WorldWideScience

Sample records for biology including self-reproductive

  1. BIOLOGIC AND ECONOMIC EFFECTS OF INCLUDING DIFFERENT ...

    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  2. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.

    1997-01-01

    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  3. BIOLOGY OF HUMAN MALARIA PLASMODIA INCLUDING PLASMODIUM KNOWLESI

    Directory of Open Access Journals (Sweden)

    Spinello Antinori

    2012-03-01

    Full Text Available Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that in humans after a clinically silent replication phase in the liver are able to infect and replicate within the erythrocytes. Four species (P.falciparum, P.malariae, P.ovale and P.vivax are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.

  4. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    Science.gov (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  5. WHO standards for biotherapeutics, including biosimilars: an example of the evaluation of complex biological products.

    Science.gov (United States)

    Knezevic, Ivana; Griffiths, Elwyn

    2017-11-01

    The most advanced regulatory processes for complex biological products have been put in place in many countries to provide appropriate regulatory oversight of biotherapeutic products in general, and similar biotherapeutics in particular. This process is still ongoing and requires regular updates to national regulatory requirements in line with scientific developments and up-to-date standards. For this purpose, strong knowledge of and expertise in evaluating biotherapeutics in general and similar biotherapeutic products, also called biosimilars, in particular is essential. Here, we discuss the World Health Organization's international standard-setting role in the regulatory evaluation of recombinant DNA-derived biotherapeutic products, including biosimilars, and provide examples that may serve as models for moving forward with nonbiological complex medicinal products. A number of scientific challenges and regulatory considerations imposed by the advent of biosimilars are described, together with the lessons learned, to stimulate future discussions on this topic. In addition, the experiences of facilitating the implementation of guiding principles for evaluation of similar biotherapeutic products into regulatory and manufacturers' practices in various countries over the past 10 years are briefly explained, with the aim of promoting further developments and regulatory convergence of complex biological and nonbiological products. © 2017 The Authors. Annals of the New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  6. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability--A Literature Review

    Science.gov (United States)

    Jeronen, Eila; Palmberg, Irmeli; Yli-Panula, Eija

    2017-01-01

    There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education…

  7. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen

    2013-01-01

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical–biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...

  8. Biological review of 82 species of coral petitioned to be included in the Endangered Species Act

    Science.gov (United States)

    Brainard, Russell E.; Birkeland, Charles; Eakin, C. Mark; McElhany, Paul; Miller, Margaret W.; Patterson, Matt; Piniak, G.A.

    2011-01-01

    list 83 coral species as threatened or endangered under the U.S. Endangered Species Act. The petition was based on a predicted decline in available habitat for the species, citing anthropogenic climate change and ocean acidification as the lead factors among the various stressors responsible for the potential decline. The NMFS identified 82 of the corals as candidate species, finding that the petition provided substantive information for a potential listing of these species. The NMFS established a Biological Review Team (BRT) to prepare this Status Review Report that examines the status of these 82 candidate coral species and evaluates extinction risk for each of them. This document makes no recommendations for listing, as that is a separate evaluation to be conducted by the NMFS.

  9. The Family in Us: Family History, Family Identity and Self-Reproductive Adaptive Behavior.

    Science.gov (United States)

    Ferring, Dieter

    2017-06-01

    This contribution is an essay about the notion of family identity reflecting shared significant experiences within a family system originating a set of signs used in social communication within and between families. Significant experiences are considered as experiences of events that have an immediate impact on the adaptation of the family in a given socio-ecological and cultural context at a given historical time. It is assumed that family history is stored in a shared "family memory" holding both implicit and explicit knowledge and exerting an influence on the behavior of each family member. This is described as transgenerational family memory being constituted of a system of meaningful signs. The crucial dimension underlying the logic of this essay are the ideas of adaptation as well as self-reproduction of systems.

  10. Deliverable 4.2: Methodology for including specific biological effects and pathogen aspects into LCA

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2009-01-01

    .e. endocrine disruptors) and the possibilities and relevance of including impact categories on land use and site-specific assessments have been addressed. Further, the special problems on how to deal with land fill and how to do normalization and weighting of impact potentials are also dealt with. The problem...

  11. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch...... that external carbon source addition may serve as a suitable control variable to improve process performance....... process, the addition of either carbon source to the anoxic zone also resulted in an instantaneous and fairly reproducible increase in the denitrification rate. Some release of phosphate associated with the carbon source addition was observed. With respect to nitrogen removal, these results indicate...

  12. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  13. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch...... experiments performed in 5 liter bottles indicated that the denitrification rate can be instantaneously increased through the addition of either carbon source. The amount by which the rate was increased depended on the amount of carbon added. In the main experiments performed in a pilot scale alternating...... process, the addition of either carbon source to the anoxic zone also resulted in an instantaneous and fairly reproducible increase in the denitrification rate. Some release of phosphate associated with the carbon source addition was observed. With respect to nitrogen removal, these results indicate...

  14. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability—A Literature Review

    Directory of Open Access Journals (Sweden)

    Eila Jeronen

    2016-12-01

    Full Text Available There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education in several scientific databases. The article provides an overview of 24 selected articles published in peer-reviewed scientific journals from 2006–2016. The data was analyzed using qualitative content analysis. Altogether, 16 journals were selected and 24 articles were analyzed in detail. The foci of the analyses were teaching methods, learning environments, knowledge and thinking skills, psychomotor skills, emotions and attitudes, and evaluation methods. Additionally, features of good methods were investigated and their implications for teaching were emphasized. In total, 22 different teaching methods were found to improve sustainability education in different ways. The most emphasized teaching methods were those in which students worked in groups and participated actively in learning processes. Research points toward the value of teaching methods that provide a good introduction and supportive guidelines and include active participation and interactivity.

  15. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  16. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  17. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.

    1976-09-01

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  18. Including a Service Learning Educational Research Project in a Biology Course-I: Assessing Community Awareness of Childhood Lead Poisoning

    Science.gov (United States)

    Abu-Shakra, Amal; Saliim, Eric

    2012-01-01

    A university course project was developed and implemented in a biology course, focusing on environmental problems, to assess community awareness of childhood lead poisoning. A set of 385 questionnaires was generated and distributed in an urban community in North Carolina, USA. The completed questionnaires were sorted first into yes and no sets…

  19. Including a service learning educational research project in a biology course-I: Assessing community awareness of childhood lead poisoning

    OpenAIRE

    Abu-Shakra, Amal; Saliim, Eric

    2012-01-01

    A university course project was developed and implemented in a biology course, focusing on environmental problems, to assess community awareness of childhood lead poisoning. A set of 385 questionnaires was generated and distributed in an urban community in North Carolina, USA. The completed questionnaires were sorted fırst into yes and no sets based on the responses obtained for the fırst question, which gauged the participants' awareness of lead as an indoor pollutant at 71% (n=273)...

  20. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    Science.gov (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  1. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects.

    Science.gov (United States)

    Hoffmann, Aswin L; den Hertog, Dick; Siem, Alex Y D; Kaanders, Johannes H A M; Huizenga, Henk

    2008-11-21

    Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be formulated as a multi-criteria optimization problem for which Pareto optimal treatment plans exist. To account for the dose-per-fraction effect of fractionated IMRT, it is desirable to exploit radiobiological treatment plan evaluation criteria based on the linear-quadratic (LQ) cell survival model as a means to balance the radiation benefits and risks in terms of biologic response. Unfortunately, the LQ-model-based radiobiological criteria are nonconvex functions, which make the optimization problem hard to solve. We apply the framework proposed by Romeijn et al (2004 Phys. Med. Biol. 49 1991-2013) to find transformations of LQ-model-based radiobiological functions and establish conditions under which transformed functions result in equivalent convex criteria that do not change the set of Pareto optimal treatment plans. The functions analysed are: the LQ-Poisson-based model for tumour control probability (TCP) with and without inter-patient heterogeneity in radiation sensitivity, the LQ-Poisson-based relative seriality s-model for normal tissue complication probability (NTCP), the equivalent uniform dose (EUD) under the LQ-Poisson model and the fractionation-corrected Probit-based model for NTCP according to Lyman, Kutcher and Burman. These functions differ from those analysed before in that they cannot be decomposed into elementary EUD or generalized-EUD functions. In addition, we show that applying increasing and concave transformations to the convexified functions is beneficial for the piecewise approximation of the Pareto efficient frontier.

  2. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  3. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism.

    Science.gov (United States)

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A

    2002-04-01

    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  4. Nematodes that associate with terrestrial molluscs as definitive hosts, including Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae) and its development as a biological molluscicide.

    Science.gov (United States)

    Pieterse, A; Malan, A P; Ross, J L

    2017-09-01

    Terrestrial molluscs (Mollusca: Gastropoda) are important economic pests worldwide, causing extensive damage to a variety of crop types, and posing a health risk to both humans and wildlife. Current knowledge indicates that there are eight nematode families that associate with molluscs as definitive hosts, including Agfidae, Alaninematidae, Alloionematidae, Angiostomatidae, Cosmocercidae, Diplogastridae, Mermithidae and Rhabditidae. To date, Phasmarhabditis hermaphrodita (Schneider, 1859) Andrássy, 1983 (Rhabditida: Rhabditidae) is the only nematode that has been developed as a biological molluscicide. The nematode, which was commercially released in 1994 by MicroBio Ltd, Littlehampton, UK (formally Becker Underwood, now BASF) under the tradename Nemaslug®, is now sold in 15 different European countries. This paper reviews nematodes isolated from molluscs, with specially detailed information on the life cycle, host range, commercialization, natural distribution, mass production and field application of P. hermaphrodita.

  5. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn

    Science.gov (United States)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.

    2003-09-01

    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development

  6. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Linton, P.J.

    1984-07-01

    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The aboveground portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.

  7. A comprehensive assessment protocol including patient reported outcomes, physical tests, and biological sampling in newly diagnosed patients with head and neck cancer: is it feasible?

    NARCIS (Netherlands)

    van Nieuwenhuizen, A.J.; Buffart, L.M.; Smit, J.H.; Brakenhoff, R.H.; Braakhuis, B.J.; de Bree, R.; Leemans, C.; Verdonck-de Leeuw, I.M.

    2014-01-01

    Purpose Large cohort studies are needed taking into account cancer-related, personal, biological, psychobehavioral, and lifestyle-related factors, to guide future research to improve treatment and supportive care. We aimed to evaluate the feasibility of a comprehensive baseline assessment of a

  8. Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    Nachabé, Rami; Hendriks, Benno H. W.; van der Voort, Marjolein; Desjardins, Adrien E.; Sterenborg, Henricus J. C. M.

    2010-01-01

    With an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of our technique

  9. Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    R. Nachabé (Rami); B.H.W. Hendriks (Benno); M. van der Voort (Marjolein); A.E. Desjardins (Adrien); H.J.C.M. Sterenborg (Dick)

    2010-01-01

    textabstractWith an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of

  10. Studies of the reproductive biology of deep-sea megabenthos. 7: The Porcellanasteridae (Asteroidea: Echinodermata) including material collected at Great Meteor East, during Discovery cruise 156

    International Nuclear Information System (INIS)

    Tyler, P.A.; Muirhead, A.

    1986-07-01

    The reproductive biology of Porcellanaster ceruleus, Hyphalaster inermis and Styrachaster horridus is described. P. ceruleus was collected as part of the time series study in the rockall Trough, N.E. Atlantic. This species had a maximum size of 7.0mm arm radius although maximum size known is 36.0mm arm radius. Relatively few eggs are produced and in these samples grow to a maximum size of 230μm. There was no evidence of reproductive seasonality. In Hyphalaster inermis and Styrachaster horridus the eggs grow to 600μm diameter. At this size the cytoplasm is reticulate and filled with neutral fat whilst the periphery is an amorphous layer. Development of the testes in all three species appears typical of deep-sea asteroids. (author)

  11. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  12. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part I--a method of manual documentary analysis.

    Science.gov (United States)

    Ilic, Nina; Savic, Snezana; Siegel, Evan; Atkinson, Kerry; Tasic, Ljiljana

    2012-12-01

    Recent development of a wide range of regulatory standards applicable to production and use of tissues, cells, and other biologics (or biologicals), as advanced therapies, indicates considerable interest in the regulation of these products. The objective of this study was to analyze and compare high-tier documents within the Australian, European, and U.S. biologic drug regulatory environments using qualitative methodology. Cohort 1 of the selected 18 high-tier regulatory documents from the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), and the Therapeutic Goods Administration (TGA) regulatory frameworks were subject to a manual documentary analysis. These documents were consistent with the legal requirements for manufacturing and use of biologic drugs in humans and fall into six different categories. Manual analysis included a terminology search. The occurrence, frequency, and interchangeable use of different terms and phrases were recorded in the manual documentary analysis. Despite obvious differences, manual documentary analysis revealed certain consistency in use of terminology across analyzed frameworks. Phrase search frequencies have shown less uniformity than the search of terms. Overall, the EMA framework's documents referred to "medicinal products" and "marketing authorization(s)," the FDA documents discussed "drug(s)" or "biologic(s)," and the TGA documents referred to "biological(s)." Although high-tier documents often use different terminology they share concepts and themes. Documents originating from the same source have more conjunction in their terminology although they belong to different frameworks (i.e., Good Clinical Practice requirements based on the Declaration of Helsinki, 1964). Automated (software-based) documentary analysis should be obtained for the conceptual and relational analysis.

  13. A biological method of including mineralized human liquid and solid wastes into the mass exchange of bio-technical life support systems

    Science.gov (United States)

    Ushakova, S. A.; Tikhomirov, A. A.; Tikhomirova, N. A.; Kudenko, Yu. A.; Litovka, Yu. A.; Anishchenko, O. V.

    2012-10-01

    The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of "wet incineration" developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m-2 · day-1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m-2 · day-1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.

  14. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  15. Similar effects of disease-modifying antirheumatic drugs, glucocorticoids, and biologic agents on radiographic progression in rheumatoid arthritis: meta-analysis of 70 randomized placebo-controlled or drug-controlled studies, including 112 comparisons

    DEFF Research Database (Denmark)

    Graudal, Niels; Jürgens, Gesche

    2010-01-01

    To define the differences in effects on joint destruction in rheumatoid arthritis (RA) patients between therapy with single and combination disease-modifying antirheumatic drugs (DMARDs), glucocorticoids, and biologic agents.......To define the differences in effects on joint destruction in rheumatoid arthritis (RA) patients between therapy with single and combination disease-modifying antirheumatic drugs (DMARDs), glucocorticoids, and biologic agents....

  16. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  17. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  18. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  19. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  20. Cutaneous hidradenocarcinoma: a clinicopathological, immunohistochemical, and molecular biologic study of 14 cases, including Her2/neu gene expression/amplification, TP53 gene mutation analysis, and t(11;19) translocation.

    Science.gov (United States)

    Kazakov, Dmitry V; Ivan, Doina; Kutzner, Heinz; Spagnolo, Dominic V; Grossmann, Petr; Vanecek, Tomas; Sima, Radek; Kacerovska, Denisa; Shelekhova, Ksenia V; Denisjuk, Natalja; Hillen, Uwe; Kuroda, Naoto; Mukensnabl, Petr; Danis, Dusan; Michal, Michal

    2009-05-01

    We present a series of 14 cases of cutaneous hidradenocarcinomas. The patients included 6 women and 8 men ranging in age at diagnosis from 34 to 93 years. All but 1 patient presented with a solitary nodule. There was no predilection site. One patient presented with multiple lesions representing metastatic nodules. Of 12 patients with available follow-up, 2 died of disease, whereas the remaining 10 patients were alive but 3 of them experienced a local recurrence in the course of the disease. Grossly, the tumors ranged in size from 1.2 to 6 cm. Microscopically, of the 14 primary tumors, 9 showed low-grade cytomorphology, whereas the remaining 5 neoplasms were high-grade lesions. The residuum of a hidradenoma was present in 5 of the 14 primaries. The mitotic rate was highly variable, ranging from 2 to 64 mitoses per 10 high-power field. The cellular composition of the tumors varied slightly, with clear cells, epidermoid cells, and transitional forms being present in each case. In 1 case, there was metaplastic transformation into sarcomatoid carcinoma. Glandular differentiation varied from case to case and appeared most commonly as simple round glands or as cells with intracytoplasmic lumens. Necrosis en masse was detected in 8 specimens. One specimen represented a reexcision and was unusual as it showed a well-demarcated intradermal proliferation of relatively bland clear cells accompanied by an overlying intraepidermal growth of clear cells resembling hidradenoacanthoma simplex. Despite the bland appearance, the tumor metastasized to a lymph node. Immunohistochemically, 5 of the 8 specimens studied for Her2/neu expression were negative, whereas 3 specimens from 2 cases yielded score +2, but all the 3 specimens with score 2+ subsequently proved negative for Her2/neu gene amplification by fluorescence in situ hybridization. Of 10 primaries studied, 4 tumors showed positive p53 immunoreaction in more than 25% of the cells comprising the malignant portion of the lesions

  1. Pump apparatus including deconsolidator

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  2. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...

  3. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  4. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  6. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  7. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  8. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  9. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  10. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  11. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  12. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  13. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  14. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  15. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  16. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  17. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biological treatment of polluted lands

    International Nuclear Information System (INIS)

    Le Brun, S.

    2005-01-01

    Several techniques of lands cleansing exist; they include the thermal techniques, the biological treatment or the disposal. The Biogenie firm is specialized in the biological cleansing of soils on and outside site. (O.M.)

  19. ERLN Biological Focus Area

    Science.gov (United States)

    The Environmental Response Laboratory Network supports the goal to increase national capacity for biological analysis of environmental samples. This includes methods development and verification, technology transfer, and collaboration with USDA, FERN, CDC.

  20. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  1. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  2. Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  3. Molecular Biology Database List.

