Sample records for biology including self-reproductive


    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  2. Inflation without self-reproduction in F( R) gravity (United States)

    Nojiri, Shin'ichi; Odintsov, Sergei D.


    We investigate inflation in frames of two classes of F( R) gravity and check its consistency with Planck data. It is shown that F( R) inflation without self-reproduction may be constructed in close analogy with the corresponding scalar example proposed by Mukhanov for the resolution of the problems of multiverse, predictability and initial conditions.

  3. Biological treatment of inorganic ion contamination including radionuclides

    International Nuclear Information System (INIS)

    Cherry, R.S.


    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III)

  4. Biological treatment of inorganic ion contamination including radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, R S [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)


    Microorganisms and plants are capable of a broad range of activities useful in treating inorganic contaminants in soil, groundwater, and surface runoff water Among the advantages of biological processes for this purpose are relatively low costs (related to their mild conditions) and the practicality of letting them run unattended. This talk will review both kinds of treatment chemistry that can be done biologically as well as present data from INEEL projects on bioremediation of specific elements. Biological processes can either solubilize or immobilize metals and other ions depending on the need. Uranium ions are solubilized from soil by the local bioproduction of organic acids as chelating agents, allowing removal of this ion as part of an ex-situ treatment process. Further, the microbial production of sulfuric acid can be used to solubilize Cs contamination in concrete surfaces. More usual though is the need to control metal movement in soil or water. Various metals such as Se and Cd are taken up from soil by hyper-accumulating plants, where they can be harvested in concentrated form in the leaves and stems. Excess acidity and a broad variety of toxic metals in acid rock drainage, such as Hg, Cd, Zn and others, can be removed by the production of sulfide ion in an easily fielded biological reactor which may be useful on phosphate processing runoff water contaminated with naturally occuring radioactive materials. Soluble Co, Cu, and Cd can be treated by sorption onto immobilized algae. Inorganic ions can also be directly reduced by bacteria as part of treatment, for example the conversion of soluble selenate ion to insoluble elemental selenium and the conversion of highly toxic CR(VI) to the far less soluble and less toxic Cr(III).


    Directory of Open Access Journals (Sweden)

    Spinello Antinori


    Full Text Available Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that in humans after a clinically silent replication phase in the liver are able to infect and replicate within the erythrocytes. Four species (P.falciparum, P.malariae, P.ovale and P.vivax are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.

  6. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora


    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  7. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Lebedev, Albert T.


    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10 -21 ), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents

  8. Green mathematics: Benefits of including biological variation in your data analysis

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Schouten, R.E.; Unuk, T.; Simcic, M.


    Biological variation is omnipresent in nature. It contains useful information that is neglected by the usually applied statistical procedures. To extract this information special procedures have to be applied. Biological variation is seen in properties (e.g. size, colour, firmness), but the

  9. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability--A Literature Review (United States)

    Jeronen, Eila; Palmberg, Irmeli; Yli-Panula, Eija


    There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education…

  10. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens


    The paper investigates the effect of adding an external carbon source on the rate of denitrification in an alternating activated sludge process including biological P removal. Two carbon sources were examined, acetate and hydrolysate derived from biologically hydrolyzed sludge. Preliminary batch ...

  11. Reproductive Biology Including Evidence for Superfetation in the European Badger Meles meles (Carnivora: Mustelidae.

    Directory of Open Access Journals (Sweden)

    Leigh A L Corner

    Full Text Available The reproductive biology of the European badger (Meles meles is of wide interest because it is one of the few mammal species that show delayed implantation and one of only five which are suggested to show superfetation as a reproductive strategy. This study aimed to describe the reproductive biology of female Irish badgers with a view to increasing our understanding of the process of delayed implantation and superfetation. We carried out a detailed histological examination of the reproductive tract of 264 female badgers taken from sites across 20 of the 26 counties in the Republic of Ireland. The key results show evidence of multiple blastocysts at different stages of development present simultaneously in the same female, supporting the view that superfetation is relatively common in this population of badgers. In addition we present strong evidence that the breeding rate in Irish badgers is limited by failure to conceive, rather than failure at any other stages of the breeding cycle. We show few effects of age on breeding success, suggesting no breeding suppression by adult females in this population. The study sheds new light on this unusual breeding strategy of delayed implantation and superfetation, and highlights a number of significant differences between the reproductive biology of female Irish badgers and those of Great Britain and Swedish populations.

  12. The Family in Us: Family History, Family Identity and Self-Reproductive Adaptive Behavior. (United States)

    Ferring, Dieter


    This contribution is an essay about the notion of family identity reflecting shared significant experiences within a family system originating a set of signs used in social communication within and between families. Significant experiences are considered as experiences of events that have an immediate impact on the adaptation of the family in a given socio-ecological and cultural context at a given historical time. It is assumed that family history is stored in a shared "family memory" holding both implicit and explicit knowledge and exerting an influence on the behavior of each family member. This is described as transgenerational family memory being constituted of a system of meaningful signs. The crucial dimension underlying the logic of this essay are the ideas of adaptation as well as self-reproduction of systems.

  13. Mechanical–biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization

    DEFF Research Database (Denmark)

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen


    recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal...... of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials...... electricity source in the system. It was estimated that, overall, up to ca. 180—190 kt CO2-eq. y−1 may be saved by optimizing the MBT plants under assessment....

  14. Biological review of 82 species of coral petitioned to be included in the Endangered Species Act (United States)

    Brainard, Russell E.; Birkeland, Charles; Eakin, C. Mark; McElhany, Paul; Miller, Margaret W.; Patterson, Matt; Piniak, G.A.


    list 83 coral species as threatened or endangered under the U.S. Endangered Species Act. The petition was based on a predicted decline in available habitat for the species, citing anthropogenic climate change and ocean acidification as the lead factors among the various stressors responsible for the potential decline. The NMFS identified 82 of the corals as candidate species, finding that the petition provided substantive information for a potential listing of these species. The NMFS established a Biological Review Team (BRT) to prepare this Status Review Report that examines the status of these 82 candidate coral species and evaluates extinction risk for each of them. This document makes no recommendations for listing, as that is a separate evaluation to be conducted by the NMFS.

  15. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions. (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R


    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight (United States)

    McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel


    We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.

  17. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.


    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  18. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability—A Literature Review

    Directory of Open Access Journals (Sweden)

    Eila Jeronen


    Full Text Available There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education in several scientific databases. The article provides an overview of 24 selected articles published in peer-reviewed scientific journals from 2006–2016. The data was analyzed using qualitative content analysis. Altogether, 16 journals were selected and 24 articles were analyzed in detail. The foci of the analyses were teaching methods, learning environments, knowledge and thinking skills, psychomotor skills, emotions and attitudes, and evaluation methods. Additionally, features of good methods were investigated and their implications for teaching were emphasized. In total, 22 different teaching methods were found to improve sustainability education in different ways. The most emphasized teaching methods were those in which students worked in groups and participated actively in learning processes. Research points toward the value of teaching methods that provide a good introduction and supportive guidelines and include active participation and interactivity.

  19. Merkel Cell Carcinomas Arising in Autoimmune Disease Affected Patients Treated with Biologic Drugs, Including Anti-TNF. (United States)

    Rotondo, John Charles; Bononi, Ilaria; Puozzo, Andrea; Govoni, Marcello; Foschi, Valentina; Lanza, Giovanni; Gafà, Roberta; Gaboriaud, Pauline; Touzé, Françoise Antoine; Selvatici, Rita; Martini, Fernanda; Tognon, Mauro


    Purpose: The purpose of this investigation was to characterize Merkel cell carcinomas (MCC) arisen in patients affected by autoimmune diseases and treated with biologic drugs. Experimental Design: Serum samples from patients with MCC were analyzed for the presence and titer of antibodies against antigens of the oncogenic Merkel cell polyomavirus (MCPyV). IgG antibodies against the viral oncoproteins large T (LT) and small T (ST) antigens and the viral capsid protein-1 were analyzed by indirect ELISA. Viral antigens were recombinant LT/ST and virus-like particles (VLP), respectively. MCPyV DNA sequences were studied using PCR methods in MCC tissues and in peripheral blood mononuclear cells (PBMC). Immunohistochemical (IHC) analyses were carried out in MCC tissues to reveal MCPyV LT oncoprotein. Results: MCPyV DNA sequences identified in MCC tissues showed 100% homology with the European MKL-1 strain. PBMCs from patients tested MCPyV-negative. Viral DNA loads in the three MCC tissues were in the 0.1 to 30 copy/cell range. IgG antibodies against LT/ST were detected in patients 1 and 3, whereas patient 2 did not react to the MCPyV LT/ST antigen. Sera from the three patients with MCC contained IgG antibodies against MCPyV VP1. MCC tissues tested MCPyV LT-antigen-positive in IHC assays, with strong LT expression with diffuse nuclear localization. Normal tissues tested MCPyV LT-negative when employed as control. Conclusions: We investigated three new MCCs in patients affected by rheumatologic diseases treated with biologic drugs, including TNF. A possible cause-effect relationship between pharmacologic immunosuppressive treatment and MCC onset is suggested. Indeed, MCC is associated with MCPyV LT oncoprotein activity. Clin Cancer Res; 23(14); 3929-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko


    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  1. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.


    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  2. Biological soil crust effects must be included to accurately model infiltration and erosion in drylands : an example from Tabernas Badlands

    NARCIS (Netherlands)

    Rodriguez-Caballero, E.; Canton, Y.; Jetten, V.G.


    In dryland ecosystems, runoff is mainly generated in bare areas, which are also more susceptible to water erosion than vegetated areas. These bare areas are often covered and protected by biological soil crusts (BSCs), which modify numerous physicochemical surface properties involved in runoff and

  3. Including a Service Learning Educational Research Project in a Biology Course-I: Assessing Community Awareness of Childhood Lead Poisoning (United States)

    Abu-Shakra, Amal; Saliim, Eric


    A university course project was developed and implemented in a biology course, focusing on environmental problems, to assess community awareness of childhood lead poisoning. A set of 385 questionnaires was generated and distributed in an urban community in North Carolina, USA. The completed questionnaires were sorted first into yes and no sets…

  4. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM


    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  5. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects. (United States)

    Hoffmann, Aswin L; den Hertog, Dick; Siem, Alex Y D; Kaanders, Johannes H A M; Huizenga, Henk


    Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be formulated as a multi-criteria optimization problem for which Pareto optimal treatment plans exist. To account for the dose-per-fraction effect of fractionated IMRT, it is desirable to exploit radiobiological treatment plan evaluation criteria based on the linear-quadratic (LQ) cell survival model as a means to balance the radiation benefits and risks in terms of biologic response. Unfortunately, the LQ-model-based radiobiological criteria are nonconvex functions, which make the optimization problem hard to solve. We apply the framework proposed by Romeijn et al (2004 Phys. Med. Biol. 49 1991-2013) to find transformations of LQ-model-based radiobiological functions and establish conditions under which transformed functions result in equivalent convex criteria that do not change the set of Pareto optimal treatment plans. The functions analysed are: the LQ-Poisson-based model for tumour control probability (TCP) with and without inter-patient heterogeneity in radiation sensitivity, the LQ-Poisson-based relative seriality s-model for normal tissue complication probability (NTCP), the equivalent uniform dose (EUD) under the LQ-Poisson model and the fractionation-corrected Probit-based model for NTCP according to Lyman, Kutcher and Burman. These functions differ from those analysed before in that they cannot be decomposed into elementary EUD or generalized-EUD functions. In addition, we show that applying increasing and concave transformations to the convexified functions is beneficial for the piecewise approximation of the Pareto efficient frontier.

  6. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin. (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F


    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  7. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism. (United States)

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A


    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  8. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.


    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  9. A mathematical model of the accumulation of radionuclides by oysters (C. virginica) aquacultured in the effluent of a nuclear power reactor to include major biological parameters

    International Nuclear Information System (INIS)

    Hess, C.T.; Smith, C.W.; Price, A.H.


    The uptake, accumulation and loss of radionuclides by the American oyster (C. virginica) aquacultured in the effluent of a nuclear power reactor has been measured monthly for 3 yr at four field stations in the Montsweag Estuary of the Sheepscot River and at a control station in the nearby Damariscotta River Estuary, southern central coastal Maine, U.S.A. A mathematical model for the time variation of the specific activity of the oysters has been developed to include the physical half-lives of the various radionuclides, the biological half-lives of the various radionuclides (biological depuration), the water temperature (oyster hibernation) and shell growth. The resulting first order linear differential equation incorporating these phenomena is driven by the liquid radionuclide effluent release of the Maine Yankee Nuclear Reactor. Comparison of the monthly measurements of the specific activity for 58 Co, 60 Co, 54 Mn, 134 Cs and 137 Cs in oysters with model calculations show close agreement over all ranges of variation observed. A special feature of this mathematical model is its ability to describe the non-chemostatic field situation. (author)

  10. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn (United States)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.


    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development

  11. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Linton, P.J.


    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The aboveground portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.

  12. Simulation with Phast of the pore water chemistry experiment results (Mont Terri Url, Switzerland), including transport, thermodynamics, kinetics, and biological activity

    International Nuclear Information System (INIS)

    Tournassat, C.; Gaucher, E.; Pearson, F.J.; Mettler, S.; Wersin, P.


    Full text of publication follows: The Pore water Chemistry (PC-)experiment was initially designed to determine the processes that control the redox properties of pore water in the Opalinus Clay at the Mont Terri URL. However, changes in isotopic data and chemical parameters such as pH, alkalinity, dissolved methane, acetate and sulphate concentrations indicated unexpected microbial activity. The origin of the bacteria is not clear. In the light of published data, an indigenous origin cannot be ruled out. A combined biological and reactive transport model has been developed with the parallel PHAST software to simulate the processes that determine pore water chemistry. The influence of bacterial activity on the system is successfully modelled by considering different reaction pathways scenarios including aceto-genesis, methano-genesis, and methane/acetate oxidation coupled to sulphate reduction. Several conclusions can be clearly stated in the light of the simulation results: - The measured redox potentials (redox electrode) are in line with the S(-II)/S(+VI) redox system. - In the undisturbed pore water, S(-II) and S(+VI) activities are controlled by a mineral assemblage containing pyrite and a Fe carbonate (siderite or ankerite). pH is buffered by mineral phases and SO 4 2- concentration is inherited from the marine sedimentary rock. - Some local redox potentials in the sedimentary rock do not correspond to the measured redox potential; for instance, organic matter/HCO 3 - and CH 4 /HCO 3 - systems are not at equilibrium with the measured redox potential. - Redox disequilibrium can be exploited by micro-organisms as a source of energy for their metabolism. In this experiment CH 4 , acetate and other organic acids were produced and SO 4 2- was reduced to HS - . The redox properties of the system are then governed by kinetics rather than by thermodynamic equilibrium. The unexpected persistence of acetate in the borehole water is one of the consequences of these

  13. Adult Diffuse Astrocytoma in the Medulla Oblongata: Molecular Biological Analyses Including H3F3A Mutation of Histone H3.3. (United States)

    Uekawa, Ken; Nakamura, Hideo; Shinojima, Naoki; Takezaki, Tatsuya; Yano, Shigetoshi; Kuratsu, Jun-Ichi


    Unlike in children, brain stem gliomas in adult are rare and still poorly understood. In addition, most adult brain stem gliomas result predominantly in the pons and are less often found in the medulla oblongata. Here, we report a case of an adult glioma in the medulla oblongata and its molecular biological features. A 46-year-old male presented with gait disturbance, paresthesia, and dysphagia. Magnetic resonance imaging (MRI) showed a diffuse hyper-intensive lesion in the medulla oblongata on a T 2 -weighted image without gadolinium contrast enhancement. We performed an open biopsy and the lesion was pathologically diagnosed as a diffuse astrocytoma. Molecular biological analyses revealed the absence of histone H3.3 mutation (H3F3A K27M), and presence of methylation of O-6-methylguanine-DNA methyltransferase (MGMT) promoter and a mutation in isocitrate dehydrogenase 1 (IDH-1). The patient received local radiotherapy and temozolomide chemotherapy. The patient's symptoms were ameliorated, and MRI showed no tumor growth at 6 months after the initial treatment. Biopsy for brain stem lesions is generally thought to have risk of complications, but if performed minimally, it is useful to diagnose and determine treatment strategy. Obtaining patient characteristics and molecular biological features will provide insight towards therapeutic treatment for adult brain stem gliomas.

  14. Studies of the reproductive biology of deep-sea megabenthos. 7: The Porcellanasteridae (Asteroidea: Echinodermata) including material collected at Great Meteor East, during Discovery cruise 156

    International Nuclear Information System (INIS)

    Tyler, P.A.; Muirhead, A.


