex created by the American laboratory DuPont's better known as the lycra. The elasticity of the fabric gave comfort to women's lingerie, passing this attribute to be considered as a quality factor in lingeries. To understand the desires of the users a qualitative research was conducted with women 18-45 years collecting opinions on the perceived comfort of already existing models compared to a new one be launched. Through the Quality Function Deployment Tool (QFD, or Quality Function Deployment, the data obtained from users of the answers given an interpretation which is to prioritize targets for the development of a based product on analyzes of desired characteristics which are converted into attributes technicians.

  14. Facebook: an effective tool for participant retention in longitudinal research.

    Science.gov (United States)

    Mychasiuk, R; Benzies, K

    2012-09-01

    Facebook is currently one of the world's most visited websites, and home to millions of users who access their accounts on a regular basis. Owing to the website's ease of accessibility and free service, demographic characteristics of users span all domains. As such, Facebook may be a valuable tool for locating and communicating with participants in longitudinal research studies. This article outlines the benefit gained in a longitudinal follow-up study, of an intervention programme for at-risk families, through the use of Facebook as a search engine. Using Facebook as a resource, we were able to locate 19 participants that were otherwise 'lost' to follow-up, decreasing attrition in our study by 16%. Additionally, analysis indicated that hard-to-reach participants located with Facebook differed significantly on measures of receptive language and self-esteem when compared to their easier-to-locate counterparts. These results suggest that Facebook is an effective means of improving participant retention in a longitudinal intervention study and may help improve study validity by reaching participants that contribute differing results. © 2011 Blackwell Publishing Ltd.

  15. ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins.

    Science.gov (United States)

    Konc, Janez; Janežič, Dušanka

    2017-09-01

    ProBiS (Protein Binding Sites) Tools consist of algorithm, database, and web servers for prediction of binding sites and protein ligands based on the detection of structurally similar binding sites in the Protein Data Bank. In this article, we review the operations that ProBiS Tools perform, provide comments on the evolution of the tools, and give some implementation details. We review some of its applications to biologically interesting proteins. ProBiS Tools are freely available at http://probis.cmm.ki.si and http://probis.nih.gov. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quantum Biology at the Cellular Level - elements of the research program

    OpenAIRE

    Bordonaro, Michael; Ogryzko, Vasily

    2013-01-01

    Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level), a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. Key words. decoherence, macroscopic superpositions, basis-dependence, formal superposition, non-classical correlations,...

  17. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  18. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  19. Biology panel: coming to a clinic near you. Translational research in radiation biology

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.; Thames, Howard D.

    1996-01-01

    The explosion of knowledge in molecular biology coupled with the rapid and continuing development of molecular techniques allow a new level of research in radiation biology aimed at understanding the processes that govern radiation damage and response in both tumors and normal tissues. The challenge to radiation biologists and radiation oncologists is to use this knowledge to improve the therapeutic ratio in the management of human tumors by rapidly translating these new findings into clinical practice. This panel will focus on both sides of the therapeutic ratio coin, the manipulation of tumor control by manipulating the processes that control cell cycle regulation and apoptosis, and the reduction of normal tissue morbidity by applying the emerging information on the genetic basis of radiosensitivity. Apoptosis is a form of cell death believed to represent a minor component of the clinical effects of radiation. However, if apoptosis is regulated by anti-apoptotic mechanisms, then it may be possible to produce a pro-apoptotic phenotype in the tumor cell population by modulating the balance between pro- and anti-apoptotic mechanisms by pharmacological intervention. Thus signaling-based apoptosis therapy, designed to overcome the relative resistance to radiation-induced apoptosis, may improve the therapeutic ratio in the management of human tumors. The explosion of information concerning cell cycle regulation in both normal and tumor cells has provided the opportunity for insights into the mechanism of action of chemotherapeutic agents that can act as radiosensitizers. The second talk will explore the hypothesis that the dysregulation of cell cycle checkpoints in some cancers can be exploited to improve the therapeutic index of radiation sensitizers, specifically the fluoropyrimidines which appear to act at the G1/S transition. Finally, efforts to increase tumor control will be translated into clinical practice only if such treatments do not increase the complication

  20. Vehicle Technology Simulation and Analysis Tools | Transportation Research

    Science.gov (United States)

    Analysis Tools NREL developed the following modeling, simulation, and analysis tools to investigate novel design goals (e.g., fuel economy versus performance) to find cost-competitive solutions. ADOPT Vehicle Simulator to analyze the performance and fuel economy of conventional and advanced light- and

  1. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  2. BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre.

    Science.gov (United States)

    Sedgley, Kathleen R; Race, Paul R; Woolfson, Derek N

    2016-06-15

    BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework. © 2016 The Author(s).

  3. Chemical and biological warfare. Should defenses be researched and deployed?

    Science.gov (United States)

    Orient, J M

    1989-08-04

    The threat of chemical and biological weapons of mass destruction has intensified because of improved delivery systems and advances in chemistry, genetics, and other sciences. Possible US responses to this threat include deterrence, defenses, and/or disarmament, including a reaffirmation of the Biological and Toxin Weapons Convention of 1972, which is now in jeopardy. This article discusses the history of chemical and biological warfare, existing and potential weapons, the proliferation of weapons and delivery systems, ways to prevent the use of these weapons, and ways to protect populations from their effects.

  4. Tumor Biology and Immunology | Center for Cancer Research

    Science.gov (United States)

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  5. Applications of neutron scattering in molecular biological research

    International Nuclear Information System (INIS)

    Nierhaus, K.H.

    1984-01-01

    The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de

  6. Biometry: the principles and practice of statistics in biological research

    National Research Council Canada - National Science Library

    Sokal, R.R; Rohlf, F.J

    1969-01-01

    In this introductory textbook, with its companion volume of tables, the authors provide a balanced presentation of statistical methodology for the descriptive, experimental, and analytical study of biological phenomena...

  7. Exploring the MACH Model’s Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms. PMID:27252295

  8. Tool Efficiency Analysis model research in SEMI industry

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2018-01-01

    Full Text Available One of the key goals in SEMI industry is to improve equipment through put and ensure equipment production efficiency maximization. This paper is based on SEMI standards in semiconductor equipment control, defines the transaction rules between different tool states,and presents a TEA system model which is to analysis tool performance automatically based on finite state machine. The system was applied to fab tools and verified its effectiveness successfully, and obtained the parameter values used to measure the equipment performance, also including the advices of improvement.

  9. Biological research work within the Association of the Government-Sponsored Research Institutions (AGF)

    International Nuclear Information System (INIS)

    1991-01-01

    Six of the thirteen government-sponsored research institutions in the Federal Republic of Germany carry out research work for the protection of the population against the harmful effects of ionizing radiation. Their activities in this field concentrate on the following four points of main interest: analysis of radiation-induced processes resulting in biological radiation injury; description and analysis of complex radiation effects on man; medical applications of ionizing radiation for diagnosis and therapy; concepts and methods for radiological protection. The work reported reviews the main problems encountered in the above-mentioned subject fields and presents examples of significant results, with illustrations. The original research papers and their authors are listed separately under the four points of main interest. (orig./MG) [de

  10. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  11. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  12. Molecular identification of livestock breeds: a tool for modern conservation biology.

    Science.gov (United States)

    Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M

    2017-05-01

    Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.

  13. GEAS Spectroscopy Tools for Authentic Research Investigations in the Classroom

    Science.gov (United States)

    Rector, Travis A.; Vogt, Nicole P.

    2018-06-01

    Spectroscopy is one of the most powerful tools that astronomers use to study the universe. However relatively few resources are available that enable undergraduates to explore astronomical spectra interactively. We present web-based applications which guide students through the analysis of real spectra of stars, galaxies, and quasars. The tools are written in HTML5 and function in all modern web browsers on computers and tablets. No software needs to be installed nor do any datasets need to be downloaded, enabling students to use the tools in or outside of class (e.g., for online classes).Approachable GUIs allow students to analyze spectra in the same manner as professional astronomers. The stellar spectroscopy tool can fit a continuum with a blackbody and identify spectral features, as well as fit line profiles and determine equivalent widths. The galaxy and AGN tools can also measure redshifts and calcium break strengths. The tools provide access to an archive of hundreds of spectra obtained with the optical telescopes at Kitt Peak National Observatory. It is also possible to load your own spectra or to query the Sloan Digital Sky Survey (SDSS) database.We have also developed curricula to investigate these topics: spectral classification, variable stars, redshift, and AGN classification. We will present the functionality of the tools and describe the associated curriculum. The tools are part of the General Education Astronomy Source (GEAS) project based at New Mexico State University, with support from the National Science Foundation (NSF, AST-0349155) and the National Aeronautics and Space Administration (NASA, NNX09AV36G). Curriculum development was supported by the NSF (DUE-0618849 and DUE-0920293).

  14. Premier Tools of Energy Research Also Probe Secrets of Viral Disease

    Science.gov (United States)

    Chui, Glennda

    2011-03-28

    Advanced light sources peer into matter at the atomic and molecular scales, with applications ranging from physics, chemistry, materials science, and advanced energy research, to biology and medicine.

  15. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Areas of research in radiation chemistry fundamental to radiation biology

    International Nuclear Information System (INIS)

    Powers, E.L.

    1980-01-01

    Among all the environmental hazards to which man is exposed, ionizing radiation is the most thoroughly investigated and the most responsibly monitored and controlled. Nevertheless, because of the importance of radiation in modern society from both the hazard as well as the utilitarian standpoints, much more information concerning the biological effects induced and their modification and reversal is required. Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. The necessity of understanding the chemistry of any system, biological or not, that is to be manipulated and controlled, is so obvious as to make trivial a statement to that effect. If any natural phenomenon is to be put to our use, surely the elements of it must be studied and appreciated fully. In the preliminary statements of the various panels of this general group, the need for additional information on the basic radiation chemistry concerned in radiation-induced biological effects pervades throughout

  17. The use of drawing as an alternative assessment tool in biology teaching

    Science.gov (United States)

    Nugraha, I.

    2018-05-01

    Science required the recording of data to build knowledge. The act of drawing an illustration is one of the oldest methods to record the data in science. Illustration in science provides information that the written word cannot, hence the old adage “A picture is worth a thousand words” is very important for studying science. Drawings an illustration is not only valuable for artists but also for scientists because some aspects of science process skills can also be developed through drawing. In terms of science teaching, applying the act of drawing can also be used as an assessment tool. In this study, we assessed drawing of human internal organs of 38 student teachers who enrolled human physiology course and its correlation to their final exam achievement. Guidance of biological drawing was employed to assess the quality, labelling, and annotations of the drawing. The finding of this study showed that there was a positive correlation between the quality of drawing and final exam achievement. It is suggested that using the method of drawing in combination with written responses assessment would provide a more complete information about student’s understanding of human internal organs.

  18. sbml-diff: A Tool for Visually Comparing SBML Models in Synthetic Biology.

    Science.gov (United States)

    Scott-Brown, James; Papachristodoulou, Antonis

    2017-07-21

    We present sbml-diff, a tool that is able to read a model of a biochemical reaction network in SBML format and produce a range of diagrams showing different levels of detail. Each diagram type can be used to visualize a single model or to visually compare two or more models. The default view depicts species as ellipses, reactions as rectangles, rules as parallelograms, and events as diamonds. A cartoon view replaces the symbols used for reactions on the basis of the associated Systems Biology Ontology terms. An abstract view represents species as ellipses and draws edges between them to indicate whether a species increases or decreases the production or degradation of another species. sbml-diff is freely licensed under the three-clause BSD license and can be downloaded from https://github.com/jamesscottbrown/sbml-diff and used as a python package called from other software, as a free-standing command-line application, or online using the form at http://sysos.eng.ox.ac.uk/tebio/upload.