    Science.gov (United States)

    Burks, C

    1999-01-01

    Molecular Biology Database List (MBDL) includes brief descriptions and pointers to Web sites for the various databases described in this issue as well as other Web sites presenting data sets relevant to molecular biology. This information is compiled into a list (http://www.oup.co.uk/nar/Volume_27/Issue_01/summary/ gkc105_gml.html) which includes links both to source Web sites and to on-line versions of articles describing the databases. PMID:9847130

  4. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  5. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. ... National Center for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560 065, India ...

  6. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  7. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  8. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  9. Cameroon Journal of Experimental Biology: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Instructions to Authors The Cameroon Journal of Experimental Biology (Cameroon J. Exp. Biol.) welcomes contributions in all fields of experimental biology including biochemistry, physiology, pharmacology, toxicology, pathology, environmental biology, microbiology, parasitology, phytochemistry, food ...

  10. Learning Biology with Plant Pathology.

    Science.gov (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  11. Cameroon Journal of Experimental Biology

    African Journals Online (AJOL)

    The Cameroon Journal of Experimental Biology is the official journal of the Cameroon Forum for Biological Sciences (CAFOBIOS). It is an interdisciplinary journal for the publication of original research papers, short communications and review articles in all fields of experimental biology including biochemistry, physiology, ...

  12. Biological Pathways

    Science.gov (United States)

    Skip to main content Biological Pathways Fact Sheet Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features ...

  13. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  14. Regulatory Biology: Depressed Metabolic States

    Science.gov (United States)

    Holton, E. M. (Editor)

    1973-01-01

    Exobiological aspects of depressed metabolism and thermoregulation are discussed for subsequent development of biological space flight experiments. Included is a brief description of differential hypothermia in cancer chemotherapy.

  15. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  17. Biological rhythms

    Science.gov (United States)

    Halberg, F.

    1975-01-01

    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  18. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  19. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  20. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in ...

  1. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  2. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  3. Topics in mathematical biology

    CERN Document Server

    Hadeler, Karl Peter

    2017-01-01

    This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability...

  4. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  5. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  6. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  7. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  8. Teaching systems biology.

    Science.gov (United States)

    Alves, R; Vilaprinyo, E; Sorribas, A

    2011-03-01

    Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].

  9. Dual Causality and the Autonomy of Biology.

    Science.gov (United States)

    Bock, Walter J

    2017-03-01

    Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.

  10. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz

    2016-01-01

    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  11. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  12. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  13. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  14. INNOVATION IN ACCOUNTING BIOLOGIC ASSETS

    OpenAIRE

    Stolуarova M. A.; Shcherbina I. D.

    2016-01-01

    The article describes the innovations in the classification and measurement of biological assets according to IFRS (IAS) 41 "Agriculture". The difficulties faced by agricultural producers using standard, set out in article. The classification based on the adopted amendments, according to which the fruit-bearing plants, previously accounted for as biological assets are measured at fair value are included in the category of fixed assets. The structure of biological assets and main means has bee...

  15. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  16. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  17. Malignant lymphomas (including myeloproliferative disorders)

    International Nuclear Information System (INIS)

    Todd, I.D.H.

    1985-01-01

    This chapter deals with the radiotherapy and cytotoxic chemotherapy of the malignant lymphomas. Included within this group are Hodgkin's disease, non-Hodgkin's lymphoma, mycosis fungoides, and chronic lymphatic leukaemia. A further section deals with the myeloproliferative disorders, including granulocytic leukaemia, polycythaemia vera, and primary thrombocythaemia. Excluded are myeloma and reticulum cell sarcoma of bone and acute leukaemia. With regard to Hodgkin's disease, the past 25 years have seen general recognition of the curative potential of radiotherapy, at least in the local stages, and, more recently, awareness of the ability to achieve long-term survival after combination chemotherapy in generalised or in recurrent disease. At the same time the importance of staging has become appreciated and the introduction of procedures such as lymphography, staging laparotomy, and computer tomography (CT) has enormously increased its reliability. Advances have not been so dramatic in the complex group of non-Hodgkins's lymphomas, but are still very real

  18. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  19. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja

    2010-01-01

    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  20. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  1. Marine Biology and Human Affairs

    Science.gov (United States)

    Russell, F. S.

    1976-01-01

    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  2. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  3. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  4. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  5. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  6. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of cantilever arms (12) contacting the surface of the test sample when performing the movement....... arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area...

  7. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  8. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  9. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    1975-01-01

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  10. A history of the Federation of European Societies of Plant Physiology FESPP since its foundation in 1978--including notes on events preceding the foundation and following re-naming as the Federation of European Societies of Plant Biology (FESPB) in 2002.

    Science.gov (United States)

    Lichtenthaler, Hartmut

    2004-06-01

    After several years of close contacts and extensive discussion between various plant physiologists of different European countries, the Federation of European Societies of Plant Physiology (FESPP) was established in 1978 in Edinburgh. The aim of the FESPP was and remains to promote up-to-date plant physiology research in all European countries and to stimulate scientific cooperation and the exchange of scientists between the different member societies by organizing congresses and workshops as well as editing four (recently five) Federation-affiliated journals. The short History of FESPP presented here covers the preparatory years of the 1970s that led to its actual foundation in 1978, and then its further development up to and following the Federation's reconstitution in 2002 as the Federation of European Societies of Plant Biology (FESPB).

  11. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  12. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  13. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  14. Practical Biology.

    Science.gov (United States)

    Journal of Biological Education, 1983

    1983-01-01

    Describes equipment for recording human breathing (stethographs, tambors, spirometers), construction of pooters (pipettes), field exercise on examining epiphyte distribution on tree bark, and vertebrate skeleton models for teaching locomotion. Includes abstract of student research project examining pH on Colpoda encystment and reviews of…

  15. Radiation biology

    International Nuclear Information System (INIS)

    Neumeister, K.

    1977-01-01

    This chapter is included in a textbook which is primarily intended for medical students. The following topics are dealt with: radiation effects on molecules; chemical and biochemical radiation effects; modification of radiation effects and radiosensitivity; radiation-induced pathomorphological and pathophysiological effects in organs and organ systems; radiation syndrome; radiation effects in embryos and fetuses; genetic radiation effects; carcinogenesis and leukemogenesis after irradiation; and radiation effects after intake of radionuclides

  16. CASPIAN BIOLOGICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    M. K. Guseynov

    2015-01-01

    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  17. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  18. Biologics in spine arthrodesis.

    Science.gov (United States)

    Kannan, Abhishek; Dodwad, Shah-Nawaz M; Hsu, Wellington K

    2015-06-01

    Spine fusion is a tool used in the treatment of spine trauma, tumors, and degenerative disorders. Poor outcomes related to failure of fusion, however, have directed the interests of practitioners and scientists to spinal biologics that may impact fusion at the cellular level. These biologics are used to achieve successful arthrodesis in the treatment of symptomatic deformity or instability. Historically, autologous bone grafting, including iliac crest bong graft harvesting, had represented the gold standard in spinal arthrodesis. However, due to concerns over potential harvest site complications, supply limitations, and associated morbidity, surgeons have turned to other bone graft options known for their osteogenic, osteoinductive, and/or osteoconductive properties. Current bone graft selection includes autograft, allograft, demineralized bone matrix, ceramics, mesenchymal stem cells, and recombinant human bone morphogenetic protein. Each pose their respective advantages and disadvantages and are the focus of ongoing research investigating the safety and efficacy of their use in the setting of spinal fusion. Rh-BMP2 has been plagued by issues of widespread off-label use, controversial indications, and a wide range of adverse effects. The risks associated with high concentrations of exogenous growth factors have led to investigational efforts into nanotechnology and its application in spinal arthrodesis through the binding of endogenous growth factors. Bone graft selection remains critical to successful fusion and favorable patient outcomes, and orthopaedic surgeons must be educated on the utility and limitations of various biologics in the setting of spine arthrodesis.

  19. International Journal of Biological and Chemical Sciences

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, pathology, health sciences, ...

  20. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    Author Guidelines. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG), and is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, molecular biology, physiology, pathology, health sciences, ...

  1. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  2. The Biological Universe

    Science.gov (United States)

    Dick, Steven J.

    1999-12-01

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. The Biological Universe provides a rich and colorful history of the attempts during the twentieth century to answer questions such as whether "biological law" reigns throughout the universe and whether there are other histories, religions, and philosophies outside those on Earth. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a "biophysical cosmology" that seeks confirmation no less than physical views of the universe. This book will fascinate astronomers, historians of science, biochemists, and science fiction readers.

  3. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  4. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R

    2014-01-01

    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  5. The universal numbers. From Biology to Physics.

    Science.gov (United States)

    Marchal, Bruno

    2015-12-01

    I will explain how the mathematicians have discovered the universal numbers, or abstract computer, and I will explain some abstract biology, mainly self-reproduction and embryogenesis. Then I will explain how and why, and in which sense, some of those numbers can dream and why their dreams can glue together and must, when we assume computationalism in cognitive science, generate a phenomenological physics, as part of a larger phenomenological theology (in the sense of the greek theologians). The title should have been "From Biology to Physics, through the Phenomenological Theology of the Universal Numbers", if that was not too long for a title. The theology will consist mainly, like in some (neo)platonist greek-indian-chinese tradition, in the truth about numbers' relative relations, with each others, and with themselves. The main difference between Aristotle and Plato is that Aristotle (especially in its common and modern christian interpretation) makes reality WYSIWYG (What you see is what you get: reality is what we observe, measure, i.e. the natural material physical science) where for Plato and the (rational) mystics, what we see might be only the shadow or the border of something else, which might be non physical (mathematical, arithmetical, theological, …). Since Gödel, we know that Truth, even just the Arithmetical Truth, is vastly bigger than what the machine can rationally justify. Yet, with Church's thesis, and the mechanizability of the diagonalizations involved, machines can apprehend this and can justify their limitations, and get some sense of what might be true beyond what they can prove or justify rationally. Indeed, the incompleteness phenomenon introduces a gap between what is provable by some machine and what is true about that machine, and, as Gödel saw already in 1931, the existence of that gap is accessible to the machine itself, once it is has enough provability abilities. Incompleteness separates truth and provable, and machines can

  6. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  8. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  9. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  10. Hormesis and plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: edwardc@schoolph.umass.edu; Blain, Robyn B. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)

    2009-01-15

    A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals. - Hormesis commonly occurs within plant species.

  11. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  12. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  13. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  14. Systems biology of human atherosclerosis.

    Science.gov (United States)

    Shalhoub, Joseph; Sikkel, Markus B; Davies, Kerry J; Vorkas, Panagiotis A; Want, Elizabeth J; Davies, Alun H

    2014-01-01

    Systems biology describes a holistic and integrative approach to understand physiology and pathology. The "omic" disciplines include genomics, transcriptomics, proteomics, and metabolic profiling (metabonomics and metabolomics). By adopting a stance, which is opposing (yet complimentary) to conventional research techniques, systems biology offers an overview by assessing the "net" biological effect imposed by a disease or nondisease state. There are a number of different organizational levels to be understood, from DNA to protein, metabolites, cells, organs and organisms, even beyond this to an organism's context. Systems biology relies on the existence of "nodes" and "edges." Nodes are the constituent part of the system being studied (eg, proteins in the proteome), while the edges are the way these constituents interact. In future, it will be increasingly important to collaborate, collating data from multiple studies to improve data sets, making them freely available and undertaking integrative analyses.

  15. Learning Biology by Designing

    Science.gov (United States)

    Janssen, Fred; Waarlo, Arend Jan

    2010-01-01

    According to a century-old tradition in biological thinking, organisms can be considered as being optimally designed. In modern biology this idea still has great heuristic value. In evolutionary biology a so-called design heuristic has been formulated which provides guidance to researchers in the generation of knowledge about biological systems.…

  16. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  17. [Biogeography: geography or biology?].

    Science.gov (United States)

    Kafanov, A I

    2009-01-01

    General biogeography is an interdisciplinary science, which combines geographic and biological aspects constituting two distinct research fields: biological geography and geographic biology. These fields differ in the nature of their objects of study, employ different methods and represent Earth sciences and biological sciences, respectively. It is suggested therefore that the classification codes for research fields and the state professional education standard should be revised.

  18. Reproductive biology in the era of genomics biology.

    Science.gov (United States)

    Bazer, Fuller W; Spencer, Thomas E

    2005-08-01

    Current and emerging technologies in reproductive biology, including assisted reproductive technologies and animal cloning, are discussed in the context of the impact of genomics era biology. The discussion focuses on the endocrinology associated with establishment and maintenance of pregnancy, fetal-placental development, lactation, and neonatal survival. Various aspects of uterine biology, including development during the neonatal period and function in adult females, are discussed with respect to reproductive efficiency. It is clear that combining strategies for use of conventional animal models for studying the reproductive system with new genomics technologies will provide exceptional opportunities in discovery research involving data integration and application of functional genomics to benefit animal agriculture and the biomedical community. New and emerging biotechnologies and comparative genomics approaches will greatly advance our understanding of genes that are critical to development of the reproductive system and to key events at each stage of the reproductive cycle of females and males.

  19. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.

  20. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    Science.gov (United States)

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  1. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  2. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    Science.gov (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  3. The Physics of Marine Biology.

    Science.gov (United States)

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  4. Is Biology for the Birds?

    Science.gov (United States)

    Corral, Michael

    1985-01-01

    Advocates ornithology as a second-year biology course to create interest and expose students to a variety of science concepts and skills. Recommended course projects include: species identification, habitat visits, population impact studies, migration patterns, and food preferences. Activities and suggestions are given for a January to June…

  5. Ethics for the "New Biology"

    Science.gov (United States)

    Kieffer, George H.

    1977-01-01

    Discusses biological contributions to the changes occurring in today's society, stressing the need for modifying traditional ethics. Issues include contraception and abortion, fetal research, population control and food supply, individual freedom versus common welfare, and euthanasia. Suggests that study in personal and group ethics be…

  6. Paper Analogies Enhance Biology Teaching.

    Science.gov (United States)

    Stencel, John E.

    1997-01-01

    Describes how to use paper analogies as models to illustrate various concepts in biology, human anatomy, and physiology classes. Models include biochemical paper models, protein papergrams, a paper model of early brain development, and a 3-D paper model of a eukaryotic cell. (AIM)

  7. [Important issues of biological safety].

    Science.gov (United States)

    Onishchenko, G G

    2007-01-01

    The problem of biological security raises alarm due to the real growth of biological threats. Biological security includes a wide scope of problems, the solution of which becomes a part of national security as a necessary condition for the constant development of the country. A number of pathogens, such as human immunodeficiency virus, exotic Ebola and Lassa viruses causing hemorrhagic fever,rotaviruses causing acute intestinal diseases, etc. were first discovered in the last century. Terrorist actions committed in the USA in 2001 using the anthrax pathogen made the problem of biological danger even more important. In Russian Federation, biological threats are counteracted through the united state policy being a part of general state security policy. The biological Security legislation of Russian Federation is chiefly based on the 1992 Federal Law on Security. On the basis of cumulated experience, the President of Russia ratified Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond on 4 December, 2003. The document determines the main directions and stages of the state development in the area of chemical and biological security. The Federal target program Russian Federation's National Program for Chemical and Biological Security is being developed, and its development is to be completed soon in order to perfect the national system for biological security and fulfill Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond, ratified by the President. The new global strategy for control over infectious diseases, presented in the materials of Saint Petersburg summit of the Group of Eight, as well as the substantive part of its elements in Sanitary International Standards, are to a large degree an acknowledgement of the Russian Federation's experience and the algorithm for fighting extremely dangerous infections. This Russia's experience has

  8. [Biological rhythms for anaesthesia and intensive care].

    Science.gov (United States)

    Dispersyn, G; Chassard, D; Pain, L

    2010-06-01

    Knowledge of biological rhythms has led to better understanding of the time-of-day dependent effects of anaesthetic drugs. These chronopharmacological effects are currently explained by the biological rhythms modulating the pharmacokinetic, toxic and pharmacodynamic parameters of these substances. Such effect has been described for general anesthetics, local anaesthetics, analgesics as well as for antibiotics. But recent data also highlight that general anaesthetics, probably part of their brain effects, also alter the regulation of biological rhythms, including the sleep-wake or the endogenous circadian temperature rhythms. This desynchronization of biological rhythms can led to disturbance of the circadian secretion of many substances, including hormones. Finally, biological rhythms have been also described with regard to physiology of pain and cardiovascular physiopathology. The concept of biological rhythm should be present in mind not only for the clinical management of patients but also for setting studies in the field of anaesthesia, pain and intensive care. 2010. Published by Elsevier SAS.

  9. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  10. Biology of Blood

    Science.gov (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  11. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  12. Biological Age Predictors

    OpenAIRE

    Jylh?v?, Juulia; Pedersen, Nancy L.; H?gg, Sara

    2017-01-01

    The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcr...

  13. Human biology of taste.

    Science.gov (United States)

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  14. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  15. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015

  16. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Evolutionary Biology Today - The Domain of Evolutionary Biology ... Keywords. Evolution; natural selection; biodiversity; fitness; adaptation. Author Affiliations. Amitabh Joshi1. Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research P.Box 6436, Jakkur Bangalore 560 065, India.

  17. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  18. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  19. Biological Therapies for Cancer

    Science.gov (United States)

    ... Page What is biological therapy? What is the immune system and what role does it have in biological therapy for cancer? ... trials (research studies involving people). What is the immune system and what role does it have in biological therapy for cancer? ...