    The reproductive biology of Porcellanaster ceruleus, Hyphalaster inermis and Styrachaster horridus is described. P. ceruleus was collected as part of the time series study in the rockall Trough, N.E. Atlantic. This species had a maximum size of 7.0mm arm radius although maximum size known is 36.0mm arm radius. Relatively few eggs are produced and in these samples grow to a maximum size of 230μm. There was no evidence of reproductive seasonality. In Hyphalaster inermis and Styrachaster horridus the eggs grow to 600μm diameter. At this size the cytoplasm is reticulate and filled with neutral fat whilst the periphery is an amorphous layer. Development of the testes in all three species appears typical of deep-sea asteroids. (author)

  15. Radiochemical and biological studies, including in non-human primates, towards indigenous development of 153Sm-EDTMP for metastatic bone pain palliation

    International Nuclear Information System (INIS)

    Saraswathy, P.; Mehra, K.S.; Ranganatha, D.K.; Das, M.K.; Balasubramanian, P.S.; Ananthakrishnan, M.; Ramamoorthy, N.; Gunasekaran, S.; Shanthly, N.; Retna Ponmalar, J.; Narasimhan, S.


    The combination of ease of formulation and superior biological features of 153 Sm-EDTMP in terms of safety and efficacy for metastatic bone pain palliation, together with the prospect of better logistics of production, has prompted extensive efforts by many groups world over for its preparation and evaluation. Our efforts have been directed towards exploring the feasibility for formulation of 153 Sm-EDTMP suitable for human use by neutron activation in medium flux reactors of the freely available and inexpensive natural samarium oxide target. The emphasis in biological studies was placed on tests in larger animals (monkeys) as a prelude to clinical evaluation. Feasibility to achieve reasonably high specific activity of 300-700 mCi/mg Sm at EOB with natural samarium has been adequately demonstrated. The radioeuropium contamination, estimated by γ-spectrometry to be 153 Sm-EDTMP from natural samarium at high radioactive concentrations of 40-50 mCi 153 Sm/mL, acceptable biolocalization, as revealed by both biodistribution studies in rats (femur uptake of 2-3% injected dose at 1h p.i. and retention up to 120 h p.i.) and gamma camera images in monkeys and adequate stability have been feasible. Excellent quality bone images of monkeys were recorded showing rapid clearance from blood, visualization of skeleton, clearance from kidneys within 2 hours and retention in skeleton up to 116 hours p.i. No significant activity in other soft tissues was noted. Comparative evaluation of the product prepared from enriched samarium as well as using in-house synthesized EDTMP has, likewise, revealed identical biolocalization features. EDTMP dose tolerance test in mice showed a safety factor of about 100 for a product made from natural samarium at an adult human dose of 50 mCi 153 Sm. Feasibility for production, reasonable safety and satisfactory biolocalisation of the indigenous product has been adequately established so as to warrant clinical trials in patients. (author)

  16. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses. (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis


    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara


    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  18. Characterization of natural anaerobic dechlorination of TCE and 1,1,1-TCA in clay till including isotope fractionation and molecular biological tools

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bælum, J.; Hunkeler, D.


    One of the major challenges when using enhanced reductive dechlorination (ERD) as a remediation technology at clay till sites is to obtain good contact between added agents such as donor, bacteria and the contamination. It is unclear whether degradation only takes place in fractures and/or sand l...... including the location of degradation in the fracture matrix geology. An extensive field collection of cores and discrete soil sampling has been conducted and samples have been analysed using state of the art microbial and chemical tools including isotope fractionation....

  19. Research in Biological and Medical Sciences, Including Biochemistry, Communicable Disease and Immunology, Internal Medicine, Nuclear Medicine, Physiology, Psychiatry, Surgery and Veterinary Medicine. Volume 2 (United States)


    during the past fiscal year include 45 ovario- hysterectomles, one caesarean section, one fracture repair, one patent ductus arteriosus repair, one...Following closure of the thoracotomy, SOD was down by 60% and VQJ was> 80% of control levels. SOD and VQO did not relate to each other in a parallel...tions. Two patents were applied for, one for the Electronic Debubbler Circuit and one for the Improved Flow Cell. A paper on this latest

  20. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A


    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  1. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)


    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi


    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Models for synthetic biology. (United States)

    Kaznessis, Yiannis N


    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  4. Cutaneous hidradenocarcinoma: a clinicopathological, immunohistochemical, and molecular biologic study of 14 cases, including Her2/neu gene expression/amplification, TP53 gene mutation analysis, and t(11;19) translocation. (United States)

    Kazakov, Dmitry V; Ivan, Doina; Kutzner, Heinz; Spagnolo, Dominic V; Grossmann, Petr; Vanecek, Tomas; Sima, Radek; Kacerovska, Denisa; Shelekhova, Ksenia V; Denisjuk, Natalja; Hillen, Uwe; Kuroda, Naoto; Mukensnabl, Petr; Danis, Dusan; Michal, Michal


    We present a series of 14 cases of cutaneous hidradenocarcinomas. The patients included 6 women and 8 men ranging in age at diagnosis from 34 to 93 years. All but 1 patient presented with a solitary nodule. There was no predilection site. One patient presented with multiple lesions representing metastatic nodules. Of 12 patients with available follow-up, 2 died of disease, whereas the remaining 10 patients were alive but 3 of them experienced a local recurrence in the course of the disease. Grossly, the tumors ranged in size from 1.2 to 6 cm. Microscopically, of the 14 primary tumors, 9 showed low-grade cytomorphology, whereas the remaining 5 neoplasms were high-grade lesions. The residuum of a hidradenoma was present in 5 of the 14 primaries. The mitotic rate was highly variable, ranging from 2 to 64 mitoses per 10 high-power field. The cellular composition of the tumors varied slightly, with clear cells, epidermoid cells, and transitional forms being present in each case. In 1 case, there was metaplastic transformation into sarcomatoid carcinoma. Glandular differentiation varied from case to case and appeared most commonly as simple round glands or as cells with intracytoplasmic lumens. Necrosis en masse was detected in 8 specimens. One specimen represented a reexcision and was unusual as it showed a well-demarcated intradermal proliferation of relatively bland clear cells accompanied by an overlying intraepidermal growth of clear cells resembling hidradenoacanthoma simplex. Despite the bland appearance, the tumor metastasized to a lymph node. Immunohistochemically, 5 of the 8 specimens studied for Her2/neu expression were negative, whereas 3 specimens from 2 cases yielded score +2, but all the 3 specimens with score 2+ subsequently proved negative for Her2/neu gene amplification by fluorescence in situ hybridization. Of 10 primaries studied, 4 tumors showed positive p53 immunoreaction in more than 25% of the cells comprising the malignant portion of the lesions

  5. Biological Water Quality Criteria (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  6. Biological Agents (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  7. Biology Branch

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, W F


    Progress is reported on the following studies in biochemistry and molecular biology: study of long pyrimidine polynucleotides in DNA; isolation of thymine dimers from Schizosaccharomyces pombe; thermal stability of high molecular weight RNA; nucleases of Micrococcus radiodurans; effect of ionizing radiation on M. radiodurans cell walls and cell membranes; chemical modification of nucleotides; exonucleases of M. radiodurans; and enzymatic basis of repair of radioinduced damage in M. radiodurans. Genetics, development, and population studies include repair pathways and mutation induction in yeast; induction of pure mutant clones in yeast; radiosensitivity of bacteriophage T4; polyacrylamide gel electrophoresis of bacteriophage T4; radiation genetics of Dahibominus; and radiation studies on bitting flies. (HLW)

  8. Developmental biology, the stem cell of biological disciplines


    Gilbert, Scott F.


    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  9. New seismograph includes filters

    Energy Technology Data Exchange (ETDEWEB)


    The new Nimbus ES-1210 multichannel signal enhancement seismograph from EG and G geometrics has recently been redesigned to include multimode signal fillers on each amplifier. The ES-1210F is a shallow exploration seismograph for near subsurface exploration such as in depth-to-bedrock, geological hazard location, mineral exploration, and landslide investigations.

  10. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.; Fratalocchi, Andrea; Totero Gongora, Juan Sebastian; Coluccio, Maria Laura; Candeloro, Patrizio; Cuda, Gianni


    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  11. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)


    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  12. Developmental biology, the stem cell of biological disciplines. (United States)

    Gilbert, Scott F


    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  13. Branching processes in biology

    CERN Document Server

    Kimmel, Marek


    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  14. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina


    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  15. From Never Born Proteins to Minimal Living Cells: two projects in synthetic biology. (United States)

    Luisi, Pier Luigi; Chiarabelli, Cristiano; Stano, Pasquale


    The Never Born Proteins (NBPs) and the Minimal Cell projects are two currently developed research lines belonging to the field of synthetic biology. The first deals with the investigation of structural and functional properties of de novo proteins with random sequences, selected and isolated using phage display methods. The minimal cell is the simplest cellular construct which displays living properties, such as self-maintenance, self-reproduction and evolvability. The semi-synthetic approach to minimal cells involves the use of extant genes and proteins in order to build a supramolecular construct based on lipid vesicles. Results and outlooks on these two research lines are shortly discussed, mainly focusing on their relevance to the origin of life studies.

  16. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B


    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  17. Modern Biology


    ALEKSIC, Branko


    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  18. Biological detector and method (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F


    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  19. Mathematical biology

    CERN Document Server

    Murray, James D


    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  20. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.


    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  1. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  2. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki


    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology ( The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts ( SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  3. Standard Biological Parts Knowledgebase (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.


    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology ( The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts ( SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  4. Standard biological parts knowledgebase. (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H


    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology ( The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts ( SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  5. Plant synthetic biology. (United States)

    Liu, Wusheng; Stewart, C Neal


    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. ERLN Biological Focus Area (United States)

    The Environmental Response Laboratory Network supports the goal to increase national capacity for biological analysis of environmental samples. This includes methods development and verification, technology transfer, and collaboration with USDA, FERN, CDC.

  7. Fishery Biology Database (AGDBS) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  8. The Biology of Behaviour. (United States)

    Broom, D. M.


    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  9. Is synthetic biology mechanical biology? (United States)

    Holm, Sune


    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  10. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue


    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  11. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  12. Integrated Biological Control

    International Nuclear Information System (INIS)



    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  13. Space biology research development (United States)

    Bonting, Sjoerd L.


    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  14. Learning Biology with Plant Pathology. (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  15. Cameroon Journal of Experimental Biology

    African Journals Online (AJOL)

    The Cameroon Journal of Experimental Biology is the official journal of the Cameroon Forum for Biological Sciences (CAFOBIOS). It is an interdisciplinary journal for the publication of original research papers, short communications and review articles in all fields of experimental biology including biochemistry, physiology, ...

  16. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  17. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.


    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  18. Human papillomavirus molecular biology. (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Biological agents]. (United States)

    Amano, Koichi


    There are two types of biological agents for the treatment of rheumatoid arthritis (RA); monoclonal antibodies and recombinant proteins. Among the latter, etanercept, a recombinant fusion protein of soluble TNF receptor and IgG was approved in 2005 in Japan. The post-marketing surveillance of 13,894 RA patients revealed the efficacy and safety profiles of etanercept in the Japanese population, as well as overseas studies. Abatacept, a recombinant fusion protein of CTLA4 and IgG, is another biological agent for RA. Two clinical trials disclosed the efficacy of abatacept for difficult-to-treat patients: the AIM for MTX-resistant cases and the ATTAIN for patients who are resistant to anti-TNF. The ATTEST trial suggested abatacept might have more acceptable safety profile than infliximab. These biologics are also promising for the treatment of RA for not only relieving clinical symptoms and signs but retarding structural damage.

  20. Biological preconcentrator (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM


    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  1. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner


    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  2. Two Dogmas of Biology

    Directory of Open Access Journals (Sweden)

    Leonore Fleming


    Full Text Available The problem with reductionism in biology is not the reduction, but the implicit attitude of determinism that usually accompanies it. Methodological reductionism is supported by deterministic beliefs, but making such a connection is problematic when it is based on an idea of determinism as fixed predictability. Conflating determinism with predictability gives rise to inaccurate models that overlook the dynamic complexity of our world, as well as ignore our epistemic limitations when we try to model it. Furthermore, the assumption of a strictly deterministic framework is unnecessarily hindering to biology. By removing the dogma of determinism, biological methods, including reductive methods, can be expanded to include stochastic models and probabilistic interpretations. Thus, the dogma of reductionism can be saved once its ties with determinism are severed. In this paper, I analyze two problems that have faced molecular biology for the last 50 years—protein folding and cancer. Both cases demonstrate the long influence of reductionism and determinism on molecular biology, as well as how abandoning determinism has opened the door to more probabilistic and unconstrained reductive methods in biology.

  3. Environmental biology

    International Nuclear Information System (INIS)

    Tschumi, P.A.


    Environmental biology illustrates the functioning of ecosystems and the dynamics of populations with many examples from limnology and terrestrial ecology. On this basis, present environmental problems are analyzed. The present environmental crisis is seen as a result of the failure to observe ecological laws. (orig.) [de

  4. Biological timekeeping

    DEFF Research Database (Denmark)

    Lloyd, David


    , the networks that connect differenttime domains and the oscillations, rhythms and biological clocks that coordinate andsynchronise the complexity of the living state.“It is the pattern maintained by this homeostasis, which is the touchstone ofour personal identity. Our tissues change as we live: the food we...

  5. Scaffolded biology. (United States)

    Minelli, Alessandro


    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  6. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.


    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  7. Marine Biology (United States)

    Dewees, Christopher M.; Hooper, Jon K.


    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  8. The biology of plant metabolomics

    NARCIS (Netherlands)

    Hall, R.D.


    Following a general introduction, this book includes details of metabolomics of model species including Arabidopsis and tomato. Further chapters provide in-depth coverage of abiotic stress, data integration, systems biology, genetics, genomics, chemometrics and biostatisitcs. Applications of plant

  9. Topics in mathematical biology

    CERN Document Server

    Hadeler, Karl Peter


    This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability...

  10. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther


    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  11. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.


    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  12. Dual Causality and the Autonomy of Biology. (United States)

    Bock, Walter J


    Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.

  13. Structural Biology Fact Sheet (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  14. Marine molecular biology: an emerging field of biological sciences. (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G


    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  15. [Biologics and mycobacterial diseases]. (United States)

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige


    Various biologics such as TNF-alpha inhibitor or IL-6 inhibitor are now widely used for treatment of rheumatoid arthritis. Many reports suggested that one of the major issues is high risk of developing tuberculosis (TB) associated with using these agents, which is especially important in Japan where tuberculosis still remains endemic. Another concern is the risk of development of nontuberculous mycobacterial (NTM) diseases and we have only scanty information about it. The purpose of this symposium is to elucidate the role of biologics in the development of mycobacterial diseases and to establish the strategy to control them. First, Dr. Tohma showed the epidemiologic data of TB risks associated with using biologics calculated from the clinical database on National Database of Rheumatic Diseases by iR-net in Japan. He estimated TB risks in rheumatoid arthritis (RA) patients to be about four times higher compared with general populations and to become even higher by using biologics. He also pointed out a low rate of implementation of QuantiFERON test (QFT) as screening test for TB infection. Next, Dr. Tokuda discussed the issue of NTM disease associated with using biologics. He suggested the airway disease in RA patients might play some role in the development of NTM disease, which may conversely lead to overdiagnosis of NTM disease in RA patients. He suggested that NTM disease should not be uniformly considered a contraindication to treatment with biologics, considering from the results of recent multicenter study showing relatively favorable outcome of NTM patients receiving biologics. Patients with latent tuberculosis infection (LTBI) should receive LTBI treatment before starting biologics. Dr. Kato, a chairperson of the Prevention Committee of the Japanese Society for Tuberculosis, proposed a new LTBI guideline including active implementation of LTBI treatment, introducing interferon gamma release assay, and appropriate selection of persons at high risk for

  16. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz


    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  17. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology


    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  18. Anthropic principle in biology and radiation biology

    International Nuclear Information System (INIS)

    Akif'ev, A. P.; Degtyarev, S.V.


    It was suggested to add the anthropic principle of the Universe according to which the physical constants of fundamental particles of matter and the laws of their counteraction are those that an appearance of man and mind becomes possible and necessary, with some biological constants to the set of fundamental constants. With reparation of DNA as an example it was shown how a cell ran some parameters of Watson-Crick double helix. It was pointed that the concept of the anthropic principle of the Universe in its full body including biological constants was a key to developing of a unified theory of evolution of the Universe within the limits of scientific creationism [ru

  19. Synthetic biology and occupational risk. (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul


    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.



    Stolуarova M. A.; Shcherbina I. D.


    The article describes the innovations in the classification and measurement of biological assets according to IFRS (IAS) 41 "Agriculture". The difficulties faced by agricultural producers using standard, set out in article. The classification based on the adopted amendments, according to which the fruit-bearing plants, previously accounted for as biological assets are measured at fair value are included in the category of fixed assets. The structure of biological assets and main means has bee...

  1. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)


    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  2. Biological Soft Robotics. (United States)

    Feinberg, Adam W


    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  3. Wireless Biological Electronic Sensors. (United States)

    Cui, Yue


    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  4. Marine Biology and Human Affairs (United States)

    Russell, F. S.


    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  5. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.


    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  6. Mammalian Synthetic Biology: Engineering Biological Systems. (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A


    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  7. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)


    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  8. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof


    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  9. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C


    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  10. Creating biological nanomaterials using synthetic biology. (United States)

    Rice, MaryJoe K; Ruder, Warren C


    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. Biophysics and systems biology. (United States)

    Noble, Denis


    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  12. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.