  19. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Needham, Hannah; Polizzi, Karen M; Freemont, Paul S

    2017-04-01

    Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Research on Test-bench for Sonic Logging Tool

    Directory of Open Access Journals (Sweden)

    Xianping Liu

    2016-01-01

    Full Text Available In this paper, the test-bench for sonic logging tool is proposed and designed to realize automatic calibration and testing of the sonic logging tool. The test-bench System consists of Host Computer, Embedded Controlling Board, and functional boards. The Host Computer serves as the Human Machine Interface (HMI and processes uploaded data. The software running on Host Computer is designed on VC++, which is developed based on multithreading, Dynamic Linkable Library (DLL and Multiple Document Interface (MDI techniques. The Embedded Controlling Board uses ARM7 as the microcontroller and communicates with Host Computer via Ethernet. The Embedded Controlling Board software is realized based on embedded uclinux operating system with a layered architecture. The functional boards are designed based on Field Programmable Gate Array (FPGA and provide test interfaces for the logging tool. The functional board software is divided into independent sub-modules that can repeatedly be used by various functional boards and then integrated those sub-modules in the top layer. With the layered architecture and modularized design, the software system is highly reliable and extensible. With the help of designed system, a test has been conducted quickly and successfully on the electronic receiving cabin of the sonic logging tool. It demonstrated that the system could greatly improve the production efficiency of the sonic logging tool.

  1. Nucleic acids-based tools for ballast water surveillance, monitoring, and research

    Science.gov (United States)

    Darling, John A.; Frederick, Raymond M.

    2018-03-01

    Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size

  2. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  3. e-research: Changes and challenges in the use of digital tools in primary care research

    DEFF Research Database (Denmark)

    Bruun Larsen, Lars; Skonnord, Trygve; Gjelstad, Svein

    in primary care research. Examples of this are online randomisation, electronic questionnaires, automatic email scheduling, mobile phone applications and data extraction tools. The amount of data can be increased to a low cost, and this can help to reach adequate sample sizes. However, there are still...... challenges within the field. To secure a high response rate, you need to follow up manually or use another application. There are also practical and ethical problems, and the data security for sensitive data have to be followed carefully. Session content Oral presentations about some technological...

  4. Phylogenetic Reconstruction as a Broadly Applicable Teaching Tool in the Biology Classroom: The Value of Data in Estimating Likely Answers

    Science.gov (United States)

    Julius, Matthew L.; Schoenfuss, Heiko L.

    2006-01-01

    This laboratory exercise introduces students to a fundamental tool in evolutionary biology--phylogenetic inference. Students are required to create a data set via observation and through mining preexisting data sets. These student data sets are then used to develop and compare competing hypotheses of vertebrate phylogeny. The exercise uses readily…

  5. Personal recollections of radiation biology research at Hanford

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1995-01-01

    This paper traces the evolution of the Hanford biology programme over a period of nearly five decades. The programme began in the 1940s with a focus on understanding the potential health effects of radionuclides such as 131 I associated with fallout from the atomic bomb. These studies were extended in the 1950s to experiments on the toxicity and metabolism of plutonium and fission products such as 90 Sr and 137 Cs. In the 1960s, a major long term project was initiated on the inhalation toxicology and carcinogenic effects of plutonium oxide and plutonium nitrate in dogs and rodents. The project remained a major effort within the overall Hanford biology programme throughout the 1970s and 1980s, during which time a broad range of new projects on energy-related pollutants, radon health effects, and basic radiation biology were initiated. Despite the many evolutionary changes that have occurred in the Hanford biology programme, the fundamental mission of understanding the effects of radiation on human health has endured for nearly five decades. (author)

  6. Advances in Biological Water-saving Research: Challenge and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Lun Shan; Xiping Deng; Suiqi Zhang

    2006-01-01

    Increasing the efficiency of water use by crops continues to escalate as a topic of concern because drought is a restrictive environmental factor for crop productivity worldwide. Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture. Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yield now provides us with an opportunity to identify and then precisely select for physiological and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goat. A definition of biological water-saving measures is proposed which embraces improvements in water-use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of biological water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of biological water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.

  7. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate.

  8. Redox Biology Final Examination 2016 | Center for Cancer Research

    Science.gov (United States)

    Numerous registrants have requested a certificate upon completion of the Redox Biology (RB) course. In order to obtain a certificate, you must answer 8 of the 12 questions below correctly. In the final examination, 1 question is derived from each of the 1-hour lectures. It is highly recommended that you have a copy of each PowerPoint presentation prior to taking the

  9. The Prospects For Research In Biological Psychiatry In Nigeria ...

    African Journals Online (AJOL)

    Biological psychiatry deals with abnormalities of brain and genetic functioning and how they interact with environmental factors to underlie the genesis, manifestation, and response to treatment of mental disorders. These issues have not featured significantly in the Nigerian psychiatric scene. Hence, we are witnessing a ...

  10. Bayes' theorem: A paradigm research tool in biomedical sciences

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... It is on this premise that this article presents Bayes' theorem as a vital tool. A brief intuitive ... diseased individual will be selected or that a disease-free individual will be selected? ...... Ultrasound physics and. Instruction 3rd ed ...

  11. Endothelial cell cultures as a tool in biomaterial research

    NARCIS (Netherlands)

    Kirkpatrick, CJ; Otto, M; van Kooten, T; Krump, [No Value; Kriegsmann, J; Bittinger, F

    1999-01-01

    Progress in biocompatibility and tissue engineering would today be inconceivable without the aid of in vitro techniques. Endothelial cell cultures represent a valuable tool not just in haemocompatibility testing, but also in the concept of designing hybrid organs. In the past endothelial cells (EC)

  12. Design research in statistics education : on symbolizing and computer tools

    NARCIS (Netherlands)

    Bakker, A.

    2004-01-01

    The present knowledge society requires statistical literacy-the ability to interpret, critically evaluate, and communicate about statistical information and messages (Gal, 2002). However, research shows that students generally do not gain satisfactory statistical understanding. The research

  13. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    Ordonez, Juan

    2001-01-01

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  14. Tools for Monitoring Social Media: A Marketing Research Project

    Science.gov (United States)

    Veeck, Ann; Hoger, Beth

    2014-01-01

    Knowledge of how to effectively monitor social media is an increasingly valued marketing research skill. This study tests an approach for adding social media content to an undergraduate marketing research class team project. The revised project maintains the expected objectives and parameters of a traditional research project, while integrating…

  15. Using Biology Education Research and Qualitative Inquiry to Inform Genomic Nursing Education.

    Science.gov (United States)

    Ward, Linda D

    Decades of research in biology education show that learning genetics is difficult and reveals specific sources of learning difficulty. Little is known about how nursing students learn in this domain, although they likely encounter similar difficulties as nonnursing students. Using qualitative approaches, this study investigated challenges to learning genetics among nursing students. Findings indicate that nursing students face learning difficulties already identified among biology students, suggesting that nurse educators might benefit from biology education research.

  16. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  17. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    Directory of Open Access Journals (Sweden)

    Lutz Kockel

    2016-10-01

    Full Text Available Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.

  18. 75 FR 6401 - Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of...

    Science.gov (United States)

    2010-02-09

    ... Biologics Evaluation and Research (HFM-17), Food and Drug Administration, suite 200N, 1401 Rockville Pike... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-M-0513] Medical Devices Regulated by the Center for Biologics Evaluation and Research; Availability of Summaries...

  19. Interdisciplinary Biomathematics: Engaging Undergraduates in Research on the Fringe of Mathematical Biology

    Science.gov (United States)

    Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona

    2013-01-01

    The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…

  20. 76 FR 71045 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-11-16

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... period for the notice on its report of scientific and medical literature and information concerning the... ``Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information...

  1. Redox Biology Course Registration Form | Center for Cancer Research

    Science.gov (United States)

    The Redox Biology class is open to all NIH/NCI fellows and staff and will be held Septhember 27 - November 8, 2016. The last day to register is: September 21, 2016. The first 100 registrants will be accepted for the class. Those who plan to participate by Video TeleConference should also register so that you can receive the speaker handouts in advance.

  2. Redox Biology Course Evaluation Form | Center for Cancer Research

    Science.gov (United States)

    To improve the Redox Biology (RB) course in future years, we would appreciate your feedback by completing this course evaluation. Please score the course elements as poor, fair, average, good or excellent. Please type any comments that you have in response to the questions at the bottom of the form. Remember to include your name as you wish it to appear on the certificate. Thank you for your feedback.

  3. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  5. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research; Symposium, Washington, Oct. 19, 1991, Report

    Science.gov (United States)

    Halstead, Thora W. (Editor); Todd, Paul (Editor); Powers, Janet V. (Editor)

    1992-01-01

    The present volume addresses physical phenomena and effects associated with clinostat and centrifuge operations as well as their physiological effects. Particular attention is given to the simulation of the gravity conditions on the ground, the internal dynamics of slowly rotating biological systems, and qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. Also discussed are the development and use of centrifuges in gravitational biology, the use of centrifuges in plant gravitational biology and a comparison of ground-based and flight experiment results, the ability of clinostat to mimic the effect of microgravity on plant cells and organs, and the impact of altered gravity conditions on early EGF-induced signal transduction in human epidermal A431 cells.

  6. Research Game: an innovative educational tool for teachers and students

    Directory of Open Access Journals (Sweden)

    Franca Sangiorgio

    2014-12-01

    Full Text Available This contribution describes ‘Research Game’, a game produced in a Lifelong Learning Programme-Comenius Project (The European Scientific Research Game which aims at motivating secondary school students through the experience of the excitement of scientific research. The project proposes practical and didactic works which combine theoretical activities with ICT in order to introduce students to the scientific research. Students collaborated internationally across Europe, to build hypotheses, carry out research, test the validity of their hypothesis and finalize a theory based on their findings. On the project platform (www.researchgame.eu/platform teachers and students registered, created a team, interacted on a forum space, played and learned science in a new innovative way. Here, the students shared their research findings with other groups of all Europe; finally competed online playing a serious game and showing to be able to apply the scientific method.

  7. Hydropedology as a powerful tool for environmental policy research

    NARCIS (Netherlands)

    Bouma, J.

    2006-01-01

    Rather than produce clear-cut answers to well-defined problems, research on future environmental policy issues requires a different approach whereby researchers are partners in joint learning processes among stakeholders, policy makers, NGOs (Non-Governmental Organisations) and industry. This

  8. Systems Engineering-Based Tool for Identifying Critical Research Systems

    Science.gov (United States)

    Abbott, Rodman P.; Stracener, Jerrell

    2016-01-01

    This study investigates the relationship between the designated research project system independent variables of Labor, Travel, Equipment, and Contract total annual costs and the dependent variables of both the associated matching research project total annual academic publication output and thesis/dissertation number output. The Mahalanobis…

  9. Bibliometric mapping as a science policy and research management tool

    NARCIS (Netherlands)

    Noyons, Everard Christiaan Marie

    1999-01-01

    Bibliometric maps of science are landscapes of scientific research fields created by quantitative analysis of bibliographic data. In such maps the 'cities' are, for instance, research topics. Topics with a strong cognitive relation are in each other's vicinity and topics with a weak relation are

  10. Somatic Sensitivity and Reflexivity as Validity Tools in Qualitative Research

    Science.gov (United States)

    Green, Jill

    2015-01-01

    Validity is a key concept in qualitative educational research. Yet, it is often not addressed in methodological writing about dance. This essay explores validity in a postmodern world of diverse approaches to scholarship, by looking at the changing face of validity in educational qualitative research and at how new understandings of the concept…

  11. Flood Risk Research and Warning Tools at the European Scale

    NARCIS (Netherlands)

    Roo, A.P.J. de; Thielen, J.; Feyen, L.; Burek, P.; Salamon, P.