  20. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  1. Nanoelectronics Meets Biology

    Science.gov (United States)

    Lieber, Charles

    2012-02-01

    Nanoscale materials enable unique opportunities at the interface between the physical and life sciences, and the interface between nanoelectronic devices and biological systems makes possible communication between these two diverse systems at the length scale relevant to biological function. In this presentation, the development of nanowire nanoelectronic devices and their application as powerful tools for the life sciences will be discussed. First, a brief introduction to nanowire nanoelectronic devices as well as comparisons to other electrophysiological tools will be presented to illuminate the unique strengths and opportunities enabled at the nanoscale. Second, illustration of detection capabilities including signal-to-noise and applications for real-time label-free detection of biochemical markers down to the level of single molecules will be described. Third, the use of nanowire nanoelectronics for building interfaces to cells and tissue will be reviewed. Multiplexed measurements made from nanowire devices fabricated on flexible and transparent substrates recording signal propagation across cultured cells, acute tissue slices and intact organs will be illustrated, including quantitative analysis of the high simultaneous spatial and temporal resolution achieved with these nanodevices. Specific examples of subcellular and near point detection of extracellular potential will be used to illustrate the unique capabilities, such as recording localized potential changes due to neuronal activities simultaneously across many length scales, which provide key information for functional neural circuit studies. Last, emerging opportunities for the creation of powerful new probes based on controlled synthesis and/or bottom-up assembly of nanomaterials will be described with an emphasis on nanowire probes demonstrating the first intracellular transistor recordings, and the development of ``cyborg'' tissue. The prospects for blurring the distinction between nanoelectronic

  2. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  3. Biological Control in Agroecosystems

    Science.gov (United States)

    Batra, Suzanne W. T.

    1982-01-01

    Living organisms are used as biological pest control agents in (i) classical biological control, primarily for permanent control of introduced perennial weed pests or introduced pests of perennial crops; (ii) augmentative biological control, for temporary control of native or introduced pests of annual crops grown in monoculture; and (iii) conservative or natural control, in which the agroecosystem is managed to maximize the effect of native or introduced biological control agents. The effectiveness of biological control can be improved if it is based on adequate ecological information and theory, and if it is integrated with other pest management practices.

  4. [Affective disorders and biological rhythms].

    Science.gov (United States)

    Le Strat, Y; Ramoz, N; Gorwood, P

    2008-06-01

    Disruptions of circadian rhythms are described in affective disorders, including unipolar and bipolar disorder, but also seasonal affective disorder. Sleep-wake and hormone circadian rhythms are among the most quoted examples. Depression could be conceptualized as a desynchronization between the endogenous circadian pacemaker and the exogenous stimuli, such as sunlight and social rhythms. Accordingly, Clock genes have been studied and the literature suggests that variants in these genes confer a higher risk of relapse, more sleep disturbances associated with depression, as well as incomplete treatment response. Most of therapeutic interventions in depression have an impact on biological rhythms. Some of them exclusively act via a biological pathway, such as sleep deprivation or light therapy. Some psychosocial interventions are specifically focusing on social rhythms, particularly in bipolar disorder, in which the promotion of stabilization is emphasized. Finally, all antidepressant medications could improve biological rhythms, but some new agents are now totally focusing this novel approach for the treatment of depression.

  5. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The biology of cultural conflict

    Science.gov (United States)

    Berns, Gregory S.; Atran, Scott

    2012-01-01

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives—how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour—but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment. PMID:22271779

  7. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  8. Biologic therapy of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Damjanov Nemanja

    2009-01-01

    Full Text Available Rheumatoid arthritis (RA and juvenile idiopathic/rheumatoid arthritis (JIA are chronic, inflammatory, systemic, auto-immune diseases characterized by chronic arthritis leading to progressive joint erosions. The individual functional and social impact of rheumatoid arthritis is of great importance. Disability and joint damage occur rapidly and early in the course of the disease. The remarkably improved outcomes have been achieved initiating biologic therapy with close monitoring of disease progression. Biologic agents are drugs, usually proteins, which can influence chronic immune dysregulation resulting in chronic arthritis. According to the mechanism of action these drugs include: 1 anti-TNF drugs (etanercept, infiximab, adalimumab; 2 IL-1 blocking drugs (anakinra; 3 IL-6 blocking drugs (tocilizumab; 4 agents blocking selective co-stimulation modulation (abatacept; 5 CD 20 blocking drugs (rituximab. Biologics targeting TNF-alpha with methotrexate have revolutionized the treatment of RA, producing significant improvement in clinical, radiographic, and functional outcomes not seen previously. The new concept of rheumatoid arthritis treatment defines early diagnosis, early aggressive therapy with optimal doses of disease modifying antirheumatic drugs (DMARDs and, if no improvement has been achieved during six months, early introduction of biologic drugs. The three-year experience of biologic therapy in Serbia has shown a positive effect on disease outcome.

  9. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  10. Evolutionary Biology in the Medical School Curriculum.

    Science.gov (United States)

    Neese, Randolph M.; Schiffman, Joshua D.

    2003-01-01

    Presents a study in which a questionnaire was given to deans at North American medical schools to determine which aspects of evolutionary biology are included in the curricula and the factors that influence this. Suggests that most future physicians should learn evolutionary biology as undergraduates if they are to learn it at all. (Author/NB)

  11. A comparison of biological and cultural evolution

    Indian Academy of Sciences (India)

    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural ...

  12. A comparison of biological and cultural evolution

    Indian Academy of Sciences (India)

    Abstract. This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the ...

  13. Biologic fatigue in psoriasis.

    Science.gov (United States)

    Levin, Ethan C; Gupta, Rishu; Brown, Gabrielle; Malakouti, Mona; Koo, John

    2014-02-01

    Over the past 15 years, biologic medications have greatly advanced psoriasis therapy. However, these medications may lose their efficacy after long-term use, a concept known as biologic fatigue. We sought to review the available data on biologic fatigue in psoriasis and identify strategies to help clinicians optimally manage patients on biologic medications in order to minimize biologic fatigue. We reviewed phase III clinical trials for the biologic medications used to treat psoriasis and performed a PubMed search for the literature that assessed the loss of response to biologic therapy. In phase III clinical trials of biologic therapies for the treatment of psoriasis, 20-32% of patients lost their PASI-75 response during 0.8-3.9 years of follow-up. A study using infliximab reported the highest percentage of patients who lost their response (32%) over the shortest time-period (0.8 years). Although not consistently reported across all studies, the presence of antidrug antibodies was associated with the loss of response to treatment with infliximab and adalimumab. Biologic fatigue may be most frequent in those patients using infliximab. Further studies are needed to identify risk factors associated with biologic fatigue and to develop meaningful antidrug antibody assays.

  14. Statistics for Sleep and Biological Rhythms Research.

    Science.gov (United States)

    Klerman, Elizabeth B; Wang, Wei; Phillips, Andrew J K; Bianchi, Matt T

    2017-02-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistical topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article, we address issues related to the collection of multiple data points from the same organism or system at different times, since such longitudinal data collection is fundamental to the assessment of biological rhythms. Rhythmic longitudinal data require additional specific statistical considerations, ranging from curve fitting to threshold definitions to accounting for correlation structure. We discuss statistical analyses of longitudinal data including issues of correlational structure and stationarity, markers of biological rhythms, demasking of biological rhythms, and determining phase, waveform, and amplitude of biological rhythms.

  15. Radiation biology for the non-biologist

    International Nuclear Information System (INIS)

    Myers, D.K.

    1978-06-01

    This colloquium introduces some of the general concepts used in cell biology and in the study of the effects of ionizing radiation on living organisms. The present research activities in radiation biology in the Biology Branch at the Chalk River Nuclear Laboratories cover a broad range of interests in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into significant biological effects, including the eventual production of cancers and hereditary defects. The main theme of these research activities is an understanding of the mechanisms by which radiation damage to DNA (the carrier of hereditary information in all living organisms) can be actively repaired by the living cell. Advances in our understanding of these processes have broad implications for other areas of biology but also bear directly on the assessment of the biological hazards of ionizing radiation. The colloquium concludes with a brief discussion of the hazards of low-level radiation. (author)

  16. Biological Dual-Use Research and Synthetic Biology of Yeast.

    Science.gov (United States)

    Cirigliano, Angela; Cenciarelli, Orlando; Malizia, Andrea; Bellecci, Carlo; Gaudio, Pasquale; Lioj, Michele; Rinaldi, Teresa

    2017-04-01

    In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.

  17. Static, Lightweight Includes Resolution for PHP

    NARCIS (Netherlands)

    M.A. Hills (Mark); P. Klint (Paul); J.J. Vinju (Jurgen)

    2014-01-01

    htmlabstractDynamic languages include a number of features that are challenging to model properly in static analysis tools. In PHP, one of these features is the include expression, where an arbitrary expression provides the path of the file to include at runtime. In this paper we present two

  18. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  19. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; van der Zwan, Jan Maarten; Izarzugaza, Isabel; Jaal, Jana; Treasure, Tom; Foschi, Roberto; Ricardi, Umberto; Groen, Harry; Tavilla, Andrea; Ardanaz, Eva

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  20. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; Zwan, J.M.V.D.; Izarzugaza, I.; Jaal, J.; Treasure, T.; Foschi, R.; Ricardi, U.; Groen, H.; Tavilla, A.; Ardanaz, E.

    2012-01-01

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  1. Pathological and Biological Aspects of Colorectal Cancer Treatment.

    NARCIS (Netherlands)

    Gosens, M.J.E.M.

    2008-01-01

    Pathological and biological aspects of colorectal cancer treatment. This thesis describes several pathological and biological aspects of colorectal cancer treatment. Different patient populations were investigated including patients with mobile rectal cancer enrolled in the Dutch TME trial, patients

  2. Pathological and biological aspects of colorectal cancer treatment

    NARCIS (Netherlands)

    Gosens, Marleen Johanna Elisabeth Maria

    2008-01-01

    Pathological and biological aspects of colorectal cancer treatment. This thesis describes several pathological and biological aspects of colorectal cancer treatment. Different patient populations were investigated including patients with mobile rectal cancer enrolled in the Dutch TME trial, patients

  3. [Historic Development of Clinical Biology Laboratories in Luxembourg].

    Science.gov (United States)

    Wennig R; Humbel R-L

    2014-01-01

    After a short overview on the development of diagnostic tools in clinical biology at an international level from Antiquity towards today, a history of the clinical biology including public and private institutions in Luxembourg will be outlined.

  4. Review of Biological Network Data and Its Applications

    Directory of Open Access Journals (Sweden)

    Donghyeon Yu

    2013-12-01

    Full Text Available Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  5. Biological tracer method

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  6. Systems biology in critical-care nursing.

    Science.gov (United States)

    Schallom, Lynn; Thimmesch, Amanda R; Pierce, Janet D

    2011-01-01

    Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.

  7. Internet addiction neuroscientific approaches and therapeutical implications including smartphone addiction

    CERN Document Server

    Reuter, Martin

    2017-01-01

    The second edition of this successful book provides further and in-depth insight into theoretical models dealing with Internet addiction, as well as includes new therapeutical approaches. The editors also broach the emerging topic of smartphone addiction. This book combines a scholarly introduction with state-of-the-art research in the characterization of Internet addiction. It is intended for a broad audience including scientists, students and practitioners. The first part of the book contains an introduction to Internet addiction and their pathogenesis. The second part of the book is dedicated to an in-depth review of neuroscientific findings which cover studies using a variety of biological techniques including brain imaging and molecular genetics. The third part of the book focuses on therapeutic interventions for Internet addiction. The fourth part of the present book is an extension to the first edition and deals with a new emerging potential disorder related to Internet addiction – smartphone addicti...

  8. Biological and Chemical Impact to Educational Facilities.

    Science.gov (United States)

    Manicone, Santo

    2002-01-01

    Discusses preparing an educational facility to address the threat of biological or chemical terrorism, including understanding the potential impact, implementing information and communication systems, and improving medical surveillance and awareness. (EV)

  9. Bibliography of marine biology in South Africa

    CSIR Research Space (South Africa)

    Darracott, DA

    1980-02-01

    Full Text Available This bibliography was sponsored by the Marine Biology Section of the South African National Committee for Oceanographic Research (SANCOR). It has been attempted to include all publications which appeared before the end of 1977, either in South...

  10. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  11. Ethnobotanical and biological activities of Leptadenia pyrotechnica ...

    African Journals Online (AJOL)

    Conclusion: This review includes the substance of different ethnobotanical uses, phytochemistry and exclusive capability of this plant in the field of anti-microbial and human disease activities. Key words: Leptadenia pyrotechnica, Biological activities, Desert plant, Ethnobotanical, Phytochemical activity, phytochemistry.

  12. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  13. Composite Pressure Vessel Including Crack Arresting Barrier

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  14. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  15. Including Organizational Cultural Parameters in Work Processes

    National Research Council Canada - National Science Library

    Handley, Holly A; Heacox, Nancy J

    2004-01-01

    .... In order to represent the organizational impact on the work process, five organizational cultural parameters were identified and included in an algorithm for modeling and simulation of cultural...

  16. Haemophilus influenzae Disease (Including Hib) Symptoms

    Science.gov (United States)

    ... Links Global Hib Vaccination Hib Vaccination Meningitis Pneumonia Sepsis ... Haemophilus influenzae , including H. influenzae type b or Hib, can cause many different kinds of infections . Symptoms depend on ...

  17. Structure and function in biology

    International Nuclear Information System (INIS)

    Hirs, C.H.W.

    1976-01-01

    A summary is given of the history of the developments of structural chemistry in biology beginning with the work of the bacteriologist Ehrlich leading to a comprehensive examination of the influence of size and configuration on the interaction between specific antibodies and side-chain determinants. Recent developments include the recognition of a higher order of specificity in the interaction of proteins with one another

  18. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  19. Biologic Patterns of Disability.

    Science.gov (United States)

    Granger, Carl V.; Linn, Richard T.

    2000-01-01

    Describes the use of Rasch analysis to elucidate biological patterns of disability present in the functional ability of persons undergoing medical rehabilitation. Uses two measures, one for inpatients and one for outpatients, to illustrate the approach and provides examples of some biological patterns of disability associated with specific types…

  20. Archives: Tropical Freshwater Biology

    African Journals Online (AJOL)

    Items 1 - 23 of 23 ... Archives: Tropical Freshwater Biology. Journal Home > Archives: Tropical Freshwater Biology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 23 of 23 Items ...

  1. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.

    2010-01-01

    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  2. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  3. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  4. Introducing systems biology for nursing science.

    Science.gov (United States)

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative.

  5. Cancer research meets evolutionary biology.

    Science.gov (United States)

    Pepper, John W; Scott Findlay, C; Kassen, Rees; Spencer, Sabrina L; Maley, Carlo C

    2009-02-01

    There is increasing evidence that Darwin's theory of evolution by natural selection provides insights into the etiology and treatment of cancer. On a microscopic scale, neoplastic cells meet the conditions for evolution by Darwinian selection: cell reproduction with heritable variability that affects cell survival and replication. This suggests that, like other areas of biological and biomedical research, Darwinian theory can provide a general framework for understanding many aspects of cancer, including problems of great clinical importance. With the availability of raw molecular data increasing rapidly, this theory may provide guidance in translating data into understanding and progress. Several conceptual and analytical tools from evolutionary biology can be applied to cancer biology. Two clinical problems may benefit most from the application of Darwinian theory: neoplastic progression and acquired therapeutic resistance. The Darwinian theory of cancer has especially profound implications for drug development, both in terms of explaining past difficulties, and pointing the way toward new approaches. Because cancer involves complex evolutionary processes, research should incorporate both tractable (simplified) experimental systems, and also longitudinal observational studies of the evolutionary dynamics of cancer in laboratory animals and in human patients. Cancer biology will require new tools to control the evolution of neoplastic cells.

  6. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  7. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  8. Pathogenesis and biology.

    Science.gov (United States)

    Winkler, Frank

    2018-01-01

    Metastasis to the brain is an increasing complication of solid cancers. Fortunately, our understanding of its pathogenesis has greatly increased in the last decade, with crucial insights into the molecular and cellular determinants of successful brain colonization; some aspects remain less well understood. The latter include the exact features of brain metastasis-initiating cancer cells, and a potential premetastatic niche. It is clear that a brain-arrested cancer cell has to master a sequence of steps to eventually grow to a clinically relevant brain metastasis. Various brain-specific cell types and molecular niches promote or hinder brain colonization in a dynamic and reciprocal manner. After mandatory extravasation and colonization of a brain-specific perivascular niche, the cancer cell can stay dormant, or further grow by dynamic interactions with cerebral blood vessels. In addition, the activation of certain molecular pathways on site of the cancer cell which are related to growth, motility, survival, and adaptation to the brain environment appears also important, given their characteristic modification in brain metastases of patients. A deeper understanding of the most vulnerable steps of the brain metastatic cascade may foster the development of novel preventive approaches, and that of core biologic mechanisms for macrometastatic growth and persistence will help to develop better therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  10. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  11. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  12. Biological Age Predictors

    Directory of Open Access Journals (Sweden)

    Juulia Jylhävä

    2017-07-01

    Full Text Available The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcriptomic predictors, proteomic predictors, metabolomics-based predictors, and composite biomarker predictors. Promising developments consider multiple combinations of these various types of predictors, which may shed light on the aging process and provide further understanding of what contributes to healthy aging. Thus far, the most promising, new biological age predictor is the epigenetic clock; however its true value as a biomarker of aging requires longitudinal confirmation.

  13. New Approaches in Cancer Biology Can Inform the Biology Curriculum.

    Science.gov (United States)

    Jones, Lynda; Gordon, Diana; Zelinski, Mary

    2018-03-01

    Students tend to be very interested in medical issues that affect them and their friends and family. Using cancer as a hook, the ART of Reproductive Medicine: Oncofertility curriculum (free, online, and NIH sponsored) has been developed to supplement the teaching of basic biological concepts and to connect biology and biomedical research. This approach allows integration of up-to-date information on cancer and cancer treatment, cell division, male and female reproductive anatomy and physiology, cryopreservation, fertility preservation, stem cells, ethics, and epigenetics into an existing biology curriculum. Many of the topics covered in the curriculum relate to other scientific disciplines, such as the latest developments in stem cell research including tissue bioengineering and gene therapy for inherited mitochondrial disease, how epigenetics occurs chemically to affect gene expression or suppression and how it can be passed down through the generations, and the variety of biomedical careers students could pursue. The labs are designed to be open-ended and inquiry-based, and extensions to the experiments are provided so that students can explore questions further. Case studies and ethical dilemmas are provided to encourage thoughtful discussion. In addition, each chapter of the curriculum includes links to scientific papers, additional resources on each topic, and NGSS alignment.