    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  13. Multidisciplinaire richtlijn "Verantwoord gebruik van biologicals"

    NARCIS (Netherlands)

    Bijlsma, J. W. J. Hans; Hagemeijer, J. W. Annemarie; Bijl, Marc; Jansen, Tim L. Th A.; van de Laar, Mart A. F. J.; Landewé, Robert B. M.; Nurmohamed, Mike T.


    A multidisciplinary working group has developed a practice guideline containing various recommendations on the responsible and efficient use of biologicals. These biologicals include both soluble immune-receptor proteins and monoclonal antibodies that are aimed at immune mediators, receptors or

  14. Programme Biology - Health protection

    International Nuclear Information System (INIS)


    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  15. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre


    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  16. The public's belief about biology. (United States)

    Wolpert, L


    This short review is concerned with a topic that has been neglected and is still very poorly understood: what the general public think and believe about biology (including health and medicine, and bioethics), and, in particular, about biotechnology.

  17. The biological basis of radiotherapy

    International Nuclear Information System (INIS)

    Steel, G.G.; Adams, G.E.; Horwich, A.


    The focus of this book is the biological basis of radiotherapy. The papers presented include: Temporal stages of radiation action:free radical processes; The molecular basis of radiosensitivity; and Radiation damage to early-reacting normal tissue

  18. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)


    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  19. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research. (United States)

    Baum, Bruce J.


    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  20. Synthetic biology: an emerging engineering discipline. (United States)

    Cheng, Allen A; Lu, Timothy K


    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  1. A history of the Federation of European Societies of Plant Physiology FESPP since its foundation in 1978--including notes on events preceding the foundation and following re-naming as the Federation of European Societies of Plant Biology (FESPB) in 2002. (United States)

    Lichtenthaler, Hartmut


    After several years of close contacts and extensive discussion between various plant physiologists of different European countries, the Federation of European Societies of Plant Physiology (FESPP) was established in 1978 in Edinburgh. The aim of the FESPP was and remains to promote up-to-date plant physiology research in all European countries and to stimulate scientific cooperation and the exchange of scientists between the different member societies by organizing congresses and workshops as well as editing four (recently five) Federation-affiliated journals. The short History of FESPP presented here covers the preparatory years of the 1970s that led to its actual foundation in 1978, and then its further development up to and following the Federation's reconstitution in 2002 as the Federation of European Societies of Plant Biology (FESPB).

  2. Device including a contact detector

    DEFF Research Database (Denmark)


    arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area......The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of the test sample by movement of the probe relative to the surface of the test sample into the specific orientation.; The probe may further comprise a contact detector (14) extending from the supporting body arranged so as to contact the surface of the test sample prior to any one of the plurality...

  3. Neoclassical transport including collisional nonlinearity. (United States)

    Candy, J; Belli, E A


    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  4. Neutron structural biology

    International Nuclear Information System (INIS)

    Schoenborn, B.


    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories

  5. Biological monitoring of radiation exposure (United States)

    Horneck, G.


    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  6. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.


    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  7. Biology Notes. (United States)

    School Science Review, 1982


    Describes laboratory procedures, demonstrations, and classroom materials, including "diet poker" (nutrition game); an experiment on enzyme characteristics; demonstrations of yeast anaerobic respiration and color preference in Calliphora larvae; method to extract eugenol from clove oil to show antibiotic properties; and Benedict's test.…


    Directory of Open Access Journals (Sweden)

    M. K. Guseynov


    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  9. Biologics in spine arthrodesis. (United States)

    Kannan, Abhishek; Dodwad, Shah-Nawaz M; Hsu, Wellington K


    Spine fusion is a tool used in the treatment of spine trauma, tumors, and degenerative disorders. Poor outcomes related to failure of fusion, however, have directed the interests of practitioners and scientists to spinal biologics that may impact fusion at the cellular level. These biologics are used to achieve successful arthrodesis in the treatment of symptomatic deformity or instability. Historically, autologous bone grafting, including iliac crest bong graft harvesting, had represented the gold standard in spinal arthrodesis. However, due to concerns over potential harvest site complications, supply limitations, and associated morbidity, surgeons have turned to other bone graft options known for their osteogenic, osteoinductive, and/or osteoconductive properties. Current bone graft selection includes autograft, allograft, demineralized bone matrix, ceramics, mesenchymal stem cells, and recombinant human bone morphogenetic protein. Each pose their respective advantages and disadvantages and are the focus of ongoing research investigating the safety and efficacy of their use in the setting of spinal fusion. Rh-BMP2 has been plagued by issues of widespread off-label use, controversial indications, and a wide range of adverse effects. The risks associated with high concentrations of exogenous growth factors have led to investigational efforts into nanotechnology and its application in spinal arthrodesis through the binding of endogenous growth factors. Bone graft selection remains critical to successful fusion and favorable patient outcomes, and orthopaedic surgeons must be educated on the utility and limitations of various biologics in the setting of spine arthrodesis.

  10. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych


    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  11. Introduction to radiation biology

    International Nuclear Information System (INIS)

    Uma Devi, P.; Satish Rao, B.S.; Nagarathnam, A.


    This book is arranged in a logical sequence, starting from radiation physics and radiation chemistry, followed by molecular, subcellular and cellular effects and going on to the level of organism. Topics covered include applied radiobiology like modifiers of radiosensitivity, predictive assay, health physics, human genetics and radiopharmaceuticals. The topics covered are : 1. Radiation Physics, 2. Detection and Measurement of Radiation, 3. Radiation Chemistry, 4. DNA Damage and Repair, 5. Chromosomal Aberrations and Gene Mutations, 6. Cellular Radiobiology 7. Acute Radiation Effects, 8. Delayed Effects of Radiation, 9. Biological Basis of Radiotherapy, 10. Chemical Modifiers of Radiosensitivity, 11. Hyperthermia, 12. High LET Radiations in Cancer, Therapy, 13. Predictive Assays, 14. Radiation Effects on Embryos, 15. Human Radiation Genetics, 16. Radiolabelled Compounds in Biology and Medicine and 17. Radiological Health

  12. Biological effects of radiation

    International Nuclear Information System (INIS)


    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  13. [Renal patient's diet: Can fish be included?]. (United States)

    Castro González, M I; Maafs Rodríguez, A G; Galindo Gómez, C


    Medical and nutritional treatment for renal disease, now a major public health issue, is highly complicated. Nutritional therapy must seek to retard renal dysfunction, maintain an optimal nutritional status and prevent the development of underlying pathologies. To analyze ten fish species to identify those that, because of their low phosphorus content, high biological value protein and elevated n-3 fatty acids EPA and DHA, could be included in renal patient's diet. The following fish species (Litte tunny, Red drum, Spotted eagleray, Escolar, Swordfish, Big-scale pomfret, Cortez flounder, Largemouth blackbass, Periche mojarra, Florida Pompano) were analyzed according to the AOAC and Keller techniques to determine their protein, phosphorus, sodium, potassium, cholesterol, vitamins D(3) and E, and n-3 EPA+DHA content. These results were used to calculate relations between nutrients. The protein in the analyzed species ranged from 16.5 g/100 g of fillet (Largemouth black bass) to 27.2 g/100 g (Red drum); the lowest phosphorus value was 28.6 mg/100 g (Periche mojarra) and the highest 216.3 mg/100 g (Spotted eagle ray). 80% of the fish presented > 100 mg EPA + DHA in 100 g of fillet. By its Phosphorus/gProtein ratio, Escolar and Swordfish could not be included in the renal diet; Little tunny, Escolar, Big-scale pomfret, Largemouth black-bass, Periche mojarra and Florida Pompano presented a lower Phosphorus/EPA + DHA ratio. Florida pompano is the most recommended specie for renal patients, due to its optimal nutrient relations. However, all analyzed species, except Escolar and Swordfish, could be included in renal diets.

  14. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R


    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  15. The universal numbers. From Biology to Physics. (United States)

    Marchal, Bruno


    I will explain how the mathematicians have discovered the universal numbers, or abstract computer, and I will explain some abstract biology, mainly self-reproduction and embryogenesis. Then I will explain how and why, and in which sense, some of those numbers can dream and why their dreams can glue together and must, when we assume computationalism in cognitive science, generate a phenomenological physics, as part of a larger phenomenological theology (in the sense of the greek theologians). The title should have been "From Biology to Physics, through the Phenomenological Theology of the Universal Numbers", if that was not too long for a title. The theology will consist mainly, like in some (neo)platonist greek-indian-chinese tradition, in the truth about numbers' relative relations, with each others, and with themselves. The main difference between Aristotle and Plato is that Aristotle (especially in its common and modern christian interpretation) makes reality WYSIWYG (What you see is what you get: reality is what we observe, measure, i.e. the natural material physical science) where for Plato and the (rational) mystics, what we see might be only the shadow or the border of something else, which might be non physical (mathematical, arithmetical, theological, …). Since Gödel, we know that Truth, even just the Arithmetical Truth, is vastly bigger than what the machine can rationally justify. Yet, with Church's thesis, and the mechanizability of the diagonalizations involved, machines can apprehend this and can justify their limitations, and get some sense of what might be true beyond what they can prove or justify rationally. Indeed, the incompleteness phenomenon introduces a gap between what is provable by some machine and what is true about that machine, and, as Gödel saw already in 1931, the existence of that gap is accessible to the machine itself, once it is has enough provability abilities. Incompleteness separates truth and provable, and machines can

  16. Physics of biological membranes (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  17. Biological invasions in forest ecosystems (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield


    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  18. Illuminating Cell Biology (United States)


    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  19. Computational biology for ageing (United States)

    Wieser, Daniela; Papatheodorou, Irene; Ziehm, Matthias; Thornton, Janet M.


    High-throughput genomic and proteomic technologies have generated a wealth of publicly available data on ageing. Easy access to these data, and their computational analysis, is of great importance in order to pinpoint the causes and effects of ageing. Here, we provide a description of the existing databases and computational tools on ageing that are available for researchers. We also describe the computational approaches to data interpretation in the field of ageing including gene expression, comparative and pathway analyses, and highlight the challenges for future developments. We review recent biological insights gained from applying bioinformatics methods to analyse and interpret ageing data in different organisms, tissues and conditions. PMID:21115530

  20. The diversification of developmental biology. (United States)

    Crowe, Nathan; Dietrich, Michael R; Alomepe, Beverly S; Antrim, Amelia F; ByrneSim, Bay Lauris; He, Yi


    In the 1960s, "developmental biology" became the dominant term to describe some of the research that had previously been included under the rubrics of embryology, growth, morphology, and physiology. As scientific societies formed under this new label, a new discipline took shape. Historians, however, have a number of different perspectives on what changes led to this new field of developmental biology and how the field itself was constituted during this period. Using the General Embryological Information Service, a global index of post-World War II development-related research, we have documented and visualized significant changes in the kinds of research that occurred as this new field formed. In particular, our analysis supports the claim that the transition toward developmental biology was marked by a growth in new topics and forms of research. Although many historians privilege the role of molecular biology and/or the molecularization of biology in general during this formative period, we have found that the influence of molecular biology is not sufficient to account for the wide range of new research that constituted developmental biology at the time. Overall, our work creates a robust characterization of the changes that occurred with regard to research on growth and development in the decades following World War II and provides a context for future work on the specific drivers of those changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R


    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  2. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M


    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  3. Biological conversion system (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  4. Translational environmental biology: cell biology informing conservation. (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R


    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Computational Systems Chemical Biology


    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander


    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  6. Catfish Biology and Farming. (United States)

    Dunham, Rex A; Elaswad, Ahmed


    This article summarizes the biology and culture of ictalurid catfish, an important commercial, aquaculture, and sport fish family in the United States. The history of the propagation as well as spawning of common catfish species in this family is reviewed, with special emphasis on channel catfish and its hybridization with blue catfish. The importance of the channel catfish female×blue catfish male hybrid, including current and future methods of hybrid catfish production, and the potential role it plays in the recovery of the US catfish industry are discussed. Recent advances in catfish culture elements, including environment, management, nutrition, feeding, disease control, culture systems, genetic improvement programs, transgenics, and the application of genome-based approaches in catfish production and welfare, are reviewed. The current status, needs, and future projections are discussed, as well as genetically modified organism developments that are changing the future.

  7. Other relevant biological papers

    International Nuclear Information System (INIS)

    Shimizu, M.


    A considerable number of CRESP-relevant papers concerning deep-sea biology and radioecology have been published. It is the purpose of this study to call attention to them. They fall into three general categories. The first is papers of general interest. They are mentioned only briefly, and include text references to the global bibliography at the end of the volume. The second are papers that are not only mentioned and referenced, but for various reasons are described in abstract form. The last is a list of papers compiled by H.S.J. Roe specifically for this volume. They are listed in bibliographic form, and are also included in the global bibliography at the end of the volume

  8. Review of Pasteuria penetrans: Biology, Ecology, and Biological Control Potential. (United States)

    Chen, Z X; Dickson, D W


    Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that has shown great potential as a biological control agent of root-knot nematodes. Considerable progress has been made during the last 10 years in understanding its biology and importance as an agent capable of effectively suppressing root-knot nematodes in field soil. The objective of this review is to summarize the current knowledge of the biology, ecology, and biological control potential of P. penetrans and other Pasteuria members. Pasteuria spp. are distributed worldwide and have been reported from 323 nematode species belonging to 116 genera of free-living, predatory, plant-parasitic, and entomopathogenic nematodes. Artificial cultivation of P. penetrans has met with limited success; large-scale production of endospores depends on in vivo cultivation. Temperature affects endospore attachment, germination, pathogenesis, and completion of the life cycle in the nematode pseudocoelom. The biological control potential of Pasteuria spp. have been demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus, Heterodera spp., Meloidogyne spp., and Xiphinema diversicaudatum. Pasteuria penetrans plays an important role in some suppressive soils. The efficacy of the bacterium as a biological control agent has been examined. Approximately 100,000 endospores/g of soil provided immediate control of the peanut root-knot nematode, whereas 1,000 and 5,000 endospores/g of soil each amplified in the host nematode and became suppressive after 3 years.

  9. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian


    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  10. Biological effects of DNA repair, including mutagenesis. Progress report, June 15, 1980-May 1, 1981

    International Nuclear Information System (INIS)

    Hutchinson, F.


    A mutagen of interest is used to create mutations in the cI gene of lambda phage, producing a clear plaque phenotype. Genetic mapping is used to determine which restriction fragment in the gene contains the mutation. The fragment is then isolated and sequenced by the Maxam-Gilbert technique. Thus, the actual changes in base sequence produced by the action of the mutagen may be determined and also the base sequence surrounding the mutation. Such studies will be useful in understanding the mechanisms by which a mutation occurs, since any proposed mechanism must be consistent with the observations. The results also give information on the specificity of mutagens

  11. A biologically inspired neural model for visual and proprioceptive integration including sensory training. (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi


    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.

  12. A Holistic Approach Including Biological and Geological Criteria for Integrative Management in Protected Areas. (United States)

    Peña, Lorena; Monge-Ganuzas, Manu; Onaindia, Miren; De Manuel, Beatriz Fernández; Mendia, Miren


    Biodiversity hotspots and geosites are indivisible parts of natural heritage. Therefore, an adequate spatial delimitation and understanding of both and their linkages are necessary in order to be able to establish conservation policies. Normally, biodiversity hotspots are a typical target for those policies but, generally, geosites are not taken into account. Thus, this paper aims to fill this gap by providing an easily replicable method for the identification and integration of the geosites and the biodiversity hotspots in a Network for Integrative Nature Conservation that highlights their linkages. The method here presented has been applied to Urdaibai Biosphere Reserve situated in southeastern of the Bay of Biscay. The obtained results indicate that some geosites that are not directly related with biodiversity hotspots remain unprotected. Thus, from the study carried out, it can be stated that we conserving just the biodiversity hotspots is not enough to conserve the whole natural heritage of a protected area, as some plots interesting due to their relevant geoheritage remain unprotected. Therefore, it is necessary to fully integrate geosites into the planning documents of protected areas as a part of an ecosystem approach. The ecosystem approach recognizes the integrity of abiotic and biotic elements in nature conservation policies. Moreover, the proposed framework and the innovative methodology can be used as an easy input to identify priority areas for conservation, to improve the protected areas conservation planning, and to demonstrate the linkages between biodiversity hotspots and geosites.

  13. Ozone control of biological activity during Earth's history, including the KT catastrophe (United States)

    Sheldon, W. R.


    There have been brief periods since the beginning of the Cambrian some 600 m.y. ago when mass extinctions destroyed a significant fraction of living species. The most widely studied of these events is the catastrophe at the KT boundary that ended the long dominance of the dinosaurs. In addition to mass extinctions, there is another profound discontinuity in the history of Earth's biota, the explosion of life at the end of the Precambrian era which is an episode that is not explained well at all. For some 3 b.y. before the Cambrian, life had been present on Earth, but maintained a low level of activity which is an aspect of the biota that is puzzling, especially during the last two-thirds of that period. During the last 2 b.y. before the Cambrian, conditions at the Earth's surface were suitable for a burgeoning of the biota, according to most criteria: the oceans neither boiled nor were fozen solid during this time, and the atmosphere contained sufficient O for the development of animals. The purpose of this paper is to suggest that mass extinctions and the lackluster behavior of the Precambrian biota share a common cause: an inadequate amount of ozone in the atmosphere.