    2012-01-01

    The floods in the rivers Meuse and Rhine in 1993 and 1995 made the European Commission realize that also at Commission level further research on floods – especially in transboundary river catchments - was necessary. This led to the start of a dedicated research project on floods at the European

  12. Progress in nucleic acid research and molecular biology

    International Nuclear Information System (INIS)

    Cohn, W.E.; Moldave, K.

    1988-01-01

    Complementary Use of Chemical Modification and Site-Directed Mutagenesis to Probe Structure-Activity Relationships in Enzymes. Mechanisms of the Antiviral Action of Inteferons. Modulation of Cellular Genes by Oncogenes. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Human Ferritin Gene Expression. Molecular Biology of the Insulin Receptor. Cap-Binding Proteins of Eukaryotic Messenger RNA: Functions in Initiation and Control of Translation. Physical Monitoring of Meiotic and Mitotic Recombination in Yeast. Early Signals Underlying the Induction of the c-fos and c-myc Genes in Quiescent Fibroblasts: Studies with Bombesin and Other Growth Factors. Each chapter includes references

  13. PBPK Modeling - A Predictive, Eco-Friendly, Bio-Waiver Tool for Drug Research.

    Science.gov (United States)

    De, Baishakhi; Bhandari, Koushik; Mukherjee, Ranjan; Katakam, Prakash; Adiki, Shanta K; Gundamaraju, Rohit; Mitra, Analava

    2017-01-01

    The world has witnessed growing complexities in disease scenario influenced by the drastic changes in host-pathogen- environment triadic relation. Pharmaceutical R&Ds are in constant search of novel therapeutic entities to hasten transition of drug molecules from lab bench to patient bedside. Extensive animal studies and human pharmacokinetics are still the "gold standard" in investigational new drug research and bio-equivalency studies. Apart from cost, time and ethical issues on animal experimentation, burning questions arise relating to ecological disturbances, environmental hazards and biodiversity issues. Grave concerns arises when the adverse outcomes of continued studies on one particular disease on environment gives rise to several other pathogenic agents finally complicating the total scenario. Thus Pharma R&Ds face a challenge to develop bio-waiver protocols. Lead optimization, drug candidate selection with favorable pharmacokinetics and pharmacodynamics, toxicity assessment are vital steps in drug development. Simulation tools like Gastro Plus™, PK Sim®, SimCyp find applications for the purpose. Advanced technologies like organ-on-a chip or human-on-a chip where a 3D representation of human organs and systems can mimic the related processes and activities, thereby linking them to major features of human biology can be successfully incorporated in the drug development tool box. PBPK provides the State of Art to serve as an optional of animal experimentation. PBPK models can successfully bypass bio-equivalency studies, predict bioavailability, drug interactions and on hyphenation with in vitro-in vivo correlation can be extrapolated to humans thus serving as bio-waiver. PBPK can serve as an eco-friendly bio-waiver predictive tool in drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. TRANSPORTATION RESEARCH IMPLEMENTATION MANAGEMENT : DEVELOPMENT OF PERFORMANCE BASED PROCESSES, METRICS, AND TOOLS

    Science.gov (United States)

    2018-02-02

    The objective of this study is to develop an evidencebased research implementation database and tool to support research implementation at the Georgia Department of Transportation (GDOT).A review was conducted drawing from the (1) implementati...

  15. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  16. Tactile Models and Games as Learning Tools for Topics of Molecular and Cell Biology

    Directory of Open Access Journals (Sweden)

    Nelma Regina Segnini Bossolan

    2017-07-01

    Full Text Available The cell structure and the dynamics of its functioning are basic topics for the understanding of phenomena on a larger scale in living organisms and for which research in science teaching has suggested several strategies based on the use of images, games, computational simulations and tactile models, among other types of external representations. Our science education research group, over the last 17 years, has developed and evaluated educational materials for teaching these topics, aimed at all levels of school. Among these materials, we highlight the tactile models for the assembly of nucleic acid, amino acids and proteins molecules, as well as a board game that deals with the process of protein synthesis. These materials were evaluated with students from the final grades of elementary and high school, in the context of the Natural Sciences Curriculum of the State of São Paulo, as well as students from two higher level courses, one of them Licentiate’s program in Exact Sciences. Activities were planned with a problem-solving approach and carried out in small groups. Tactile models of nucleic acid aided elementary students in understanding the role of these molecules in the transmission of hereditary traits. The game of protein synthesis, which depicts this process in a schematic eukaryotic cell where the participants aim to synthesize a particular protein, promoted the development of skills such as “decision making” and “making anticipations” among high school students, in addition of expanding their knowledge about the biological functions of these molecules. The tactile models of amino acids and proteins used by students of higher education promoted their spatial perception of these molecules, allowing the prediction of intra- and intermolecular interactions. It is important to emphasize the importance of these educational resources in the construction of more functional mental models of cells and of intracellular processes.

  17. [New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant].

    Science.gov (United States)

    Wang, Yong

    2017-03-25

    In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.

  18. A Primer On Consumer Marketing Research, Procedures, Methods, And Tools

    Science.gov (United States)

    1994-03-01

    THE FOLLOWING IS ONE OF A SERIES OF PAPERS DEVELOPED OR PRODUCED BY THE ECONOMIC ANALYSIS DIVISION OF THE JOHN A. VOLPE NATIONAL TRANSPORTATION SYSTEMS CENTER AS PART OF ITS RESEARCH PROJECT LOOKING INTO ISSUES SURROUNDING : USER RESPONSE AND MARKET ...

  19. Applying Web-Based Tools for Research, Engineering, and Operations

    Science.gov (United States)

    Ivancic, William D.

    2011-01-01

    Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.

  20. Research articles as a didatic tool in undergraduate chemistry teaching

    OpenAIRE

    Massi, Luciana; Santos, Gelson Ribeiro dos; Ferreira, Jerino Queiroz; Queiroz, Salete Linhares

    2009-01-01

    Chemistry teachers increasingly use research articles in their undergraduate courses. This trend arises from current pedagogical emphasis on active learning and scientific process. In this paper, we describe some educational experiences on the use of research articles in chemistry higher education. Additionally, we present our own conclusions on the use of such methodology applied to a scientific communication course offered to undergraduate chemistry students at the University of São Paulo, ...

  1. Dermal tumorigen PAH and complex mixtures for biological research

    International Nuclear Information System (INIS)

    Griest, W.H.; Guerin, M.R.; Ho, C.

    1985-01-01

    Thirteen commercially available, commonly reported four-five ring dermal tumorigen PAHs, were determined in a set of complex mixtures consisting of crude and upgraded coal liquids, and petroleum crude oils and their distillate fractions. Semi-preparative scale, normal phase high performance liquid chromatographic fractionation followed by capillary column gas chromatography or gas chromatography-mass spectroscopy were used for the measurements. Deuterated or carbon-14 labeled PAH served as internal standards or allowed recovery corrections. Approaches for the preparation and measurement of radiolabeled PAH were examined to provide chemical probes for biological study. Synthetic routes for production of 14 C labeled dihydrobenzo[a]pyrene and 14 C- or 3 H 10-azabenzo[a]pyrene are being studied to provide tracers for fundamental studies in tracheal transplant and skin penetration systems. (DT)

  2. Epigenetics in radiation biology: a new research frontier

    International Nuclear Information System (INIS)

    Agarwal, Sural

    2014-01-01

    The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germ line, and is further associated with transgenerational genomic instability in the off spring of exposed males. The exact molecular mechanisms for transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigentic mechanisms and also some facts about whether dental radiology (IOPA, OPG, CT, MRI, CBCT) can lead to carcinogenesis. (author)

  3. Mixed-Methods Design in Biology Education Research: Approach and Uses

    Science.gov (United States)

    Warfa, Abdi-Rizak M.

    2016-01-01

    Educational research often requires mixing different research methodologies to strengthen findings, better contextualize or explain results, or minimize the weaknesses of a single method. This article provides practical guidelines on how to conduct such research in biology education, with a focus on mixed-methods research (MMR) that uses both…

  4. When one model is not enough: Combining epistemic tools in systems biology

    DEFF Research Database (Denmark)

    Green, Sara

    2013-01-01

    . The conceptual repertoire of Rheinberger’s historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue...

  5. SciLite: a platform for displaying text-mined annotations as a means to link research articles with biological data

    Science.gov (United States)

    Talo, Francesco; Ide-Smith, Michele; Gobeill, Julien; Carter, Jacob; Batista-Navarro, Riza; Ananiadou, Sophia; Ruch, Patrick; McEntyre, Johanna

    2017-01-01

    The tremendous growth in biological data has resulted in an increase in the number of research papers being published. This presents a great challenge for scientists in searching and assimilating facts described in those papers. Particularly, biological databases depend on curators to add highly precise and useful information that are usually extracted by reading research articles. Therefore, there is an urgent need to find ways to improve linking literature to the underlying data, thereby minimising the effort in browsing content and identifying key biological concepts.   As part of the development of Europe PMC, we have developed a new platform, SciLite, which integrates text-mined annotations from different sources and overlays those outputs on research articles. The aim is to aid researchers and curators using Europe PMC in finding key concepts more easily and provide links to related resources or tools, bridging the gap between literature and biological data. PMID:28948232

  6. Undergraduate Research in Physics as an Educational Tool

    Science.gov (United States)

    Hakim, Toufic M.; Garg, Shila

    2001-03-01

    The National Science Foundation's 1996 report "Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering and Technology" urged that in order to improve SME&T education, decisive action must be taken so that "all students have access to excellent undergraduate education in science .... and all students learn these subjects by direct experience with the methods and processes of inquiry." Research-related educational activities that integrate education and research have been shown to be valuable in improving the quality of education and enhancing the number of majors in physics departments. Student researchers develop a motivation to continue in science and engineering through an appreciation of how science is done and the excitement of doing frontier research. We will address some of the challenges of integrating research into the physics undergraduate curriculum effectively. The departmental and institutional policies and infrastructure required to help prepare students for this endeavor will be discussed as well as sources of support and the establishment of appropriate evaluation procedures.

  7. Northeast Cooperative Research Study Fleet (SF) Program Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeast Cooperative Research Study Fleet (SF) Program partners with a subset of commercial fishermen to collect high quality, high resolution, haul by haul...

  8. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    generated from research to which they contributed; therefore, in effect ... Mahomed et al. employ the terms 'human tissue' and 'tissue donors'. ... in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of ...

  9. Using research to teach an "introduction to biological thinking".

    Science.gov (United States)

    Bell, Ellis

    2011-01-01

    A course design for first-year science students is described, where the focus is on the skills necessary to do science. The course uses original research projects, designed by the students, to teach a variety of skills including reading the scientific literature, hypothesis development and testing, experimental design, data analysis and interpretation, and quantitative skills and presentation of the research in a variety of formats. Copyright © 2011 Wiley Periodicals, Inc.

  10. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  11. Recorded peer video chat as a research and development tool

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Cowie, Bronwen

    2016-01-01

    When practising teachers take time to exchange their experiences and reflect on their teaching realities as critical friends, they add meaning and depth to educational research. When peer talk is facilitated through video chat platforms, teachers can meet (virtually) face to face even when...... recordings were transcribed and used to prompt further discussion. The recording of the video chat meetings provided an opportunity for researchers to listen in and follow up on points they felt needed further unpacking or clarification. The recorded peer video chat conversations provided an additional...... opportunity to stimulate and support teacher participants in a process of critical analysis and reflection on practice. The discussions themselves were empowering because in the absence of the researcher, the teachers, in negotiation with peers, choose what is important enough to them to take time to discuss....