  14. Including Indigenous Minorities in Decision-Making

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand...

  15. Lung Disease Including Asthma and Adult Vaccination

    Science.gov (United States)

    ... Diseases Resources Lung Disease including Asthma and Adult Vaccination Language: English (US) Español (Spanish) Recommend on Facebook ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  16. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  17. Biology and pathogenesis of Acanthamoeba

    Directory of Open Access Journals (Sweden)

    Siddiqui Ruqaiyyah

    2012-01-01

    Full Text Available Abstract Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens.

  18. Biology and pathogenesis of Acanthamoeba

    Science.gov (United States)

    2012-01-01

    Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens. PMID:22229971

  19. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    Science.gov (United States)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  20. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  1. A timeless biology.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S

    2018-05-01

    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Noise in biological circuits.

    Science.gov (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  3. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  4. Plant systems biology: insights, advances and challenges.

    Science.gov (United States)

    Sheth, Bhavisha P; Thaker, Vrinda S

    2014-07-01

    Plants dwelling at the base of biological food chain are of fundamental significance in providing solutions to some of the most daunting ecological and environmental problems faced by our planet. The reductionist views of molecular biology provide only a partial understanding to the phenotypic knowledge of plants. Systems biology offers a comprehensive view of plant systems, by employing a holistic approach integrating the molecular data at various hierarchical levels. In this review, we discuss the basics of systems biology including the various 'omics' approaches and their integration, the modeling aspects and the tools needed for the plant systems research. A particular emphasis is given to the recent analytical advances, updated published examples of plant systems biology studies and the future trends.

  5. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard

    2017-01-01

    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  6. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  7. Biological Potential in Serpentinizing Systems

    Science.gov (United States)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  8. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  9. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  10. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  11. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  12. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  13. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  14. Practising Conservation Biology in a Virtual Rainforest World

    Science.gov (United States)

    Schedlbauer, Jessica L.; Nadolny, Larysa; Woolfrey, Joan

    2016-01-01

    The interdisciplinary science of conservation biology provides undergraduate biology students with the opportunity to connect the biological sciences with disciplines including economics, social science and philosophy to address challenging conservation issues. Because of its complexity, students do not often have the opportunity to practise…

  15. 75 FR 52752 - Request for Comments on Synthetic Biology

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  16. Introductory Biology Labs... They Just Aren't Sexy Enough!

    Science.gov (United States)

    Cotner, Sehoya; Gallup, Gordon G., Jr.

    2011-01-01

    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  17. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. The International Journal of Biological and Chemical Sciences (IJBCS) is a journal published by International Formulae Group (IFG). It is devoted to the publication of contributions in all fields of biology including microbiology, parasitology, biochemistry, biophysics, molecular biology, physiology, ...

  18. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.

    1977-01-01

    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  19. The Biology of Neisseria Adhesins

    Directory of Open Access Journals (Sweden)

    Miao-Chiu Hung

    2013-07-01

    Full Text Available Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.

  20. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  1. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  2. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  3. [Physical methods and molecular biology].

    Science.gov (United States)

    Serdiuk, I N

    2009-01-01

    The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.

  4. Biological Feasibility of Measles Eradication

    Science.gov (United States)

    Strebel, Peter

    2011-01-01

    Recent progress in reducing global measles mortality has renewed interest in measles eradication. Three biological criteria are deemed important for disease eradication: (1) humans are the sole pathogen reservoir; (2) accurate diagnostic tests exist; and (3) an effective, practical intervention is available at reasonable cost. Interruption of transmission in large geographical areas for prolonged periods further supports the feasibility of eradication. Measles is thought by many experts to meet these criteria: no nonhuman reservoir is known to exist, accurate diagnostic tests are available, and attenuated measles vaccines are effective and immunogenic. Measles has been eliminated in large geographical areas, including the Americas. Measles eradication is biologically feasible. The challenges for measles eradication will be logistical, political, and financial. PMID:21666201

  5. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  6. Thermal Stabilization of Biologics with Photoresponsive Hydrogels.

    Science.gov (United States)

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W

    2018-03-12

    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex

  7. Integrating biological redesign: where synthetic biology came from and where it needs to go.

    Science.gov (United States)

    Way, Jeffrey C; Collins, James J; Keasling, Jay D; Silver, Pamela A

    2014-03-27

    Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Diversification of Smallholder Tobacco Systems to include ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tobacco is the mainstay of the economy of Malawi, accounting for over 70% of export earnings. Of the 100 000 members of the National Smallholder Farmers' Association of Malawi (NASFAM), 60% rely on tobacco for their sole source of income. Like their counterparts elsewhere, they face many difficulties, including: ...

  9. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  10. Including Children Dependent on Ventilators in School.

    Science.gov (United States)

    Levine, Jack M.

    1996-01-01

    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  11. Musculoskeletal ultrasound including definitions for ultrasonographic pathology

    DEFF Research Database (Denmark)

    Wakefield, RJ; Balint, PV; Szkudlarek, Marcin

    2005-01-01

    Ultrasound (US) has great potential as an outcome in rheumatoid arthritis trials for detecting bone erosions, synovitis, tendon disease, and enthesopathy. It has a number of distinct advantages over magnetic resonance imaging, including good patient tolerability and ability to scan multiple joint...

  12. Modernizing Agrifood Markets : Including Small Producers in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Against this baseline data, they will endeavor to identify success stories or examples of interventions that ensure small farmers' access to modernizing agrifood markets. The research will inform a set of policy recommendations to be promoted through policy platforms in a large number of developing countries, including but ...

  13. Including Students with Visual Impairments: Softball

    Science.gov (United States)

    Brian, Ali; Haegele, Justin A.

    2014-01-01

    Research has shown that while students with visual impairments are likely to be included in general physical education programs, they may not be as active as their typically developing peers. This article provides ideas for equipment modifications and game-like progressions for one popular physical education unit, softball. The purpose of these…

  14. Numerical simulation of spark ignition including ionization

    NARCIS (Netherlands)

    Thiele, M; Selle, S; Riedel, U; Warnatz, J; Maas, U

    2000-01-01

    A detailed understanding of the processes associated Midi spark ignition, as a first step during combustion, is of great importance fur clean operation of spark ignition engines. In the past 10 years. a growing concern for environmental protection, including low emission of pollutants, has increased

  15. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  16. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  17. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  18. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  19. Study of biological compartments

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  20. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  1. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  2. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  3. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  4. Standardization in synthetic biology.

    Science.gov (United States)

    Müller, Kristian M; Arndt, Katja M

    2012-01-01

    Synthetic Biology is founded on the idea that complex biological systems are built most effectively when the task is divided in abstracted layers and all required components are readily available and well-described. This requires interdisciplinary collaboration at several levels and a common understanding of the functioning of each component. Standardization of the physical composition and the description of each part is required as well as a controlled vocabulary to aid design and ensure interoperability. Here, we describe standardization initiatives from several disciplines, which can contribute to Synthetic Biology. We provide examples of the concerted standardization efforts of the BioBricks Foundation comprising the request for comments (RFC) and the Registry of Standardized Biological parts as well as the international Genetically Engineered Machine (iGEM) competition.

  5. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  6. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    . Some of the other important examples are chlorophyll, haemoglobin, myoglobin and cytochromes. The common feature in .... Biochemical Function (in vivo Studies). B. 12 functions in biological systems as a coenzyme. That is, it binds.

  7. Allostatic load and biological anthropology.

    Science.gov (United States)

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  8. Graphs in molecular biology

    Directory of Open Access Journals (Sweden)

    Falcon Seth

    2007-09-01

    Full Text Available Abstract Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network.

  9. On nonepistemic values in conservation biology.

    Science.gov (United States)

    Baumgaertner, Bert; Holthuijzen, Wieteke

    2017-02-01

    Conservation biology is a uniquely interdisciplinary science with strong roots in ecology, but it also embraces a value-laden and mission-oriented framework. This combination of science and values causes conservation biology to be at the center of critique regarding the discipline's scientific credibility-especially the division between the realms of theory and practice. We identify this dichotomy between seemingly objective (fact-based) and subjective (value-laden) practices as the measure-value dichotomy, whereby measure refers to methods and analyses used in conservation biology (i.e., measuring biodiversity) and value refers to nonepistemic values. We reviewed and evaluated several landmark articles central to the foundation of conservation biology and concepts of biodiversity with respect to their attempts to separate measures and values. We argue that the measure-value dichotomy is false and that conservation biology can make progress in ways unavailable to other disciplines because its practitioners are tasked with engaging in both the realm of theory and the realm of practice. The entanglement of measures and values is by no means a weakness of conservation biology. Because central concepts such as biodiversity contain both factual and evaluative aspects, conservation biologists can make theoretical progress by examining, reviewing, and forming the values that are an integral part of those concepts. We suggest that values should be included and analyzed with respect to the methods, results, and conclusions of scientific work in conservation biology. © 2016 Society for Conservation Biology.

  10. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  11. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  12. Metabolic systems biology: a brief primer.

    Science.gov (United States)

    Edwards, Lindsay M

    2017-05-01

    In the early to mid-20th century, reductionism as a concept in biology was challenged by key thinkers, including Ludwig von Bertalanffy. He proposed that living organisms were specific examples of complex systems and, as such, they should display characteristics including hierarchical organisation and emergent behaviour. Yet the true study of complete biological systems (for example, metabolism) was not possible until technological advances that occurred 60 years later. Technology now exists that permits the measurement of complete levels of the biological hierarchy, for example the genome and transcriptome. The complexity and scale of these data require computational models for their interpretation. The combination of these - systems thinking, high-dimensional data and computation - defines systems biology, typically accompanied by some notion of iterative model refinement. Only sequencing-based technologies, however, offer full coverage. Other 'omics' platforms trade coverage for sensitivity, although the densely connected nature of biological networks suggests that full coverage may not be necessary. Systems biology models are often characterised as either 'bottom-up' (mechanistic) or 'top-down' (statistical). This distinction can mislead, as all models rely on data and all are, to some degree, 'middle-out'. Systems biology has matured as a discipline, and its methods are commonplace in many laboratories. However, many challenges remain, especially those related to large-scale data integration. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Biologic width dimensions--a systematic review.

    Science.gov (United States)

    Schmidt, Julia C; Sahrmann, Philipp; Weiger, Roland; Schmidlin, Patrick R; Walter, Clemens

    2013-05-01

    Consideration of the biologic width in restorative dentistry seems to be important for maintaining periodontal health. To evaluate the dimensions of the biologic width in humans. A systematic literature search was performed for publications published by 28 September 2012 using five different electronic databases; this search was complemented by a manual search. Two reviewers conducted the study selection, data collection, and validity assessment. The PRISMA criteria were applied. From 615 titles identified by the search strategy, 14 publications were included and six were suitable for meta-analyses. Included studies were published from the years 1924 to 2012. They differed with regard to measurements of the biologic width. Mean values of the biologic width obtained from two meta-analyses ranged from 2.15 to 2.30 mm, but large intra- and inter-individual variances (subject sample range: 0.2 - 6.73 mm) were observed. The tooth type and site, the presence of a restoration and periodontal diseases/surgery affected the dimensions of the biologic width. Pronounced heterogeneity among studies regarding methods and outcome measures exists. No universal dimension of the biologic width appears to exist. Establishment of periodontal health is suggested prior to the assessment of the biologic width within reconstructive dentistry. © 2013 John Wiley & Sons A/S.

  14. Photoactive devices including porphyrinoids with coordinating additives

    Science.gov (United States)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  15. Clinical pharmacology considerations in biologics development

    Science.gov (United States)

    Zhao, Liang; Ren, Tian-hua; Wang, Diane D

    2012-01-01

    Biologics, including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones, have unique characteristics compared to small molecules. This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective, the determination of a starting dose for first-in-human (FIH) studies, and dosing regimen optimisation for phase II/III clinical trials. Subsequently, typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised, including drug-drug interactions, QTc prolongation, immunogenicity, and studies in specific populations. The relationships between the molecular structure of biologics, their pharmacokinetic and pharmacodynamic characteristics, and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram. PMID:23001474

  16. Clinical pharmacology considerations in biologics development.

    Science.gov (United States)

    Zhao, Liang; Ren, Tian-hua; Wang, Diane D

    2012-11-01

    Biologics, including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones, have unique characteristics compared to small molecules. This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective, the determination of a starting dose for first-in-human (FIH) studies, and dosing regimen optimisation for phase II/III clinical trials. Subsequently, typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised, including drug-drug interactions, QTc prolongation, immunogenicity, and studies in specific populations. The relationships between the molecular structure of biologics, their pharmacokinetic and pharmacodynamic characteristics, and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram.

  17. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  18. Power generation method including membrane separation

    Science.gov (United States)

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  19. Should Trade Agreements Include Environmental Policy?

    OpenAIRE

    Josh Ederington

    2010-01-01

    This article examines the extent to which environmental and trade policies should be treated equally, or symmetrically, in international negotiations. It reviews the recent economics literature on trade and the environment to address two questions. First, should trade negotiations include negotiations over environmental policies and the setting of binding environmental standards? Second, if there are grounds for international environmental negotiations, should environmental agreements b...

  20. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  1. Revisiting Hansen Solubility Parameters by Including Thermodynamics.

    Science.gov (United States)

    Louwerse, Manuel J; Maldonado, Ana; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-11-03

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy and enthalpy, several corrections are suggested that make the methodology thermodynamically sound without losing its ease of use. The most important corrections include accounting for the solvent molecules' size, the destruction of the solid's crystal structure, and the specificity of hydrogen-bonding interactions, as well as opportunities to predict the solubility at extrapolated temperatures. Testing the original and the improved methods on a large industrial dataset including solvent blends, fit qualities improved from 0.89 to 0.97 and the percentage of correct predictions rose from 54 % to 78 %. Full Matlab scripts are included in the Supporting Information, allowing readers to implement these improvements on their own datasets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chemical biology approaches for studying posttranslational modifications.

    Science.gov (United States)

    Yang, Aerin; Cho, Kyukwang; Park, Hee-Sung

    2017-09-13

    Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.

  3. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  4. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  5. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  6. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  7. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  8. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  9. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  10. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  11. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  12. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  13. Radiological/biological/aerosol removal system

    Science.gov (United States)

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  14. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  15. Radiation biology in Canada 1962-63

    International Nuclear Information System (INIS)

    Thacker, D.G.

    1963-02-01

    A survey of the research projects in radiation biology being carried out in Canada during the fiscal year 1962-63. The report includes the names of the investigators, their location, a brief description of the projects and information on the financial support being provided. A classification of the projects into areas of specific interest is also included. (author)

  16. Biological activities of synthesized silver nanoparticles from ...

    Indian Academy of Sciences (India)

    Nanotechnology is interdisciplinary which includes physics, chemistry, biology, material science and medicine. Nanotechnology is a universal term for the creation, manip ... range of medical devices including bone cement, surgical instruments, surgical masks, etc. Synthesis of noble metal na- noparticles, in particular, silver ...

  17. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  18. Emerging frontiers in radiation biology

    International Nuclear Information System (INIS)

    Singh, B.B.

    1996-01-01

    Radiation biology owes its origin to the spectacular success in the treatment of human diseases by x-rays and radium, just after their respective discoveries in 1895-96. From the very inception it has attracted researchers from all disciplines of science. The target and hit theory developed by physicists, dominated the scene till the advent of radiation chemistry concepts which offered an entirely different perspective to the mechanisms involved in biological effects of radiations and their modification by endogenous and exogenous agents like radioprotectors and radiosensitisers including hyperthermia. The applied aspect of radiation biology mainly relates to radiation therapy of cancer which, in spite of its long existence, is still to achieve scientific perfection. Nevertheless, it did not wait -and fortunately so-, for its radiobiological rationality but continued its development to be the main modality for cancer treatment today. Several approaches are now being attempted to improve its efficacy by selectively damaging the cancerous cells while sparing the normal tissues and also by devising suitable predictive assays for radioresponse of different tumours to enable individualisation of treatment schedules. (author). 99 refs., 1 fig., 2 tabs

  19. Including gauge corrections to thermal leptogenesis

    International Nuclear Information System (INIS)

    Huetig, Janine

    2013-01-01

    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  20. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  1. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  2. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  3. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  4. Musculoskeletal ultrasound including definitions for ultrasonographic pathology

    DEFF Research Database (Denmark)

    Wakefield, RJ; Balint, PV; Szkudlarek, Marcin

    2005-01-01

    Ultrasound (US) has great potential as an outcome in rheumatoid arthritis trials for detecting bone erosions, synovitis, tendon disease, and enthesopathy. It has a number of distinct advantages over magnetic resonance imaging, including good patient tolerability and ability to scan multiple joints...... in a short period of time. However, there are scarce data regarding its validity, reproducibility, and responsiveness to change, making interpretation and comparison of studies difficult. In particular, there are limited data describing standardized scanning methodology and standardized definitions of US...... pathologies. This article presents the first report from the OMERACT ultrasound special interest group, which has compared US against the criteria of the OMERACT filter. Also proposed for the first time are consensus US definitions for common pathological lesions seen in patients with inflammatory arthritis....

  5. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  6. Should Broca's area include Brodmann area 47?

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2017-02-01

    Understanding brain organization of speech production has been a principal goal of neuroscience. Historically, brain speech production has been associated with so-called Broca’s area (Brodmann area –BA- 44 and 45), however, modern neuroimaging developments suggest speech production is associated with networks rather than with areas. The purpose of this paper was to analyze the connectivity of BA47 ( pars orbitalis) in relation to language . A meta-analysis was conducted to assess the language network in which BA47 is involved. The Brainmap database was used. Twenty papers corresponding to 29 experimental conditions with a total of 373 subjects were included. Our results suggest that BA47 participates in a “frontal language production system” (or extended Broca’s system). The BA47  connectivity found is also concordant with a minor role in language semantics. BA47 plays a central role in the language production system.

  7. Pulmonary disorders, including vocal cord dysfunction.

    Science.gov (United States)

    Greenberger, Paul A; Grammer, Leslie C

    2010-02-01

    The lung is a very complex immunologic organ and responds in a variety of ways to inhaled antigens, organic or inorganic materials, infectious or saprophytic agents, fumes, and irritants. There might be airways obstruction, restriction, neither, or both accompanied by inflammatory destruction of the pulmonary interstitium, alveoli, or bronchioles. This review focuses on diseases organized by their predominant immunologic responses, either innate or acquired. Pulmonary innate immune conditions include transfusion-related acute lung injury, World Trade Center cough, and acute respiratory distress syndrome. Adaptive immunity responses involve the systemic and mucosal immune systems, activated lymphocytes, cytokines, and antibodies that produce CD4(+) T(H)1 phenotypes, such as for tuberculosis or acute forms of hypersensitivity pneumonitis, and CD4(+) T(H)2 phenotypes, such as for asthma, Churg-Strauss syndrome, and allergic bronchopulmonary aspergillosis. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course pr...

  9. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of "LabView Basic I" and "LabView Intermediate II" trainings have been recently changed to include, respectively, an introduction and an expert training on the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to develop expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepare...

  10. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepares participants to develop test and measurement, da...

  11. AMS at the ANU including biomedical applications

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R.; King, S.J.; Day, J.P.

    1993-01-01

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of 26 Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of 10 Be, 14 C, 26 Al, 36 Cl, 59 Ni and 129 I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs

  12. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1993-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  13. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  14. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  15. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...... mineral and the organic matrix in biomineralized calcite. High resolution powder diffraction was used to study how calcite in chalk, coccoliths, and mollusk shell is affected by the co-existent organic matrix. The calcified attachment organ in the saddle oyster, Anomia simplex serves as a brilliant...

  16. Biology Today. Thinking Chemically about Biology.

    Science.gov (United States)

    Flannery, Maura C.

    1990-01-01

    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  17. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  19. A micromanipulation cell including a tool changer

    Science.gov (United States)

    Clévy, Cédric; Hubert, Arnaud; Agnus, Joël; Chaillet, Nicolas

    2005-10-01

    This paper deals with the design, fabrication and characterization of a tool changer for micromanipulation cells. This tool changer is part of a manipulation cell including a three linear axes robot and a piezoelectric microgripper. All these parts are designed to perform micromanipulation tasks in confined spaces such as a microfactory or in the chamber of a scanning electron microscope (SEM). The tool changer principle is to fix a pair of tools (i.e. the gripper tips) either on the tips of the microgripper actuator (piezoceramic bulk) or on a tool magazine. The temperature control of a thermal glue enables one to fix or release this pair of tools. Liquefaction and solidification are generated by surface mounted device (SMD) resistances fixed on the surface of the actuator or magazine. Based on this principle, the tool changer can be adapted to other kinds of micromanipulation cells. Hundreds of automatic tool exchanges were performed with a maximum positioning error between two consecutive tool exchanges of 3.2 µm, 2.3 µm and 2.8 µm on the X, Y and Z axes respectively (Z refers to the vertical axis). Finally, temperature measurements achieved under atmospheric pressure and in a vacuum environment and pressure measurements confirm the possibility of using this device in the air as well as in a SEM.

  20. Robust Unit Commitment Including Frequency Stability Constraints

    Directory of Open Access Journals (Sweden)

    Felipe Pérez-Illanes

    2016-11-01

    Full Text Available An increased use of variable generation technologies such as wind power and photovoltaic generation can have important effects on system frequency performance during normal operation as well as contingencies. The main reasons are the operational principles and inherent characteristics of these power plants like operation at maximum power point and no inertial response during power system imbalances. This has led to new challenges for Transmission System Operators in terms of ensuring system security during contingencies. In this context, this paper proposes a Robust Unit Commitment including a set of additional frequency stability constraints. To do this, a simplified dynamic model of the initial system frequency response is used in combination with historical frequency nadir data during contingencies. The proposed approach is especially suitable for power systems with cost-based economic dispatch like those in most Latin American countries. The study is done considering the Northern Interconnected System of Chile, a 50-Hz medium size isolated power system. The results obtained were validated by means of dynamic simulations of different system contingencies.

  1. Unifying all elementary particle forces including gravity

    International Nuclear Information System (INIS)

    Terazawa, H.

    1979-01-01

    It is a final goal in physics to unify all four basic forces, strong, weak, electromagnetic and gravitational. First, the unified gauge theories of strong, weak and electromagnetic interactions are discussed. There are two standard models, the model of Pati and Salam in which leptons have the fourth color, and the model of Georgi and Glashow in which a simple group SU (5) is assumed for grand unification. Two mass relations for leptons and quarks were derived, and the extension of the Georgi-Glashow model to a grand unified model of SU (6) gauge group has been made. The quantization of the electric charge of elementary particles is one of the most satisfactory features in grand unified gauge theories. The constraint relations between the gauge couplings, the weak mixing angle and the mass scale of symmetry breaking owing to the renormalization effect are not so severe as those in the grand unified models. However, the mass scale becomes far above the Planck mass in some cases. The baryon number non-conservation is one of the most intriguing features common to grand unified gauge theories. The unified models of all elementary particle forces including gravity are discussed. The discovery of weak vector bosons and the production of subquark pairs are anticipated. (Kako, I.)

  2. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  3. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  4. Introduction to radiation biology

    International Nuclear Information System (INIS)

    Gensicke, F.

    1977-01-01

    The textbook is written with special regard to radiation protection of man. It shall enable the reader to assess the potential radiation risks to living organisms and lead him to an insight into radiation protection measures. The following topics are covered: physical fundamentals of ionizing radiations; physical and chemical fundamentals of biological radiation effects; radiation effects on cells, organs, organ systems, and whole animal organisms focussing on mammals and man; modification of radiation effects; chemical radiation protection; therapy of radiation injuries; radionuclide kinetics; biological radiation effects in connection with radiation hazards and with the limitation of radiation exposure. It is intended for vocational education of medical personnel

  5. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    Science.gov (United States)

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  6. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  7. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  8. Generation and characterization of biological aerosols for laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  9. Biological modulation of tectonics

    Science.gov (United States)

    Sleep, N. H.; Bird, D. K.

    2008-12-01

    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  10. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  11. [Contracts including performance and management of uncertainty].

    Science.gov (United States)

    Duru, G; Garassus, P; Auray, J-P

    2013-09-01

    Since many decades in France, the most important part of ambulatory health care expenditure is represented by drug consumption. By the fact, French patient is indeed the greatest world consumer of pharmaceuticals treatments. Therefore, the regulation authorities by successive strategies, attempt to limit or even restrict market access for new drugs in the health care sector secured by public social insurance coverage. Common objectives are to assess the reimbursement to scientific studies and to fix the price of therapeutics at an acceptable level for both industries and government. New trends try then to determine recently the drug price in a dual approach, as a component of global and effective contract, including performance and outcome. The first diffusion authorization is diffusion concerned, but this concept takes into account the eventual success of new produces in long-term survey. Signed for a fixed period as reciprocal partnership between regulation authorities and pharmaceutics industries, the contract integrates two dimensions of incertitude. The first one is represented by the strategy of new treatments development according to efficacy and adapted price, and the second one is linked to the result of diffusion and determines adapted rules if eventual non-respects of the previous engagement are registered. This paper discusses problems related to this new dimension of incertitude affected by conditional drug prices in market access strategy and the adapted follow-up of new treatment diffusion fixed by "outcome" contract between French regulation administration and pharmaceutics industries in our recent economic context. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Resection of thymoma should include nodal sampling.

    Science.gov (United States)

    Weksler, Benny; Pennathur, Arjun; Sullivan, Jennifer L; Nason, Katie S

    2015-03-01

    Thymoma is best treated by surgical resection; however, no clear guidelines have been created regarding lymph node sampling at the time of resection. Additionally, the prognostic implications of nodal metastases are unclear. The aim of this study was to analyze the prognostic implications of nodal metastases in thymoma. The Surveillance, Epidemiology, and End Results database was queried for patients who underwent surgical resection of thymoma with documented pathologic examination of lymph nodes. The impact of nodal status on survival and thymoma staging was examined. We identified 442 patients who underwent thymoma resection with pathologic evaluation of 1 or more lymph nodes. A median of 2 nodes were sampled per patient. Fifty-nine patients (59 of 442, 13.3%) had ≥ 1 positive node. Patients with positive nodes were younger and had smaller tumors than node-negative patients. Median survival in the node-positive patients was 98 months, compared with 144 months in node-negative patients (P = .013). In multivariable analysis, the presence of positive nodes had a significant, independent, adverse impact on survival (hazard ratio 1.945, 95% confidence interval 1.296-2.919, P = .001). The presence of nodal metastases resulted in a change in classification to a higher stage in 80% of patients, the majority from Masaoka-Koga stage III to stage IV. Nodal status seems to be an important prognostic factor in patients with thymoma. Until the prognostic significance of nodal metastases is better understood, surgical therapy for thymoma should include sampling of regional lymph nodes. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. Africa and Precambrian biological evolution

    Directory of Open Access Journals (Sweden)

    A. H. Knoll

    1983-11-01

    Full Text Available African sedimentary rocks and their contained fossils have played a fundamental role in the unravelling of Precambrian biological history. Various lines of evidence including stromatolites, filamentous and coccoidal microfossils, stable isotope ratios, organic carbon distribution, and oxide facies iron formation suggest that a complex prokaryotic ecosystem fueled by photosynthesis, and perhaps including aerobic photoautotrophs, existed as early as 3 500 m.y. ago. The primary sources of data on early Archean life are rock sequences in southern Africa and Australia. The diversity of later Archean (ca. 2 700 m.y. communities is attested to by abundant and varied stromatolites found in Zimbabwe. The extensive growth and consolidation of continents that heralded the Proterozoic Eon had profound effects on the earth’s biota. Primary productivity must have increased substantially, resulting in the establishment of an 02-rich atmosphere, and, subsequently, the radiation of aerobic respirers. Southern African sequences provide critical evidence bearing on this crust/atmosphere/biota interaction; however, the best known microfossils of this age come from North America. Upper Proterozoic sedimentary rocks abound in Africa. Stromatolites from northwestern Africa have been well studied; however, microfossil occurrences remain but sketchily described. Contemporaneous sequences from Scandinavia and Australia document the initial radiation of eukaryotes in the planktonic realm, as well as a terminal Precambrian episode of extinction among plankters. Early heterotrophic protists are known from several continents. The Nama Group of South West Africa/Namibia contains important evidence of early invertebrates. In general, Precambrian evolution can be viewed as a series of increasingly elevated biological plateaus connected by steps marking relatively short periods of evolutionary innovation and radiation. With each step, communities have increased in complexity

  14. Allicin: Chemistry and Biological Properties

    Directory of Open Access Journals (Sweden)

    Jan Borlinghaus

    2014-08-01

    Full Text Available Allicin (diallylthiosulfinate is a defence molecule from garlic (Allium sativum L. with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide in a reaction that is catalyzed by the enzyme alliinase. Current understanding of the allicin biosynthetic pathway will be presented in this review. Being a thiosulfinate, allicin is a reactive sulfur species (RSS and undergoes a redox-reaction with thiol groups in glutathione and proteins that is thought to be essential for its biological activity. Allicin is physiologically active in microbial, plant and mammalian cells. In a dose-dependent manner allicin can inhibit the proliferation of both bacteria and fungi or kill cells outright, including antibiotic-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA. Furthermore, in mammalian cell lines, including cancer cells, allicin induces cell-death and inhibits cell proliferation. In plants allicin inhibits seed germination and attenuates root-development. The majority of allicin’s effects are believed to be mediated via redox-dependent mechanisms. In sub-lethal concentrations, allicin has a variety of health-promoting properties, for example cholesterol- and blood pressure-lowering effects that are advantageous for the cardio-vascular system. Clearly, allicin has wide-ranging and interesting applications in medicine and (green agriculture, hence the detailed discussion of its enormous potential in this review. Taken together, allicin is a fascinating biologically active compound whose properties are a direct consequence of the molecule’s chemistry.

  15. Biologic therapy and surgery for crohn disease.

    Science.gov (United States)

    Paulson, E Carter

    2013-06-01

    In 1998, infliximab, an antitumor necrosis factor alpha (anti-TNF-α) antibody, was approved for use in the treatment of Crohn disease (CD). Since then, other biologic therapies, including adalimumab and certolizumab pegol (newer anti-TNF-α antibodies), and natalizumab, an antibody against alpha-4 integrin, have also been approved. Here, we review the published studies that examine the relationship between pre- and postoperative biologic therapy and postoperative complications in patients with CD. This body of literature is composed of numerous small, retrospective, heterogeneous studies that demonstrate conflicting and varied results. Overall, the receipt of biologic therapy in the pre- or postoperative period does not appear to significantly increase the risk of postoperative complications. It is, however, difficult to draw any firm conclusions based on the existing level of data. In the future, larger prospective studies are needed to better elucidate the true risks, if any, that the use of biologic therapy poses to patients with CD requiring operation.

  16. Evolutionary biology of harvestmen (Arachnida, Opiliones).

    Science.gov (United States)

    Giribet, Gonzalo; Sharma, Prashant P

    2015-01-07

    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.

  17. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  18. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hormesis: a fundamental concept in biology

    Directory of Open Access Journals (Sweden)

    Edward J. Calabrese

    2014-04-01

    Full Text Available This paper assesses the hormesis dose response concept, including its historical foundations, frequency, generality, quantitative features, mechanistic basis and biomedical, pharmaceutical and environmental health implications. The hormetic dose response is highly generalizable, being independent of biology model (i.e. common from plants to humans, level of biological organization (i.e. cell, organ and organism, endpoint, inducing agent and mechanism, providing the first general and quantitative description of plasticity. The hormetic dose response describes the limits to which integrative endpoints (e.g. cell proliferation, cell migration, growth patterns, tissue repair, aging processes, complex behaviors such as anxiety, learning, memory, and stress, preconditioning responses, and numerous adaptive responses can be modulated (i.e., enhanced or diminished by pharmaceutical, chemical and physical means. Thus, the hormesis concept is a fundamental concept in biology with a wide range of biological implications and biomedical applications.

  20. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  1. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds. K Hussian Reddy. General Article Volume 4 Issue 6 June 1999 pp 67-77 ...

  2. Fusion of biological membranes

    Indian Academy of Sciences (India)

    small hemifusion diaphragm. To obtain a direct view of the fusion process, we have carried out extensive simulations of two bilayers, composed of block copolymers, which are immersed in a solvent which favors one of the blocks. As in the biological case, the membranes are placed under tension. This is essential as fusion ...

  3. Biological dose estimation

    African Journals Online (AJOL)

    a radiation. •. In exposure. Biological dose estimation involving low-dose. S. JANSEN, G. J. VAN HUYSSTEEN. Summary. Blood specimens were collected from 8 people 18 days after they had been accidentally exposed to a 947,2 GBq iridium-. 192 source during industrial application. The equivalent whole-body dose ...

  4. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Coordination Compounds in Biology equatorial ligand, there are two axial ligands in most B. 12 derivatives. Derivatives of B12. The various derivatives of B. 12 result most commonly from changes in the axial ligands bound to cobalt. Often it is convenient to draw a greatly abbreviated structure for a B. 12 molecule using a ...

  5. Tree biology and dendrochemistry

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    1996-01-01

    Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...

  6. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  7. Radiation biology at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    This paper gives a broad overview of radiation biology at Chalk River Nuclear Laboratories (CRNL). The research group consists of 8 professionals and approximately 12 support staff. Objectives of the group are listed. Current research programs discussed are: 1) recombinant dna technology; 2) the hyperthermia program; 3) cancer-prone families; 4) animal studies; and 5) assessment of radiation hazards

  8. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Cryptochromes and Biological Clocks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Cryptochromes and Biological Clocks. V R Bhagwat. General Article Volume 7 Issue 9 September 2002 pp 36-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/09/0036-0048. Keywords.

  10. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2006-01-01

    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  11. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological ... The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in ...

  12. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  13. Evolution, Entropy, & Biological Information

    Science.gov (United States)

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  14. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  15. Diversity in Biological Molecules

    Science.gov (United States)

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  16. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  17. Biology=Sinh Vat.

    Science.gov (United States)

    Hung, Nguyen Manh, Ed.

    This volume contains 32 biology self-study learning packets designed primarily for Indochinese students in grades 9 to 12. The materials could be used by "English as a Second Language" teachers who may/may not speak one of the Indochinese languages, or by mainstream teachers who have a number of low-English-proficiency Indochinese students in…

  18. Allometry and astro biology

    International Nuclear Information System (INIS)

    Sertorio, L.; Renda, E.

    2009-01-01

    Allometric laws expressing power and lifespan as a function of mass for both inorganic and organic systems are analyzed. This way of dealing with complexity unveils striking analogies between domains of science that we are used to consider conceptually irreducible to each other and therefore can be considered a new vision of astro biology.

  19. Molecular Biology of Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  20. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history evolution, the evolutionary genetics of biological clocks, and small population and meta population dynamics.

  1. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  2. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  3. Entropy in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy in Biology. Jayant B Udgaonkar. General Article Volume 6 Issue 9 September 2001 pp 61-66. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0061-0066. Author Affiliations.