  14. A Holistic Approach Including Biological and Geological Criteria for Integrative Management in Protected Areas (United States)

    Peña, Lorena; Monge-Ganuzas, Manu; Onaindia, Miren; De Manuel, Beatriz Fernández; Mendia, Miren


    Biodiversity hotspots and geosites are indivisible parts of natural heritage. Therefore, an adequate spatial delimitation and understanding of both and their linkages are necessary in order to be able to establish conservation policies. Normally, biodiversity hotspots are a typical target for those policies but, generally, geosites are not taken into account. Thus, this paper aims to fill this gap by providing an easily replicable method for the identification and integration of the geosites and the biodiversity hotspots in a Network for Integrative Nature Conservation that highlights their linkages. The method here presented has been applied to Urdaibai Biosphere Reserve situated in southeastern of the Bay of Biscay. The obtained results indicate that some geosites that are not directly related with biodiversity hotspots remain unprotected. Thus, from the study carried out, it can be stated that we conserving just the biodiversity hotspots is not enough to conserve the whole natural heritage of a protected area, as some plots interesting due to their relevant geoheritage remain unprotected. Therefore, it is necessary to fully integrate geosites into the planning documents of protected areas as a part of an ecosystem approach. The ecosystem approach recognizes the integrity of abiotic and biotic elements in nature conservation policies. Moreover, the proposed framework and the innovative methodology can be used as an easy input to identify priority areas for conservation, to improve the protected areas conservation planning, and to demonstrate the linkages between biodiversity hotspots and geosites.

  15. Opportunities in Biological Sciences; [VGM Career Horizons Series]. (United States)

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  16. Biology of portal hypertension. (United States)

    McConnell, Matthew; Iwakiri, Yasuko


    Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.

  17. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    These discussions included, among others, the possible consequences of nonDNA-based inheritance—epigenetics and cultural evolution, niche construction, and developmental mechanisms on our understanding of the evolutionary process, speciation, complexity in biology, and constructing a formal evolutionary theory.

  18. Ethics for the "New Biology" (United States)

    Kieffer, George H.


    Discusses biological contributions to the changes occurring in today's society, stressing the need for modifying traditional ethics. Issues include contraception and abortion, fetal research, population control and food supply, individual freedom versus common welfare, and euthanasia. Suggests that study in personal and group ethics be…

  19. Genetics in Relation to Biology. (United States)

    Stewart, J. Bird


    Claims that most instruction dealing with genetics is limited to sex education and personal hygiene. Suggests that the biology curriculum should begin to deal with other issues related to genetics, including genetic normality, prenatal diagnoses, race, and intelligence. Predicts these topics will begin to appear in British examination programs.…

  20. Biology and pathogenesis of Acanthamoeba


    Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed


    Abstract Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and ev...

  1. The Physics of Marine Biology. (United States)

    Conn, Kathleen


    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  2. The Latin American Biological Dosimetry Network (LBDNet)

    International Nuclear Information System (INIS)

    Garcia, O.; Lamadrid, A.I.; Gonzalez, J.E.; Romero, I.; Mandina, T.; Di Giorgio, M.; Radl, A.; Taja, M.R.; Sapienza, C.E.; Deminge, M.M.; Fernandez Rearte, J.; Stuck Oliveira, M.; Valdivia, P.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Cortina Ramirez, G.E.; Espinoza, M.; Martinez-Lopez, W.; Di Tomasso, M.


    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. (authors)

  3. The Latin American Biological Dosimetry Network (LBDNet). (United States)

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M


    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  4. Biology of Blood (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  5. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B


    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  6. Biosemiotics: Communication and Causation (Information included

    Directory of Open Access Journals (Sweden)

    Juan Ramon Álvarez


    Full Text Available Pretensions of Biosemiotics as a unified approach to biological information are critically scrutinized within the study of different projects of semiotisation of nature and naturalization ot cultural processes. Main textual references and arguments are presented and critically pondered. Biosemiotics is here presented as an analytical method to study communication as founded in causality.

  7. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj


    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  8. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao


    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  9. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological membranes. K Katsov M Müller M Schick. Invited Talks:- Topic 11. Biologically motivated problems (protein-folding models, dynamics at the scale of the cell; biological networks, evolution models, etc.) Volume 64 Issue 6 June 2005 pp ...

  10. Biology Myth-Killers (United States)

    Lampert, Evan


    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  11. Designing synthetic biology. (United States)

    Agapakis, Christina M


    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  12. Radiation biology. Chapter 20

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, J. [International Atomic Energy Agency, Vienna (Austria)


    Radiation biology (radiobiology) is the study of the action of ionizing radiations on living matter. This chapter gives an overview of the biological effects of ionizing radiation and discusses the physical, chemical and biological variables that affect dose response at the cellular, tissue and whole body levels at doses and dose rates relevant to diagnostic radiology.

  13. General Biology Syllabus. (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  14. Upgrading Undergraduate Biology Education (United States)

    Musante, Susan


    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  15. Chemistry and Biology (United States)

    Wigston, David L.


    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  16. Biology of Schwann cells. (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D


    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  17. Synthetic Biology: Putting Synthesis into Biology (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin


    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  18. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M


    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  19. The Dark Matter of Biology. (United States)

    Ross, Jennifer L


    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. The biology of cultural conflict. (United States)

    Berns, Gregory S; Atran, Scott


    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives-how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour-but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment.

  1. Biological Remediation of Petroleum Contaminants (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  2. Plant biology in the future. (United States)

    Bazzaz, F A


    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  3. Aspergilli: Systems biology and industrial applications

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nielsen, Jens


    possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology....

  4. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)


    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  5. Using magnetic nanoparticles to manipulate biological objects

    International Nuclear Information System (INIS)

    Liu Yi; Gao Yu; Xu Chenjie


    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  6. Radiation biology for the non-biologist

    International Nuclear Information System (INIS)

    Myers, D.K.


    This colloquium introduces some of the general concepts used in cell biology and in the study of the effects of ionizing radiation on living organisms. The present research activities in radiation biology in the Biology Branch at the Chalk River Nuclear Laboratories cover a broad range of interests in the entire chain of events by which the initial radiation-induced changes in the living cell are translated into significant biological effects, including the eventual production of cancers and hereditary defects. The main theme of these research activities is an understanding of the mechanisms by which radiation damage to DNA (the carrier of hereditary information in all living organisms) can be actively repaired by the living cell. Advances in our understanding of these processes have broad implications for other areas of biology but also bear directly on the assessment of the biological hazards of ionizing radiation. The colloquium concludes with a brief discussion of the hazards of low-level radiation. (author)

  7. Biological indicators of radiation quality

    International Nuclear Information System (INIS)

    Bender, M.A.; Wong, R.M.A.


    The induction of many biological effects by high linear energy transfer (LET) radiation is strikingly different in one or two respects from the induction by acute low-LET radiation. If the acute low-LET dose-effect curve is of the usual quadratic form, it becomes linear as LET increases. In any case the linear slope increases as LET increases; that is, the relative biological effectiveness (RBE) increases. Both changes might be exploited as biological indicators of whether or not the recent recalculations of dose and of neutron contribution to dose at Hiroshima and Nagasaki seem consistent with the epidemiological observations. The biological end points that have been extensively studied in survivors include acute effects, growth and development after in utero or childhood exposure, genetic and cytogenetic effects in offspring, somatic chromosomal aberrations in survivors, and, of course, cancers, including leukemia. No significant indication among offspring of genetic or cytogenetic effects attributable to parental exposure has been found. Among the remaining end points, only the data on somatic chromosomal aberrations and on cancers appear robust enough to allow one to draw definite inferences by comparing experiences at the two cities

  8. Pathological and Biological Aspects of Colorectal Cancer Treatment.

    NARCIS (Netherlands)

    Gosens, M.J.E.M.


    Pathological and biological aspects of colorectal cancer treatment. This thesis describes several pathological and biological aspects of colorectal cancer treatment. Different patient populations were investigated including patients with mobile rectal cancer enrolled in the Dutch TME trial, patients

  9. [The multidisciplinary practice guideline 'The responsible use of biologicals'].

    NARCIS (Netherlands)

    Bijlsma, J.W.J.; Hagemeijer, J.W.; Bijl, M. van der; Jansen, T.L.Th.A.; Laar, M.A. van der; Landewe, R.B.; Nurmohamed, M.T.


    - A multidisciplinary working group has developed a practice guideline containing various recommendations on the responsible and efficient use of biologicals.- These biologicals include both soluble immune-receptor proteins and monoclonal antibodies that are aimed at immune mediators, receptors or

  10. [Historic Development of Clinical Biology Laboratories in Luxembourg]. (United States)

    Wennig R; Humbel R-L


    After a short overview on the development of diagnostic tools in clinical biology at an international level from Antiquity towards today, a history of the clinical biology including public and private institutions in Luxembourg will be outlined.

  11. The Importance of Biological Databases in Biological Discovery. (United States)

    Baxevanis, Andreas D; Bateman, Alex


    Biological databases play a central role in bioinformatics. They offer scientists the opportunity to access a wide variety of biologically relevant data, including the genomic sequences of an increasingly broad range of organisms. This unit provides a brief overview of major sequence databases and portals, such as GenBank, the UCSC Genome Browser, and Ensembl. Model organism databases, including WormBase, The Arabidopsis Information Resource (TAIR), and those made available through the Mouse Genome Informatics (MGI) resource, are also covered. Non-sequence-centric databases, such as Online Mendelian Inheritance in Man (OMIM), the Protein Data Bank (PDB), MetaCyc, and the Kyoto Encyclopedia of Genes and Genomes (KEGG), are also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  12. Review of Biological Network Data and Its Applications

    Directory of Open Access Journals (Sweden)

    Donghyeon Yu


    Full Text Available Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  13. Systems biology in critical-care nursing. (United States)

    Schallom, Lynn; Thimmesch, Amanda R; Pierce, Janet D


    Systems biology applies advances in technology and new fields of study including genomics, transcriptomics, proteomics, and metabolomics to the development of new treatments and approaches of care for the critically ill and injured patient. An understanding of systems biology enhances a nurse's ability to implement evidence-based practice and to educate patients and families on novel testing and therapies. Systems biology is an integrated and holistic view of humans in relationship with the environment. Biomarkers are used to measure the presence and severity of disease and are rapidly expanding in systems biology endeavors. A systems biology approach using predictive, preventive, and participatory involvement is being utilized in a plethora of conditions of critical illness and injury including sepsis, cancer, pulmonary disease, and traumatic injuries.

  14. Space Synthetic Biology (SSB) (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  15. Pulsed Electric Fields for Biological Weapons Defense

    National Research Council Canada - National Science Library

    Gundersen, Martin A


    Pulsed power for biological investigations newly developed at USC include a fast diode-based systems designed to drive cell suspensions in a microscope slide electrode microchamber for observations...

  16. Bibliography of marine biology in South Africa

    CSIR Research Space (South Africa)

    Darracott, DA


    Full Text Available This bibliography was sponsored by the Marine Biology Section of the South African National Committee for Oceanographic Research (SANCOR). It has been attempted to include all publications which appeared before the end of 1977, either in South...

  17. Ethnobotanical and biological activities of Leptadenia pyrotechnica ...

    African Journals Online (AJOL)

    Conclusion: This review includes the substance of different ethnobotanical uses, phytochemistry and exclusive capability of this plant in the field of anti-microbial and human disease activities. Key words: Leptadenia pyrotechnica, Biological activities, Desert plant, Ethnobotanical, Phytochemical activity, phytochemistry.

  18. Center for Biologics Evaluation and Research (CBER) (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  19. Chromatographic and biological aspects of organomercurials

    Energy Technology Data Exchange (ETDEWEB)

    Fishbein, L


    A thorough review on the biological and chromatographic aspects of methylmercury, phenylmercurials, and miscellaneous organomercurials is presented. Areas covered include ecology, epidemiology, paper chromatography, thin-layer chromatography, gas chromatography, metabolism and toxicity, and environmental degradation. 183 references.

  20. African Journals Online: Biology & Life Sciences

    African Journals Online (AJOL)

    Items 1 - 50 of 71 ... Anatomy Journal of Africa is the Official Journal for the Association of Anatomical ... It publishes original articles pertaining to various aspects of renal ... in all fields of experimental biology including biochemistry, physiology, ...

  1. Workshop Introduction: Systems Biology and Biological Models (United States)

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  2. 42 CFR 410.100 - Included services. (United States)


    ... service; however, maintenance therapy itself is not covered as part of these services. (c) Occupational... increase respiratory function, such as graded activity services; these services include physiologic... rehabilitation plan of treatment, including physical therapy services, occupational therapy services, speech...

  3. Structure and function in biology

    International Nuclear Information System (INIS)

    Hirs, C.H.W.


    A summary is given of the history of the developments of structural chemistry in biology beginning with the work of the bacteriologist Ehrlich leading to a comprehensive examination of the influence of size and configuration on the interaction between specific antibodies and side-chain determinants. Recent developments include the recognition of a higher order of specificity in the interaction of proteins with one another

  4. Static, Lightweight Includes Resolution for PHP

    NARCIS (Netherlands)

    M.A. Hills (Mark); P. Klint (Paul); J.J. Vinju (Jurgen)


    htmlabstractDynamic languages include a number of features that are challenging to model properly in static analysis tools. In PHP, one of these features is the include expression, where an arbitrary expression provides the path of the file to include at runtime. In this paper we present two

  5. Article Including Environmental Barrier Coating System (United States)

    Lee, Kang N. (Inventor)


    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  6. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; van der Zwan, Jan Maarten; Izarzugaza, Isabel; Jaal, Jana; Treasure, Tom; Foschi, Roberto; Ricardi, Umberto; Groen, Harry; Tavilla, Andrea; Ardanaz, Eva

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  7. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; Zwan, J.M.V.D.; Izarzugaza, I.; Jaal, J.; Treasure, T.; Foschi, R.; Ricardi, U.; Groen, H.; Tavilla, A.; Ardanaz, E.


    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  8. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.


    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  9. Biological Clocks & Circadian Rhythms (United States)

    Robertson, Laura; Jones, M. Gail


    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  10. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  11. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  12. Evolutionary cell biology: two origins, one objective. (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley


    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  13. Internet addiction neuroscientific approaches and therapeutical implications including smartphone addiction

    CERN Document Server

    Reuter, Martin


    The second edition of this successful book provides further and in-depth insight into theoretical models dealing with Internet addiction, as well as includes new therapeutical approaches. The editors also broach the emerging topic of smartphone addiction. This book combines a scholarly introduction with state-of-the-art research in the characterization of Internet addiction. It is intended for a broad audience including scientists, students and practitioners. The first part of the book contains an introduction to Internet addiction and their pathogenesis. The second part of the book is dedicated to an in-depth review of neuroscientific findings which cover studies using a variety of biological techniques including brain imaging and molecular genetics. The third part of the book focuses on therapeutic interventions for Internet addiction. The fourth part of the present book is an extension to the first edition and deals with a new emerging potential disorder related to Internet addiction – smartphone addicti...

  14. Frontiers in mathematical biology

    CERN Document Server


    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  15. Biological sample collector (United States)

    Murphy, Gloria A [French Camp, CA


    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  16. Pembangunan Kebun Biologi Wamena*[establishment of Wamena Biological Gardens


    Rahmansyah, M; Latupapua, HJD


    The richness of biological resources (biodiversity) in mountainous area of Papua is an asset that has to be preserved.Exploitation of natural resources often cause damage on those biological assets and as genetic resources.Care has to be taken to overcome the situation of biological degradation, and alternate steps had been shaped on ex-situ biological conservation. Wamena Biological Gardens, as an ex-situ biological conservation, has been established to keep the high mountain biological and ...

  17. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas


    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  18. Mammalian cell biology

    International Nuclear Information System (INIS)



    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  19. Molecular biology of potyviruses. (United States)

    Revers, Frédéric; García, Juan Antonio


    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  20. New Approaches in Cancer Biology Can Inform the Biology Curriculum. (United States)

    Jones, Lynda; Gordon, Diana; Zelinski, Mary


    Students tend to be very interested in medical issues that affect them and their friends and family. Using cancer as a hook, the ART of Reproductive Medicine: Oncofertility curriculum (free, online, and NIH sponsored) has been developed to supplement the teaching of basic biological concepts and to connect biology and biomedical research. This approach allows integration of up-to-date information on cancer and cancer treatment, cell division, male and female reproductive anatomy and physiology, cryopreservation, fertility preservation, stem cells, ethics, and epigenetics into an existing biology curriculum. Many of the topics covered in the curriculum relate to other scientific disciplines, such as the latest developments in stem cell research including tissue bioengineering and gene therapy for inherited mitochondrial disease, how epigenetics occurs chemically to affect gene expression or suppression and how it can be passed down through the generations, and the variety of biomedical careers students could pursue. The labs are designed to be open-ended and inquiry-based, and extensions to the experiments are provided so that students can explore questions further. Case studies and ethical dilemmas are provided to encourage thoughtful discussion. In addition, each chapter of the curriculum includes links to scientific papers, additional resources on each topic, and NGSS alignment.