  12. BRISK--research-oriented storage kit for biology-related data.

    Science.gov (United States)

    Tan, Alan; Tripp, Ben; Daley, Denise

    2011-09-01

    In genetic science, large-scale international research collaborations represent a growing trend. These collaborations have demanding and challenging database, storage, retrieval and communication needs. These studies typically involve demographic and clinical data, in addition to the results from numerous genomic studies (omics studies) such as gene expression, eQTL, genome-wide association and methylation studies, which present numerous challenges, thus the need for data integration platforms that can handle these complex data structures. Inefficient methods of data transfer and access control still plague research collaboration. As science becomes more and more collaborative in nature, the need for a system that adequately manages data sharing becomes paramount. Biology-Related Information Storage Kit (BRISK) is a package of several web-based data management tools that provide a cohesive data integration and management platform. It was specifically designed to provide the architecture necessary to promote collaboration and expedite data sharing between scientists. The software, documentation, Java source code and demo are available at http://genapha.icapture.ubc.ca/brisk/index.jsp. BRISK was developed in Java, and tested on an Apache Tomcat 6 server with a MySQL database. denise.daley@hli.ubc.ca.

  13. Research Tools for the Measurement of Pain and Nociception

    Directory of Open Access Journals (Sweden)

    Craig Johnson

    2016-11-01

    Full Text Available There are many ways in which pain in animals can be measured and these are based on a variety of phenomena that are related to either the perception of pain or alterations in physical or behavioural features of the animal that are caused by that pain. The features of pain that are most useful for assessment in clinical environments are not always the best to use in a research environment. This is because the aims and objectives of the two settings are different and so whilst particular techniques will have the same advantages and disadvantages in clinical and research environments, these considerations may become more or less of a drawback when moving from one environment to the other. For example, a simple descriptive pain scale has a number of advantages and disadvantages. In a clinical setting the advantages are very useful and the disadvantages are less relevant, but in a research environment the advantages are less important and the disadvantages can become more problematic. This paper will focus on pain in the research environment and after a brief revision of the pathophysiological systems involved will attempt to outline the major advantages and disadvantages of the more commonly used measurement techniques that have been used for studies in the area of pain perception and analgesia. This paper is expanded from a conference proceedings paper presented at the International Veterinary Emergency and Critical Care Conference in San Diego, USA.

  14. The portuguese research reactor: A tool for the next century

    International Nuclear Information System (INIS)

    Ramalho, A.J.G.; Marques, J.G.; Cardeira, F.M.

    2000-01-01

    A short presentation is made of the Portuguese Research Reactor utilisation, its problems and the solutions found. Starting with the initial calibration and experiments the routine operation at full power follows. The problems then encountered which drove to the refurbishment are referred. The present status of the system is then presented and from that conclusions for the future are derived. (author)

  15. Using smartphones in survey research: a multifunctional tool

    NARCIS (Netherlands)

    Nathalie Sonck; Henk Fernee

    2013-01-01

    Smartphones and apps offer an innovative means of collecting data from the public. The Netherlands Institute for Social Research | SCP has been engaged in one of the first experiments involving the use of a smartphone app to collect time use data recorded by means of an electronic diary. Is it

  16. Computers, Laptops and Tools. ACER Research Monograph No. 56.

    Science.gov (United States)

    Ainley, Mary; Bourke, Valerie; Chatfield, Robert; Hillman, Kylie; Watkins, Ian

    In 1997, Balwyn High School (Australia) instituted a class of 28 Year 7 students to use laptop computers across the curriculum. This report details findings from an action research project that monitored important aspects of what happened when this program was introduced. A range of measures was developed to assess the influence of the use of…

  17. Administrative Data Linkage as a Tool for Child Maltreatment Research

    Science.gov (United States)

    Brownell, Marni D.; Jutte, Douglas P.

    2013-01-01

    Linking administrative data records for the same individuals across services and over time offers a powerful, population-wide resource for child maltreatment research that can be used to identify risk and protective factors and to examine outcomes. Multistage de-identification processes have been developed to protect privacy and maintain…

  18. TPACK: An Emerging Research and Development Tool for Teacher Educators

    Science.gov (United States)

    Baran, Evrim; Chuang, Hsueh-Hua; Thompson, Ann

    2011-01-01

    TPACK (technological pedagogical content knowledge) has emerged as a clear and useful construct for researchers working to understand technology integration in learning and teaching. Whereas first generation TPACK work focused upon explaining and interpreting the construct, TPACK has now entered a second generation where the focus is upon using…

  19. "Intelligent" tools for workflow process redesign : a research agenda

    NARCIS (Netherlands)

    Netjes, M.; Vanderfeesten, I.T.P.; Reijers, H.A.; Bussler, C.; Haller, A.

    2006-01-01

    Although much attention is being paid to business processes during the past decades, the design of business processes and particularly workflow processes is still more art than science. In this workshop paper, we present our view on modeling methods for workflow processes and introduce our research

  20. The International Conference on Intelligent Biology and Medicine (ICIBM) 2016: from big data to big analytical tools.

    Science.gov (United States)

    Liu, Zhandong; Zheng, W Jim; Allen, Genevera I; Liu, Yin; Ruan, Jianhua; Zhao, Zhongming

    2017-10-03

    The 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) was held on December 8-10, 2016 in Houston, Texas, USA. ICIBM included eight scientific sessions, four tutorials, one poster session, four highlighted talks and four keynotes that covered topics on 3D genomics structural analysis, next generation sequencing (NGS) analysis, computational drug discovery, medical informatics, cancer genomics, and systems biology. Here, we present a summary of the nine research articles selected from ICIBM 2016 program for publishing in BMC Bioinformatics.

  1. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    Science.gov (United States)

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O 2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H 2 O 2 ) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  2. The trajectory of dispersal research in conservation biology. Systematic review.

    Directory of Open Access Journals (Sweden)

    Don A Driscoll

    Full Text Available Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning and invasive species. We analysed temporal changes in the: (i questions asked by dispersal-related research; (ii methods used to study dispersal; (iii the quality of dispersal data; (iv extent that dispersal knowledge is lacking, and; (v likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i improve the quality of available data using new approaches; (ii understand the complementarities of different methods and; (iii define the value of different kinds of dispersal information for supporting

  3. The trajectory of dispersal research in conservation biology. Systematic review.

    Science.gov (United States)

    Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management

  4. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  5. Microelectrodes as novel research tools for environmental biofilm studies

    International Nuclear Information System (INIS)

    Yu, T.; Lu, R.; Bishop, L.

    2002-01-01

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  6. Identification of biological corridors in highly fragmented landscapes through GIS tools Case study Microcuenca La Bolsa, Marinilla Town

    International Nuclear Information System (INIS)

    Ruiz Osorio, Catalina; Cardona Hernandez, Dorotea; Duque J, Jose Luis

    2012-01-01

    The study object is to identify biological corridors as recovery time strategy in highly fragmented landscapes through tools of Geographic Information Systems, taking as a case study of microcuenca La Balsa, Marinilla Town. GIS tools such as V- Late, allowed assessing landscape structure through statistical analysis of forest fragments of local biodiversity importance, that from a cost raster that allowed the tracing of the biological corridor using Cost weight, shortest path and a buffer width of 100 meters as optimal for the use of certain animal species such as small and medium-sized mammals and birds. This allowed us to propose the biological corridor that will allow functional linkage of strategic ecosystems of the watershed and the recovery time, preservation and protection of biodiversity in the areas. Importantly, the use of birds as indicators of biodiversity and ecosystem disruption with which you intend to measure susceptibility to fragmentation, risk status due to loss of habitat and migratory frugivorous species which are sensitive to these changes and allow monitoring by evaluating the success of the biological corridor, because although the present study took a hypothetical data, the use of these indicators are intended to establish the need to identify key species of flora and fauna that allow for monitoring and verifying the success or otherwise of posed recovery strategy.

  7. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara

    2010-09-01

    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  8. Tools for Reproducibility and Extensibility in Scientific Research

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Open inquiry through reproducing results is fundamental to the scientific process. Contemporary research relies on software engineering pipelines to collect, process, and analyze data. The open source projects within Project Jupyter facilitate these objectives by bringing software engineering within the context of scientific communication. We will highlight specific projects that are computational building blocks for scientific communication, starting with the Jupyter Notebook. We will also explore applications of projects that build off of the Notebook such as Binder, JupyterHub, and repo2docker. We will discuss how these projects can individually and jointly improve reproducibility in scientific communication. Finally, we will demonstrate applications of Jupyter software that allow researchers to build upon the code of other scientists, both to extend their work and the work of others.    There will be a follow-up demo session in the afternoon, hosted by iML. Details can be foun...

  9. A vibrating quartz fork - a tool for cryogenic helium research

    Czech Academy of Sciences Publication Activity Database

    Blažková, Michaela; Člověčko, M.; Eltsov, V. B.; Gažo, E.; de Graaf, R.; Hosio, J.J.; Krusius, M.; Schmoranzer, D.; Schoepe, W.; Skrbek, Ladislav; Skyba, P.; Solntsev, R.E.; Vinen, W. F.

    2008-01-01

    Roč. 150, - (2008), s. 525-535 ISSN 0022-2291 R&D Projects: GA ČR GA202/05/0218 Grant - others:GAUK(CZ) 7953/2007; Transnational Access Programme(XE) RITA -CT-2003-505313 Institutional research plan: CEZ:AV0Z10100520 Keywords : normal 3He * superfluid 3He * superfluid 4He * turbulence, * cavitation * quartz tuning fork Subject RIV: BK - Fluid Dynamics Impact factor: 1.034, year: 2008

  10. Microplasmas for chemical analysis: analytical tools or research toys?

    International Nuclear Information System (INIS)

    Karanassios, Vassili

    2004-01-01

    An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between 'liquid' electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided

  11. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    DEFF Research Database (Denmark)

    Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.

    2017-01-01

    precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor...... expression system. These tools advance S. venezuelae to be a practical host for future metabolic engineering efforts....

  12. Modelling as an indispensible research tool in the information society.

    Science.gov (United States)

    Bouma, Johan

    2016-04-01

    Science and society would be well advised to develop a different relationship as the information revolution penetrates all aspects of modern life. Rather than produce clear answers to clear questions in a top-down manner, land-use issues related to the UN Sustainable Development Goals (SDGs) present "wicked"problems involving different, strongly opiniated, stakeholders with conflicting ideas and interests and risk-averse politicians. The Dutch government has invited its citizens to develop a "science agenda", defining future research needs, implicitly suggesting that the research community is unable to do so. Time, therefore, for a pro-active approach to more convincingly define our:"societal license to research". For soil science this could imply a focus on the SDGs , considering soils as living, characteristically different, dynamic bodies in a landscape, to be mapped in ways that allow generation of suitable modelling data. Models allow a dynamic characterization of water- and nutrient regimes and plant growth in soils both for actual and future conditions, reflecting e.g. effects of climate or land-use change or alternative management practices. Engaging modern stakeholders in a bottom-up manner implies continuous involvement and "joint learning" from project initiation to completion, where modelling results act as building blocks to explore alternative scenarios. Modern techniques allow very rapid calculations and innovative visualization. Everything is possible but only modelling can articulate the economic, social and environmental consequences of each scenario, demonstrating in a pro-active manner the crucial and indispensible role of research. But choices are to be made by stakeholders and reluctant policy makers and certainly not by scientists who should carefully guard their independance. Only clear results in the end are convincing proof for the impact of science, requiring therefore continued involvement of scientists up to the very end of projects. To

  13. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  14. A Synthetic Biology Tool Kit for Manned Missions Outside Low Earth Orbit

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is to make human missions outside low earth orbit safer and better able to handle the unexpected through the use of synthetic biology as an enabling...

  15. NASA Global Hawk: A New Tool for Earth Science Research

    Science.gov (United States)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  16. Digital storytelling: an innovative tool for practice, education, and research.

    Science.gov (United States)

    Lal, Shalini; Donnelly, Catherine; Shin, Jennifer

    2015-01-01

    Digital storytelling is a method of using storytelling, group work, and modern technology to facilitate the creation of 2-3 minute multi-media video clips to convey personal or community stories. Digital storytelling is being used within the health care field; however, there has been limited documentation of its application within occupational therapy. This paper introduces digital storytelling and proposes how it can be applied in occupational therapy clinical practice, education, and research. The ethical and methodological challenges in relation to using the method are also discussed.

  17. Mixed-Methods Design in Biology Education Research: Approach and Uses

    Science.gov (United States)

    Warfa, Abdi-Rizak M.

    2016-01-01

    Educational research often requires mixing different research methodologies to strengthen findings, better contextualize or explain results, or minimize the weaknesses of a single method. This article provides practical guidelines on how to conduct such research in biology education, with a focus on mixed-methods research (MMR) that uses both quantitative and qualitative inquiries. Specifically, the paper provides an overview of mixed-methods design typologies most relevant in biology education research. It also discusses common methodological issues that may arise in mixed-methods studies and ways to address them. The paper concludes with recommendations on how to report and write about MMR. PMID:27856556

  18. PERMITTIVITY RESEARCH OF BIOLOGICAL SOLUTIONS IN GIGAHERTZ FREQUENCY RANGE

    Directory of Open Access Journals (Sweden)

    Anton S. Demin

    2017-07-01

    Full Text Available Subject of Research. We present results of permittivity research in gigahertz frequency range for saline and glucose solutions used in medical practice. Experiment results are substantiated theoretically on the basis of Debye-Cole model. Method. Researches have been carried out on blood plasma of healthy donor, water, normal saline and glucose solutions with different concentration from 3 to 12 mmol/l. Experiments have been performed by an active nearfield method based on measuring the impedance of a plane air-liquid boundary with open end of coaxial waveguide in the frequency range from 1 to 12 GHz. Measurement results have been processed with the use of vector analyzer computer system from Rohde & Schwarz. Transmittance spectra have been determined by means of IR-spectrometer from TENZOR-Bruker. Main Results. Simulation results have shown good agreement between the experimental results and the model, as well as the choice of the main parameters of the Debye-Cole model in the studied frequency range for all media. It has been shown that the range of 3-6 GHz can be considered as the main one in the development of diagnostic sensors for the non-invasive analysis of the glucose concentration in the human blood. Practical Relevance. Electrodynamic models of test fluid replacing human blood give the possibility to simulate the sensor basic characteristics for qualitative and quantitative estimation of glucose concentration in human blood and can be used to create an experimental sample of a non- invasive glucometer.

  19. The NASA Human Research Wiki - An Online Collaboration Tool

    Science.gov (United States)

    Barr, Yael; Rasbury, Jack; Johnson, Jordan; Barstend, Kristina; Saile, Lynn; Watkins, Sharmi

    2012-01-01

    The Exploration Medical Capability (ExMC) element is one of six elements of the Human Research Program (HRP). ExMC is charged with decreasing the risk of: "Inability to adequately recognize or treat an ill or injured crew member" for exploration-class missions In preparation for exploration-class missions, ExMC has compiled a large evidence base, previously available only to persons within the NASA community. ExMC has developed the "NASA Human Research Wiki" in an effort to make the ExMC information available to the general public and increase collaboration within and outside of NASA. The ExMC evidence base is comprised of several types of data, including: (1)Information on more than 80 medical conditions which could occur during space flight (a)Derived from several sources (b)Including data on incidence and potential outcomes, as captured in the Integrated Medical Model s (IMM) Clinical Finding Forms (CliFFs). (2)Approximately 25 gap reports (a)Identify any "gaps" in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions.

  20. Radiation research contracts: Biological effects of small radiation doses

    International Nuclear Information System (INIS)

    Hug, O.

    1959-01-01

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  1. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O

    1959-01-15

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  2. A tool for assessing the feasibility of comparative effectiveness research

    Directory of Open Access Journals (Sweden)

    Walker AM

    2013-01-01

    Full Text Available Alexander M Walker,1 Amanda R Patrick,2 Michael S Lauer,3 Mark C Hornbrook,4 Matthew G Marin,5 Richard Platt,6 Véronique L Roger,7 Paul Stang,8 Sebastian Schneeweiss21World Health Information Science Consultants, Newton, MA; 2Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, Boston, MA; 3National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; 4The Center for Health Research, Kaiser Permanente Northwest, Portland, OR; 5Department of Medicine, New Jersey Medical School, Newark, NJ; 6Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA; 7Department of Health Sciences Research, Mayo Clinic, Rochester, MN; 8Johnson and Johnson Pharmaceutical Research and Development, Titusville, NJ, USABackground: Comparative effectiveness research (CER provides actionable information for health care decision-making. Randomized clinical trials cannot provide the patients, time horizons, or practice settings needed for all required CER. The need for comparative assessments and the infeasibility of conducting randomized clinical trials in all relevant areas is leading researchers and policy makers to non-randomized, retrospective CER. Such studies are possible when rich data exist on large populations receiving alternative therapies that are used as-if interchangeably in clinical practice. This setting we call “empirical equipoise.”Objectives: This study sought to provide a method for the systematic identification of settings it in which it is empirical equipoise that offers promised non-randomized CER.Methods: We used a standardizing transformation of the propensity score called “preference” to assess pairs of common treatments for uncomplicated community-acquired pneumonia and new-onset heart failure in a population of low-income elderly people in Pennsylvania, for whom we had access to de-identified insurance records. Treatment

  3. Performance calculations for battery power supplies as laboratory research tools

    International Nuclear Information System (INIS)

    Scanlon, J.J.; Rolader, G.E.; Jamison, K.A.; Petresky, H.

    1991-01-01

    Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level

  4. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    Science.gov (United States)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  5. FACTORIAL CORRESPONDENCES ANALYSIS – A TOOL IN TOURISM MOTIVATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Ion Danut I. JUGANARU

    2016-05-01

    Full Text Available This study aims at analyzing the distribution of tourist flows in 2014, from 25 European countries, on three main categories of trip purposes, and assumes that there are differences or similarities between the tourists’ countries of residence and their trip purposes. "Purpose'' is a multidimensional concept used in marketing research, most often for understanding consumer behavior, and for identifying market segments or customer target groups, reunited in terms of similar characteristics. Being aware that the decision of choice/ purchase is based on purposes, their knowledge proves useful in designing strategies to increase the satisfaction level provided to the customer. The statistical method used in this paper is the factorial correspondences analysis. In our opinion, the identification, by this method, of the existence of differences or similarities between the tourists’ countries of residence and their trip purposes can represent a useful step in studying the tourism market and the choice/ reformulation of strategies.

  6. Consensus Coding as a Tool in Visual Appearance Research

    Directory of Open Access Journals (Sweden)

    D R Simmons

    2011-04-01

    Full Text Available A common problem in visual appearance research is how to quantitatively characterise the visual appearance of a region of an image which is categorised by human observers in the same way. An example of this is scarring in medical images (Ayoub et al, 2010, The Cleft-Palate Craniofacial Journal, in press. We have argued that “scarriness” is itself a visual appearance descriptor which summarises the distinctive combination of colour, texture and shape information which allows us to distinguish scarred from non-scarred tissue (Simmons et al, ECVP 2009. Other potential descriptors for other image classes would be “metallic”, “natural”, or “liquid”. Having developed an automatic algorithm to locate scars in medical images, we then tested “ground truth” by asking untrained observers to draw around the region of scarring. The shape and size of the scar on the image was defined by building a contour plot of the agreement between observers' outlines and thresholding at the point above which 50% of the observers agreed: a consensus coding scheme. Based on the variability in the amount of overlap between the scar as defined by the algorithm, and the consensus scar of the observers, we have concluded that the algorithm does not completely capture the putative appearance descriptor “scarriness”. A simultaneous analysis of qualitative descriptions of the scarring by the observers revealed that other image features than those encoded by the algorithm (colour and texture might be important, such as scar boundary shape. This approach to visual appearance research in medical imaging has potential applications in other application areas, such as botany, geology and archaeology.

  7. Chemical and Biological Research on Herbal Medicines Rich in Xanthones

    Directory of Open Access Journals (Sweden)

    Jingya Ruan

    2017-10-01

    Full Text Available Xanthones, as some of the most active components and widely distributed in various herb medicines, have drawn more and more attention in recent years. So far, 168 species of herbal plants belong to 58 genera, 24 families have been reported to contain xanthones. Among them, Calophyllum, Cratoxylum, Cudrania, Garcinia, Gentiana, Hypericum and Swertia genera are plant resources with great development prospect. This paper summarizes the plant resources, bioactivity and the structure-activity relationships (SARs of xanthones from references published over the last few decades, which may be useful for new drug research and development on xanthones.

  8. Chemical and Biological Research on Herbal Medicines Rich in Xanthones.

    Science.gov (United States)

    Ruan, Jingya; Zheng, Chang; Liu, Yanxia; Qu, Lu; Yu, Haiyang; Han, Lifeng; Zhang, Yi; Wang, Tao

    2017-10-11

    Xanthones, as some of the most active components and widely distributed in various herb medicines, have drawn more and more attention in recent years. So far, 168 species of herbal plants belong to 58 genera, 24 families have been reported to contain xanthones. Among them, Calophyllum , Cratoxylum , Cudrania , Garcinia , Gentiana , Hypericum and Swertia genera are plant resources with great development prospect. This paper summarizes the plant resources, bioactivity and the structure-activity relationships (SARs) of xanthones from references published over the last few decades, which may be useful for new drug research and development on xanthones.

  9. Biological monitoring as a useful tool for the detection of a coal-tar contamination in bitumen-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Raulf-Heimsoth, M.; Angerer, J.; Pesch, B.; Marczynski, B.; Hahn, J.U.; Spickenheuer, A.; Preuss, R.; Ruhl, R.; Rode, P.; Bruning, T. [Institute at the Ruhr University of Bochum, Bochum (Germany)

    2008-07-01

    In our research project entitled 'Chemical irritative and/or genotoxic effect of fumes of bitumen under high processing temperatures on the airways,' 73 mastic asphalt workers exposed to fumes of bitumen and 49 construction nonexposed workers were analyzed and compared with respect to polycyclic aromatic hydrocarbons (PAHs) exposure and exposure-related health effects. In order to assess the internal exposure the monohydroxylated metabolites of pyrene, 1-hydroxypyrene (1-OHP), and phenanthrene, 1-, 2- and 9-, and 3- and 4-hydroxyphenanthrene (OHPH) were determined in pre- and post-shift urinary samples. Significantly higher concentrations 1-OHP and OHPH were detected in the post-shift urine samples of 7 mastic asphalt workers working on the same construction site compared to the reference workers and all other 66 mastic asphalt workers. The adjusted mean OHPH in the reference, 66 mastic worker, and 7 worker subgroups was 1022, 1544, and 12919 ng/g creatinine (crn) respectively, indicating a marked rise in the 7 worker subgroup. In addition, there was a more than 12-fold increase of PAH metabolites from pre- to post-shift in these 7 workers, whereas in the other mastic asphalt workers there was only a twofold rise in PAH-metabolite concentration between pre- and post-shift values. The analysis of a drilling core from the construction site of the seven workers led to the detection of the source for this marked PAH exposure during the working shift as being coal tar plates, which were, without knowledge of the workers and coordinators, the underground material of the mastic asphalt layer. The evaluation of the stationary workplace concentration showed enhanced levels of phenanthrene, pyrene, fluorene, anthracene, and acenaphthene during working shifts at the construction site of these seven workers. Our study shows that biological monitoring is also a useful tool for the detection of unrecognized sources with high PAH concentrations.

  10. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.

    Science.gov (United States)

    Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick

    2018-04-01

    Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed

  11. A validated set of tool pictures with matched objects and non-objects for laterality research.

    Science.gov (United States)

    Verma, Ark; Brysbaert, Marc

    2015-01-01

    Neuropsychological and neuroimaging research has established that knowledge related to tool use and tool recognition is lateralized to the left cerebral hemisphere. Recently, behavioural studies with the visual half-field technique have confirmed the lateralization. A limitation of this research was that different sets of stimuli had to be used for the comparison of tools to other objects and objects to non-objects. Therefore, we developed a new set of stimuli containing matched triplets of tools, other objects and non-objects. With the new stimulus set, we successfully replicated the findings of no visual field advantage for objects in an object recognition task combined with a significant right visual field advantage for tools in a tool recognition task. The set of stimuli is available as supplemental data to this article.

  12. Raising Reliability of Web Search Tool Research through Replication and Chaos Theory

    OpenAIRE

    Nicholson, Scott

    1999-01-01

    Because the World Wide Web is a dynamic collection of information, the Web search tools (or "search engines") that index the Web are dynamic. Traditional information retrieval evaluation techniques may not provide reliable results when applied to the Web search tools. This study is the result of ten replications of the classic 1996 Ding and Marchionini Web search tool research. It explores the effects that replication can have on transforming unreliable results from one iteration into replica...

  13. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    OpenAIRE

    Zhongqi Sheng; Lei Zhang; Hualong Xie; Changchun Liu

    2014-01-01

    Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to as...

  14. The Shared Health Research Information Network (SHRINE): a prototype federated query tool for clinical data repositories.

    Science.gov (United States)

    Weber, Griffin M; Murphy, Shawn N; McMurry, Andrew J; Macfadden, Douglas; Nigrin, Daniel J; Churchill, Susanne; Kohane, Isaac S

    2009-01-01

    The authors developed a prototype Shared Health Research Information Network (SHRINE) to identify the technical, regulatory, and political challenges of creating a federated query tool for clinical data repositories. Separate Institutional Review Boards (IRBs) at Harvard's three largest affiliated health centers approved use of their data, and the Harvard Medical School IRB approved building a Query Aggregator Interface that can simultaneously send queries to each hospital and display aggregate counts of the number of matching patients. Our experience creating three local repositories using the open source Informatics for Integrating Biology and the Bedside (i2b2) platform can be used as a road map for other institutions. The authors are actively working with the IRBs and regulatory groups to develop procedures that will ultimately allow investigators to obtain identified patient data and biomaterials through SHRINE. This will guide us in creating a future technical architecture that is scalable to a national level, compliant with ethical guidelines, and protective of the interests of the participating hospitals.

  15. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977

    International Nuclear Information System (INIS)

    Elam, S.

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery

  16. SeqHound: biological sequence and structure database as a platform for bioinformatics research

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2002-10-01

    Full Text Available Abstract Background SeqHound has been developed as an integrated biological sequence, taxonomy, annotation and 3-D structure database system. It provides a high-performance server platform for bioinformatics research in a locally-hosted environment. Results SeqHound is based on the National Center for Biotechnology Information data model and programming tools. It offers daily updated contents of all Entrez sequence databases in addition to 3-D structural data and information about sequence redundancies, sequence neighbours, taxonomy, complete genomes, functional annotation including Gene Ontology terms and literature links to PubMed. SeqHound is accessible via a web server through a Perl, C or C++ remote API or an optimized local API. It provides functionality necessary to retrieve specialized subsets of sequences, structures and structural domains. Sequences may be retrieved in FASTA, GenBank, ASN.1 and XML formats. Structures are available in ASN.1, XML and PDB formats. Emphasis has been placed on complete genomes, taxonomy, domain and functional annotation as well as 3-D structural functionality in the API, while fielded text indexing functionality remains under development. SeqHound also offers a streamlined WWW interface for simple web-user queries. Conclusions The system has proven useful in several published bioinformatics projects such as the BIND database and offers a cost-effective infrastructure for research. SeqHound will continue to develop and be provided as a service of the Blueprint Initiative at the Samuel Lunenfeld Research Institute. The source code and examples are available under the terms of the GNU public license at the Sourceforge site http://sourceforge.net/projects/slritools/ in the SLRI Toolkit.

  17. Emerging imaging tools for use with traumatic brain injury research.

    Science.gov (United States)

    Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A

    2012-03-01

    This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

  18. Data Linkage: A powerful research tool with potential problems

    Directory of Open Access Journals (Sweden)

    Scott Ian

    2010-12-01

    Full Text Available Abstract Background Policy makers, clinicians and researchers are demonstrating increasing interest in using data linked from multiple sources to support measurement of clinical performance and patient health outcomes. However, the utility of data linkage may be compromised by sub-optimal or incomplete linkage, leading to systematic bias. In this study, we synthesize the evidence identifying participant or population characteristics that can influence the validity and completeness of data linkage and may be associated with systematic bias in reported outcomes. Methods A narrative review, using structured search methods was undertaken. Key words "data linkage" and Mesh term "medical record linkage" were applied to Medline, EMBASE and CINAHL databases between 1991 and 2007. Abstract inclusion criteria were; the article attempted an empirical evaluation of methodological issues relating to data linkage and reported on patient characteristics, the study design included analysis of matched versus unmatched records, and the report was in English. Included articles were grouped thematically according to patient characteristics that were compared between matched and unmatched records. Results The search identified 1810 articles of which 33 (1.8% met inclusion criteria. There was marked heterogeneity in study methods and factors investigated. Characteristics that were unevenly distributed among matched and unmatched records were; age (72% of studies, sex (50% of studies, race (64% of studies, geographical/hospital site (93% of studies, socio-economic status (82% of studies and health status (72% of studies. Conclusion A number of relevant patient or population factors may be associated with incomplete data linkage resulting in systematic bias in reported clinical outcomes. Readers should consider these factors in interpreting the reported results of data linkage studies.

  19. Bidimensional microdosimetry as a tool for evaluating biological response and target structure

    International Nuclear Information System (INIS)

    Booz, J.; Schmitz, Th.; Feinendegen, L.E.; Olko, P.

    1992-01-01

    The paper addresses the issue of the relevance of microdosimetric spectra for quantifying the effects of low-level exposures to radiation. Biological response functions derived to date from numerical analyses of radiobiological and microdosimetric observations refer to uniform targets of a preassumed size. The characteristic two-modal shape of functions obtained for several endpoints reflects the importance of two different pathways of damage formation, each of them related in fact to different target sizes. The correlated energy deposition distributions in such a bidimensional system are suggested as a more appropriate physical input for analysing biological response and target structure. (author)

  20. Positioning Mentoring as a Coach Development Tool: Recommendations for Future Practice and Research

    Science.gov (United States)

    McQuade, Sarah; Davis, Louise; Nash, Christine

    2015-01-01

    Current thinking in coach education advocates mentoring as a development tool to connect theory and practice. However, little empirical evidence exists to evaluate the effectiveness of mentoring as a coach development tool. Business, education, and nursing precede the coaching industry in their mentoring practice, and research findings offered in…

  1. The "Metaphorical Collage" as a Research Tool in the Field of Education

    Science.gov (United States)

    Russo-Zimet, Gila

    2016-01-01

    The aim of this paper is to propose a research tool in the field of education--the "metaphorical collage." This tool facilitates the understanding of concepts and processes in education through the analysis of metaphors in collage works that include pictorial images and verbal images. We believe the "metaphorical collage" to be…

  2. Satellite telemetry: A new tool for wildlife research and management

    Science.gov (United States)

    Fancy, Steven G.; Pank, Larry F.; Douglas, David C.; Curby, Catherine H.; Garner, Gerald W.; Amstrup, Steven C.; Regelin, Wayne L.

    1998-01-01

    operation, the UHF (ultra-high frequency) signal failed on three of 32 caribou transmitters and 10 of 36 polar bear transmitters.A geographic information system (GIS) incorporating other databases (e.g., land cover, elevation, slope, aspect, hydrology, ice distribution) was used to analyze and display detailed locational and behavioral data collected via satellite. Examples of GIS applications to research projects using satellite telemetry and examples of detailed movement patterns of caribou and polar bears are presented. This report includes documentation for computer software packages for processing Argos data and presents developments, as of March 1987, in transmitter design, data retrieval using a local user terminal, computer software, and sensor development and calibration.

  3. Advancing Research in Second Language Writing through Computational Tools and Machine Learning Techniques: A Research Agenda

    Science.gov (United States)

    Crossley, Scott A.

    2013-01-01

    This paper provides an agenda for replication studies focusing on second language (L2) writing and the use of natural language processing (NLP) tools and machine learning algorithms. Specifically, it introduces a range of the available NLP tools and machine learning algorithms and demonstrates how these could be used to replicate seminal studies…

  4. New biological research and understanding of Papanicolaou's test.

    Science.gov (United States)

    Smith, Elizabeth R; George, Sophia H; Kobetz, Erin; Xu, Xiang-Xi

    2018-06-01

    The development of the Papanicolaou smear test by Dr. George Nicholas Papanicolaou (1883-1962) is one of the most significant achievements in screening for disease and cancer prevention in history. The Papanicolaou smear has been used for screening of cervical cancer since the 1950s. The test is technically straightforward and practical and based on a simple scientific observation: malignant cells have an aberrant nuclear morphology that can be distinguished from benign cells. Here, we review the scientific understanding that has been achieved and continues to be made on the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou's invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope structural proteins. The consequences of a nuclear envelope defect include chromosomal numerical instability, altered chromatin organization and gene expression, and increased cell mobility because of a malleable nuclear envelope. HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents as a change in nuclear morphology detectable by a Papanicolaou smear. Thus, the causes and consequences of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still undergoing active investigation to reveal the details. Recently a statue was installed in front of the Papanicolaou's Cancer Research Building to honor the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts clinical impacts and inspires scientific inquiries. © 2018 Wiley Periodicals, Inc.

  5. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  6. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Science.gov (United States)

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  7. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Directory of Open Access Journals (Sweden)

    Matthias Christen

    Full Text Available Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  8. Welfare assessment in porcine biomedical research – Suggestion for an operational tool

    DEFF Research Database (Denmark)

    Søndergaard, Lene Vammen; Dagnæs-Hansen, Frederik; Herskin, Mette S

    2011-01-01

    of the extent of welfare assessment in pigs used in biomedical research and to suggest a welfare assessment standard for research facilities based on an exposition of ethological considerations relevant for the welfare of pigs in biomedical research. The tools for porcine welfare assessment presented suggest...

  9. Conceptualising the Use of Facebook in Ethnographic Research: As Tool, as Data and as Context

    Science.gov (United States)

    Baker, Sally

    2013-01-01

    This article proposes a three-part conceptualisation of the use of Facebook in ethnographic research: as a tool, as data and as context. Longitudinal research with young adults at a time of significant change provides many challenges for the ethnographic researcher, such as maintaining channels of communication and high rates of participant…

  10. MoDOT pavement preservation research program volume IV, pavement evaluation tools-data collection methods.

    Science.gov (United States)

    2015-10-01

    The overarching goal of the MoDOT Pavement Preservation Research Program, Task 3: Pavement Evaluation Tools Data : Collection Methods was to identify and evaluate methods to rapidly obtain network-level and project-level information relevant to :...

  11. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems.

    Science.gov (United States)

    Bashor, Caleb J; Horwitz, Andrew A; Peisajovich, Sergio G; Lim, Wendell A

    2010-01-01

    The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for a synthetic biology toolkit that could be used to interrogate the design principles of diverse systems.

  12. Aliens in the Classroom: Fantastical Creatures as Tools in Teaching Biology

    Science.gov (United States)

    Cruz, Ronald Allan L.

    2013-01-01

    Creatures from science fiction and fantasy can be used to illustrate key concepts and principles in biology. This article describes a project for a university-level general zoology course wherein the students classify, down to at least the phylum level, "animals" from the Alien Species Wiki (2013). This is an online database of creatures from…

  13. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    Science.gov (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  14. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  15. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    Science.gov (United States)

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  16. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

    NARCIS (Netherlands)

    T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)

    2013-01-01

    htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models

  17. Biological research on burnout-depression overlap: Long-standing limitations and on-going reflections.

    Science.gov (United States)

    Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric

    2017-12-01

    In this commentary, we discuss seldom-noticed methodological problems affecting biological research on burnout and depression and make recommendations to overcome the limitations of past studies conducted in this area. First, we suggest that identified subtypes of depression (e.g., depression with melancholic features and depression with atypical features) should be taken into account in future biological research on burnout and depression, given that different subtypes of depression have been associated with distinct autonomic and neuroendocrine profiles. Second, we underline that research on burnout-depression overlap is made difficult by the absence of a consensual conceptualization and operationalization of burnout. In order to resolve this problem, we draw researchers' attention to the urgency of establishing a commonly shared, clinically valid diagnosis for burnout. Finally, we question the possibility of identifying a biological signature for burnout in light of global research on burnout-depression overlap. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. CORE SIM: A multi-purpose neutronic tool for research and education

    International Nuclear Information System (INIS)

    Demaziere, Christophe

    2011-01-01

    Highlights: → A highly flexible neutronic core simulator was developed. → The tool estimates the static neutron flux, the eigenmodes, and the neutron noise. → The tool was successfully validated via many benchmark cases. → The tool can be used for research and education. → The tool is freely available. - Abstract: This paper deals with the development, validation, and demonstration of an innovative neutronic tool. The novelty of the tool resides in its versatility, since many different systems can be investigated and different kinds of calculations can be performed. More precisely, both critical systems and subcritical systems with an external neutron source can be studied, and static and dynamic cases in the frequency domain (i.e. for stationary fluctuations) can be considered. In addition, the tool has the ability to determine the different eigenfunctions of any nuclear core. For each situation, the static neutron flux, the different eigenmodes and eigenvalues, the first-order neutron noise, and their adjoint functions are estimated, as well as the effective multiplication factor of the system. The main advantages of the tool, which is entirely MatLab based, lie with the robustness of the implemented numerical algorithms, its high portability between different computer platforms and operative systems, and finally its ease of use since no input deck writing is required. The present version of the tool, which is based on two-group diffusion theory, is mostly suited to investigate thermal systems. The definition of both the static and dynamic core configurations directly from the static macroscopic cross-sections and their fluctuations, respectively, makes the tool particularly well suited for research and education. Some of the many benchmark cases used to validate the tool are briefly reported. The static and dynamic capabilities of the tool are also demonstrated for the following configurations: a vibrating control rod, a perturbation traveling upwards

  19. Impact of design research on industrial practice tools, technology, and training

    CERN Document Server

    Lindemann, Udo

    2016-01-01

    Showcasing exemplars of how various aspects of design research were successfully transitioned into and influenced, design practice, this book features chapters written by eminent international researchers and practitioners from industry on the Impact of Design Research on Industrial Practice. Chapters written by internationally acclaimed researchers of design analyse the findings (guidelines, methods and tools), technologies/products and educational approaches that have been transferred as tools, technologies and people to transform industrial practice of engineering design, whilst the chapters that are written by industrial practitioners describe their experience of how various tools, technologies and training impacted design practice. The main benefit of this book, for educators, researchers and practitioners in (engineering) design, will be access to a comprehensive coverage of case studies of successful transfer of outcomes of design research into practice; as well as guidelines and platforms for successf...

  20. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research.

    Science.gov (United States)

    Jinawath, Natini; Bunbanjerdsuk, Sacarin; Chayanupatkul, Maneerat; Ngamphaiboon, Nuttapong; Asavapanumas, Nithi; Svasti, Jisnuson; Charoensawan, Varodom

    2016-11-22

    With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians' point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world's major diseases.

  1. miRQuest: integration of tools on a Web server for microRNA research.

    Science.gov (United States)

    Aguiar, R R; Ambrosio, L A; Sepúlveda-Hermosilla, G; Maracaja-Coutinho, V; Paschoal, A R

    2016-03-28

    This report describes the miRQuest - a novel middleware available in a Web server that allows the end user to do the miRNA research in a user-friendly way. It is known that there are many prediction tools for microRNA (miRNA) identification that use different programming languages and methods to realize this task. It is difficult to understand each tool and apply it to diverse datasets and organisms available for miRNA analysis. miRQuest can easily be used by biologists and researchers with limited experience with bioinformatics. We built it using the middleware architecture on a Web platform for miRNA research that performs two main functions: i) integration of different miRNA prediction tools for miRNA identification in a user-friendly environment; and ii) comparison of these prediction tools. In both cases, the user provides sequences (in FASTA format) as an input set for the analysis and comparisons. All the tools were selected on the basis of a survey of the literature on the available tools for miRNA prediction. As results, three different cases of use of the tools are also described, where one is the miRNA identification analysis in 30 different species. Finally, miRQuest seems to be a novel and useful tool; and it is freely available for both benchmarking and miRNA identification at http://mirquest.integrativebioinformatics.me/.

  2. The Inquiry Matrix: A Tool for Assessing and Planning Inquiry in Biology and Beyond

    Science.gov (United States)

    Grady, Julie

    2010-01-01

    One way to advance inquiry in the classroom is to establish a systematic strategy for reflecting on our practice and our students' readiness to engage in increasingly complex scientific reasoning. The Matrix for Assessing and Planning Scientific Inquiry (MAPSI) is a tool that promotes this valuable reflection so that we, as teachers, are better…

  3. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  4. The Need for Novel Informatics Tools for Integrating and Planning Research in Molecular and Cellular Cognition

    Science.gov (United States)

    Silva, Alcino J.; Müller, Klaus-Robert

    2015-01-01

    The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…

  5. The application of biological motion research: biometrics, sport, and the military.

    Science.gov (United States)

    Steel, Kylie; Ellem, Eathan; Baxter, David

    2015-02-01

    The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person's movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

  6. A Visualization Tool for Integrating Research Results at an Underground Mine

    Science.gov (United States)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  7. CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models.

    Science.gov (United States)

    Chen, Yuhui; Lawless, Conor; Gillespie, Colin S; Wu, Jake; Boys, Richard J; Wilkinson, Darren J

    2010-05-01

    Dynamic simulation modelling of complex biological processes forms the backbone of systems biology. Discrete stochastic models are particularly appropriate for describing sub-cellular molecular interactions, especially when critical molecular species are thought to be present at low copy-numbers. For example, these stochastic effects play an important role in models of human ageing, where ageing results from the long-term accumulation of random damage at various biological scales. Unfortunately, realistic stochastic simulation of discrete biological processes is highly computationally intensive, requiring specialist hardware, and can benefit greatly from parallel and distributed approaches to computation and analysis. For these reasons, we have developed the BASIS system for the simulation and storage of stochastic SBML models together with associated simulation results. This system is exposed as a set of web services to allow users to incorporate its simulation tools into their workflows. Parameter inference for stochastic models is also difficult and computationally expensive. The CaliBayes system provides a set of web services (together with an R package for consuming these and formatting data) which addresses this problem for SBML models. It uses a sequential Bayesian MCMC method, which is powerful and flexible, providing very rich information. However this approach is exceptionally computationally intensive and requires the use of a carefully designed architecture. Again, these tools are exposed as web services to allow users to take advantage of this system. In this article, we describe these two systems and demonstrate their integrated use with an example workflow to estimate the parameters of a simple model of Saccharomyces cerevisiae growth on agar plates.

  8. The National Biological Information Infrastructure as an E-Government tool

    Science.gov (United States)

    Sepic, R.; Kase, K.

    2002-01-01

    Coordinated by the U.S. Geological Survey (USGS), the National Biological Information Infrastructure (NBII) is a Web-based system that provides access to data and information on the nation's biological resources. Although it was begun in 1993, predating any formal E-Government initiative, the NBII typifies the E-Government concepts outlined in the President's Management Agenda, as well as in the proposed E-Government Act of 2002. This article-an individual case study and not a broad survey with extensive references to the literature-explores the structure and operation of the NBII in relation to several emerging trends in E-Government: end-user focus, defined and scalable milestones, public-private partnerships, alliances with stakeholders, and interagency cooperation. ?? 2002 Elsevier Science Inc. All rights reserved.

  9. Characterization of microbial communities in pest colonized books by molecular biology tools

    OpenAIRE

    Franco Palla

    2011-01-01

    This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR), sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of man...

  10. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    Science.gov (United States)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  11. Novel Study Guides for Biochemistry Meaningful Learning in Biology: a Design-Based Research

    Directory of Open Access Journals (Sweden)

    Costa, C ; Galembeck, E. Costa, C ; Galembeck, E.

    2017-07-01

    Full Text Available One of the difficulties for biochemistry learning is the persistence of traditional teaching methods, based on transmission and memorization of abstract and detailed information, usually in a decontextualized way. Such scenario results in surface learning and content reproduction. In order to address these problems, three interventions in a discipline (Metabolism for Biology majors were applied, in the form of innovative teaching tools (study guides. OBJECTIVES: The main goal is to evaluate the impact of these interventions on interest, motivation, and learning of the metabolic pathways. MATERIALS AND METHODS: We describe the development, application, and evaluation of two study guides – one created from a problem used as a contextual connection for glycogen metabolism study and another embedding an integrative view based on glutamate metabolism. Both materials were guided by broad themes like evolution, metabolic adaptation, and comparative biochemistry. The development of the study guides combined submicroscopic (molecular and macroscopic (body, environment levels, aiming to motivate reading and discussion. A design-based research with cycles of application and assessment was carried out, by means of classroom observation, grade analysis in written exams, and students’ interviews. RESULTS AND DISCUSSION: In general, based on in-class student feedback to professors and to the researcher in the interviews, the study guides arouse curiosity and fostered peer discussion. Final average grades indicate a good global performance in all proposed activities. Whole data from study guides’ application in classroom evidenced their impact on interest, motivation, and learning. The strategy of developing problem or integrative situation linking molecular (micro and contextual (macro levels were helpful to foster critical thinking and to value topics of scientific literacy. CONCLUSIONS: Analysis and interpretation of the results point to benefits for

  12. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology.

    Science.gov (United States)

    Soltis, P S; Soltis, D E; Chase, M W

    1999-11-25

    Comparative biology requires a firm phylogenetic foundation to uncover and understand patterns of diversification and evaluate hypotheses of the processes responsible for these patterns. In the angiosperms, studies of diversification in floral form, stamen organization, reproductive biology, photosynthetic pathway, nitrogen-fixing symbioses and life histories have relied on either explicit or implied phylogenetic trees. Furthermore, to understand the evolution of specific genes and gene families, evaluate the extent of conservation of plant genomes and make proper sense of the huge volume of molecular genetic data available for model organisms such as Arabidopsis, Antirrhinum, maize, rice and wheat, a phylogenetic perspective is necessary. Here we report the results of parsimony analyses of DNA sequences of the plastid genes rbcL and atpB and the nuclear 18S rDNA for 560 species of angiosperms and seven non-flowering seed plants and show a well-resolved and well-supported phylogenetic tree for the angiosperms for use in comparative biology.

  13. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  14. 78 FR 20924 - Center for Biologics Evaluation and Research eSubmitter Pilot Evaluation Program for...

    Science.gov (United States)

    2013-04-08

    ..., Office of Blood Research and Review, Center for Biologics Evaluation and Research (HFM-375), Food and... assist CBER in the final development and release of this electronic program for use by industry. III... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0248...

  15. Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research in Evolutionary Developmental Biology

    NARCIS (Netherlands)

    Laudel, Grit; Benninghoff, Martin; Lettkemann, Eric; Håkansson, Elias; Whitley, Richard; Gläser, Jochen

    2014-01-01

    Evolutionary developmental biology is a highly variable scientific innovation because researchers can adapt their involvement in the innovation to the opportunities provided by their environment. On the basis of comparative case studies in four countries, we link epistemic properties of research

  16. Team Research at the Biology-Mathematics Interface: Project Management Perspectives

    Science.gov (United States)

    Milton, John G.; Radunskaya, Ami E.; Lee, Arthur H.; de Pillis, Lisette G.; Bartlett, Diana F.

    2010-01-01

    The success of interdisciplinary research teams depends largely upon skills related to team performance. We evaluated student and team performance for undergraduate biology and mathematics students who participated in summer research projects conducted in off-campus laboratories. The student teams were composed of a student with a mathematics…

  17. 76 FR 59407 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-09-26

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... Administration (FDA) is announcing the availability of its report of scientific and medical literature and... Research Report of Scientific and Medical Literature and Information on Non-Standardized Allergenic...

  18. Are EM's communication tools effective? Evaluation research of two EM publications

    International Nuclear Information System (INIS)

    Wight, Evelyn; Gardner, Gene; Harvey, Tony

    1992-01-01

    As a reflection of its growing culture of openness, and in response to the public's need for accurate information about its activities, the U.S. Department of Energy (DOE) Office of the Assistant Secretary for Environmental Restoration and Waste Management (EM) has increased the amount of information available to the public through communication tools such as brochures, fact sheets, and a travelling exhibit with an interactive computer display. Our involvement with this effort has been to design, develop, and critique booklets, brochures, fact sheets and other communication tools for EM. This paper presents an evaluation of the effectiveness of two communication tools we developed: the EM Booklet and the EM Fact Sheets. We measured effectiveness using non-parametric testing. This paper describes DOE's culture change, EM's communication tools and their context within DOE'S new open culture, our research, test methods and results, the significance of our research, and our plans for future research. (author)

  19. Objectives of research activities in Biology Branch, Chalk River Nuclear Laboratories, 1976

    International Nuclear Information System (INIS)

    1977-03-01

    The primary responsibility assigned to the Biology Branch within the framework of CRNL has been an active engagement in basic research related to the assessment of radiation hazards, particularly those to be expected after exposure to relatively low doses of radiation delivered at low dose-rates. The present group is characterized by a broad interest in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into biological effects, with a special focus of attention on the mechanisms by which the initial damage can be largely repaired and by which the risks to man are modified under different circumstances. The basic concepts in radiation biology and risk estimates are reviewed in the light of recent literature on these topics. The current and proposed research activities of the Biology Branch are described. General and specific recommendations for future activities are given. (author)

  20. Biopython: freely available Python tools for computational molecular biology and bioinformatics

    DEFF Research Database (Denmark)

    Cock, Peter J A; Antao, Tiago; Chang, Jeffrey T

    2009-01-01

    SUMMARY: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments......, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. AVAILABILITY: Biopython is freely available, with documentation and source code at (www...

  1. Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape

    Directory of Open Access Journals (Sweden)

    French Andrew P

    2012-03-01

    Full Text Available Abstract Background The ability to quantify the geometry of plant organs at the cellular scale can provide novel insights into their structural organization. Hitherto manual methods of measurement provide only very low throughput and subjective solutions, and often quantitative measurements are neglected in favour of a simple cell count. Results We present a tool to count and measure individual neighbouring cells along a defined file in confocal laser scanning microscope images. The tool allows the user to extract this generic information in a flexible and intuitive manner, and builds on the raw data to detect a significant change in cell length along the file. This facility can be used, for example, to provide an estimate of the position of transition into the elongation zone of an Arabidopsis root, traditionally a location sensitive to the subjectivity of the experimenter. Conclusions Cell-o-tape is shown to locate cell walls with a high degree of accuracy and estimate the location of the transition feature point in good agreement with human experts. The tool is an open source ImageJ/Fiji macro and is available online.

  2. Dentistry in the future--on the role and goal of basic research in oral biology.

    Science.gov (United States)

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and

  3. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    International Nuclear Information System (INIS)

    Bourgeault, A.; Gourlay-Francé, C.

    2013-01-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g dry wt −1 , reached 2654, 3972 and 3727 ng g −1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L −1 . Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain the bioaccumulation

  4. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, A., E-mail: bourgeault@ensil.unilim.fr; Gourlay-Francé, C.

    2013-06-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g{sub dry} {sub wt}{sup −1}, reached 2654, 3972 and 3727 ng g{sup −1} at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L{sup −1}. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain

  5. Research on stored biological samples: views of African American and White American cancer patients.

    Science.gov (United States)

    Pentz, Rebecca D; Billot, Laurent; Wendler, David

    2006-04-01

    Proposals on consent for research with biological samples should be informed by empirical studies of individuals' views. Studies to date queried mostly white research subjects. The aim of this study was to compare the views of two groups of patients: cancer patients at a university clinic (Winship Cancer Institute at Emory Healthcare) and cancer patients at an inner city county hospital (Grady) who were given the option of tissue banking. Overall, 315/452 (70%) patients completed the survey. The Grady cohort was 86% African American; the Winship cohort was 82% White. The vast majority (95%) of individuals in both cohorts agreed to provide a biological sample for future research. Both cohorts were willing for their samples to be used to study cancer and other diseases, including Alzheimer disease. Few participants preferred to control the disease to be studied (10%) or wished to be contacted again for consent for each future research project (11%). In our sample, almost all clinical patients, regardless of site of care, ethnicity or socioeconomic status, were willing to provide a biological sample for research purposes and allow investigators to determine the research to be done without contacting the patients again. These findings support the recommendation to offer individuals a simplified consent with a one-time binary choice whether to provide biological samples for future research. Copyright 2006 Wiley-Liss, Inc.

  6. A critical review of recent biological research on human sexual orientation.

    Science.gov (United States)

    Mustanski, Brian S; Chivers, Meredith L; Bailey, J Michael

    2002-01-01

    This article provides a comprehensive review and critique of biological research on sexual orientation published over the last decade. We cover research investigating (a) the neurohormonal theory of sexual orientation (psychoneuroendocrinology, prenatal stress, cerebral asymmetry, neuroanatomy, otoacoustic emissions, anthropometrics), (b) genetic influences, (c) fraternal birth-order effects, and (d) a putative role for developmental instability. Despite inconsistent results across both studies and traits, some support for the neurohormonal theory is garnered, but mostly in men. Genetic research using family and twin methodologies has produced consistent evidence that genes influence sexual orientation, but molecular research has not yet produced compelling evidence for specific genes. Although it has been well established that older brothers increase the odds of homosexuality in men, the route by which this occurs has not been resolved. We conclude with an examination of the limitations of biological research on sexual orientation, including measurement issues (paper and pencil, cognitive, and psychophysiological), and lack of research on women.

  7. iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-hee; Bellingham, Shayne A.; Lonie, Andrew; Hill, Andrew F.

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes. PMID:26561006

  8. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data.

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-Hee; Bellingham, Shayne A; Lonie, Andrew; Hill, Andrew F

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.

  9. Photo fragmentation dynamics of small argon clusters and biological molecular: new tools by trapping and vectorial correlation

    International Nuclear Information System (INIS)

    Lepere, V.

    2006-09-01

    The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar 2+ dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar 2+ and Ar 3+ photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)

  10. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Visual Tools for Eliciting Connections and Cohesiveness in Mixed Methods Research

    Science.gov (United States)

    Murawska, Jaclyn M.; Walker, David A.

    2017-01-01

    In this commentary, we offer a set of visual tools that can assist education researchers, especially those in the field of mathematics, in developing cohesiveness from a mixed methods perspective, commencing at a study's research questions and literature review, through its data collection and analysis, and finally to its results. This expounds…

  12. New Tools for New Literacies Research: An Exploration of Usability Testing Software

    Science.gov (United States)

    Asselin, Marlene; Moayeri, Maryam

    2010-01-01

    Competency in the new literacies of the Internet is essential for participating in contemporary society. Researchers studying these new literacies are recognizing the limitations of traditional methodological tools and adapting new technologies and new media for use in research. This paper reports our exploration of usability testing software to…

  13. SWIM: a computational tool to unveiling crucial nodes in complex biological networks.

    Science.gov (United States)

    Paci, Paola; Colombo, Teresa; Fiscon, Giulia; Gurtner, Aymone; Pavesi, Giulio; Farina, Lorenzo

    2017-03-20

    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer.

  14. When one model is not enough: combining epistemic tools in systems biology.

    Science.gov (United States)

    Green, Sara

    2013-06-01

    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Leonelli, 2007; Levins, 2006). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger's practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger's historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple representational means is an essential part of the dynamic of knowledge generation. It is because of-rather than in spite of-the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. History and conceptual developments in vascular biology and angiogenesis research: a personal view.

    Science.gov (United States)

    Bikfalvi, Andreas

    2017-11-01

    Vascular biology is an important scientific domain that has gradually penetrated many medical and scientific fields. Scientists are most often focused on present problems in their daily scientific work and lack awareness regarding the evolution of their domain throughout history and of how philosophical issues are related to their research field. In this article, I provide a personal view with an attempt to conceptualize vascular development research that articulates lessons taken from history, philosophy, biology and medicine. I discuss selected aspects related to the history and the philosophy of sciences that can be extracted from the study of vascular development and how conceptual progress in this research field has been made. I will analyze paradigm shifts, cross-fertilization of different fields, technological advances and its impact on angiogenesis and discuss issues related to evolutionary biology, proximity of different molecular systems and scientific methodologies. Finally, I discuss briefly my views where the field is heading in the future.

  16. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  18. Systems biology approaches and tools for analysis of interactomes and multi-target drugs.

    Science.gov (United States)

    Schrattenholz, André; Groebe, Karlfried; Soskic, Vukic

    2010-01-01

    Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models. One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of "complex

  19. Action Research on a WebQuest as an Instructional Tool for Writing Abstracts of Research Articles

    Directory of Open Access Journals (Sweden)

    Krismiyati Latuperissa

    2012-08-01

    Full Text Available The massive growth of and access to information technology (IT has enabled the integration of technology into classrooms. One such integration is the use of WebQuests as an instructional tool in teaching targeted learning activities such as writing abstracts of research articles in English for English as a Foreign Language (EFL learners. In the academic world, writing an abstract of a research paper or final project in English can be challenging for EFL students. This article presents an action research project on the process and outcomes of using a WebQuest designed to help 20 Indonesian university IT students write a research article’s abstract in English. Findings reveal that despite positive feedback, changes need to be made to make the WebQuest a more effective instructional tool for the purpose it was designed.

  20. Collaborative international research: ethical and regulatory issues pertaining to human biological materials at a South African institutional research ethics committee.

    Science.gov (United States)

    Sathar, Aslam; Dhai, Amaboo; van der Linde, Stephan

    2014-12-01

    Human Biological Materials (HBMs) are an invaluable resource in biomedical research. To determine if researchers and a Research Ethics Committee (REC) at a South African institution addressed ethical issues pertaining to HBMs in collaborative research with developed countries. Ethically approved retrospective cross-sectional descriptive audit. Of the 1305 protocols audited, 151 (11.57%) fulfilled the study's inclusion criteria. Compared to other developed countries, a majority of sponsors (90) were from the USA (p = 0.0001). The principle investigators (PIs) in all 151 protocols informed the REC of their intent to store HBMs. Only 132 protocols informed research participants (P ethical and regulatory issues pertaining to HBMs. There was a lack of congruence between the ethical guidelines of developed countries and their actions which are central to the access to HBMs in collaborative research. HBMs may be leaving South Africa without EPs and MTAs during the process of international collaborative research. © 2013 John Wiley & Sons Ltd.