  4. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  5. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-05

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  6. Integrating Concepts in Biology

    Science.gov (United States)

    Luckie, Douglas B; Hoskinson, Anne-Marie; Griffin, Caleigh E; Hess, Andrea L; Price, Katrina J; Tawa, Alex; Thacker, Samantha M

    2017-01-01

    The purpose of this study was to examine the educational impact of an intervention, the inquiry-focused textbook Integrating Concepts in Biology ( ICB ), when used in a yearlong introductory biology course sequence. Student learning was evaluated using three published instruments: 1) The Biology Concept Inventory probed depth of student mastery of fundamental concepts in organismal and cellular topics when confronting misconceptions as distractors. ICB students had higher gains in all six topic categories (+43% vs. peers overall, p concepts, like experts. The frequency with which ICB students connected deep-concept pairs, or triplets, was similar to peers; but deep understanding of structure/function was much higher (for pairs: 77% vs. 25%, p < 0.01). 3) A content-focused Medical College Admission Test (MCAT) posttest compared ICB student content knowledge with that of peers from 15 prior years. Historically, MCAT performance for each semester ranged from 53% to 64%; the ICB cohort scored 62%, in the top quintile. Longitudinal tracking in five upper-level science courses the following year found ICB students outperformed peers in physiology (85% vs. 80%, p < 0.01). © 2017 D. B. Luckie et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Quantum metrology and its application in biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael A. [Centre for Engineered Quantum Systems, University of Queensland, St Lucia, Queensland 4072 (Australia); Research Institute of Molecular Pathology (IMP), Max F. Perutz Laboratories & Research Platform for Quantum Phenomena and Nanoscale Biological Systems (QuNaBioS), University of Vienna, Dr. Bohr Gasse 7-9, A-1030 Vienna (Austria); Bowen, Warwick P., E-mail: w.bowen@uq.edu.au [Centre for Engineered Quantum Systems, University of Queensland, St Lucia, Queensland 4072 (Australia)

    2016-02-23

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  8. Quantum metrology and its application in biology

    Science.gov (United States)

    Taylor, Michael A.; Bowen, Warwick P.

    2016-02-01

    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artefacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient details to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science. We hope that this will aid in bridging the communication gap that exists

  9. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  10. [Molecular biology of brain meningiomas].

    Science.gov (United States)

    Byvalsev, V A; Stepanov, I A; Belykh, E G; Yarullina, A I

    2017-01-01

    Meningiomas are by far the most common tumors arising from the minges. A myriad of aberrant signaling pathways involved with meningioma tumorigenesis, have been discovered. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis. An understanding of the genetic and molecular profile of meningioma would provide a valuable first step towards developing more effective treatment for this intracranial tumor. Chromosomes 1, 10, 14, 22, their associated genes, have been linked to meningioma proliferation and progression. It is presumed that through an understanding of these genetic factors, more educated meningioma treatment techniques can be implemented. Future therapies will include combinations of targeted molecular agents including gene therapy, si-RNA mediation, proton therapy, and other approaches as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.

  11. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  12. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  13. [Cell biology and cosmetology].

    Science.gov (United States)

    Traniello, S; Cavalletti, T

    1991-01-01

    Cellular biology can become the natural support of research in the field of cosmetics because it is able to provide alternative experimental models which can partially replace the massive use of laboratory animals. Cultures of human skin cells could be used in tests investigating irritation of the skin. We have developed an "in vitro" experimental model that allows to evaluate the damage caused by the free radicals to the fibroblasts in culture and to test the protective action of the lipoaminoacids. Experimenting on human cell cultures presents the advantage of eliminating the extrapolation between the different species, of allowing a determination of the biological action of a substance and of evaluating its dose/response effect. This does not mean that "in vitro" experimenting could completely replace experimenting on living animals, but the "in vitro" model can be introduced in the realisation of preliminary screenings.

  14. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  15. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  16. Does biological relatedness affect child survival?

    Directory of Open Access Journals (Sweden)

    2003-05-01

    Full Text Available Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright's coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.

  17. The Kynurenine Pathway in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Simon P. Jones

    2013-01-01

    Full Text Available The kynurenine pathway (KP is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.

  18. The kynurenine pathway in stem cell biology.

    Science.gov (United States)

    Jones, Simon P; Guillemin, Gilles J; Brew, Bruce J

    2013-09-15

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.

  19. Biological Correlates of Empathy

    Directory of Open Access Journals (Sweden)

    E. Timucin Oral

    2010-04-01

    Full Text Available Empathy can be defined as the capacity to know emotionally what another is experiencing from within the frame of reference of that other person and the capacity to sample the feelings of another or it can be metaphorized as to put oneself in another’s shoes. Although the concept of empathy was firstly described in psychological theories, researches studying the biological correlates of psychological theories have been increasing recently. Not suprisingly, dinamically oriented psychotherapists Freud, Kohut, Basch and Fenichel had suggested theories about the biological correlates of empathy concept and established the basis of this modality decades ago. Some other theorists emphasized the importance of empathy in the early years of lifetime regarding mother-child attachment in terms of developmental psychology and investigated its role in explanation of psychopathology. The data coming from some of the recent brain imaging and animal model studies also seem to support these theories. Although increased activity in different brain regions was shown in many of the brain imaging studies, the role of cingulate cortex for understanding mother-child relationship was constantly emphasized in nearly all of the studies. In addition to these studies, a group of Italian scientists has defined a group of neurons as “mirror neurons” in their studies observing rhesus macaque monkeys. Later, they also defined mirror neurons in human studies, and suggested them as “empathy neurons”. After the discovery of mirror neurons, the hopes of finding the missing part of the puzzle for understanding the biological correlates of empathy raised again. Although the roles of different biological parameters such as skin conductance and pupil diameter for defining empathy have not been certain yet, they are going to give us the opportunity to revise the inconsistent basis of structural validity in psychiatry and to stabilize descriptive validity. In this review, the

  20. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  1. Elements in biological AMS

    International Nuclear Information System (INIS)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  2. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  3. Mammalian Synthetic Biology

    OpenAIRE

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-01-01

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-pote...

  4. Biological effects of heavy particles

    International Nuclear Information System (INIS)

    Sabatier, L.; Martins, B.; Dutrillaux, B.

    1991-01-01

    The usual definitions of biological dose and biological dosimetry do not fit in case of particles with high linear energy transfer (LET). The dose corresponds to an average value which is not representative of the highly localized energy transfer due to heavy ions. Fortunately, up to now, a biological dosimetry following an exposure to high LET particles is necessary only for cosmonauts. In radiotherapy applications, one exactly knows the nature and energy of incident particle beams. The quality requirements for a good biodosimeter include reliable relation between dose and effect, weak sensitivity to individual variations, reliability and stability of acquired informations against the time delay between exposure and measurements. Nothing is better than the human lymphocyte to be used for measurements that fulfil these requirements. In the case of a manned spaceship, the irradiation dose corresponds to a wide range of radiation (protons, neutrons, heavy ions), and making a dosimetry as well as defining it are of current concern. As yet, there exist two possible definitions, which reduce the dose either to a proton or to a neutron equivalent one. However, such an approximation is not a faithful representation of the irradiation effects and in particular, the long-term effects may be quite different. In the future, it is reasonable to expect an evolution towards technics that enable identifying irradiated cells and quantifying precisely their radiation damage in order to reconstruct the spectrum of particles received by a given cosmonaut in a given time. Let us emphasize that the radiation hazards due to a short stay in space are quite minor, but in the case of a travel to Mars, they cannot be neglected [fr

  5. Reevaluating synthesis by biology.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2010-06-01

    The two cornerstones of synthetic biology are the introduction of the new technology of chemical DNA synthesis and its subsequent emphasis on the use of standardized biological parts in the construction of genetic systems aimed at eliciting of desired cellular behavior. A number of high-impact applications have been proposed for this technology, notable among them being the biological synthesis of valuable compounds for chemical or pharmaceutical use. To this end, synthetic biologists propose assembling metabolic pathways in toto by combining genes isolated from a variety of sources. While pathway construction is similar to approaches established long ago by Metabolic Engineering, the two methods deviate significantly when it comes to pathway optimization. Synthetic biologists opt for gene-combinatorial methods whereby large numbers of pathways, comprising several combinations of genes from different sources, and their mutants, are evaluated in search for an optimal pathway configuration. Metabolic engineering, on the contrary, aims to optimize pathways by tuning the activity of the intermediate reaction steps. Both, rational methods based on kinetics and regulation, as well as combinatorial methods, typically in this order, are used to this end. We argue that a systematic approach consisting of fine-tuning the properties of individual pathway components, prominently enzymes, is a superior strategy to searches spanning large genetic spaces in engineering optimal microbes for the production of chemical and pharmaceutical products. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Biologics for tendon repair☆

    Science.gov (United States)

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  7. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.

    1993-01-01

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  8. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  9. Biologicals and biosimilars: safety issues in Europe.

    Science.gov (United States)

    Portela, Maria da Conceição Constantino; Sinogas, Carlos; Albuquerque de Almeida, Fernando; Baptista-Leite, Ricardo; Castro-Caldas, Alexandre

    2017-07-01

    Medicinal products of a biological origin are approved by the EMA at a centralized level. However, there is no harmonization about their use in Europe. The current regulation referring to the safety of biological medicinal products and biosimilars in Europe has been identified. The safety associated with medicinal products of a biological origin is assured by the pharmacovigilance system, which has evolved, but doesn't yet incorporate all of the specific information from this market segment, namely that related to the identification of drugs, and its use - including the prescription and dispensing, given the possibility of interchangeability and substitution. The terminology, information systems and traceability systems aren't entirely appropriate to ensure the safety requirements for therapy with medicinal products of a biological origin. Areas covered: This article aims to identify the prescription and dispensing profiles of reference biological medicines and biosimilars in the EU, and the determinants that support their safe use. Expert opinion: The European pharmacovigilance system must evolve to ensure the safety along all of the biologicals' therapeutic cycle. It must consider the safety for each of the medicines in addition to their safety pattern related to the eventual switching procedure.

  10. Biology curriculum in twentieth-century Spain

    Science.gov (United States)

    Barberá, Óscar; Zanón, Beatriz; Pérez-Pl, José Francisco

    1999-01-01

    One hundred years of history of Spanish biology curricula are reviewed in this article. The aim of this analysis is focused on the relationship between socially controversial biological issues and the decisionmaking procedures in the construction of the national curricula published under the different regimes that have governed Spain over the last 100 years. The study covers the secondary level of schooling (age 10 up to university), and is based mainly on the data afforded by the official publications of the nine national curricula in twentieth-century Spain, and some of the main textbooks used for this schooling level. Special attention is given to the teaching of evolution, the most sensitive issue in biology education, and some parallelisms are traced and compared with similar phenomena occurring in other countries. The new trends in biology education from the last reform of the Spanish education system are briefly discussed. This study provides a perspective of the pressures affecting socially controversial issues included in education. These pressures have been identified mainly as political, social, and religious beliefs held by powerful and influential social groups, the same kinds of forces that have existed in other countries worldwide. Studies such as this one, about the real forces that have shaped curriculum development in the past, are vital for understanding the present circumstances in biology education and, therefore, unavoidable in order to enhance future standards in biology education.

  11. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  12. A framework for evolutionary systems biology.

    Science.gov (United States)

    Loewe, Laurence

    2009-02-24

    Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.

  13. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  14. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  15. What's wrong with evolutionary biology?

    Science.gov (United States)

    Welch, John J

    2017-01-01

    There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field.

  16. Time lags in biological models

    CERN Document Server

    MacDonald, Norman

    1978-01-01

    In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...

  17. Biological monitors of air pollution

    International Nuclear Information System (INIS)

    Kucera, J.

    1994-01-01

    Direct biological monitoring of air pollution was introduced about 30 years ago. Although still under development, the application of biological monitors, or indicators, may provide important information on the levels, availability, and pathways of a variety of pollutants including heavy metals and other toxic trace elements in the air. A survey is given of the most frequently used biomonitors, such as herbaceous plants, tree leaves or needles, bryophytes, and lichens, with their possible advantages and/or limitations. In addition to using naturally-occurring biomonitors, a possibility of employing ''transplanted'' species in the study areas, for instance grasses grown in special containers in standard soils or lichens transplanted with their natural substrate to an exposition site, is also mentioned. Several sampling and washing procedures are reported. The important of employing nuclear analytical methods, especially instrumental neutron activation analysis, for multielemental analysis of biomonitors as a pre-requisite for unlocking the information contained in chemical composition of monitor's tissues, such as apportionment of emission sources using multivariate statistical procedures, is also outlined. (author). 32 refs, 2 figs

  18. Towards developing algal synthetic biology.

    Science.gov (United States)

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  19. Adventures in human population biology.

    Science.gov (United States)

    Baker, P T

    1996-01-01

    This article is a memoir of anthropologist Paul Baker's professional life. The introduction notes that the field of anthropology was altered by the impact of World War II when physical anthropologists provided vital information to the military. After the war, the GI bill supported the undergraduate and graduate studies of veterans, including Baker. After describing his academic training at the University of New Mexico and Harvard, Baker details his research training and field work in the desert for the US Climatic Research Laboratory and his work identifying the dead in Japan for the Quartermaster unit. Baker then traces his academic career at the Pennsylvania State University during which he directed two multidisciplinary research efforts for the International Biological Programme, one that sought to understand human adaptability at high altitude in Peru and another that studied migration and modernization in Samoa. Baker's last administrative positions were as staff consultant to the Man and the Biosphere (MAB) program and as chair of the US MAB committee. Baker retired from academic life at age 60 in 1987 and has devoted his time to reading and to helping organize professional associations in anthropology, especially those devoted to furthering internationally organized scientific efforts. Baker concludes this memoir by acknowledging the growth and development of the discipline of human population biology.

  20. The Effectiveness of an Online Curriculum on High School Students' Understanding of Biological Evolution

    Science.gov (United States)

    Marsteller, Robert B.; Bodzin, Alec M.

    2015-01-01

    An online curriculum about biological evolution was designed to promote increased student content knowledge and evidentiary reasoning. A feasibility study was conducted with 77 rural high school biology students who learned with the online biological evolution unit. Data sources included the Biological Evolution Assessment Measure (BEAM), an…

  1. A comparison of biological and cultural evolution.

    Science.gov (United States)

    Portin, Petter

    2015-03-01

    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural replicator corresponding to the concept of the gene in biological evolution. Principles of cultural evolution are put forward and compared to the principles of biological evolution. Special emphasis is laid on the principle of selection in cultural evolution, including presentation of the concept of cultural fitness. The importance of language as a necessary condition for cultural evolution is stressed. Subsequently, prime differences between biological and cultural evolution are presented, followed by a discussion on interaction of our genome and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors specific for it. The paper ends with the notion of the still ongoing coevolution of genes and culture.

  2. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  3. Neglect of Biological Rhythms in High School Biology Texts.

    Science.gov (United States)

    Ahlgren, Andrew; Nelson, Julie Ann

    1979-01-01

    This article developed from a survey of the five most popular biology texts which promote the theory of invariant homeostasis rather than biological rhythms. The popular fad of "birthdate biorhythms" is discussed in relation to providing education on biological rhythms and its legitimacy to the public. (SA)

  4. Chemical and Biological Significance of Naturally Occurring ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Chemical and Biological Significance of Naturally Occurring Additives on. African Black Soap and its Performance. IKOTUN, A. ... attribute of the soap includes gentleness on the skin, rich lather, protection against skin disorders ... soap, the effects of its modifications with some commonly used natural products, as well as the ...

  5. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.

    2008-01-01

    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  6. Chemistry and Biology of Orexin Signaling

    OpenAIRE

    Kodadek, Thomas; Cai, Di

    2010-01-01

    The orexins are neurohormones that, in concert with their cognate receptors, regulate a number of important physiological processes, including feeding, sleep, reward seeking and energy homeostasis. The orexin receptors have recently emerged as important drug targets. This review provides an overview of recent development in deciphering the biology of orexin signaling as well as efforts to manipulate orexin signaling pharmacologically.

  7. Using Concept Mapping in the Biology Classroom.

    Science.gov (United States)

    Donovan, Edward P.

    Concept mapping, a technique based on David Ausubel's theory of meaningful learning, involves the organization of concepts into an hierarchical arrangement. Suggestions for incorporating this learning strategy into the biology classroom are presented and discussed. Steps in concept mapping include: (1) identifying important concepts in the study…

  8. The Illogic of the Biological Weapons Taboo

    Science.gov (United States)

    2010-01-01

    of biological pathogens—bacteria, viruses, fungi and toxins—to kill or incapacitate one’s enemies has a long pedigree that includes not only Scythian...state sponsors.”98 The United Kingdom , Italy, and Australia willingly joined Washington in its attack on Iraq and used much the same rationale for

  9. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2017-01-04

    Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.

  10. Student Teachers' Approaches to Teaching Biological Evolution

    Science.gov (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-01-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution…

  11. Science Academies' Refresher Course on Experimental Biology ...

    Indian Academy of Sciences (India)

    IAS Admin

    advanced laboratory techniques in life sciences including cell and molecular biology. The resource persons will be eminent scientists working in these fields who are distinguished Fellows of the National Science Academies. The participants of the refresher course will have hands-on experience with all of the advanced ...

  12. The biology of human immunodeficiency virus infection.

    Science.gov (United States)

    Kotler, Donald P

    2004-08-01

    The aim of this article is to review the basic biology of infection with HIV-1 and the development of the acquired immunodeficiency syndrome. The discussion will include epidemiology, general description of the retroviruses, pathogenesis of the immune deficiency, clinical consequences, treatment, and treatment outcomes. Aspects of the infection that affect protein and energy balance will be identified.

  13. Responding to a biological incident

    Energy Technology Data Exchange (ETDEWEB)

    Campagna, P.R. [U.S. Environmental Response Team, Office of Superfund Remediation and Technology Innovation, Edison, NJ (United States)

    2005-07-01

    The U.S. Environmental Protection Agency's Environmental Response Team (ERT) was established in October 1978 to provide technical assistance to a variety of governmental agencies in the area of environmental emergency issues such as chemical spills, uncontrolled hazardous waste site and terrorist incidents. This paper describes responses to a biological incident that occurred on July 29 2004, when the United States Department of Agriculture (USDA) received an anonymous e-mail identifying 3 containers on board the M/V Rio Puelo, one of which was said to contain a harmful biological substance. The containers were part of a 5 container shipment of Argentinian lemons bound for Canada. The vessel had a total of 2204 containers, of which 260 were loaded at the same port as the lemons. The containers were to be off-loaded at the Port of Newark and transported via truck to Canada. The federal On-Scene Coordinator (OSC) was responsible for managing this incident, as well as assessing the creditability of the threat. In accordance with federal authorities under the Public Water Safety Act, the Captain of the Port of New York ordered the vessel to anchor off shore. A tactical security operations team was dispatched to assess vessel security. It was determined that none of the crew, who had been exposed to the potential agent 10 days earlier, had shown any symptoms of biological warfare agents. A multi-agency unified command was set up, consisting of state, federal and local agencies. Various options were evaluated, including treatment of the containers on board due to the possibility of a dispersal device which could cause wide-spread contamination; the off loading and disposal of the cargo into the sea; and off loading of containers on shore with subsequent treatment. The following safety precautions were taken: cooling units were shut off 48 hours before sailing; the vents were sealed and closed; and the drains were plugged. At the port, trained dogs were used, and

  14. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  15. Radiation and nuclear safety included in the environmental health programme

    International Nuclear Information System (INIS)

    Salomaa, S.

    1996-01-01

    Finland is currently preparing a national environmental health programme, the objective of which is to chart the main environmental health problems in Finland, to identify means for securing a healthy environment, and to draw up a practical action programme for preventing and rectifying problems pertaining to environmental health. Radiation and nuclear safety form an essential part of preventive health care. The action programme is based on decisions and programmes approved at the WHO Conference on the Environment and Health, held in Helsinki in June 1994. In addition to the state of the Finnish environment and the health of the Finnish population, the programme addresses the relevant international issues, in particular in areas adjacent to Finland. The Committee on Environmental Health is expected to complete its work by the end of the year. A wide range of representatives from various branches of administration have contributed to the preparation of the programme. Besides physical, biological and chemical factors, the environmental factors affecting health also include the physical environment and the psychological, social and aesthetic features of the environment. Similarly, environmental factors that have an impact on the health of present or future generations, on the essential preconditions of life and on the quality of life are investigated. The serious risk to nature caused by human actions is also considered as a potential risk to human health. (orig.)

  16. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  17. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  18. The biology of Colletotrichum acutatum

    Directory of Open Access Journals (Sweden)

    Diéguez-Uribeondo, Javier

    2004-06-01

    Full Text Available Colletotrichum acutatum is major pathogen of fruit crops, causing economically important losses of temperate, subtropical and tropical fruits worldwide. However, few studies have been carried out on key aspects of its biology. This is mainly because traditionally isolates of C. acutatum were often wrongly identified as C. gloeosporioides. Effective separation of the two species was not possible until the introduction of molecular tools for taxonomy. The life cycle of C. acutatum comprises a sexual and an asexual stage and much remains to be resolved regarding the genetics of sexuality and the effects of the sexual stage on population structure. Colletotrichum acutatum exhibits both infection strategies described for Colletotrichum species, i.e. intracellular hemibiotrophy and subcuticular-intramural necrotrophy, and may also undergo a period of quiescence in order to overcome resistance mechanisms in immature fruit such as pre-formed toxic compounds and phytoalexins, or due to the unsuitability of unripe fruit to fulfill the nutritional and energy requirements of the pathogen. Colletotrichum acutatum may overwinter as mycelium and/or appressoria in or on different parts of the host. Conidia are water-born and spread by rain episodes so infections are usually highest during the wettest periods of the growing season. Current management strategies for this fungus comprise the exploitation of cultivar resistance, cultural, chemical, and biological control methods, and preventive strategies such as disease-forecasting models. This review focuses on the current knowledge of biological aspects of C. acutatum and related Colletotrichum species and includes a discussion of the progress towards their control.Colletotrichum acutatum es uno de los principales hongos patógenos en agricultura y responsable de importantes pérdidas económicas en frutales en áreas tanto de climas templados como subtropicales y tropicales. Sin embargo, existen pocos estudios

  19. Is Our Biology to Blame?

    Science.gov (United States)

    Schneider, Scott

    1977-01-01

    Brief analyses of three recent examples of biological determinism: sex roles, overpopulation, and sociobiology, are presented in this article. Also a brief discussion of biological determinism and education is presented. (MR)

  20. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  1. American Institute of Biological Sciences

    Science.gov (United States)

    ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Peer ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Contact ...

  2. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...

  3. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  4. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  5. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  6. Adverse Reactions to Biologic Therapy.

    Science.gov (United States)

    Patel, Sheenal V; Khan, David A

    2017-05-01

    Biologic therapies are emerging as a significant therapeutic option for many with debilitating inflammatory and autoimmune conditions. As expansion in the number of FDA-approved agents continue to be seen, more unanticipated adverse reactions are likely to occur. Currently, the diagnostic tools, including skin testing and in vitro testing, to evaluate for immediate hypersensitivity reactions are insufficient. In this review, management strategies for common acute infusion reactions, injection site reactions, and immediate reactions suggestive of IgE-mediated mechanisms are discussed. Desensitization can be considered for reactions suggestive of IgE-mediated mechanisms, but allergists/immunologists should be involved in managing these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  8. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  9. Biological targeting of radionuclides

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Glasgow Univ.

    1993-01-01

    Targeted radionuclide therapy in several forms has now been investigated in the clinic for more than 10 years. Despite some promising indications, targeted radiotherapy has not yet had a large impact on cancer therapy. Theoretical analysis shows that tumour cure would not often be expected using existing treatments. Addition of external-beam irradiation appears to be a robust strategy, which is appropriate in a wide range of situations. In future, many new agents will be made available by progress in molecular biology. However, integration of targeted radionuclide therapy with other modalities, especially radiotherapy, may still be required. (Author)

  10. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  11. [The biologization of ethics].

    Science.gov (United States)

    Moreno Lax, Alejandro

    2010-01-01

    Three ethics exist as a condition of possibility of any possible ethics, following a material and biological foundation. This content argument (not logical-formal) supposes a refutation of the naturalistic fallacy that the analytical philosophy attributes to Hume, in three areas of the ethical human experience: body, society and nature. These are: the ethics of the species [J. Habermas], the ethics of liberation [E. Dussel] and the ethics of the responsibility [H. Jonas]. This material argument is a philosophical foundation to considering for three types of applied ethics: medical bioethics, development ethics and environmental ethics.

  12. Traceability of biologicals

    DEFF Research Database (Denmark)

    Vermeer, Niels S; Spierings, Irina; Mantel-Teeuwisse, Aukje K

    2015-01-01

    INTRODUCTION: Traceability is important in the postmarketing surveillance of biologicals, since changes in the manufacturing process may give rise to product- or batch-specific risks. With the expected expansion of the biosimilar market, there have been concerns about the ability to trace...... not support the routine recording of batch information. Expected changes in supply chain standards provide opportunities to systematically record detailed exposure information. Spontaneous reporting systems are the most vulnerable link in ensuring traceability, due to the manual nature of data transfer...

  13. Elements in biological AMS

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  14. Plutonium and transplutonian biology

    International Nuclear Information System (INIS)

    Lafuma, Jacques

    1975-01-01

    The present state of knowledge in the field of plutonium and transplutonian biology is reviewed. The physico-chemical properties of these substances, the conditions in which they can contaminate human beings, their behaviour on mammals, their toxic effects and the correlative contamination treatment technique are analyzed successively. Plutonium and transplutonians, although relatively toxic, have as yet never caused severe injuries to humans. They cannot be transmitted to man through alimentary chains and constitute a hazard only for those who handle them. In this last case, the existing protection techniques offer such a high degree of efficiency that virtually all risk of contamination is eliminated [fr

  15. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi

    1980-01-01

    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  16. Mathematics and biology

    International Nuclear Information System (INIS)

    Khan, I.A.

    1991-06-01

    In India and in so many other countries, the science students are generally separated into two main streams: one opting mathematical sciences, the other studying biological sciences. As a result, medicos and biologists have no adequate knowledge of mathematical sciences. It causes a great drawback to them in order to be perfect and updated in their profession, due to the tremendous application of mathematics in bio-sciences, now-a-days. The main aim of this article is to emphasize on the need of the time to produce the mathematico-biologists in abundance for the better service of mankind. (author)

  17. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  18. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  19. Oscillation and stability of delay models in biology

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H

    2014-01-01

    Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.

  20. Mathematical modeling of the evolution of a simple biological system

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Neetu, S.; Krishnan, K.P.; Attri, K.; LokaBharathi, P.A.

    Paula, Goa 403 004, India. Phone: +91 0832 2450624, Fax: +91 0832 2450606, e-mail: mjudith@nio.org Introduction In India, classroom education in biology does not generally include an exercise in which the data can be used to develop models.... This has hampered exposure to quantitative tools in biology, much to the disadvantage of students. The purpose of this note is to report an exercise we carried out to expose traditional biologists educated in India to mathematical modelling of biological...

  1. A review on biological adaptation: with applications in engineering science

    Directory of Open Access Journals (Sweden)

    LiMin Luo

    2014-06-01

    Full Text Available Biological adaptation refers to that organisms change themselves at morphological, physiological, behavioral and molecular level to better survive in a changing environment. It includes phenotype adaptation and molecular adaptation. Biological adaptation is a driving force of evolution. Biological adaptation was described from Darwinian theory of evolution to the theory of molecular evolution in present paper. Adaptive control and adaptive filtering were briefly described also.

  2. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  3. <=ryptochromes and Biological Clocks -36 ...

    Indian Academy of Sciences (India)

    production. Such repetition of biological phenomena in a peri- odic manner constitutes a 'biological rhythm'. Many biological rhythms are synchronized with solar day .... Photoactive pigment. Photosynthetic pigments of phytochrome bacteria associated with GFP. LHC = Light harvesting complex of green plants. NPH = Non ...

  4. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  5. Biological Processes Associated with Impact Events

    Science.gov (United States)

    Cockell, Charles; Koeberl, Christian; Gilmour, Iain

    The diversity of papers presented in this volume attest to the fact that impact cratering is very much a biological process. This volume is the tenth in a series of books resulting from the activities of the scientific programme, "Response of the Earth System to Impact Processes" (IMPACT), by the European Science Foundation. The papers were presented at an international meeting at King's College, Cambridge in 2003. These papers investigate the effects of asteroid and comet impacts on a diversity of biological and evolutionary processes including the survival of organics and microbial ecosystems to the extinction of organisms.

  6. AFM Nanotools for Surgery of Biological Cells

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N [Department of Physics, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom); Guy, R H, E-mail: jdb28@bath.ac.uk [Department of Pharmacy and Pharmacology, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom)

    2011-03-01

    Using a method of electron-beam induced deposition, we have been able to fabricate specialized AFM probes with application as 'nanotools' for the manipulation of biological structures ('nanosurgery'). We describe several such tools, including a 'nanoscalpel', 'nanoneedles' for probing intracellular structures, and a 'nanotome' which can separate surface layers from a biological structure. These applications are demonstrated by performing nanomanipulation on corneocyte cells from the outer layer of human skin.

  7. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  8. Gravitational biology on the space station

    Science.gov (United States)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  9. Psoriatic arthritis: treatment strategies using biologic agents

    Directory of Open Access Journals (Sweden)

    C. Palazzi

    2012-06-01

    Full Text Available The traditional management of psoriatic arthritis (PsA includes NSAIDs, corticosteroids and DMARDs. Advancement in the knowledge of the immunopathogenesis of PsA has been associated with the development of biologic agents which have revolutionized the management of the disease. Among biologics drugs, there are the 4 currently availablee anti-TNFα blocking agents (etanercept, infliximab, adalimumab and golimumab which are more effective than traditional DMARDs on symptoms/signs of inflammation, quality of life, function, and in inhibiting the progression of the structural joint damage. Despite of the high cost, TNF inhibitors are costeffective on both the musculoskeletal and skin manifestations of psoriatic disease.

  10. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  11. Postgraduate studies in radiation biology in Europe

    International Nuclear Information System (INIS)

    Trott, K.R.; Lohmann, P.H.M.; Zeeland, A.A. van; Natarajan, A.T.; Schibilla, H.; Chadwick, K.; Kellerer, A.M.; Steinhaeusler, F.

    1998-01-01

    The present system of radiobiological research in universities and research centres is no longer able to train radiobiologists who have a comprehensive understanding of the entire field of radiation biology including both 'classical' and molecular radiation biology. However, such experts are needed in view of the role radiation protection plays in our societies. No single institution in Europe could now run a 1-year, full-time course which covers all aspects of the radiobiological basis of radiation protection. Therefore, a cooperative action of several universities from different EU member states has been developed and is described herein. (orig.)

  12. Biology Professors' and Teachers' Positions Regarding Biological Evolution and Evolution Education in a Middle Eastern Society

    Science.gov (United States)

    BouJaoude, Saouma; Asghar, Anila; Wiles, Jason R.; Jaber, Lama; Sarieddine, Diana; Alters, Brian

    2011-05-01

    This study investigated three questions: (1) What are Lebanese secondary school (Grade 9-12) biology teachers' and university biology professors' positions regarding biological evolution?, (2) How do participants' religious affiliations relate to their positions about evolutionary science?, and (3) What are participants' positions regarding evolution education? Participants were 20 secondary school biology teachers and seven university biology professors. Seventy percent of the teachers and 60% of the professors were Muslim. Data came from semi-structured interviews with participants. Results showed that nine (Christian or Muslim Druze) teachers accepted the theory, five (four Muslim) rejected it because it contradicted religious beliefs, and three (Muslim) reinterpreted it because evolution did not include humans. Teachers who rejected or reinterpreted the evolutionary theory said that it should not be taught (three), evolution and creationism should be given equal time (two), or students should be allowed to take their own stand. Two professors indicated that they taught evolution explicitly and five said that they integrated it in other biology content. One Muslim professor said that she stressed 'the role of God in creation during instruction on evolution'. It seems that years of studying and teaching biology have not had a transformative effect on how a number of teachers and professors think about evolution.

  13. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  14. [The Biology of Learning].

    Science.gov (United States)

    Campo-Cabal, Gerardo

    2012-01-01

    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Biology with neutron radiation

    International Nuclear Information System (INIS)

    Zaccai, Giuseppe

    1993-01-01

    Neutron diffraction, elastic and inelastic neutron scattering experiments provide important information on the structure, interactions and dynamics of biological molecules. This arises from the unique properties of the neutron and of its interaction with matter. Coherent and incoherent neutron scattering amplitudes and cross-sections are very different for H and 2 H (deuterium). Deuterium labelling by chemical or biochemical methods and H 2 O: 2 H 2 O exchange is the basis of high resolution crystallography experiments to locate functionally important H-atoms in protein molecules. It is also very important in low resolution crystallography and small angle scattering experiments to solve large complex structures, such as protein-nucleic acid complexes or biological membrane systems, by using contrast variation techniques. The energies of neutrons with a wavelength of the order of 1 - 10 A are similar to thermal energies and inelastic neutron scattering experiments have been done with different energy resolutions (≥∼ 1 μeV) to characterise the functional dynamics of proteins in solution and in membranes. (author)

  16. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  17. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  18. Optimization of biologic therapy in Crohn's disease.

    Science.gov (United States)

    Razvi, Mohammed; Lazarev, Mark

    2018-03-01

    Crohn's disease (CD) is a manifestation of inflammatory bowel disease (IBD), which can result in significant morbidity. Biologic therapy with anti-TNF medication has been effective in treating inflammation and reducing complications in CD. It is important for clinicians to have better knowledge of the various biologic therapies including mechanisms of action and optimization strategies. Areas covered: The review describes optimization of biologic therapy in CD including different mechanisms of loss of response, therapeutic drug monitoring in CD, clinical implications and management strategies which utilize drug monitoring, and areas of future development and research in optimization of biologic therapy. Expert opinion: Achieving adequate levels of the drug (antibody unbound) is one of the most important determinants of attaining clinical remission and mucosal healing. Drug level is also critical in determining if a patient requires combination therapy with an immunomodulator. Certain populations, including those with active perianal disease, may require higher serum levels to achieve healing or closure. Treat to target level is an algorithm that is not universally accepted and more data is need. Additionally, there are numerous assays that don't always correlate, especially regarding measuring anti-drug antibodies.

  19. Molecular Biology of Exfoliation Syndrome.

    Science.gov (United States)

    Schlötzer-Schrehardt, Ursula

    2018-02-06

    Exfoliation syndrome (XFS) is a common age-related matrix process resulting from excessive production and disordered assembly of elastic microfibrillar components into highly cross-linked fibrillary aggregates throughout the anterior eye segment and various organ systems. The underlying molecular pathophysiology involves a complex interplay of pro-fibrotic protagonists including growth factors, proteolytic enzymes and inhibitors, pro-inflammatory cytokines, chaperones, and dysregulated stress response pathways including insufficient autophagy. Interaction between individual genetic predisposition and stress factors is a plausible theory explaining the development of XFS in the aging individual. Genome-wide association studies have identified robust genetic associations with LOXL1, CACNA1A, and five additional genes including POMP and TMEM136, which provide new biological insights into the pathology of XFS and highlight a role for abnormal matrix cross-linking processes, Ca channel deficiency, blood-aqueous barrier dysfunction, and abnormal ubiquitin-proteasome signaling in XFS pathophysiology. However, the exact pathophysiological mechanisms, the functional role of genetic risk variants and gene-environmental interactions still remain to be characterized.

  20. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  1. Therapeutic opportunities in biological responses of ultrasound.

    Science.gov (United States)

    Paliwal, Sumit; Mitragotri, Samir

    2008-08-01

    The therapeutic benefits of several existing ultrasound-based therapies such as facilitated drug delivery, tumor ablation and thrombolysis derive largely from physical or mechanical effects. In contrast, ultrasound can also trigger various time-dependent biochemical responses in the exposed biological milieu. Several biological responses to ultrasound exposure have been previously described in the literature but only a handful of these provide therapeutic opportunities. These include the use of ultrasound for healing of soft tissues and bones, the use of ultrasound for inducing non-necrotic tumor atrophy as well as for potentiation of chemotherapeutic drugs, activation of the immune system, angiogenesis and suppression of phagocytosis. A review of these therapeutic opportunities is presented with particular emphasis on their mechanisms. Overall, this review presents the increasing importance of ultrasound's role as a biological sensitizer enabling novel therapeutic strategies.

  2. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  3. Intermediate Physics for Medicine and Biology

    CERN Document Server

    Hobbie, Russell K

    2007-01-01

    Intended for advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, cell biology, and biomedical engineering, this wide-ranging text bridges the gap between introductory physics and its application to the life and biomedical sciences. This extensively revised and updated fourth edition reflects new developments at the burgeoning interface between physics and biomedicine. Among the many topics treated are: forces in the skeletal system; fluid flow, with examples from the circulatory system; the logistic equation; scaling; transport of neutral particles by diffusion and by solvent drag; membranes and osmosis; equipartition of energy in statistical mechanics; the chemical potential and free energy; biological magnetic fields; membranes and gated channels in membranes; linear and nonlinear feedback systems; nonlinear phenomena, including biological clocks and chaotic behavior; signal analysis, noise and stochastic resonance detection of weak signals; image formation and...

  4. CSBB: synthetic biology research at Newcastle University

    Science.gov (United States)

    Wipat, Anil; Krasnogor, Natalio

    2017-01-01

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties — Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. PMID:28620039

  5. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  6. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  7. Phytochemical and biological studies of bryophytes.

    Science.gov (United States)

    Asakawa, Yoshinori; Ludwiczuk, Agnieszka; Nagashima, Fumihiro

    2013-07-01

    The bryophytes contain the Marchantiophyta (liverworts), Bryophyta (mosses) and Anthocerotophyta (hornworts). Of these, the Marchantiophyta have a cellular oil body which produce a number of mono-, sesqui- and di-terpenoids, aromatic compounds like bibenzyl, bis-bibenzyls and acetogenins. Most sesqui- and di-terpenoids obtained from liverworts are enantiomers of those found in higher plants. Many of these compounds display a characteristic odor, and can have interesting biological activities. These include: allergenic contact dermatitis, antimicrobial, antifungal and antiviral, cytotoxic, insecticidal, insect antifeedant, superoxide anion radical release, 5-lipoxygenase, calmodulin, hyaluronidase, cyclooxygenase, DNA polymerase β, and α-glucosidase and NO production inhibitory, antioxidant, piscicidal, neurotrophic and muscle relaxing activities among others. Each liverwort biosynthesizes unique components, which are valuable for their chemotaxonomic classification. Typical chemical structures and biological activity of the selected liverwort constituents as well as the hemi- and total synthesis of some biologically active compounds are summarized. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Integrative Systems Biology Visualization with MAYDAY

    Directory of Open Access Journals (Sweden)

    Symonsy Stephan

    2010-12-01

    Full Text Available Visualization is pivotal for gaining insight in systems biology data. As the size and complexity of datasets and supplemental information increases, an efficient, integrated framework for general and specialized views is necessary. MAYDAY is an application for analysis and visualization of general ‘omics’ data. It follows a trifold approach for data visualization, consisting of flexible data preprocessing, highly customizable data perspective plots for general purpose visualization and systems based plots. Here, we introduce two new systems biology visualization tools for MAYDAY. Efficiently implemented genomic viewers allow the display of variables associated with genomic locations. Multiple variables can be viewed using our new track-based ChromeTracks tool. A functional perspective is provided by visualizing metabolic pathways either in KEGG or BioPax format. Multiple options of displaying pathway components are available, including Systems Biology Graphical Notation (SBGN glyphs. Furthermore, pathways can be viewed together with gene expression data either as heatmaps or profiles.

  9. A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis

    DEFF Research Database (Denmark)

    Everaert, Nadia; Van Cruchten, Steven; Weström, Björn

    2017-01-01

    During the prenatal, neonatal and post-weaning periods, the mammalian gastrointestinal tract undergoes various morphological and physiological changes alongside with an expansion of the immune system and microbial ecosystem. This review focuses on the time period before weaning and summarizes...... the current knowledge regarding i) structural and functional aspects ii) the development of the immune system, and iii) the establishment of the gut ecosystem of the porcine intestine. Structural and functional maturation of the gastrointestinal tract gradually progress with age. In the neonatal period...... in digestive function coincides with development in both the adaptive and innate immune system. This secures a balanced immune response to the ingested milk-derived macromolecules, and colonizing bacteria. Husbandry and dietary interventions in early life appear to affect the development of multiple components...

  10. Including a Service Learning Educational Research Project in a Biology Course-II: Assessing Community Awareness of Legionnaires' Disease?

    Science.gov (United States)

    Abu-Shakra, Amal

    2012-01-01

    For a university service learning educational research project addressing Legionnaires' disease (LD), a Yes/No questionnaire on community awareness of LD was developed and distributed in an urban community in North Carolina, USA. The 456 questionnaires completed by the participants were sorted into yes and no sets based on responses obtained to…

  11. Research on Chemical Composition and Biological Properties Including Antiquorum Sensing Activity of Angelica pancicii Vandas Aerial Parts and Roots.

    Science.gov (United States)

    Mileski, Ksenija S; Trifunović, Snežana S; Ćirić, Ana D; Šakić, Željana M; Ristić, Mihailo S; Todorović, Nina M; Matevski, Vlado S; Marin, Petar D; Tešević, Vele V; Džamić, Ana M

    2017-12-20

    The essential oil, different extracts, and isolated compounds of Angelica pancicii Vandas (Apiaceae) were investigated for the first time. The GC-FID and GC-MS analyses revealed sesquiterpenoids as the main constituents of A. pancicii essential oil of aerial parts with bornyl acetate (8.08%), n-octanol (5.82%), kessane (4.26%), and β-selinene (4.26%) as the main constituents. Analysis of methanol extracts, using an HPLC-DAD/ESI-ToF-MS system, showed a total of 52 compounds in the aerial parts and 53 in the roots, indicating coumarins as the main constituents. In addition, new chromone (1) and six known furanocoumarins (2-7) were isolated from the roots and structurally elucidated by combined spectroscopic methods. The aerial part extracts exhibited higher polyphenolic contents and antioxidant activity evaluated by three radical scavenging assays. Using a microwell dilution method, the strongest antibacterial activity profiles were determined for ethanol and methanol root extracts (minimum bactericidal concentrations (MBCs) = 0.25-3.00 mg/mL), which were comparable to the activity of streptomycin (MBCs = 0.34-1.24 mg/mL), while the strongest antibacterial compound of A. pancicii was oxypeucedanin hydrate (MBCs = 0.50-8.00 mg/mL). Antifungal potential was in moderate extent, and the highest activity was obtained for root methanol extract (minimum fungicidal concentrations (MFCs) = 4.00-14.00 mg/mL). Tested sub-minimum inhibitory concentrations (subMICs) of the extracts and isolated compounds inhibited selected Pseudomonas aeruginosa PAO1 virulence determinants. The most reduced growth of P. aeruginosa colony was in the presence of isolated oxypeucedanin. Ethanol (17.36-46.98%) and methanol (34.54-52.43%) root extracts showed higher anti-biofilm activity compared to streptomycin (49.40-88.36%) and ampicillin (56.46-92.16%).

  12. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders.

    Science.gov (United States)

    Ballew, Bari J; Savage, Sharon A

    2013-06-01

    Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by aberrant telomere biology. The mucocutaneous triad of nail dysplasia, abnormal skin pigmentation and oral leukoplakia is diagnostic, but is not always present; DC can also be diagnosed by the presence of very short leukocyte telomeres. Patients with DC are at high risk of bone marrow failure, pulmonary fibrosis, liver disease, cancer and other medical problems. Germline mutations in one of nine genes associated with telomere maintenance are present in approximately 60% of patients. DC is one among the group of clinically and biologically related telomere biology disorders, including Hoyeraal-Hreidarsson syndrome, Revesz syndrome, Coats plus (also known as cranioretinal microangiopathy with calcifications and cysts) and subsets of aplastic anemia, pulmonary fibrosis, nonalcoholic and noninfectious liver disease and leukemia. The authors review the pathobiology that connects DC and the related telomere biology disorders, methods of diagnosis and management modalities.

  13. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  14. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  15. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  16. Modelling biological and chemically induced precipitation of calcium phosphate in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2011-06-01

    The biologically induced precipitation processes can be important in wastewater treatment, in particular treating raw wastewater with high calcium concentration combined with Enhanced Biological Phosphorus Removal. Currently, there is little information and experience in modelling jointly biological and chemical processes. This paper presents a calcium phosphate precipitation model and its inclusion in the Activated Sludge Model No 2d (ASM2d). The proposed precipitation model considers that aqueous phase reactions quickly achieve the chemical equilibrium and that aqueous-solid change is kinetically governed. The model was calibrated using data from four experiments in a Sequencing Batch Reactor (SBR) operated for EBPR and finally validated with two experiments. The precipitation model proposed was able to reproduce the dynamics of amorphous calcium phosphate (ACP) formation and later crystallization to hydroxyapatite (HAP) under different scenarios. The model successfully characterised the EBPR performance of the SBR, including the biological, physical and chemical processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.

    Science.gov (United States)

    Harris, D Calvin; Jewett, Michael C

    2012-10-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  19. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  20. Oil, biological communities and contingency planning

    Science.gov (United States)

    Albers, P.H.; Frink, Lynne; Ball-Weir, Katherine; Smith, Charlotte

    1995-01-01

    The Oil Pollution Act of 1990 mandates the inclusion of a fish and wildlife response plan in the National Contingency Plan (NCP) and the creation of Area Committees that must develop an Area Contingency Plan (ACP). Area Contingency Plans must include a detailed annex containing a Fish and Wildlife and Sensitive Environments Plan. Tank vessels, offshore facilities, and certain onshore facilities must have response plans consistent with the requirements of the NCP and the ACP. New regulations to supersede the Type A and B procedures of the Natural Resources Damage Assessment Regulations are being developed for oil spills. Currently, four assessment methods have been proposed: (1) Type A, (2) comprehensive (Type B), (3) intermediate (between types A and B), and (4) compensation tables. The Oil Spill Liability Trust Fund is approaching its ceiling of $1 billion, but only $50 million has been appropriated. Effective biological contingency planning requires extensive knowledge of (1) the environmental fate of petroleum, (2) the effects of petroleum on organisms, (3) the existing biological resources, and (4) the establishment of a system of biological priorities. The characteristics and fate of petroleum and the biological effects of petroleum are reviewed. Assessment of biological resources includes plant and animal distributions, important habitat, endangered or threatened species, and economic considerations. The establishment by Area Committees of priorities for environmental protection, injury assessment, and restoration will promote efficient spill response. Three special issues are discussed: (1) improving our ability to restore natural resources, (2) the potential role of biological diversity in spill response planning, and (3) planning for animal rehabilitation.

  1. Integration of Various Technologies in Biology Learning

    Science.gov (United States)

    Safitri, M.; Riandi, R.; Widodo, A.; Nasution, W. R.

    2017-09-01

    Current technological developments require teachers to be able to create effective and efficient learning by integrating technology into teaching. The purpose of this study was to identify the type of technology used by teachers in biology teaching. This research uses descriptive method through observation and a semi-structured interview. Participants involved in this research are three teachers of X class biology from different Senior High School in Indonesia. The findings of the study were analyzed using the rubric of technology integration in the implementation of the use of technology in learning and teaching developed by Britten & Casady. The results of the study revealed that the various technologies used in the biological material of Animalia biology included in the technology that supports learning by using conventional methods or lectures on the material Kingdom Animalia. Teacher’s consideration in using technology on biology learning is limited facilities, the limited ability of teachers, complex content, and learning method used. The number of teachers’ considerations in integrating technology suggests that teachers in Indonesia need the development of the ability to integrate different types of technology in the lessons learned.

  2. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  3. DeviceEditor visual biological CAD canvas

    Science.gov (United States)

    2012-01-01

    Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs. PMID:22373390

  4. DeviceEditor visual biological CAD canvas.

    Science.gov (United States)

    Chen, Joanna; Densmore, Douglas; Ham, Timothy S; Keasling, Jay D; Hillson, Nathan J

    2012-02-28

    Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

  5. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  6. DeviceEditor visual biological CAD canvas

    Directory of Open Access Journals (Sweden)

    Chen Joanna

    2012-02-01

    Full Text Available Abstract Background Biological Computer Aided Design (bioCAD assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.

  7. Organometallic compounds: an opportunity for chemical biology?

    Science.gov (United States)

    Patra, Malay; Gasser, Gilles

    2012-06-18

    Organometallic compounds are renowned for their remarkable applications in the field of catalysis, but much less is known about their potential in chemical biology. Indeed, such compounds have long been considered to be either unstable under physiological conditions or cytotoxic. As a consequence, little attention has been paid to their possible utilisation for biological purposes. Because of their outstanding physicochemical properties, which include chemical stability, structural diversity and unique photo- and electrochemical properties, however, organometallic compounds have the ability to play a leading role in the field of chemical biology. Indeed, remarkable examples of the use of such compounds-notably as enzyme inhibitors and as luminescent agents-have recently been reported. Here we summarise recent advances in the use of organometallic compounds for chemical biology purposes, an area that we define as "organometallic chemical biology". We also demonstrate that these recent discoveries are only a beginning and that many other organometallic complexes are likely to be found useful in this field of research in the near future. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  9. Biology, Ordinary and Higher Grades, Syllabuses and Specimen Question Papers.

    Science.gov (United States)

    Scottish Certificate of Education Examination Board, Edinburgh.

    Included is the prescribed syllabus in biology for the Scottish Certificate of Education. In two separate sections, the syllabus topics and specimen questions for final examinations are explained. This syllabus is intended to present biology as knowledge about living organisms without making the conventional division between plants and animals.…

  10. Outdoor Biology Instructional Strategies Trial Edition, Set IV.

    Science.gov (United States)

    Throgmorton, Larry, Ed.; And Others

    Eight games are included in the 24 activities in the Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set IV. There are also simulations, crafts, biological techniques, and organism investigations focusing on animal and plant life in the forest, desert, and snow. Designed for small groups of children ages 10 to 15 from schools and…

  11. Physico-chemical characterization and biological studies of newly ...

    Indian Academy of Sciences (India)

    SANJOY SAHA

    2018-02-01

    Feb 1, 2018 ... of applications including biological, medicinal analyt- ical in addition to their vital role in organic synthesis and catalysis.22–26 We reported in previous articles the synthesis, characterization and biological influence of. Cu(II), Mn(II) and Co(II) complexes of analogous ionic liquid-supported Schiff bases.27 ...

  12. Optimization Techniques for Analysis of Biological and Social Networks

    Science.gov (United States)

    2012-03-28

    This project focused on a multifaceted study of a class of cluster-detection problems arising in biological and social networks . This includes...and heuristics. Originally, clusters (complexes, modules, cohesive subgroups) in biological and social networks were described by cliques (complete

  13. The ultimate complex system: networks in molecular biology

    Science.gov (United States)

    Schreiber, Andreas W.

    2010-07-01

    This contribution provides a brief survey of networks as they occur in molecular biology. It is intended as an introduction for a physics audience with no prior knowledge of molecular biology. References to key papers and reviews are included for the reader who wishes to explore this fascinating area further.

  14. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  15. An overview of the biological disease modifying drugs available for ...

    African Journals Online (AJOL)

    Tumour necrosis factor-alpha (TNF-α) plays an important role in the pathogenesis of rheumatoid disorders and is the target of four biological DMARDs, etanercept, infliximab, golimumab and adalimumab. The other biological DMARDs include abatacept, rituximab and tocilizumab and these prevent T-cell costimulation, ...

  16. Principles and practice of the biologic therapy of cancer

    National Research Council Canada - National Science Library

    Rosenberg, Steven A

    2000-01-01

    ... are not covered by the above-mentioned copyright. Printed in the USA Library of Congress Cataloging-in-Publication Data Principles and practice of the biologic therapy of cancer / edited by Steven A. Rosenberg- 3rd ed. p.; cm. Includes bibliographical references and index. ISBN 0-7817-2272-1 1. Biological response modifiers- Therapeutic use. ...

  17. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    foreseen at that time. But very soon Hertz understood how to generate them, Thomson how to receive them, and now we have the world all connected online. My next stamp goes to the Zhukovski equation of the hydrodynamics of a wing, which explained how aerodynamic lift force is generated. Now we can get from London to Washington in a third of a day, essentially due to that equation. Of the many things that the genius of Einstein discovered his energy-matter relation has led us to atomic power, whether we like it or not. Rutherford and Bohr unraveled the structure of atoms and all our materials science followed from it. Discovery of the transistor made the world of electronics and computers possible, and, again—whether we like it or not—most of us spend many hours daily staring at computer screens. Crick's equations and Franklin-Wilkins' observations (made possible by Roentgen's discovery that I omitted to mention after Maxwell) gave rise to the world of molecular biology which could also be easily forgotten by the wide public, if not our ever grateful forensic experts. Just two more milestones of much more 'modest' caliber. This is the discovery of lasers which are massively used for communication, in medicine and spectroscopy, including biological research. Next, I mention the discovery of scanning probe techniques, which allowed us to see individual atoms. For these two I did not even find stamps, but I am sure they must exist somewhere. The STM has just led Stuart Lindsey's team (University of Arizona) to the first steps towards ultrafast sequencing of DNA using functionalized STM tips. At the Abdus Salam International Center for Theoretical Physics there is no need to convince anyone that involved mathematics and physics is needed. But neither do we need to explain to anyone there that the applications of physics may be equally exciting as its fundamentals. The appreciation of massive achievements of physical methods in DNA research made it possible to host and

  18. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  19. National Biological Monitoring Inventory

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized

  20. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.

    2013-02-01

    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.