  1. An Integrated Biochemistry Laboratory, Including Molecular Modeling (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.


    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  2. Biology and pathogenesis of Acanthamoeba

    Directory of Open Access Journals (Sweden)

    Siddiqui Ruqaiyyah


    Full Text Available Abstract Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens.

  3. Managing biological diversity (United States)

    Samson, Fred B.; Knopf, Fritz L.


    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  4. A timeless biology. (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S


    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Piecewise deterministic processes in biological models

    CERN Document Server

    Rudnicki, Ryszard


    This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological processes into a unified mathematical theory, and...

  6. Physical models of biological information and adaptation. (United States)

    Stuart, C I


    The bio-informational equivalence asserts that biological processes reduce to processes of information transfer. In this paper, that equivalence is treated as a metaphor with deeply anthropomorphic content of a sort that resists constitutive-analytical definition, including formulation within mathematical theories of information. It is argued that continuance of the metaphor, as a quasi-theoretical perspective in biology, must entail a methodological dislocation between biological and physical science. It is proposed that a general class of functions, drawn from classical physics, can serve to eliminate the anthropomorphism. Further considerations indicate that the concept of biological adaptation is central to the general applicability of the informational idea in biology; a non-anthropomorphic treatment of adaptive phenomena is suggested in terms of variational principles.

  7. Mammalian synthetic biology for studying the cell. (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D


    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  8. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau


    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  9. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  10. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo


    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  11. Biological Potential in Serpentinizing Systems (United States)

    Hoehler, Tori M.


    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  12. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.


    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  13. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)


    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  14. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    transfers, occurs in a cascade in many biological processes, including photosynthesis. ... the model reactions of photosynthetic ... biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis ...

  15. Practising Conservation Biology in a Virtual Rainforest World (United States)

    Schedlbauer, Jessica L.; Nadolny, Larysa; Woolfrey, Joan


    The interdisciplinary science of conservation biology provides undergraduate biology students with the opportunity to connect the biological sciences with disciplines including economics, social science and philosophy to address challenging conservation issues. Because of its complexity, students do not often have the opportunity to practise…

  16. 75 FR 52752 - Request for Comments on Synthetic Biology (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  17. Introductory Biology Labs... They Just Aren't Sexy Enough! (United States)

    Cotner, Sehoya; Gallup, Gordon G., Jr.


    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  18. Thermal Stabilization of Biologics with Photoresponsive Hydrogels. (United States)

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W


    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex

  19. Integrating biological redesign: where synthetic biology came from and where it needs to go. (United States)

    Way, Jeffrey C; Collins, James J; Keasling, Jay D; Silver, Pamela A


    Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge


    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  1. Biology and Systematics of Echinococcus. (United States)

    Thompson, R C A


    The biology of Echinococcus, the causative agent of echinococcosis (hydatid disease) is reviewed with emphasis on the developmental biology of the adult and metacestode stages of the parasite. Major advances include determining the origin, structure and functional activities of the laminated layer and its relationship with the germinal layer; and the isolation, in vitro establishment and characterization of the multipotential germinal cells. Future challenges are to identify the mechanisms that provide Echinococcus with its unique developmental plasticity and the nature of activities at the parasite-host interface, particularly in the definitive host. The revised taxonomy of Echinococcus is presented and the solid nomenclature it provides will be essential in understanding the epidemiology of echinococcosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biological Feasibility of Measles Eradication (United States)

    Strebel, Peter


    Recent progress in reducing global measles mortality has renewed interest in measles eradication. Three biological criteria are deemed important for disease eradication: (1) humans are the sole pathogen reservoir; (2) accurate diagnostic tests exist; and (3) an effective, practical intervention is available at reasonable cost. Interruption of transmission in large geographical areas for prolonged periods further supports the feasibility of eradication. Measles is thought by many experts to meet these criteria: no nonhuman reservoir is known to exist, accurate diagnostic tests are available, and attenuated measles vaccines are effective and immunogenic. Measles has been eliminated in large geographical areas, including the Americas. Measles eradication is biologically feasible. The challenges for measles eradication will be logistical, political, and financial. PMID:21666201

  3. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.


    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  4. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy


    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  5. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran


    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  6. Systems Biology of the Fluxome

    Directory of Open Access Journals (Sweden)

    Miguel A. Aon


    Full Text Available The advent of high throughput -omics has made the accumulation of comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and metabolites. Systems biology-inspired computational methods for translating metabolomics data into fluxomics provide a direct functional, dynamic readout of metabolic networks. When combined with appropriate experimental design, these methods deliver insightful knowledge about cellular function under diverse conditions. The use of computational models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the control and regulatory properties of the fluxome under steady and time-dependent behaviors. This approach extends the analysis of complex systems from description to prediction, including control of complex dynamic behavior ranging from biological rhythms to catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics approach will help our ability to engineer unicellular and multicellular organisms evolve from trial-and-error to a more predictable process, and from cells to organ and organisms.

  7. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.J.


    Written by two eminent expects in the field with many years of teaching experience between them, this book presents a concise coverage of the physical and biological basics of radiation biology and protection. The book begins with a description of the methods of particle detection and dosimetric evaluation. The effects of ionizing radiation on man are treated from the initial physico-chemical phase of interaction to their conceivable pathological consequences. Regulations, limits and safeguards on nuclear power plants, radioisotope installations and medical centers which make use of ionizing radiation are given and the risks of exposure to natural, industrial and scientific radiation sources evaluated. The final chapter takes a look at some of the more important nuclear accidents, including Windscale, Three Mile Island, and Chernobyl, and describes basic procedures to be carried out in the eventuality of a nuclear emergency. Twelve chapters have been processed separately for inclusion in the appropriate data bases

  8. The Biology of Neisseria Adhesins

    Directory of Open Access Journals (Sweden)

    Miao-Chiu Hung


    Full Text Available Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.

  9. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C


    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  10. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund


    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  11. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  12. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.


    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  13. Hammond Bay Biological Station (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  14. Biologic Medications for Psoriasis (United States)

    ... open('/content/cro/en/health/prescription-drugs/best-buy-drugs/Biologics_For_Psoriasis.print.html','win2','status=no, ... we recommend the following as Consumer Reports Best Buy Drugs . Adalimumab (Humira) Etanercept (Enbrel) Studies show that for ...

  15. Enhanced Biological Sampling Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  16. Laboratory of Biological Modeling (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  17. Large Pelagics Biological Survey (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  18. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  19. Insecticides and Biological Control (United States)

    Furness, G. O.


    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  20. Study of biological compartments

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da


    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  1. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.


    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  2. Births and deaths including fetal deaths (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  3. Including Indigenous Minorities in Decision-Making

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand......Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand...

  4. Gas storage materials, including hydrogen storage materials (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji


    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Allostatic load and biological anthropology. (United States)

    Edes, Ashley N; Crews, Douglas E


    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  6. On nonepistemic values in conservation biology. (United States)

    Baumgaertner, Bert; Holthuijzen, Wieteke


    Conservation biology is a uniquely interdisciplinary science with strong roots in ecology, but it also embraces a value-laden and mission-oriented framework. This combination of science and values causes conservation biology to be at the center of critique regarding the discipline's scientific credibility-especially the division between the realms of theory and practice. We identify this dichotomy between seemingly objective (fact-based) and subjective (value-laden) practices as the measure-value dichotomy, whereby measure refers to methods and analyses used in conservation biology (i.e., measuring biodiversity) and value refers to nonepistemic values. We reviewed and evaluated several landmark articles central to the foundation of conservation biology and concepts of biodiversity with respect to their attempts to separate measures and values. We argue that the measure-value dichotomy is false and that conservation biology can make progress in ways unavailable to other disciplines because its practitioners are tasked with engaging in both the realm of theory and the realm of practice. The entanglement of measures and values is by no means a weakness of conservation biology. Because central concepts such as biodiversity contain both factual and evaluative aspects, conservation biologists can make theoretical progress by examining, reviewing, and forming the values that are an integral part of those concepts. We suggest that values should be included and analyzed with respect to the methods, results, and conclusions of scientific work in conservation biology. © 2016 Society for Conservation Biology.

  7. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology. (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J


    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  8. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M


    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  9. [Advance in molecular biology of Dendrobium (Orchidaceae)]. (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing


    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  10. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui


    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  11. Understanding Biological Regulation Through Synthetic Biology. (United States)

    Bashor, Caleb J; Collins, James J


    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see for revised estimates.

  12. Synthetic Biology to Engineer Bacteriophage Genomes. (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila


    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  13. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)



    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  14. Towards A Theoretical Biology: Reminiscences

    Indian Academy of Sciences (India)

    engaged in since the start of my career at the University of Chicago. Theoretical biology was ... research on theoretical problems in biology. Waddington, an ... aimed at stimulating the development of such a theoretical biology. The role the ...

  15. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)


    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  16. Electrochemical cell structure including an ionomeric barrier (United States)

    Lambert, Timothy N.; Hibbs, Michael


    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  17. Isolators Including Main Spring Linear Guide Systems (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)


    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  18. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O


    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  19. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B P [ed.


    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  20. Biological Effects of Ionizing Radiation (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.


    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  1. 28 CFR 20.32 - Includable offenses. (United States)


    ... Exchange of Criminal History Record Information § 20.32 Includable offenses. (a) Criminal history record... vehicular manslaughter, driving under the influence of drugs or liquor, and hit and run), when unaccompanied by a § 20.32(a) offense. These exclusions may not be applicable to criminal history records...

  2. Including Students with Visual Impairments: Softball (United States)

    Brian, Ali; Haegele, Justin A.


    Research has shown that while students with visual impairments are likely to be included in general physical education programs, they may not be as active as their typically developing peers. This article provides ideas for equipment modifications and game-like progressions for one popular physical education unit, softball. The purpose of these…

  3. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  4. Including Children Dependent on Ventilators in School. (United States)

    Levine, Jack M.


    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  5. Dueling biological and social contagions (United States)

    Fu, Feng; Christakis, Nicholas A.; Fowler, James H.


    Numerous models explore how a wide variety of biological and social phenomena spread in social networks. However, these models implicitly assume that the spread of one phenomenon is not affected by the spread of another. Here, we develop a model of “dueling contagions”, with a particular illustration of a situation where one is biological (influenza) and the other is social (flu vaccination). We apply the model to unique time series data collected during the 2009 H1N1 epidemic that includes information about vaccination, flu, and face-to-face social networks. The results show that well-connected individuals are more likely to get vaccinated, as are people who are exposed to friends who get vaccinated or are exposed to friends who get the flu. Our dueling contagion model suggests that other epidemiological models may be dramatically underestimating the R0 of contagions. It also suggests that the rate of vaccination contagion may be even more important than the biological contagion in determining the course of the disease. These results suggest that real world and online platforms that make it easier to see when friends have been vaccinated (personalized vaccination campaigns) and when they get the flu (personalized flu warnings) could have a large impact on reducing the severity of epidemics. They also suggest possible benefits from understanding the coevolution of many kinds of dueling contagions.

  6. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma


    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  7. Emerging frontiers in radiation biology

    International Nuclear Information System (INIS)

    Singh, B.B.


    Radiation biology owes its origin to the spectacular success in the treatment of human diseases by x-rays and radium, just after their respective discoveries in 1895-96. From the very inception it has attracted researchers from all disciplines of science. The target and hit theory developed by physicists, dominated the scene till the advent of radiation chemistry concepts which offered an entirely different perspective to the mechanisms involved in biological effects of radiations and their modification by endogenous and exogenous agents like radioprotectors and radiosensitisers including hyperthermia. The applied aspect of radiation biology mainly relates to radiation therapy of cancer which, in spite of its long existence, is still to achieve scientific perfection. Nevertheless, it did not wait -and fortunately so-, for its radiobiological rationality but continued its development to be the main modality for cancer treatment today. Several approaches are now being attempted to improve its efficacy by selectively damaging the cancerous cells while sparing the normal tissues and also by devising suitable predictive assays for radioresponse of different tumours to enable individualisation of treatment schedules. (author). 99 refs., 1 fig., 2 tabs

  8. Synthetic biology and biosecurity: challenging the "myths". (United States)

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire


    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  9. Radiation biology in Canada 1962-63

    International Nuclear Information System (INIS)

    Thacker, D.G.


    A survey of the research projects in radiation biology being carried out in Canada during the fiscal year 1962-63. The report includes the names of the investigators, their location, a brief description of the projects and information on the financial support being provided. A classification of the projects into areas of specific interest is also included. (author)

  10. Modular microfluidic system for biological sample preparation (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean


    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  11. Barrett's esophagus: cancer and molecular biology

    NARCIS (Netherlands)

    Gibson, Michael K.; Dhaliwal, Arashinder S.; Clemons, Nicholas J.; Phillips, Wayne A.; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E. Daniel; Räsänen, Jari; Krasna, Mark J.; Parikh, Kaushal; Krishnadath, Kausilia K.; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J.; Farrant, J. Mark; Tosh, David; Das, Kiron M.; Bajpai, Manisha


    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the

  12. Radiological/biological/aerosol removal system (United States)

    Haslam, Jeffery J


    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  13. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.


    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  14. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam


    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  15. Biological warfare agents (United States)

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan


    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  16. Paleoreconstruction by biological markers

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, W K; Moldowan, J M


    During diagenesis and conversion of the original lipid fraction of biological systems to petroleum hydrocarbons, the following four basic events needed for paleoreconstruction may be monitored by biological markers: (1) sourcing, (2) maturation, (3) migration and (4) biodegradation. Actual cases of applying biological markers to petroleum exploration problems in different parts of the world are demonstrated. Cretaceous- and Phosphoria-sourced oils in the Wyoming Thrust Belt can be distinguished from one another by high quality source fingerprinting of biomarker terpanes using gas chromatography mass spectrometry. Identification of recently discovered biological markers, head-to-head isoprenoids, allows source differentiation between some oils from Sumatra. The degree of crude oil maturation in basins from California, Alaska, Russia, Wyoming and Louisiana can be assessed by specific biomarker ratios (20S/20R sterane epimers). Field evidence from such interpretation is augmented by laboratory pyrolysis of the rock. Extensive migration is documented by biomarkers in several oils. Biological marker results are consistent with the geological setting and add a dimension in assisting the petroleum explorationist towar paleoreconstruction.

  17. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki


    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  18. Photoactive devices including porphyrinoids with coordinating additives (United States)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav


    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  19. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors (United States)

    Coley, John D.; Tanner, Kimberly


    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  20. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  1. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.


    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  2. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)


    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  3. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.


    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  4. [Network structures in biological systems]. (United States)

    Oleskin, A V


    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  5. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul


    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  6. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.


    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  7. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.


    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  8. Biological flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Buisman, C.J.N.; Dijkman, H.; Wijte, G.; Prins, W.L.; Verbraak, P.; Hartog, H.A.J. den [Paper B.V. Blak (Netherlands)


    A new biological flue gas desulfurization process (BIO-FGD) producing sulphur as a by-product was invented by Paques BV and Hoogens Technical Services in 1993. Sulphur dioxide is absorbed from flue gas using a combination of a sodium based scrubber and two biological reactors, an anaerobic and an aerobic biological reactor. The article describes the process and its evaluation in a pilot plant at 2 MW scale, designed to remove 6 kg/hr SO{sub 2} of the 2 million m{sup 3}/hr of flue gas produced at the 600 MW coal fired power station Amer-8 situated in Geertruidenberg in the south of the Netherlands. Research so far has proved the process works successfully and at low cost. A second pilot plant due to start-up in May 1995 will provide data on scale up and further information on sulphur recovery. 5 refs., 5 figs.

  9. Informing biological design by integration of systems and synthetic biology. (United States)

    Smolke, Christina D; Silver, Pamela A


    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Biology Today. Thinking Chemically about Biology. (United States)

    Flannery, Maura C.


    Discussed are applications of biochemistry. Included are designed drugs, clever drugs, carcinogenic structures, sugary wine, caged chemicals, biomaterials, marine chemistry, biopolymers, prospecting bacteria, and plant chemistry. (CW)

  11. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements (United States)

    Regier, Kimberly Fayette


    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  12. [Cybernetics and biology]. (United States)

    Vasil'ev, G F


    Owing to methodical disadvantages, the theory of control still lacks the potential for the analysis of biological systems. To get the full benefit of the method in addition to the algorithmic model of control (as of today the only used model in the theory of control) a parametric model of control is offered to employ. The reasoning for it is explained. The approach suggested provides the possibility to use all potential of the modern theory of control for the analysis of biological systems. The cybernetic approach is shown taking a system of the rise of glucose concentration in blood as an example.

  13. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo


    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  14. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.


    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  15. PAC research in biology

    Energy Technology Data Exchange (ETDEWEB)

    Chain, C. Y., E-mail: [Universidad Nacional de La Plata, IFLP (Argentina); Ceolin, M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, Dto de Quimica, Fac. Cs. Exactas, UNLP (Argentina); Pasquevich, A. F. [Universidad Nacional de La Plata, IFLP (Argentina)


    In this paper possible applications of the Perturbed Angular Correlations (PAC) technique in Biology are considered. Previous PAC experiments in biology are globally analyzed. All the work that appears in the literature has been grouped in a few research lines, just to make the analysis and discussion easy. The commonly used radioactive probes are listed and the experimental difficulties are analyzed. We also report applications of {sup 181}Hf and {sup 111}In isotopes in life sciences other than their use in PAC. The possibility of extending these studies using the PAC technique is discussed.

  16. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.


    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  17. Synthetic Biology and the Translational Imperative. (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc


    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  18. Generation and characterization of biological aerosols for laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Barr, E.B.


    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  19. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip


    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  20. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.


    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  1. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying


    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  2. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.


    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  3. Biological modulation of tectonics (United States)

    Sleep, N. H.; Bird, D. K.


    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  4. Energy principle with included boundary conditions

    International Nuclear Information System (INIS)

    Lehnert, B.


    Earlier comments by the author on the limitations of the classical form of the extended energy principle are supported by a complementary analysis on the potential energy change arising from free-boundary displacements of a magnetically confined plasma. In the final formulation of the extended principle, restricted displacements, satisfying pressure continuity by means of plasma volume currents in a thin boundary layer, are replaced by unrestricted (arbitrary) displacements which can give rise to induced surface currents. It is found that these currents contribute to the change in potential energy, and that their contribution is not taken into account by such a formulation. A general expression is further given for surface currents induced by arbitrary displacements. The expression is used to reformulate the energy principle for the class of displacements which satisfy all necessary boundary conditions, including that of the pressure balance. This makes a minimization procedure of the potential energy possible, for the class of all physically relevant test functions which include the constraints imposed by the boundary conditions. Such a procedure is also consistent with a corresponding variational calculus. (Author)

  5. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.


    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  6. Addressing Stillbirth in India Must Include Men. (United States)

    Roberts, Lisa; Montgomery, Susanne; Ganesh, Gayatri; Kaur, Harinder Pal; Singh, Ratan


    Millennium Development Goal 4, to reduce child mortality, can only be achieved by reducing stillbirths globally. A confluence of medical and sociocultural factors contribute to the high stillbirth rates in India. The psychosocial aftermath of stillbirth is a well-documented public health problem, though less is known of the experience for men, particularly outside of the Western context. Therefore, men's perceptions and knowledge regarding reproductive health, as well as maternal-child health are important. Key informant interviews (n = 5) were analyzed and 28 structured interviews were conducted using a survey based on qualitative themes. Qualitative themes included men's dual burden and right to medical and reproductive decision making power. Wives were discouraged from expressing grief and pushed to conceive again. If not successful, particularly if a son was not conceived, a second wife was considered a solution. Quantitative data revealed that men with a history of stillbirths had greater anxiety and depression, perceived less social support, but had more egalitarian views towards women than men without stillbirth experience. At the same time fathers of stillbirths were more likely to be emotionally or physically abusive. Predictors of mental health, attitudes towards women, and perceived support are discussed. Patriarchal societal values, son preference, deficient women's autonomy, and sex-selective abortion perpetuate the risk for future poor infant outcomes, including stillbirth, and compounds the already higher risk of stillbirth for males. Grief interventions should explore and take into account men's perceptions, attitudes, and behaviors towards reproductive decision making.

  7. Including gauge corrections to thermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Huetig, Janine


    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  8. Including gauge corrections to thermal leptogenesis

    International Nuclear Information System (INIS)

    Huetig, Janine


    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  9. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith


    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  10. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L K; Allan, G L; Cresswell, R G; Ophel, T R [Australian National Univ., Canberra, ACT (Australia); King, S J; Day, J P [Manchester Univ. (United Kingdom). Dept. of Chemistry


    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  11. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry


    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  12. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department


    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course pr...

  13. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department


    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepares participants to develop test and measurement, da...

  14. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department


    The contents of "LabView Basic I" and "LabView Intermediate II" trainings have been recently changed to include, respectively, an introduction and an expert training on the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to develop expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepare...

  15. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)


    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  16. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni


    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  17. Should Broca's area include Brodmann area 47? (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica


    Understanding brain organization of speech production has been a principal goal of neuroscience. Historically, brain speech production has been associated with so-called Broca’s area (Brodmann area –BA- 44 and 45), however, modern neuroimaging developments suggest speech production is associated with networks rather than with areas. The purpose of this paper was to analyze the connectivity of BA47 ( pars orbitalis) in relation to language . A meta-analysis was conducted to assess the language network in which BA47 is involved. The Brainmap database was used. Twenty papers corresponding to 29 experimental conditions with a total of 373 subjects were included. Our results suggest that BA47 participates in a “frontal language production system” (or extended Broca’s system). The BA47  connectivity found is also concordant with a minor role in language semantics. BA47 plays a central role in the language production system.

  18. Musculoskeletal ultrasound including definitions for ultrasonographic pathology

    DEFF Research Database (Denmark)

    Wakefield, RJ; Balint, PV; Szkudlarek, Marcin


    Ultrasound (US) has great potential as an outcome in rheumatoid arthritis trials for detecting bone erosions, synovitis, tendon disease, and enthesopathy. It has a number of distinct advantages over magnetic resonance imaging, including good patient tolerability and ability to scan multiple joints...... in a short period of time. However, there are scarce data regarding its validity, reproducibility, and responsiveness to change, making interpretation and comparison of studies difficult. In particular, there are limited data describing standardized scanning methodology and standardized definitions of US...... pathologies. This article presents the first report from the OMERACT ultrasound special interest group, which has compared US against the criteria of the OMERACT filter. Also proposed for the first time are consensus US definitions for common pathological lesions seen in patients with inflammatory arthritis....

  19. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong


    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  20. Including climate change in energy investment decisions

    International Nuclear Information System (INIS)

    Ybema, J.R.; Boonekamp, P.G.M.; Smit, J.T.J.


    To properly take climate change into account in the analysis of energy investment decisions, it is required to apply decision analysis methods that are capable of considering the specific characteristics of climate change (large uncertainties, long term horizon). Such decision analysis methods do exist. They can explicitly include evolving uncertainties, multi-stage decisions, cumulative effects and risk averse attitudes. Various methods are considered in this report and two of these methods have been selected: hedging calculations and sensitivity analysis. These methods are applied to illustrative examples, and its limitations are discussed. The examples are (1a) space heating and hot water for new houses from a private investor perspective and (1b) as example (1a) but from a government perspective, (2) electricity production with an integrated coal gasification combined cycle (ICGCC) with or without CO 2 removal, and (3) national energy strategy to hedge for climate change. 9 figs., 21 tabs., 42 refs., 1 appendix

  1. Education Program on Fossil Resources Including Coal (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  2. Biological scaling and physics

    Indian Academy of Sciences (India)


    Conversely, the average life-span, which is inverse to the ... Some find the catchy “life has an added dimension” (West et al ... works argument, which applies even outside biology, has .... While accounting for the (– 1/4) power, the thread of.

  3. Nuclear physics and biology

    International Nuclear Information System (INIS)

    Valentin, L.


    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  4. Bayes in biological anthropology. (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R


    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  5. Aquatic biology studies

    International Nuclear Information System (INIS)



    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  6. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.


    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  7. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.


    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  8. Evolution, Entropy, & Biological Information (United States)

    Peterson, Jacob


    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  9. Biological role of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Thauer, R K; Diekert, G; Schoenheit, P


    Several enzymes and one cofactor have recently been shown to contain nickel. For example, urease of jack beans has been found to be a nickel protein and factor F/sub 430/ from methanogenic bacteria to be a nickel tetrapyrrole. The biological role of nickel in several organisms is discussed.

  10. Engineering a Biological Revolution. (United States)

    Matheson, Susan


    The new field of synthetic biology promises to change health care, computer technology, the production of biofuels, and more. Students participating in the International Genetically Engineered Machine (iGEM) competition are on the front lines of this revolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.


    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  12. Isotopes in molecular biology

    International Nuclear Information System (INIS)

    Goldfarb, P.S.G.


    The use of radioisotopes in molecular biology, with particular reference to the structure and functions of DNA, RNA and the cellular synthesis of proteins, is discussed. The use of labelled DNA and RNA in diagnostic techniques is presented. (U.K.)

  13. Tree biology and dendrochemistry (United States)

    Kevin T. Smith; Walter C. Shortle


    Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...

  14. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup


    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  15. Application to biological data

    Indian Academy of Sciences (India)

    Reduction of dimensionality has emerged as a routine process in modelling complex biological systems. A large number of feature selection techniques have been reported in the literature to improve model performance in terms of accuracy and speed. In the present article an unsupervised feature selection technique is ...

  16. Biochemistry and evolutionary biology

    Indian Academy of Sciences (India)

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the ...

  17. Plant Systems Biology (editorial) (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  18. Male mating biology

    NARCIS (Netherlands)

    Howell, Paul I.; Knols, Bart G. J.


    Before sterile mass-reared mosquitoes are released in an attempt to control local populations, many facets of male mating biology need to be elucidated. Large knowledge gaps exist in how both sexes meet in space and time, the correlation of male size and mating success and in which arenas matings

  19. Systems biology and medicine

    Indian Academy of Sciences (India)

    work could potentially provide us with ways to identify drug ... appropriately balance cause, effect, and context of a given clinical ... would not provide answers/solutions to multitude of tasks that were ... a major challenge of contemporary biology is to embark on an ... nificantly govern the life and responsiveness of cells.

  20. Biological science in conservation (United States)

    David M. Johns


    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  1. Molecular Biology of Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  2. Antiprotons get biological

    CERN Multimedia


    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  3. Biology task group

    International Nuclear Information System (INIS)



    The accomplishments of the task group studies over the past year are reviewed. The purposes of biological investigations, in the context of subseabed disposal, are: an evaluation of the dose to man; an estimation of effects on the ecosystem; and an estimation of the influence of organisms on and as barriers to radionuclide migration. To accomplish these ends, the task group adopted the following research goals: (1) acquire more data on biological accumulation of specific radionuclides, such as those of Tc, Np, Ra, and Sr; (2) acquire more data on transfer coefficients from sediment to organism; (3) Calculate mass transfer rates, construct simple models using them, and estimate collective dose commitment; (4) Identify specific pathways or transfer routes, determine the rates of transfer, and make dose limit calculations with simple models; (5) Calculate dose rates to and estimate irradiation effects on the biota as a result of waste emplacement, by reference to background irradiation calculations. (6) Examine the effect of the biota on altering sediment/water radionuclide exchange; (7) Consider the biological data required to address different accident scenarios; (8) Continue to provide the basic biological information for all of the above, and ensure that the system analysis model is based on the most realistic and up-to-date concepts of marine biologists; and (9) Ensure by way of free exchange of information that the data used in any model are the best currently available

  4. Biological trade and markets. (United States)

    Hammerstein, Peter; Noë, Ronald


    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  5. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu


    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  6. [Synthetic biology and rearrangements of microbial genetic material]. (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng


    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  7. Environmental and biological applications of microplasmas

    International Nuclear Information System (INIS)

    Becker, K; Koutsospyros, A; Yin, S-M; Christodoulatos, C; Abramzon, N; Joaquin, J C; Brelles-Marino, G


    Stable glow-type discharge plasmas at elevated pressures can be generated and maintained easily when the plasma is spatially confined to cavities with critical dimensions below 1 mm ('microplasmas'). We studied the properties of several atmospheric-pressure microplasmas and their use in the remediation of volatile organic compounds (VOCs) and biological decontamination. The VOCs studied include individual prototypcal aliphatic and aromatic compounds as well as mixtures such as BTEX (benzene, toluene, ethylbenzene and xylene). The biological systems under study included individual bacteria as well as bacterial biofilms, which are highly structured communities of bacteria that are very resistant to antibiotics, germicides, and other conventional forms of destruction

  8. Analysis of Smart Composite Structures Including Debonding (United States)

    Chattopadhyay, Aditi; Seeley, Charles E.


    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite

  9. Zγ production at NNLO including anomalous couplings (United States)

    Campbell, John M.; Neumann, Tobias; Williams, Ciaran


    In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes pp → l + l -γ and pp\\to ν \\overline{ν}γ that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of Zγγ and ZZγ anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At √{s}=13 TeV we present phenomenological results and consider Zγ as a background to H → Zγ production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%.

  10. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.


    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  11. Probabilistic production simulation including CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.V.; Palsson, H.; Ravn, H.F.


    A probabilistic production simulation method is presented for an energy system containing combined heat and power plants. The method permits incorporation of stochastic failures (forced outages) of the plants and is well suited for analysis of the dimensioning of the system, that is, for finding the appropriate types and capacities of production plants in relation to expansion planning. The method is in the tradition of similar approaches for the analysis of power systems, based on the load duration curve. The present method extends on this by considering a two-dimensional load duration curve where the two dimensions represent heat and power. The method permits the analysis of a combined heat and power system which includes all the basic relevant types of plants, viz., condensing plants, back pressure plants, extraction plants and heat plants. The focus of the method is on the situation where the heat side has priority. This implies that on the power side there may be imbalances between demand and production. The method permits quantification of the expected power overflow, the expected unserviced power demand, and the expected unserviced heat demand. It is shown that a discretization method as well as double Fourier series may be applied in algorithms based on the method. (au) 1 tab., 28 ills., 21 refs.

  12. Langevin simulations of QCD, including fermions

    International Nuclear Information System (INIS)

    Kronfeld, A.S.


    We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)

  13. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail


    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)


    International Nuclear Information System (INIS)

    C. Tsang


    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  15. Mathematics, structuralism and biology. (United States)

    Saunders, P T


    A new approach is gaining ground in biology, one that has much in common with the structuralist tradition in other fields. It is very much in the spirit of an earlier view of biology and indeed of science in general. It is also, though this is not generally recognized, in the spirit of twentieth century physics. As in modern physics, however, it is not a question of ignoring all the progress that has been made within the former paradigm. On the contrary, the aim is to use it as a basis for setting out in a somewhat different direction. Complex phenomena do not generally lend themselves to reductionist analyses which seek explanation only in terms of detailed mechanisms, but a proper scientific discussion of structure must make full use of what we have already learned - by whatever means - about the processes that underly the phenomena we are trying to understand.

  16. Quantum physics meets biology. (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko


    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  17. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.


    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  18. Biologic Therapy and Asthma. (United States)

    Viswanathan, Ravi K; Busse, William W


    Although airway inflammation is an intrinsic and key feature of asthma, this response varies in its intensity and translation to clinical characteristics and responsiveness to treatment. The observations that clinical heterogeneity is an important aspect of asthma and a feature that likely dictates and determines responses to treatment in severe asthma, patient responsiveness to medication is incomplete, and risks for exacerbation are increased. The development of biologics, which target selected and specific components of inflammation, has been a promising advance to achieve asthma control in patients with severe disease. This article reviews the current biologics available and under development and how their use has affected asthma and which subpopulations appear to benefit the greatest. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Biological (flue) gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Buisman, C.J.N.; Dijkman, H. [PAQUES, Balk (Netherlands); Prins, W.L.; Verbraak, P. [Biostar CV, Balk (Netherlands); Den Hartog, A.J. [Hoogovens Groep BV, IJmuiden (Netherlands)


    Biotechnological research has been carried out to find new micro-organisms and processes to make useful products, and to reveal new ways and biotechnological mechanisms to produce elemental sulfur in waste water treatment. Biotechnological development work has been carried out and the first commercial installation (on 300 m{sup 3}/hr scale) to produce sulfur from polluted waste water was started up in 1992. The importance of this recent research and development in the area of waste water treatment was recognized. In an intensive cooperation between Hoogovens Technical Services and PACQUES the concept for a totally new Biological Flue Gas Desulfurization process (BIO-FGD), producing sulfur as by-product, was invented. It consists of the combination of a sodium scrubber with two biological reactors resulting in a very attractive new concept for a gas cleaning process. A description of the process is given and the pilot plant results are outlined. 4 figs., 5 refs.

  20. Multiplexed Engineering in Biology. (United States)

    Rogers, Jameson K; Church, George M


    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  1. Indoor biological pollution

    International Nuclear Information System (INIS)

    Bressa, G.


    Inside buildings - besides the umpteen toxic substances emanating from materials and appliances used daily for the most assorted activities - there are may be a number of different pathogenic micro-organisms able to cause diseases and respiratory system infections. Indoor pollution caused by biological agents may be due not only to living microorganisms, but also to dead ones or to the produce of their metabolism as well as to allergens. The most efficient precautionary measure against biological agents is to ventilate the rooms one lives in. In case of air-conditioning, it's good rule to keep air pipes dry and clean, renewing filters at regular intervals in order to avoid fungi and bacteria from settling in [it

  2. Does biological relatedness affect child survival?

    Directory of Open Access Journals (Sweden)


    Full Text Available Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright's coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.

  3. Elements in biological AMS

    International Nuclear Information System (INIS)

    Vogel, J.S.; McAninch, J.; Freeman, S.


    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  4. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  5. Serpins in arthropod biology


    Meekins, David A.; Kanost, Michael R.; Michel, Kristin


    Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are ...

  6. Biological Correlates of Empathy

    Directory of Open Access Journals (Sweden)

    E. Timucin Oral


    Full Text Available Empathy can be defined as the capacity to know emotionally what another is experiencing from within the frame of reference of that other person and the capacity to sample the feelings of another or it can be metaphorized as to put oneself in another’s shoes. Although the concept of empathy was firstly described in psychological theories, researches studying the biological correlates of psychological theories have been increasing recently. Not suprisingly, dinamically oriented psychotherapists Freud, Kohut, Basch and Fenichel had suggested theories about the biological correlates of empathy concept and established the basis of this modality decades ago. Some other theorists emphasized the importance of empathy in the early years of lifetime regarding mother-child attachment in terms of developmental psychology and investigated its role in explanation of psychopathology. The data coming from some of the recent brain imaging and animal model studies also seem to support these theories. Although increased activity in different brain regions was shown in many of the brain imaging studies, the role of cingulate cortex for understanding mother-child relationship was constantly emphasized in nearly all of the studies. In addition to these studies, a group of Italian scientists has defined a group of neurons as “mirror neurons” in their studies observing rhesus macaque monkeys. Later, they also defined mirror neurons in human studies, and suggested them as “empathy neurons”. After the discovery of mirror neurons, the hopes of finding the missing part of the puzzle for understanding the biological correlates of empathy raised again. Although the roles of different biological parameters such as skin conductance and pupil diameter for defining empathy have not been certain yet, they are going to give us the opportunity to revise the inconsistent basis of structural validity in psychiatry and to stabilize descriptive validity. In this review, the

  7. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian


    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.


    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  9. Calculating life? Duelling discourses in interdisciplinary systems biology. (United States)

    Calvert, Jane; Fujimura, Joan H


    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Biological effects of heavy particles

    International Nuclear Information System (INIS)

    Sabatier, L.; Martins, B.; Dutrillaux, B.


    The usual definitions of biological dose and biological dosimetry do not fit in case of particles with high linear energy transfer (LET). The dose corresponds to an average value which is not representative of the highly localized energy transfer due to heavy ions. Fortunately, up to now, a biological dosimetry following an exposure to high LET particles is necessary only for cosmonauts. In radiotherapy applications, one exactly knows the nature and energy of incident particle beams. The quality requirements for a good biodosimeter include reliable relation between dose and effect, weak sensitivity to individual variations, reliability and stability of acquired informations against the time delay between exposure and measurements. Nothing is better than the human lymphocyte to be used for measurements that fulfil these requirements. In the case of a manned spaceship, the irradiation dose corresponds to a wide range of radiation (protons, neutrons, heavy ions), and making a dosimetry as well as defining it are of current concern. As yet, there exist two possible definitions, which reduce the dose either to a proton or to a neutron equivalent one. However, such an approximation is not a faithful representation of the irradiation effects and in particular, the long-term effects may be quite different. In the future, it is reasonable to expect an evolution towards technics that enable identifying irradiated cells and quantifying precisely their radiation damage in order to reconstruct the spectrum of particles received by a given cosmonaut in a given time. Let us emphasize that the radiation hazards due to a short stay in space are quite minor, but in the case of a travel to Mars, they cannot be neglected [fr

  11. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)


    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  12. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.


    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  13. Probabilistic biological network alignment. (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer


    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  14. Do Sophisticated Epistemic Beliefs Predict Meaningful Learning? Findings from a Structural Equation Model of Undergraduate Biology Learning (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung


    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely "multiple-source," "uncertainty," "development," and "justification." COLB is further…

  15. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems


    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D


    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  16. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri


    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  17. Adventures in human population biology. (United States)

    Baker, P T


    This article is a memoir of anthropologist Paul Baker's professional life. The introduction notes that the field of anthropology was altered by the impact of World War II when physical anthropologists provided vital information to the military. After the war, the GI bill supported the undergraduate and graduate studies of veterans, including Baker. After describing his academic training at the University of New Mexico and Harvard, Baker details his research training and field work in the desert for the US Climatic Research Laboratory and his work identifying the dead in Japan for the Quartermaster unit. Baker then traces his academic career at the Pennsylvania State University during which he directed two multidisciplinary research efforts for the International Biological Programme, one that sought to understand human adaptability at high altitude in Peru and another that studied migration and modernization in Samoa. Baker's last administrative positions were as staff consultant to the Man and the Biosphere (MAB) program and as chair of the US MAB committee. Baker retired from academic life at age 60 in 1987 and has devoted his time to reading and to helping organize professional associations in anthropology, especially those devoted to furthering internationally organized scientific efforts. Baker concludes this memoir by acknowledging the growth and development of the discipline of human population biology.

  18. Physical basis for biological effect

    International Nuclear Information System (INIS)

    Goodhead, D.T.


    Absorbed dose, or particle fluence, alone, are poor predictors of the biological effectiveness of ionizing radiations. Various radiation 'quality' parameters have been proposed to account quantitatively for the differences due to type of radiation. These include LET, quality factor (Q), lineal energy, specific energy and Z 2 /β 2 . However, all of these have major shortcomings, largely because they fail to describe adequately the microscopic stochastic properties of radiation which are primarily responsible for their relative effectiveness. Most biophysical models of radiation action now agree that the biological effectiveness of radiations are to a large extent determined by their very localized spatial properties of energy deposition (perhaps DNA and associated structures) and that the probability of residual permanent cellular damage (after cellular repair) depends on the nature of this initial macromolecular damage. Common features of these models make it clear that major future advances in identifying critical physical parameters of radiations for general practical application, or to describe their fundamental mechanisms of action, require accurate knowledge of the spatial patterns of energy deposition down to distances of the order of nanometres. Therefore, adequate descriptions are required of the nature and spatial distribution of the initial charged particles and of the interaction-by-interaction structure of the ensuing charged particle tracks. Recent development and application of Monte Carlo track structure simulations have already made it possible to commence such analyses of radiobiological data. (author). 56 refs, 7 figs

  19. Hybrid Thermochemical/Biological Processing (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  20. Biology and biotechnology of Trichoderma. (United States)

    Schuster, André; Schmoll, Monika


    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  1. Integrative biological analysis for neuropsychopharmacology. (United States)

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L


    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.

  2. Biological monitors of air pollution

    International Nuclear Information System (INIS)

    Kucera, J.


    Direct biological monitoring of air pollution was introduced about 30 years ago. Although still under development, the application of biological monitors, or indicators, may provide important information on the levels, availability, and pathways of a variety of pollutants including heavy metals and other toxic trace elements in the air. A survey is given of the most frequently used biomonitors, such as herbaceous plants, tree leaves or needles, bryophytes, and lichens, with their possible advantages and/or limitations. In addition to using naturally-occurring biomonitors, a possibility of employing ''transplanted'' species in the study areas, for instance grasses grown in special containers in standard soils or lichens transplanted with their natural substrate to an exposition site, is also mentioned. Several sampling and washing procedures are reported. The important of employing nuclear analytical methods, especially instrumental neutron activation analysis, for multielemental analysis of biomonitors as a pre-requisite for unlocking the information contained in chemical composition of monitor's tissues, such as apportionment of emission sources using multivariate statistical procedures, is also outlined. (author). 32 refs, 2 figs

  3. Diffraction Techniques in Structural Biology (United States)

    Egli, Martin


    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  4. Time lags in biological models

    CERN Document Server

    MacDonald, Norman


    In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...

  5. A comparison of biological and cultural evolution. (United States)

    Portin, Petter


    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural replicator corresponding to the concept of the gene in biological evolution. Principles of cultural evolution are put forward and compared to the principles of biological evolution. Special emphasis is laid on the principle of selection in cultural evolution, including presentation of the concept of cultural fitness. The importance of language as a necessary condition for cultural evolution is stressed. Subsequently, prime differences between biological and cultural evolution are presented, followed by a discussion on interaction of our genome and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors specific for it. The paper ends with the notion of the still ongoing coevolution of genes and culture.


    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  7. Student Teachers' Approaches to Teaching Biological Evolution (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert


    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution…

  8. Dew formation and activity of biological crusts

    NARCIS (Netherlands)

    Veste, M.; Heusinkveld, B.G.; Berkowicz, S.M.; Breckle, S.W.; Littmann, T.; Jacobs, A.F.G.


    Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts ¿ the

  9. The Control of Chemical and Biological Weapons. (United States)

    Alexander, Archibald S.; And Others

    This book is composed of four papers prepared to illuminate the problem areas which might arise if the policies of the 1925 Geneva Protocol and other measures to limit chemical and biological weapons are ratified by the United States Senate. The papers included are: Legal Aspects of the Geneva Protocol of 1925; The Use of Herbicides in War: A…

  10. Challenges to Leadership: Responding to Biological Threats (United States)


    45 Chemical and Biological Defense: Management Actions Are Needed to Close the Gap between...any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for...contributions to it. Thanks also to Nicholas Rueter, a J.D./M.A. candidate at Duke University, for his able research assistance and to the Center for

  11. Biomaterials and biologics in craniofacial reconstruction. (United States)

    Engstrand, Thomas


    Complications related to surgery, including infection, wound dehiscence, and implant protrusion, are costly and may cause severe morbidity to patients. The choice of implants materials is critical for a successful outcome, particularly in craniofacial reconstructions. This review discusses the potential benefits and drawbacks of biologically active materials used for craniofacial bone repair as alternatives to inert implant prostheses.

  12. Pyrrolizidine alkaloids: occurrence, biology, and chemical synthesis. (United States)

    Robertson, Jeremy; Stevens, Kiri


    Covering: 2013 up to the end of 2015This review covers the isolation and structure of new pyrrolizidines; pyrrolizidine biosynthesis; biological activity, including the occurrence of pyrrolizidines as toxic components or contaminants in foods and beverages; and formal and total syntheses of naturally-occurring pyrrolizidine alkaloids and closely related non-natural analogues.

  13. Using Concept Mapping in the Biology Classroom. (United States)

    Donovan, Edward P.

    Concept mapping, a technique based on David Ausubel's theory of meaningful learning, involves the organization of concepts into an hierarchical arrangement. Suggestions for incorporating this learning strategy into the biology classroom are presented and discussed. Steps in concept mapping include: (1) identifying important concepts in the study…

  14. The biology of human immunodeficiency virus infection. (United States)

    Kotler, Donald P


    The aim of this article is to review the basic biology of infection with HIV-1 and the development of the acquired immunodeficiency syndrome. The discussion will include epidemiology, general description of the retroviruses, pathogenesis of the immune deficiency, clinical consequences, treatment, and treatment outcomes. Aspects of the infection that affect protein and energy balance will be identified.

  15. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman


    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  16. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman


    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  17. The biology of Colletotrichum acutatum

    Directory of Open Access Journals (Sweden)

    Diéguez-Uribeondo, Javier


    Full Text Available Colletotrichum acutatum is major pathogen of fruit crops, causing economically important losses of temperate, subtropical and tropical fruits worldwide. However, few studies have been carried out on key aspects of its biology. This is mainly because traditionally isolates of C. acutatum were often wrongly identified as C. gloeosporioides. Effective separation of the two species was not possible until the introduction of molecular tools for taxonomy. The life cycle of C. acutatum comprises a sexual and an asexual stage and much remains to be resolved regarding the genetics of sexuality and the effects of the sexual stage on population structure. Colletotrichum acutatum exhibits both infection strategies described for Colletotrichum species, i.e. intracellular hemibiotrophy and subcuticular-intramural necrotrophy, and may also undergo a period of quiescence in order to overcome resistance mechanisms in immature fruit such as pre-formed toxic compounds and phytoalexins, or due to the unsuitability of unripe fruit to fulfill the nutritional and energy requirements of the pathogen. Colletotrichum acutatum may overwinter as mycelium and/or appressoria in or on different parts of the host. Conidia are water-born and spread by rain episodes so infections are usually highest during the wettest periods of the growing season. Current management strategies for this fungus comprise the exploitation of cultivar resistance, cultural, chemical, and biological control methods, and preventive strategies such as disease-forecasting models. This review focuses on the current knowledge of biological aspects of C. acutatum and related Colletotrichum species and includes a discussion of the progress towards their control.Colletotrichum acutatum es uno de los principales hongos patógenos en agricultura y responsable de importantes pérdidas económicas en frutales en áreas tanto de climas templados como subtropicales y tropicales. Sin embargo, existen pocos estudios

  18. Is Our Biology to Blame? (United States)

    Schneider, Scott


    Brief analyses of three recent examples of biological determinism: sex roles, overpopulation, and sociobiology, are presented in this article. Also a brief discussion of biological determinism and education is presented. (MR)

  19. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian


    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  20. American Institute of Biological Sciences (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  1. Data warehousing in molecular biology. (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V


    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  2. NASA Biological Specimen Repository (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.


    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  3. Allometric Scaling in Biology (United States)

    Banavar, Jayanth


    The unity of life is expressed not only in the universal basis of inheritance and energetics at the molecular level, but also in the pervasive scaling of traits with body size at the whole-organism level. More than 75 years ago, Kleiber and Brody and Proctor independently showed that the metabolic rates, B, of mammals and birds scale as the three-quarter power of their mass, M. Subsequent studies showed that most biological rates and times scale as M-1/4 and M^1/4 respectively, and that these so called quarter-power scaling relations hold for a variety of organisms, from unicellular prokaryotes and eukaryotes to trees and mammals. The wide applicability of Kleiber's law, across the 22 orders of magnitude of body mass from minute bacteria to giant whales and sequoias, raises the hope that there is some simple general explanation that underlies the incredible diversity of form and function. We will present a general theoretical framework for understanding the relationship between metabolic rate, B, and body mass, M. We show how the pervasive quarter-power biological scaling relations arise naturally from optimal directed resource supply systems. This framework robustly predicts that: 1) whole organism power and resource supply rate, B, scale as M^3/4; 2) most other rates, such as heart rate and maximal population growth rate scale as M-1/4; 3) most biological times, such as blood circulation time and lifespan, scale as M^1/4; and 4) the average velocity of flow through the network, v, such as the speed of blood and oxygen delivery, scales as M^1/12. Our framework is valid even when there is no underlying network. Our theory is applicable to unicellular organisms as well as to large animals and plants. This work was carried out in collaboration with Amos Maritan along with Jim Brown, John Damuth, Melanie Moses, Andrea Rinaldo, and Geoff West.

  4. Biology Reflective Assessment Curriculum (United States)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of the curriculum are to promote self-efficacy and conceptual understanding in students learning biology through developing their metacognitive awareness. BRAC was implemented in a high school biology classroom. Data from assessments, metacognitive surveys, self-efficacy surveys, reflective journals, student work, a culminating task and field notes were used to evaluate the effectiveness of the curriculum. The results suggest that students who develop their metacognitive skills developed a deeper conceptual understanding and improved feelings of self-efficacy when they were engaged in a reflective assessment unit embedded with student choice. BRAC is a tool for teachers to use assessments to assist students in becoming metacognitive and to guide student choice in learning opportunities.

  5. Building biological foundries for next-generation synthetic biology. (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin


    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  6. Biological Petri Nets

    CERN Document Server

    Wingender, E


    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  7. Mathematics and biology

    International Nuclear Information System (INIS)

    Khan, I.A.


    In India and in so many other countries, the science students are generally separated into two main streams: one opting mathematical sciences, the other studying biological sciences. As a result, medicos and biologists have no adequate knowledge of mathematical sciences. It causes a great drawback to them in order to be perfect and updated in their profession, due to the tremendous application of mathematics in bio-sciences, now-a-days. The main aim of this article is to emphasize on the need of the time to produce the mathematico-biologists in abundance for the better service of mankind. (author)

  8. Space Synthetic Biology Project (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)


    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  9. Biology of Bilirubin Photoisomers. (United States)

    Hansen, Thor Willy Ruud


    Phototherapy is the main treatment for neonatal hyperbilirubinemia. In acute treatment of extreme hyperbilirubinemia, intensive phototherapy may have a role in 'detoxifying' the bilirubin molecule to more polar photoisomers, which should be less prone to crossing the blood-brain barrier, providing a 'brain-sparing' effect. This article reviews the biology of bilirubin isomers. Although there is evidence supporting the lower toxicity of bilirubin photoisomers, there are studies showing the opposite. There are methodologic weaknesses in most studies and better-designed experiments are needed. In an infant acutely threatened by bilirubin-induced brain damage, intensified phototherapy should be used expediently and aggressively. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Biological therapies for spondyloarthritis. (United States)

    Bruner, Vincenzo; Atteno, Mariangela; Spanò, Angelo; Scarpa, Raffaele; Peluso, Rosario


    Biological therapies and new imaging techniques have changed the therapeutic and diagnostic approach to spondyloarthritis. In patients with axial spondyloarthritis, tumor necrosis factor α (TNFα) inhibitor treatment is currently the only effective therapy in patients for whom conventional therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) has failed. TNFα inhibitor treatment is more effective in preventing articular damage in peripheral joints than in axial ones. It is important to treat patients at an early stage of disease to reduce disease progression; moreover it is necessary to identify causes of therapy inefficacy in preventing joint damage in the axial subset.

  11. Biology of radiation therapy

    International Nuclear Information System (INIS)

    Peters, L.J.


    A working knowledge of the biologic principles underlying radiotherapy for head and neck tumors is desirable for all the disciplines involved in the management of patients with these cancers. Clinical practice is certainly possible without this basic understanding, and historically most clinical advances have been made empirically. However, an understanding of the basic concepts permits a better appreciation of the strengths and weaknesses of various treatment strategies and offers a rational approach for future modifications of techniques so as to improve the outcome of treatment

  12. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)


    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  13. Lichens as biological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, H S


    Lichens, a symbiotic association of an alga and a fungus, have been used for some years as 'bioindicators', to detect environmental pollution. For this, their property of reacting to certain pollutants with characteristic changes of growth is exploired. With this biological method, continual, sufficiently sensitive measurements over wide areas can often be carried out more simply than with expensive, complicated technical equipment, which requires servicing, as well. This article describes the various possibilities of using lichens as bioindicators, and reviews the methods currently in use for measuring air pollution by means of lichens.

  14. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi


    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  15. [Frontier in bone biology]. (United States)

    Takeda, Shu


    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  16. Synthetic biology: a utilitarian perspective. (United States)

    Smith, Kevin


    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio. © 2013 John Wiley & Sons Ltd.

  17. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang


    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  18. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.


    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  19. Oscillation and stability of delay models in biology

    CERN Document Server

    Agarwal, Ravi P; Saker, Samir H


    Environmental variation plays an important role in many biological and ecological dynamical systems. This monograph focuses on the study of oscillation and the stability of delay models occurring in biology. The book presents recent research results on the qualitative behavior of mathematical models under different physical and environmental conditions, covering dynamics including the distribution and consumption of food. Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.

  20. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.


    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  1. Structural Molecular Biology 2017 | SSRL (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  2. Michael Levitt and Computational Biology (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Michael Levitt and Computational Biology Resources with Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has function. ... Levitt's early work pioneered computational structural biology, which helped to predict

  3. Biological warfare, bioterrorism, and biocrime

    NARCIS (Netherlands)

    Jansen, H. J.; Breeveld, F. J.; Stijnis, C.; Grobusch, M. P.


    Biological weapons achieve their intended target effects through the infectivity of disease-causing infectious agents. The ability to use biological agents in warfare is prohibited by the Biological and Toxin Weapon Convention. Bioterrorism is defined as the deliberate release of viruses, bacteria

  4. Functions in Biological Kind Classification (United States)

    Lombrozo, Tania; Rehder, Bob


    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  5. Biological Soil Crust Web Site (United States) Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  6. Life sciences space biology project planning (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.


    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  7. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun


    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  8. Radioactive 63Ni in biological research

    International Nuclear Information System (INIS)

    Kasprzak, K.S.; Sunderman, F.W. Jr.


    Applications of 63 Ni in biological research are reviewed, with emphasis upon recent investigations of nickel metabolism and toxicology in experimental animals. The radiochemistry of 63 Ni is summarized, including consideration of the preparation of certain 63 Ni compounds (e.g. 63 Ni(CO) 4 and 63 Ni 3 S 2 ) that are of current interest in toxicology, teratology and cancer research. Practical guidance is given regarding the detection and determination of 63 Ni in biological materials by autoradiography and liquid scintillation spectrometry. (author)

  9. Gravitational biology on the space station (United States)

    Keefe, J. R.; Krikorian, A. D.


    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  10. Psoriatic arthritis: treatment strategies using biologic agents

    Directory of Open Access Journals (Sweden)

    C. Palazzi


    Full Text Available The traditional management of psoriatic arthritis (PsA includes NSAIDs, corticosteroids and DMARDs. Advancement in the knowledge of the immunopathogenesis of PsA has been associated with the development of biologic agents which have revolutionized the management of the disease. Among biologics drugs, there are the 4 currently availablee anti-TNFα blocking agents (etanercept, infliximab, adalimumab and golimumab which are more effective than traditional DMARDs on symptoms/signs of inflammation, quality of life, function, and in inhibiting the progression of the structural joint damage. Despite of the high cost, TNF inhibitors are costeffective on both the musculoskeletal and skin manifestations of psoriatic disease.

  11. AFM Nanotools for Surgery of Biological Cells

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N [Department of Physics, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom); Guy, R H, E-mail: [Department of Pharmacy and Pharmacology, Claverton Down, University of Bath, Bath, BA2 7AY (United Kingdom)


    Using a method of electron-beam induced deposition, we have been able to fabricate specialized AFM probes with application as 'nanotools' for the manipulation of biological structures ('nanosurgery'). We describe several such tools, including a 'nanoscalpel', 'nanoneedles' for probing intracellular structures, and a 'nanotome' which can separate surface layers from a biological structure. These applications are demonstrated by performing nanomanipulation on corneocyte cells from the outer layer of human skin.

  12. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, K.; Cecal, A.; Craciun, I.


    The invention relates to the sewage treatment, in particular to the sewage biological treatmen from radioactive waste, namely from uranium. The process dor sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plants cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor in the second stage - Spirulina platensis . After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions by the biomass of plants cultivated in the sewage

  13. Process for sewage biological treatment from uranium

    International Nuclear Information System (INIS)

    Popa, Karin; Cecal, Alexandru; Craciun, Iftimie Ionel; Rudic, Valeriu; Gulea, Aurelian; Cepoi, Liliana


    The invention relates to the sewage treatment, in particular to the sewage biological treatment from radioactive waste, namely from uranium. The process for sewage biological treatment from uranium includes cultivation in the sewage of the aquatic plants Lemna minor and Spirulina platensis. The plant cultivation is carried out in two stages. In the first stage for cultivation is used Lemna minor and in the second stage - Spirulina platensis. After finishing the plant cultivation it is carried out separation of their biomass. The result of the invention consists in increasing the uranyl ions accumulation by the biomass of plants cultivated in the sewage.

  14. Postgraduate studies in radiation biology in Europe

    International Nuclear Information System (INIS)

    Trott, K.R.; Lohmann, P.H.M.; Zeeland, A.A. van; Natarajan, A.T.; Schibilla, H.; Chadwick, K.; Kellerer, A.M.; Steinhaeusler, F.


    The present system of radiobiological research in universities and research centres is no longer able to train radiobiologists who have a comprehensive understanding of the entire field of radiation biology including both 'classical' and molecular radiation biology. However, such experts are needed in view of the role radiation protection plays in our societies. No single institution in Europe could now run a 1-year, full-time course which covers all aspects of the radiobiological basis of radiation protection. Therefore, a cooperative action of several universities from different EU member states has been developed and is described herein. (orig.)

  15. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.


    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  16. Optimizing biological therapy in Crohn's disease. (United States)

    Gecse, Krisztina Barbara; Végh, Zsuzsanna; Lakatos, Péter László


    Anti-TNF therapy has revolutionized the treatment of inflammatory bowel diseases, including both Crohn's disease and ulcerative colitis. However, a significant proportion of patients does not respond to anti-TNF agents or lose response over time. Recently, therapeutic drug monitoring has gained a major role in identifying the mechanism and management of loss of response. The aim of this review article is to summarize the predictors of efficacy and outcomes, the different mechanisms of anti-TNF/biological failure in Crohn's disease and identify strategies to optimize biological treatment.

  17. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.


    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  18. Neutron instrumentation for biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, S.A. [Institut Laue-Langevin, Grenoble (France)


    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  19. Oscillations in Mathematical Biology

    CERN Document Server


    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  20. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo


    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  1. [The Biology of Learning]. (United States)

    Campo-Cabal, Gerardo


    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. [Cycloferon biological activity characteristics]. (United States)

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S


    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  3. Radiation and nuclear safety included in the environmental health programme

    International Nuclear Information System (INIS)

    Salomaa, S.


    Finland is currently preparing a national environmental health programme, the objective of which is to chart the main environmental health problems in Finland, to identify means for securing a healthy environment, and to draw up a practical action programme for preventing and rectifying problems pertaining to environmental health. Radiation and nuclear safety form an essential part of preventive health care. The action programme is based on decisions and programmes approved at the WHO Conference on the Environment and Health, held in Helsinki in June 1994. In addition to the state of the Finnish environment and the health of the Finnish population, the programme addresses the relevant international issues, in particular in areas adjacent to Finland. The Committee on Environmental Health is expected to complete its work by the end of the year. A wide range of representatives from various branches of administration have contributed to the preparation of the programme. Besides physical, biological and chemical factors, the environmental factors affecting health also include the physical environment and the psychological, social and aesthetic features of the environment. Similarly, environmental factors that have an impact on the health of present or future generations, on the essential preconditions of life and on the quality of life are investigated. The serious risk to nature caused by human actions is also considered as a potential risk to human health. (orig.)

  4. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang


    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  5. Opportunities in plant synthetic biology. (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth


    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  6. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.


    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  7. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui


    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  8. Systems biology solutions for biochemical production challenges

    DEFF Research Database (Denmark)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus


    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics...... characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity...... compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains...

  9. CSBB: synthetic biology research at Newcastle University. (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio


    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  10. Intermediate Physics for Medicine and Biology

    CERN Document Server

    Hobbie, Russell K


    Intended for advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, cell biology, and biomedical engineering, this wide-ranging text bridges the gap between introductory physics and its application to the life and biomedical sciences. This extensively revised and updated fourth edition reflects new developments at the burgeoning interface between physics and biomedicine. Among the many topics treated are: forces in the skeletal system; fluid flow, with examples from the circulatory system; the logistic equation; scaling; transport of neutral particles by diffusion and by solvent drag; membranes and osmosis; equipartition of energy in statistical mechanics; the chemical potential and free energy; biological magnetic fields; membranes and gated channels in membranes; linear and nonlinear feedback systems; nonlinear phenomena, including biological clocks and chaotic behavior; signal analysis, noise and stochastic resonance detection of weak signals; image formation and...

  11. Biologic interventions for fatigue in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah


    BACKGROUND: Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. OBJECTIVES......: To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. SEARCH METHODS: We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials...... and contacted key authors. SELECTION CRITERIA: We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. DATA COLLECTION AND ANALYSIS: Two reviewers selected relevant trials, assessed methodological...

  12. Micro/nanofabricated environments for synthetic biology. (United States)

    Collier, C Patrick; Simpson, Michael L


    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Systems biology solutions for biochemical production challenges. (United States)

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J


    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Two bridges between biology and learning

    Directory of Open Access Journals (Sweden)

    Jorun Nyléhn


    Full Text Available Human biology, in terms of organization of our brains and our evolutionary past, constrains and enables learning. Two examples where neurobiology and evolution influences learning are given and discussed in relation to education: mirror neurons and adaptive memory. Mirror neurons serves imitation and understanding of other peoples intentions. Adaptive memory implies that our memory is an adaptation influenced by our evolutionary past, enabling us to solve problems in the present and in the future. Additionally, the aim is to contribute to bridges between natural and social sciences in an attempt to achieve an improved understanding of learning. The relevance of perspectives on learning founded in biology are discussed, and the article argues for including biological perspectives in discussions of education and learning processes.

  15. Conceptual Barriers to Progress Within Evolutionary Biology. (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy


    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  16. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers (United States)

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith


    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  17. Organic chemistry and biology: chemical biology through the eyes of collaboration. (United States)

    Hruby, Victor J


    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  18. Organic Chemistry and Biology: Chemical Biology Through the Eyes of Collaboration (United States)

    Hruby, Victor J.


    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists “see” the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations. PMID:20000552

  19. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology (United States)

    Manthey, Seth; Brewe, Eric


    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  20. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology. (United States)

    Manthey, Seth; Brewe, Eric


    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  1. Microgravity Fluids for Biology, Workshop (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.


    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  2. Toward computational cumulative biology by combining models of biological datasets. (United States)

    Faisal, Ali; Peltonen, Jaakko; Georgii, Elisabeth; Rung, Johan; Kaski, Samuel


    A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations-for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database.

  3. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.


    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  4. WISB: Warwick Integrative Synthetic Biology Centre. (United States)

    McCarthy, John


    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  5. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier


    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  6. Updating biological bases of social behavior. (United States)

    O'Connor, Thomas G


    This month's collation of papers deals with social behaviors that operationalize key constructs in fields covered by the journal, including attachment theory and parenting; emotional regulation; psychopathology of several forms; general and specific cognitive abilities. Notably, many examples are offered of how these social behaviors link with biology. That is an obvious and important direction for clinical research insofar as it helps to erase a perceptual chasm and artificial duality between 'behavior' and 'biology'. But, although it must be the case that social behavior has biological connections of one sort or other, identifying reliable connections with practical application has proved to be a non-trivial challenge. In particular, the challenge seems to be in measuring social behavior meaningfully enough that it could be expected to have a biological pulse, and in measuring biological markers systematically enough that emergent-downstream effects would surface. Associations are not especially uncommon, but it has been a frustrating task in constructing a practically broad model from a bricolage of scattered and disconnected parts and findings in the literature. Several reports in this issue offer contrasts that may help move along this line of study. © 2014 Association for Child and Adolescent Mental Health.

  7. Outdoor Biology Instructional Strategies Trial Edition, Set IV. (United States)

    Throgmorton, Larry, Ed.; And Others

    Eight games are included in the 24 activities in the Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set IV. There are also simulations, crafts, biological techniques, and organism investigations focusing on animal and plant life in the forest, desert, and snow. Designed for small groups of children ages 10 to 15 from schools and…

  8. Development of a Value Inquiry Model in Biology Education. (United States)

    Jeong, Eun-Young; Kim, Young-Soo


    Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…

  9. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.


    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  10. Biology, Ordinary and Higher Grades, Syllabuses and Specimen Question Papers. (United States)

    Scottish Certificate of Education Examination Board, Edinburgh.

    Included is the prescribed syllabus in biology for the Scottish Certificate of Education. In two separate sections, the syllabus topics and specimen questions for final examinations are explained. This syllabus is intended to present biology as knowledge about living organisms without making the conventional division between plants and animals.…

  11. Bigheaded carps : a biological synopsis and environmental risk assessment (United States)

    Kolar, Cindy S.; Chapman, Duane C.; Courtenay, Walter R.; Housel, Christine M.; Williams, James D.; Jennings, Dawn P.


    The book is a detailed risk assessment and biological synopsis of the bigheaded carps of the genus Hypophthalmichthys, which includes the bighead, silver, and largescale silver carps. It summarizes the scientific literature describing their biology, ecology, uses, ecological effects, and risks to the environment.




  13. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang


    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  14. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology (United States)

    Kornyshev, Alexei A.


    foreseen at that time. But very soon Hertz understood how to generate them, Thomson how to receive them, and now we have the world all connected online. My next stamp goes to the Zhukovski equation of the hydrodynamics of a wing, which explained how aerodynamic lift force is generated. Now we can get from London to Washington in a third of a day, essentially due to that equation. Of the many things that the genius of Einstein discovered his energy-matter relation has led us to atomic power, whether we like it or not. Rutherford and Bohr unraveled the structure of atoms and all our materials science followed from it. Discovery of the transistor made the world of electronics and computers possible, and, again—whether we like it or not—most of us spend many hours daily staring at computer screens. Crick's equations and Franklin-Wilkins' observations (made possible by Roentgen's discovery that I omitted to mention after Maxwell) gave rise to the world of molecular biology which could also be easily forgotten by the wide public, if not our ever grateful forensic experts. Just two more milestones of much more 'modest' caliber. This is the discovery of lasers which are massively used for communication, in medicine and spectroscopy, including biological research. Next, I mention the discovery of scanning probe techniques, which allowed us to see individual atoms. For these two I did not even find stamps, but I am sure they must exist somewhere. The STM has just led Stuart Lindsey's team (University of Arizona) to the first steps towards ultrafast sequencing of DNA using functionalized STM tips. At the Abdus Salam International Center for Theoretical Physics there is no need to convince anyone that involved mathematics and physics is needed. But neither do we need to explain to anyone there that the applications of physics may be equally exciting as its fundamentals. The appreciation of massive achievements of physical methods in DNA research made it possible to host and

  15. Networks in Cell Biology (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele


    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  16. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))


    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  17. Biological aspects of chemoradiotherapy

    International Nuclear Information System (INIS)

    Bourhis, J.; Mornex, F.


    Radio-chemotherapy combinations, especially their concomitant associations, are widely used in the treatment of cancer. The development of these associations has been so far related more to clinical research than to laboratory experiments. The biological basis of the use of these agents relies on their complementarity which concerns the cellular and molecular mechanisms involved in lethality (hypoxia, sensitivity throughout the cycle, DNA repair, apoptosis), spatial and temporal cooperation, etc. Laboratory experiments can determine favorable conditions for additivity, or supra-additivity, but also for infra-additive interactions as well as real antagonism which should be avoided in the clinic. It is however often difficult to transfer this information into the clinic since the conditions which allow additivity or supra-additivity are generally very narrow, and unlikely to be realised in the patient. General clinical conditions are more compatible with infra-additive interactions. (author)

  18. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others


    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  19. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.


    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.

  20. National Biological Monitoring Inventory

    International Nuclear Information System (INIS)

    Burgess, R.L.


    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized