WorldWideScience

Sample records for biology developmental biology

  1. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  2. The renaissance of developmental biology.

    Science.gov (United States)

    St Johnston, Daniel

    2015-05-01

    Since its heyday in the 1980s and 90s, the field of developmental biology has gone into decline; in part because it has been eclipsed by the rise of genomics and stem cell biology, and in part because it has seemed less pertinent in an era with so much focus on translational impact. In this essay, I argue that recent progress in genome-wide analyses and stem cell research, coupled with technological advances in imaging and genome editing, have created the conditions for the renaissance of a new wave of developmental biology with greater translational relevance.

  3. Evolutionary developmental biology its roots and characteristics.

    Science.gov (United States)

    Morange, Michel

    2011-09-01

    The rise of evolutionary developmental biology was not the progressive isolation and characterization of developmental genes and gene networks. Many obstacles had to be overcome: the idea that all genes were more or less involved in development; the evidence that developmental processes in insects had nothing in common with those of vertebrates. Different lines of research converged toward the creation of evolutionary developmental biology, giving this field of research its present heterogeneity. This does not prevent all those working in the field from sharing the conviction that a precise characterization of evolutionary variations is required to fully understand the evolutionary process. Some evolutionary developmental biologists directly challenge the Modern Synthesis. I propose some ways to reconcile these apparently opposed visions of evolution. The turbulence seen in evolutionary developmental biology reflects the present entry of history into biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. New vistas for developmental biology

    Indian Academy of Sciences (India)

    Author Affiliations. Scott F Gilbert1 Rocky S Tuan2. Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA ...

  5. Developmental Biology — Expanding the Horizon

    Directory of Open Access Journals (Sweden)

    Andy Wessels

    2012-09-01

    Full Text Available Developmental biology is arguably the most exciting field of study within the biological sciences. To elucidate how complex organisms develop from a single cell into a complex organism is a quest that has captured the minds of many great scientists. [...

  6. Science Academies' Refresher Course in Developmental Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Science Academies' Refresher Course in Developmental Biology. Information and Announcements Volume 20 Issue 8 August 2015 pp 756-756. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    Science.gov (United States)

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  8. Illuminating developmental biology with cellular optogenetics.

    Science.gov (United States)

    Johnson, Heath E; Toettcher, Jared E

    2018-03-02

    In developmental biology, localization is everything. The same stimulus-cell signaling event or expression of a gene-can have dramatically different effects depending on the time, spatial position, and cell types in which it is applied. Yet the field has long lacked the ability to deliver localized perturbations with high specificity in vivo. The advent of optogenetic tools, capable of delivering highly localized stimuli, is thus poised to profoundly expand our understanding of development. We describe the current state-of-the-art in cellular optogenetic tools, review the first wave of major studies showcasing their application in vivo, and discuss major obstacles that must be overcome if the promise of developmental optogenetics is to be fully realized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Lehrman's dictum: information and explanation in developmental biology.

    Science.gov (United States)

    Griffiths, Paul E

    2013-01-01

    The integration of concepts from evolutionary developmental biology, such as the homology concept, into developmental psychobiology has great potential. However, evolutionary developmental biology is an attempt to integrate evolutionary and developmental explanation and developmental psychobiology has traditionally been concerned to avoid conflating these two kinds of explanation. This article examines a recent attempt to explain development in terms of "inherited information." The resulting explanation is an evolutionary explanation of development of a kind typical of evolutionary developmental biology. But its proponent mistakes it for an actual developmental explanation. Any integration of evolutionary developmental biology and developmental psychobiology should pay close attention to longstanding concerns about conflating evolutionary and developmental explanations. Copyright © 2012 Wiley Periodicals, Inc.

  10. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  11. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  12. Computerised modelling for developmental biology : an exploration with case studies

    NARCIS (Netherlands)

    Bertens, Laura M.F.

    2012-01-01

    Many studies in developmental biology rely on the construction and analysis of models. This research presents a broad view of modelling approaches for developmental biology, with a focus on computational methods. An overview of modelling techniques is given, followed by several case studies. Using

  13. Teaching and research on Developmental Biology in Portugal.

    Science.gov (United States)

    Thorsteinsdóttir, Sólveig; Rodrigues, Gabriela; Crespo, Eduardo G

    2009-01-01

    Developmental Biology has established itself as a solid field of teaching and research in Portugal. Its history is recent, generally considered to have started with the pioneering work of Augusto Celestino da Costa at the beginning of the 20th century. However, research groups were very few and, until the early 1990s, teaching beyond morphological and comparative embryology was uncommon. In 1994, the first university course dedicated to Developmental Biology as a separate field from Embryology was created at the Faculty of Sciences of the University of Lisbon and a course on Plant Differentiation and Morphogenesis was also initiated. A Masters programme in Developmental Biology followed at the Lusofona University in 1996. Subsequently, modules of Developmental Biology were included in many Embryology courses and eventually more Developmental Biology courses were created. From 1999 onwards, the number of research groups working in Developmental Biology started to increase, many of which were initiated by researchers who had had the opportunity to pursue their PhD and/or post-doc studies abroad. The Instituto Gulbenkian de Cincia (Gulbenkian Institute of Science) became the first home of most of these groups, but several later spread to other institutions. This increased activity in turn has stimulated teaching of Developmental Biology and more students have been getting interested in the field. This positive feedback loop makes it a nice time to be teaching and working in Developmental Biology in Portugal.

  14. Editorial, Seminars in Cell & Developmental Biology

    OpenAIRE

    Davis, Frank; Higson, Seamus P. J.

    2009-01-01

    It is a pleasure to introduce this special edition of Cell and Development Biology dedicated to the field and application of Biosensors. This edition comprises seven reviews covering the most active research areas where we believe some of the most prominent advances in the field are likely to emerge in the near to medium term. In line with scope of this journal, some emphasis is given towards techniques applicable to Cell Biology.

  15. Michael Akam and the rise of evolutionary developmental biology.

    Science.gov (United States)

    Stern, David L; Dawes-Hoang, Rachel E

    2010-01-01

    Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michaels contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists.

  16. Genetics and developmental biology of cooperation

    Czech Academy of Sciences Publication Activity Database

    Kasper, C.; Vierbuchen, M.; Ernst, Ulrich R.; Fischer, S.; Radersma, R.; Raulo, A.; Cunha-Saraiva, F.; Wu, M.; Mobley, K. B.; Taborsky, B.

    2017-01-01

    Roč. 26, č. 17 (2017), s. 4364-4377 ISSN 0962-1083 Institutional support: RVO:61388963 Keywords : altruism * behaviour * indirect genetic effects * social behaviour * social effects Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 6.086, year: 2016

  17. Developmental biology and the study of malformations.

    Science.gov (United States)

    Hughes, A F

    1976-05-01

    Experimental work on abnormal conditions of incubation in the chick has been undertaken to acquire a scientific approach to malformations. More precise experiments on causing abnormalities had a common origin with experimental embryology. Progress in experimental teratology during the last 50 years is reviewed in a commentary on the 4 principles formulated by Stockard in 1921. The results of cytogenetical studies in man and in other organisms have led to the tracing of some relationships between them. Present knowledge concerning malformations of the neural tube, originating either experimentally, spontaneously, or phenotypically, has been presented and the teratological implications of some recent theories on the expression of the genotype are discussed in particular reference to problems of hormones as teratogens, the implication of carbohydrate metabolism, and teratogenesis. It is speculated that teratogenesis is possibly related to cationic balance in early development and that 1 factor retarding progress in the understanding of malformations is the tendency toward the development of teratology in an adequately close relationship with other branches of cell biology.

  18. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  19. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    The objectives of this Refresher Course are to update the participants about the advances in the field of Developmental Biology; various small animal models used and give hands-on training on some modern biotechnological practices. A variety of teaching methods like lectures, discussion and laboratory work shall ...

  20. Science Academies' Refresher Course in Developmental Biology 16 ...

    Indian Academy of Sciences (India)

    IAS Admin

    A variety of teaching methods like lectures, discussion and laboratory work shall facilitate the learning process. The course will consist of lectures along with hands-on training/demonstration. This would enhance their knowledge in the area of Developmental. Biology and sharpen their skills in the current technologies ...

  1. Reframing developmental biology and building evolutionary theory's new synthesis.

    Science.gov (United States)

    Tauber, Alfred I

    2010-01-01

    Gilbert and Epel present a new approach to developmental biology: embryogenesis must be understood within the full context of the organism's environment. Instead of an insular embryo following a genetic blueprint, this revised program maintains that embryogenesis is subject to inputs from the environment that generate novel genetic variation with dynamic consequences for development. Beyond allelic variation of structural genes and of regulatory loci, plasticity-derived epigenetic variation completes the triad of the major types of variation required for evolution. Developmental biology and ecology, disciplines that have previously been regarded as distinct, are presented here as fully integrated under the rubric of "eco-devo," and from this perspective, which highlights how the environment not only selects variation, it helps construct it, another synthesis with evolutionary biology must also be made, "eco-evo-devo." This second integration has enormous implications for expanding evolution theory, inasmuch as the Modern Synthesis (Provine 1971), which combined classical genetics and Darwinism in the mid-20th century, did not account for the role of development in evolution. The eco-evo-devo synthesis thus portends a major theoretical inflection in evolutionary biology. Following a description of these scientific developments, comment is offered as to how this new integrated approach might be understood within the larger shifts in contemporary biology.

  2. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  3. A cell-centered approach to developmental biology

    Science.gov (United States)

    Merks, Roeland M. H.; Glazier, James A.

    2005-07-01

    Explaining embryonic development of multicellular organisms requires insight into complex interactions between genetic regulation and physical, generic mechanisms at multiple scales. As more physicists move into developmental biology, we need to be aware of the “cultural” differences between the two fields, whose concepts of “explanations” and “models” traditionally differ: biologists aiming to identify genetic pathways and expression patterns, physicists tending to look for generic underlying principles. Here we discuss how we can combine such biological and physical approaches into a cell-centered approach to developmental biology. Genetic information can only indirectly influence the morphology and physiology of multicellular organisms. DNA translates into proteins and regulatory RNA sequences, which steer the biophysical properties of cells, their response to signals from neighboring cells, and the production and properties of extracellular matrix (ECM). We argue that in many aspects of biological development, cells’ inner workings are irrelevant: what matter are the cell's biophysical properties, the signals it emits and its responses to extracellular signals. Thus we can separate questions about genetic regulation from questions about development. First, we ask what effects a gene network has on cell phenomenology, and how it operates. We then ask through which mechanisms such single-cell phenomenology directs multicellular morphogenesis and physiology. This approach treats the cell as the fundamental module of development. We discuss how this cell-centered approach-which requires significant input from computational biophysics-can assist and supplement experimental research in developmental biology. We review cell-centered approaches, focusing in particular on the Cellular Potts Model (CPM), and present the Tissue Simulation Toolkit which implements the CPM.

  4. The teaching of Developmental Biology in Spain: future challenges.

    Science.gov (United States)

    Marí-Beffa, Manuel

    2009-01-01

    Developmental biology and/or embryology prospectuses in Spanish universities are reviewed. From old masterly classes to virtual teaching, a variety of methods are being used nowadays to teach these subjects. In a country like Spain, adapting to the European Higher Education Space, old and new teaching methods are educational alternatives in a university model which respects both tradition and modernity. In this report, consensus guidelines, concluded from this general survey, are suggested for teachers to ensure future progress.

  5. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  6. The EvoDevoCI: A Concept Inventory for Gauging Students' Understanding of Evolutionary Developmental Biology

    Science.gov (United States)

    Perez, Kathryn E.; Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; French, Donald P.; Terry, Mark; Price, Rebecca M.

    2013-01-01

    The American Association for the Advancement of Science 2011 report "Vision and Change in Undergraduate Biology Education" encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary…

  7. Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology

    Czech Academy of Sciences Publication Activity Database

    Pantalacci, S.; Gueguen, L.; Petit, C.; Lambert, A.; Peterková, Renata; Sémon, E.

    2017-01-01

    Roč. 18, feb (2017), s. 29 ISSN 1474-760X R&D Projects: GA ČR(CZ) GB14-37368G Institutional support: RVO:68378041 Keywords : comparative transcriptomics * developmental biology * transcriptomic signature Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 11.908, year: 2016

  8. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  9. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Directory of Open Access Journals (Sweden)

    Amrendra Kumar

    2017-12-01

    Full Text Available Type I natural killer T (NKT cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo perspective.

  10. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Science.gov (United States)

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M.; Bezbradica, Jelena S.; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective. PMID:29312339

  11. Driving developmental and evolutionary change: A systems biology view.

    Science.gov (United States)

    Bard, Jonathan

    2013-04-01

    Embryonic development is underpinned by ∼50 core processes that drive morphogenesis, growth, patterning and differentiation, and each is the functional output of a complex molecular network. Processes are thus the natural and parsimonious link between genotype and phenotype and the obvious focus for any discussion of biological change. Here, the implications of this approach are explored. One is that many features of developmental change can be modeled as mathematical graphs, or sets of connected triplets of the general form . In these, the verbs (edges) are the outputs of the processes that drive change and the nouns (nodes) are the time-dependent states of biological entities (from molecules to tissues). Such graphs help unpick the multi-level complexity of developmental phenomena and may help suggest new experiments. Another comes from analyzing the effect of mutation that lead to tinkering with the dynamic properties of these processes and to congenital abnormalities; if these changes are both inherited and advantageous, they become evolutionary modifications. In this context, protein networks often represents what classical evolutionary genetics sees as genes, and the realization that traits reflect the output processes of complex networks, particularly for growth, patterning and pigmentation, rather than anything simpler clarifies some problems that the evolutionary synthesis of the 1950s has found hard to solve. In the wider context, most processes are used many times in development and cooperate to produce tissue modules (bones, branching duct systems, muscles etc.). Their underlying generative networks can thus be thought of as genomic modules or subroutines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    Science.gov (United States)

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  13. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America.

    Science.gov (United States)

    Marcellini, Sylvain; González, Favio; Sarrazin, Andres F; Pabón-Mora, Natalia; Benítez, Mariana; Piñeyro-Nelson, Alma; Rezende, Gustavo L; Maldonado, Ernesto; Schneider, Patricia Neiva; Grizante, Mariana B; Da Fonseca, Rodrigo Nunes; Vergara-Silva, Francisco; Suaza-Gaviria, Vanessa; Zumajo-Cardona, Cecilia; Zattara, Eduardo E; Casasa, Sofia; Suárez-Baron, Harold; Brown, Federico D

    2017-01-01

    Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community. © 2016 Wiley Periodicals, Inc.

  14. [A preliminary exploration into the inquiring teaching mode of developmental biology].

    Science.gov (United States)

    Li, Jing

    2009-12-01

    Modern developmental biology is changing everyday at a fast pace, and it also possesses the most application potential. As an important selected course for undergraduates, its most up-to-date knowledge challenges the traditional teaching method. We discussed the current situation in developmental biology teaching, introduced in detail our method of using original papers in each research area, especially the classical papers that won the Nobel Prizes, and summarized the advantages of combining students' presentation in the classroom and their discussion on the web. We proposed some practical strategies to improve developmental biology teaching.

  15. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish.

    Science.gov (United States)

    Jeffery, William R

    2016-01-01

    Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish. © 2016 Elsevier Inc. All rights reserved.

  16. Unconventional transport routes of soluble and membrane proteins and their role in developmental biology

    Czech Academy of Sciences Publication Activity Database

    Pompa, A.; De Marchis, F.; Pallotta, M. T.; Benitez-Alfonso, Y.; Jones, A.; Schipper, K.; Moreau, K.; Žárský, Viktor; Di Sansebastiano, G. P.; Bellucci, M.

    2017-01-01

    Roč. 18, č. 4 (2017), č. článku 703. E-ISSN 1422-0067 Institutional support: RVO:61389030 Keywords : Autophagy * Exosomes * Intercellular channels * Leaderless proteins * Protein secretion * Trafficking mechanisms * Unconventional secretion Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 3.226, year: 2016

  17. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Science.gov (United States)

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we…

  18. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption.

    Science.gov (United States)

    Spencer, Thomas E; Dunlap, Kathrin A; Filant, Justyna

    2012-05-06

    The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. PREFACE Physical Aspects of Developmental Biology: 21st Century Perspectives 'On Growth and Form' Physical Aspects of Developmental Biology: 21st Century Perspectives 'On Growth and Form'

    Science.gov (United States)

    Hutson, M. Shane

    2008-04-01

    There is a long and circuitous route from an organism_s genome to its steady-state adult form—all of which falls under the wide umbrella of developmental biology. Given this breadth, how does one answer the question: what is the mechanism by which developmental event X takes place? The answer depends strongly on what one considers an acceptable explanation. In some scientific circles, the answer would focus on the regulatory genes involved. In others, the focus would be on the signaling pathways activated, or on the associated cellular movements, or maybe even on the intra- and intercellular forces. In the long term, the goal must be to provide an explanation that connects all of these perspectives. During the last several decades, molecular biology has made enormous progress towards understanding development from the genome-side. Unfortunately, progress has been much slower on the relevant physical biology—which had a huge head start in the late 19th century age of developmental mechanics. It is just a slight exaggeration to claim that we_ve made little progress on the physical side since D_Arcy Thompson_s On Growth and Form in 1917. Hopefully, such statements will be recognized as large exaggerations in years to come as developmental mechanics is now in resurgence. This special issue of Physical Biology brings together current work in developmental mechanics from an international cadre of scientists—including physicists, biologists and engineers. The works include both models and experiments. They span scales from subcellular microrheology to finite element models of entire embryos. I hope that students looking for one of these articles will dive into the rest. The field of developmental mechanics is in the process of training a new generation of students who are comfortable with both the necessary biology and physics. Enormous opportunities are available for those who can work across those traditional disciplinary boundaries.

  20. Dyneins: structure, biology and disease

    National Research Council Canada - National Science Library

    King, Stephen M

    2012-01-01

    .... From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine...

  1. A small great history of the sister Societies of Developmental Biology in Spain and Portugal.

    Science.gov (United States)

    Palmeirim, Isabel; Aréchaga, Juan

    2009-01-01

    We revise the historical evolution of the societies devoted to Developmental Biology from the early activities of the Institut International dEmbryologie (IIE), founded in 1911, with particular emphasis on the more recent constitution of the Spanish Sociedad Española de Biología del Desarrollo (SEBD), founded in 1994, and the Portuguese Sociedade Portuguesa de Biologia do Desenvolvimento (SPBD), founded in 2006. We also describe the role played by The International Journal of Developmental Biology (IJDB) in the constitution of the SEBD and its projection and support to international Developmental Biology societies and individual researchers in the world, according to its mission to be a non-for-profit publication for scientists, by scientists.

  2. Bridging Evolutionary Biology and Developmental Psychology: Toward An Enduring Theoretical Infrastructure.

    Science.gov (United States)

    Frankenhuis, Willem E; Tiokhin, Leonid

    2018-01-16

    Bjorklund synthesizes promising research directions in developmental psychology using an evolutionary framework. In general terms, we agree with Bjorklund: Evolutionary theory has the potential to serve as a metatheory for developmental psychology. However, as currently used in psychology, evolutionary theory is far from reaching this potential. In evolutionary biology, formal mathematical models are the norm. In developmental psychology, verbal models are the norm. In order to reach its potential, evolutionary developmental psychology needs to embrace formal modeling. © 2018 The Authors. Child Development © 2018 Society for Research in Child Development, Inc.

  3. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    Science.gov (United States)

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  4. Charles Darwin and the origins of plant evolutionary developmental biology.

    Science.gov (United States)

    Friedman, William E; Diggle, Pamela K

    2011-04-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.

  5. Learning developmental biology has priority in the life sciences curriculum in Singapore.

    Science.gov (United States)

    Lim, Tit-Meng

    2003-01-01

    Singapore has embraced the life sciences as an important discipline to be emphasized in schools and universities. This is part of the nation's strategic move towards a knowledge-based economy, with the life sciences poised as a new engine for economic growth. In the life sciences, the area of developmental biology is of prime interest, since it is not just intriguing for students to know how a single cell can give rise to a complex, coordinated, functional life that is multicellular and multifaceted, but more importantly, there is much in developmental biology that can have biomedical implications. At different levels in the Singapore educational system, students are exposed to various aspects of developmental biology. The author has given many guest lectures to secondary (ages 12-16) and high school (ages 17-18) students to enthuse them about topics such as embryo cloning and stem cell biology. At the university level, some selected topics in developmental biology are part of a broader course which caters for students not majoring in the life sciences, so that they will learn to comprehend how development takes place and the significance of the knowledge and impacts of the technologies derived in the field. For students majoring in the life sciences, the subject is taught progressively in years two and three, so that students will gain specialist knowledge in developmental biology. As they learn, students are exposed to concepts, principles and mechanisms that underlie development. Different model organisms are studied to demonstrate the rapid advances in this field and to show the interconnectivity of developmental themes among living things. The course inevitably touches on life and death matters, and the social and ethical implications of recent technologies which enable scientists to manipulate life are discussed accordingly, either in class, in a discussion forum, or through essay writing.

  6. Twenty Years in Maine: Integrating Insights from Developmental Biology into Translational Medicine in a Small State.

    Science.gov (United States)

    Gridley, Thomas

    2016-01-01

    In this chapter, I give my personal reflections on more than 30 years of studying developmental biology in the mouse model, spending 20 of those years doing research in Maine, a small rural state. I also give my thoughts on my recent experience transitioning to a large medical center in Maine, and the issues involved with integrating insights from developmental biology and regenerative medicine into the fabric of translational and clinical patient care in such an environment. © 2016 Elsevier Inc. All rights reserved.

  7. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    Science.gov (United States)

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.

  8. Hard to Swallow: Developmental Biological Insights into Pediatric Dysphagia

    Science.gov (United States)

    LaMantia, Anthony-Samuel; Moody, Sally A.; Maynard, Thomas M.; Karpinski, Beverly A.; Zohn, Irene E.; Mendelowitz, David; Lee, Norman H.; Popratiloff, Anastas

    2015-01-01

    Pediatric dysphagia—feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity—is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties. Altered hindbrain patterning, neural crest migration, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may reflect disrupted hindbrain patterning and its impact on neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia. PMID:26554723

  9. A semiotic framework for evolutionary and developmental biology.

    Science.gov (United States)

    Andrade, Eugenio

    2007-01-01

    This work aims at constructing a semiotic framework for an expanded evolutionary synthesis grounded on Peirce's universal categories and the six space/time/function relations [Taborsky, E., 2004. The nature of the sign as a WFF--a well-formed formula, SEED J. (Semiosis Evol. Energy Dev.) 4 (4), 5-14] that integrate the Lamarckian (internal/external) and Darwinian (individual/population) cuts. According to these guide lines, it is proposed an attempt to formalize developmental systems theory by using the notion of evolving developing agents (EDA) that provides an internalist model of a general transformative tendency driven by organism's need to cope with environmental uncertainty. Development and evolution are conceived as non-programmed open-ended processes of information increase where EDA reach a functional compromise between: (a) increments of phenotype's uniqueness (stability and specificity) and (b) anticipation to environmental changes. Accordingly, changes in mutual information content between the phenotype/environment drag subsequent changes in mutual information content between genotype/phenotype and genotype/environment at two interwoven scales: individual life cycle (ontogeny) and species time (phylogeny), respectively. Developmental terminal additions along with increment minimization of developmental steps must be positively selected.

  10. Integrating developmental biology and the fossil record of reptiles.

    Science.gov (United States)

    Skawiński, Tomasz; Tałanda, Mateusz

    2014-01-01

    Numerous new discoveries and new research techniques have influenced our understanding of reptile development from a palaeontological perspective. They suggest for example that transition from mineralized to leathery eggshells and from oviparity to viviparity appeared much more often in the evolution of reptiles than was previously thought. Most marine reptiles evolved from viviparous terrestrial ancestors and had probably genetic sex determination. Fossil forms often display developmental traits absent or rare among modern ones such as polydactyly, hyperphalangy, the presence of ribcage armour, reduction of head ornamentation during ontogeny, extreme modifications of vertebral count or a wide range of feather-like structures. Thus, they provide an empirical background for many morphogenetic considerations.

  11. Getting to evo-devo: concepts and challenges for students learning evolutionary developmental biology.

    Science.gov (United States)

    Hiatt, Anna; Davis, Gregory K; Trujillo, Caleb; Terry, Mark; French, Donald P; Price, Rebecca M; Perez, Kathryn E

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology.

  12. Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research in Evolutionary Developmental Biology

    NARCIS (Netherlands)

    Laudel, Grit; Benninghoff, Martin; Lettkemann, Eric; Håkansson, Elias; Whitley, Richard; Gläser, Jochen

    2014-01-01

    Evolutionary developmental biology is a highly variable scientific innovation because researchers can adapt their involvement in the innovation to the opportunities provided by their environment. On the basis of comparative case studies in four countries, we link epistemic properties of research

  13. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. The biological basis of language: insight from developmental grammatical impairments.

    Science.gov (United States)

    van der Lely, Heather K J; Pinker, Steven

    2014-11-01

    Specific language impairment (SLI), a genetic developmental disorder, offers insights into the neurobiological and computational organization of language. A subtype, Grammatical-SLI (G-SLI), involves greater impairments in 'extended' grammatical representations, which are nonlocal, hierarchical, abstract, and composed, than in 'basic' ones, which are local, linear, semantic, and holistic. This distinction is seen in syntax, morphology, and phonology, and may be tied to abnormalities in the left hemisphere and basal ganglia, consistent with new models of the neurobiology of language which distinguish dorsal and ventral processing streams. Delineating neurolinguistic phenotypes promises a better understanding of the effects of genes on the brain circuitry underlying normal and impaired language abilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Calcific Aortic Valve Disease: a Developmental Biology Perspective.

    Science.gov (United States)

    Dutta, Punashi; Lincoln, Joy

    2018-03-08

    This review aims to highlight the past and more current literature related to the multifaceted pathogenic programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs. Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mechanisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-β (TGF-β), bone morphogenetic protein (BMP), Wnt, Notch, and Sox9. This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient outcome.

  16. Comparative developmental biology of the cardiac inflow tract.

    Science.gov (United States)

    Carmona, Rita; Ariza, Laura; Cañete, Ana; Muñoz-Chápuli, Ramón

    2018-03-01

    The vertebrate heart receives the blood through the cardiac inflow tract. This area has experienced profound changes along the evolution of vertebrates; changes that have a reflection in the cardiac ontogeny. The development of the inflow tract involves dynamic changes due to the progressive addition of tissue derived from the secondary heart field. The inflow tract is the site where oxygenated blood coming from lungs is received separately from the systemic return, where the cardiac pacemaker is established and where the proepicardium develops. Differential cell migration towards the inflow tract breaks the symmetry of the primary heart tube and determines the direction of the cardiac looping. In air-breathing vertebrates, an inflow tract reorganization is essential to keep separate blood flows from systemic and pulmonary returns. Finally, the sinus venosus endocardium has recently been recognized as playing a role in the constitution of the coronary vasculature. Due to this developmental complexity, congenital anomalies of the inflow tract can cause severe cardiac diseases. We aimed to review the recent literature on the cellular and molecular mechanisms that regulate the morphogenesis of the cardiac inflow tract, together with comparative and evolutionary details, thus providing a basis for a better understanding of these mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Ancestor of the new archetypal biology: Goethe's dynamic typology as a model for contemporary evolutionary developmental biology.

    Science.gov (United States)

    Riegner, Mark F

    2013-12-01

    As understood historically, typological thinking has no place in evolutionary biology since its conceptual framework is viewed as incompatible with population thinking. In this article, I propose that what I describe as dynamic typological thinking has been confused with, and has been overshadowed by, a static form of typological thinking. This conflation results from an inability to grasp dynamic typological thinking due to the overlooked requirement to engage our cognitive activity in an unfamiliar way. Thus, analytical thinking alone is unsuited to comprehend the nature of dynamic typological thinking. Over 200 years ago, J. W. von Goethe, in his Metamorphosis of Plants (1790) and other writings, introduced a dynamic form of typological thinking that has been traditionally misunderstood and misrepresented. I describe in detail Goethe's phenomenological methodology and its contemporary value in understanding morphological patterns in living organisms. Furthermore, contrary to the implications of static typological thinking, dynamic typological thinking is perfectly compatible with evolutionary dynamics and, if rightly understood, can contribute significantly to the still emerging field of evolutionary developmental biology (evo-devo). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Incorporating tree-thinking and evolutionary time scale into developmental biology.

    Science.gov (United States)

    Kuraku, Shigehiro; Feiner, Nathalie; Keeley, Sean D; Hara, Yuichiro

    2016-01-01

    Phylogenetic approaches are indispensable in any comparative molecular study involving multiple species. These approaches are in increasing demand as the amount and availability of DNA sequence information continues to increase exponentially, even for organisms that were previously not extensively studied. Without the sound application of phylogenetic concepts and knowledge, one can be misled when attempting to infer ancestral character states as well as the timing and order of evolutionary events, both of which are frequently exerted in evolutionary developmental biology. The ignorance of phylogenetic approaches can also impact non-evolutionary studies and cause misidentification of the target gene or protein to be examined in functional characterization. This review aims to promote tree-thinking in evolutionary conjecture and stress the importance of a sense of time scale in cross-species comparisons, in order to enhance the understanding of phylogenetics in all biological fields including developmental biology. To this end, molecular phylogenies of several developmental regulatory genes, including those denoted as "cryptic pan-vertebrate genes", are introduced as examples. © 2016 Japanese Society of Developmental Biologists.

  19. The society for craniofacial genetics and developmental biology 39th annual meeting.

    Science.gov (United States)

    Fish, Jennifer L; Albertson, Craig; Harris, Matthew P; Lozanoff, Scott; Marcucio, Ralph S; Richtsmeier, Joan T; Trainor, Paul A

    2017-04-01

    The Society for Craniofacial Genetics and Developmental Biology (SCGDB) aims to promote education, research, and communication, about normal and abnormal development of the tissues and organs of the head. Membership of the SCGDB is broad and diverse-including clinicians, orthodontists, scientists, and academics-but with all members sharing an interest in craniofacial biology. Each year, the SCGDB hosts a meeting where members can share their latest research, exchange ideas and resources, and build on or establish new collaborations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  1. Long-Term Retention of Knowledge and Critical Thinking Skills in Developmental Biology

    Directory of Open Access Journals (Sweden)

    Diane C. Darland

    2012-08-01

    Full Text Available The primary goal of this project was to assess long-term retention of concepts and critical thinking skills in individuals who completed a Developmental Biology course. Undergraduates who had completed the course between 2006 and 2009 were recently contacted and asked to complete a professional goals survey and a multiple-choice developmental biology assessment test (DBAT targeting four levels of learning. The DBAT was designed to assess students’ retention of knowledge and skills related to factual recall, concept application, data analysis, and experimental design. Performance of the 2006–2009 cohorts was compared to that of students enrolled in 2010 who completed the DBAT at the beginning and the end of the semester. Participants from the 2010 course showed significant learning gains based on pre- and posttest scores overall and for each of the four levels of learning. No significant difference in overall performance was observed for students grouped by year from 2006–2010. Participants from the 2006–2009 cohorts scored slightly, but significantly, higher on average if they enrolled in graduate or professional training. However, performance on individual question categories revealed no significant differences between those participants with and without post-undergraduate training. Scores on exams and a primary literature critique assignment were correlated with DBAT scores and thus represent predictors of long-term retention of developmental biology knowledge and skills.

  2. Language cannot be reduced to biology: perspectives from neuro-developmental disorders affecting language learning.

    Science.gov (United States)

    Vasanta, D

    2005-02-01

    The study of language knowledge guided by a purely biological perspective prioritizes the study of syntax. The essential process of syntax is recursion--the ability to generate an infinite array of expressions from a limited set of elements. Researchers working within the biological perspective argue that this ability is possible only because of an innately specified genetic makeup that is specific to human beings. Such a view of language knowledge may be fully justified in discussions on biolinguistics, and in evolutionary biology. However, it is grossly inadequate in understanding language-learning problems, particularly those experienced by children with neurodevelopmental disorders such as developmental dyslexia, Williams syndrome, specific language impairment and autism spectrum disorders. Specifically, syntax-centered definitions of language knowledge completely ignore certain crucial aspects of language learning and use, namely, that language is embedded in a social context; that the role of envrironmental triggering as a learning mechanism is grossly underestimated; that a considerable extent of visuo-spatial information accompanies speech in day-to-day communication; that the developmental process itself lies at the heart of knowledge acquisition; and that there is a tremendous variation in the orthographic systems associated with different languages. All these (socio-cultural) factors can influence the rate and quality of spoken and written language acquisition resulting in much variation in phenotypes associated with disorders known to have a genetic component. Delineation of such phenotypic variability requires inputs from varied disciplines such as neurobiology, neuropsychology, linguistics and communication disorders. In this paper, I discuss published research that questions cognitive modularity and emphasises the role of the environment for understanding linguistic capabilities of children with neuro-developmental disorders. The discussion pertains

  3. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    Science.gov (United States)

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  4. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    Directory of Open Access Journals (Sweden)

    Lutz Kockel

    2016-10-01

    Full Text Available Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.

  5. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.

    Science.gov (United States)

    Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K

    2016-10-13

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.

  6. Integration of a Faculty's Ongoing Research into an Undergraduate Laboratory Teaching Class in Developmental Biology

    Science.gov (United States)

    Nam, Sang-Chul

    2018-01-01

    Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern…

  7. Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages

    OpenAIRE

    Chen, Chengyu; Mu, Wei; Zhao, Yunhe; Li, Hui; Zhang, Peng; Wang, Qiuhong; Liu, Feng

    2015-01-01

    trans-2-Hexenal, one of the C6 green leaf volatiles, is potentially useful for the control of Bradysia odoriphaga Yang et Zhang. In this study, the biological activity of trans-2-hexenal on B. odoriphaga was assessed in the laboratory. trans-2-Hexenal was observed to kill B. odoriphaga in different developmental stages at a relatively low concentration under fumigation. The respiration rate in the male treatment group decreased from 131.44 to 4.07?nmol/g?min with a prolonged fumigation time, ...

  8. Cell Migration Analysis: A Low-Cost Laboratory Experiment for Cell and Developmental Biology Courses Using Keratocytes from Fish Scales

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.

    2017-01-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…

  9. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    Science.gov (United States)

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  10. The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities.

    Science.gov (United States)

    Stewart, Elizabeth; Federico, Sara; Karlstrom, Asa; Shelat, Anang; Sablauer, Andras; Pappo, Alberto; Dyer, Michael A

    2016-03-15

    Significant advances have been made over the past 25 years in our understanding of the most common adult solid tumors such as breast, colon, lung and prostate cancer. Much less is known about childhood solid tumors because they are rare and because they originate in developing organs during fetal development, childhood and adolescence. It can be very difficult to study the cellular origins of pediatric solid tumors in developing organs characterized by rapid proliferative expansion, growth factor signaling, developmental angiogenesis, programmed cell death, tissue reorganization and cell migration. Not only has the etiology of pediatric cancer remained elusive because of their developmental origins, but it also makes it more difficult to treat. Molecular targeted therapeutics that alter developmental pathway signaling may have devastating effects on normal organ development. Therefore, basic research focused on the mechanisms of development provides an essential foundation for pediatric solid tumor translational research. In this article, we describe new resources available for the developmental biology and oncology research communities. In a companion paper, we present the detailed characterization of an orthotopic xenograft of a pediatric solid tumor derived from sympathoadrenal lineage during development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    Science.gov (United States)

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. © 2016 Japanese Society of Developmental Biologists.

  12. Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages.

    Science.gov (United States)

    Chen, Chengyu; Mu, Wei; Zhao, Yunhe; Li, Hui; Zhang, Peng; Wang, Qiuhong; Liu, Feng

    2015-01-01

    trans-2-Hexenal, one of the C6 green leaf volatiles, is potentially useful for the control of Bradysia odoriphaga Yang et Zhang. In this study, the biological activity of trans-2-hexenal on B. odoriphaga was assessed in the laboratory. trans-2-Hexenal was observed to kill B. odoriphaga in different developmental stages at a relatively low concentration under fumigation. The respiration rate in the male treatment group decreased from 131.44 to 4.07 nmol/g · min with a prolonged fumigation time, while the respiration rate in females decreased from 128.82 to 24.20 nmol/g · min. Male adults exhibited a more sensitive electroantennogram response at 0.05-500 μl/ml at the dose of 10.0 μl than female adults. Moreover, trans-2-hexenal had a repellent effect on adults based on the results with a Y-tube olfactometer at 10.0 μl, as shown by the deterrent rate of male and female adults with 96.67% and 98.33%, respectively. The results showed that trans-2-hexenal had good biological activity in different developmental stages of B. odoriphaga, which could reduce the need for, and risks associated with, the use of traditional insecticides and enable nonharmful management. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    Science.gov (United States)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the

  14. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  15. Toward a synthesis of developmental biology with evolutionary theory and ecology.

    Science.gov (United States)

    Sommer, Ralf J; Mayer, Melanie G

    2015-01-01

    The evolutionary conservation of developmental mechanisms is a truism in biology, but few attempts have been made to integrate development with evolutionary theory and ecology. To work toward such a synthesis, we summarize studies in the nematode model Pristionchus pacificus, focusing on the development of the dauer, a stress-resistant, alternative larval stage. Integrative approaches combining molecular and genetic principles of development with natural variation and ecological studies in wild populations have identified a key role for a developmental switch mechanism in dauer development and evolution, one that involves the nuclear hormone receptor DAF-12. DAF-12 is a crucial regulator and convergence point for different signaling inputs, and its function is conserved among free-living and parasitic nematodes. Furthermore, DAF-12 is the target of regulatory loops that rely on novel or fast-evolving components to control the intraspecific competition of dauer larvae. We propose developmental switches as paradigms for understanding the integration of development, evolution, and ecology at the molecular level.

  16. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  17. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.

    Science.gov (United States)

    McCauley, Heather A; Wells, James M

    2017-03-15

    Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.

  18. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology

    Science.gov (United States)

    Sewell-Loftin, M.K.; Chun, Young Wook; Khademhosseini, Ali; Merryman, W. David

    2012-01-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation (EMT). By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue engineered heart valve may one day be realized. A viable tissue engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children. PMID:21751069

  19. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology.

    Science.gov (United States)

    Sewell-Loftin, M K; Chun, Young Wook; Khademhosseini, Ali; Merryman, W David

    2011-10-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.

  20. The role of mathematical models in understanding pattern formation in developmental biology.

    Science.gov (United States)

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  1. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  2. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  3. Where is, in 2017, the evo in evo-devo (evolutionary developmental biology)?

    Science.gov (United States)

    Diogo, Rui

    2018-01-01

    After the inaugural Pan-American-Evo-Devo meeting (2015, Berkeley), I showed how major concerns about evo-devo (Evolutionary Developmental Biology) research were demonstrated by a simple, non-biased quantitative analysis of the titles/abstracts of that meeting's talks. Here, I apply the same methodology to the titles/abstracts of the recent Pan-American-Evo-Devo meeting (2017, Calgary). The aim is to evaluate if the concerns raised by me in that paper and by other authors have been addressed and/or if there are other types of differences between the two meetings that may reflect trends within the field of evo-devo. This analysis shows that the proportion of presentations referring to "morphology", "organism", "selection", "adaptive", "phylogeny", and their derivatives was higher in the 2017 meeting, which therefore had a more "organismal" feel. However, there was a decrease in the use of "evolution"/its derivatives and of macroevolutionary terms related to the tempo and mode of evolution in the 2017 meeting. Moreover, the disproportionately high use of genetic/genomic terms clearly shows that evo-devo continues to be mainly focused on devo, and particularly on "Geno", that is, on molecular/genetic studies. Furthermore, the vast majority of animal evo-devo studies are focused only on hard tissues, which are just a small fraction of the whole organism-for example, only 15% of the tissue mass of the human body. The lack of an integrative approach is also evidenced by the lack of studies addressing conceptual/long-standing broader questions, including the links between ecology and particularly behavior and developmental/evolutionary variability and between evo-devo and evolutionary medicine. © 2018 Wiley Periodicals, Inc.

  4. Species diversity vs. morphological disparity in the light of evolutionary developmental biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-04-01

    Two indicators of a clade's success are its diversity (number of included species) and its disparity (extent of morphospace occupied by its members). Many large genera show high diversity with low disparity, while others such as Euphorbia and Drosophila are highly diverse but also exhibit high disparity. The largest genera are often characterized by key innovations that often, but not necessarily, coincide with their diagnostic apomorphies. In terms of their contribution to speciation, apomorphies are either permissive (e.g. flightlessness) or generative (e.g. nectariferous spurs). Except for Drosophila, virtually no genus among those with the highest diversity or disparity includes species currently studied as model species in developmental genetics or evolutionary developmental biology (evo-devo). An evo-devo approach is, however, potentially important to understand how diversity and disparity could rapidly increase in the largest genera currently accepted by taxonomists. The most promising directions for future research and a set of key questions to be addressed are presented in this review. From an evo-devo perspective, the evolution of clades with high diversity and/or disparity can be addressed from three main perspectives: (1) evolvability, in terms of release from previous constraints and of the presence of genetic or developmental conditions favouring multiple parallel occurrences of a given evolutionary transition and its reversal; (2) phenotypic plasticity as a facilitator of speciation; and (3) modularity, heterochrony and a coupling between the complexity of the life cycle and the evolution of diversity and disparity in a clade. This simple preliminary analysis suggests a set of topics that deserve priority for scrutiny, including the possible role of saltational evolution in the origination of high diversity and/or disparity, the predictability of morphological evolution following release from a former constraint, and the extent and the possible

  5. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2014-07-01

    Full Text Available The transient receptor potential melastatin-subfamily member 7 (TRPM7 is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases.

  6. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    Science.gov (United States)

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.

  7. Description and developmental biology of the predatory diplogastrid Acrostichus nudicapitatus (Steiner, 1914 Massey, 1962 (Nematoda: Rhabditida

    Directory of Open Access Journals (Sweden)

    Ahlawat S.

    2016-06-01

    Full Text Available Acrostichus nudicapitatus (Steiner, 1914 Massey, 1962 is redescribed and illustrated along with observations on its developmental biology. Most morphometrics of the present population agree well with those of A. nudicapitatus (Steiner, 1914 Massey, 1962. The largely oviparous females of A. nudicapitatus lay eggs in single-celled or two-celled stage, 1.5 – 2 h after fertilization. In cultured females, the uterine tract was observed to accommodate occasionally as many as 4 – 6 eggs. The eggs are smooth-shelled, oval in shape measuring 45 – 48 x 23 – 26 μm in dimension. The pole of entry of sperm marks the posterior end of the developing embryo. The embryonation time has been recorded to be 20 – 25 h at 25 ± 2 °C. The first moult occurs inside the egg and the juvenile hatches as second stage juvenile. The gonad development follows the trends found in most rhabditids, however, three prime cells of the 12 vulval precursor cells have been observed to be involved in vulva formation.

  8. Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  9. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  10. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  11. Partial differential equations for self-organization in cellular and developmental biology

    International Nuclear Information System (INIS)

    Baker, R E; Gaffney, E A; Maini, P K

    2008-01-01

    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field. (invited article)

  12. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. ... National Center for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560 065, India ...

  13. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  14. Mesoscopic biology

    Indian Academy of Sciences (India)

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  15. Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff.

    Science.gov (United States)

    Meyer, Gretchen A; Ward, Samuel R

    2016-05-01

    Persistent muscle atrophy in the chronically torn rotator cuff is a significant obstacle for treatment and recovery. Large atrophic changes are predictive of poor surgical and nonsurgical outcomes and frequently fail to resolve even following functional restoration of loading and rehabilitation. New insights into the processes of muscle atrophy and recovery gained through studies in developmental biology combined with the novel tools and strategies emerging in regenerative medicine provide new avenues to combat the vexing problem of muscle atrophy in the rotator cuff. Moving these treatment strategies forward likely will involve the combination of surgery, biologic/cellular agents, and physical interventions, as increasing experimental evidence points to the beneficial interaction between biologic therapies and physiologic stresses. Thus, the physical therapy profession is poised to play a significant role in defining the success of these combinatorial therapies. This perspective article will provide an overview of the developmental biology and regenerative medicine strategies currently under investigation to combat muscle atrophy and how they may integrate into the current and future practice of physical therapy. © 2016 American Physical Therapy Association.

  16. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  17. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  18. Biological Pathways

    Science.gov (United States)

    Skip to main content Biological Pathways Fact Sheet Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features ...

  19. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    International Nuclear Information System (INIS)

    Ruebel, Oliver

    2009-01-01

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  20. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver [Technical Univ. of Darmstadt (Germany)

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  1. Metabolism in time and space – exploring the frontier of developmental biology

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena; Tennessen, J. M.

    2017-01-01

    Roč. 144, č. 18 (2017), s. 3193-3198 ISSN 0950-1991 Institutional support: RVO:60077344 Keywords : metabolism * mitochondria * aerobic glycolysis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.843, year: 2016 http://dev.biologists.org/content/144/18/3193

  2. Academic interventions for students in introductory biology while concurrently enrolled in developmental courses: An action research study

    Science.gov (United States)

    Barnes, William D.

    Each fall semester, approximately half of the students enrolled in the introductory biology course of a small rural college are concurrently enrolled in at least one developmental education math or English course. The resulting grades of D, F and Withdraw for this cohort will be as high as 50% for those enrolled in one developmental course and 65% for those enrolled in two. The purpose of this study was to provide academic interventions such as use of online supplemental learning materials and resources, as well as to emphasize the Campus Tutoring and Learning Center (CTLC) as a resource, for students in the introductory biology course in order to analyze the impact on the learning outcomes of the developmental students. The approach used was an action research model utilizing a pretest-posttest experimental design with the treatment group receiving weekly reminders regarding the availability and value of utilizing the CTLC and the control group receiving only an initial invitation to visit the CTLC. The results found a statistically significant effect ( p student use of the CTLC in the treatment group as compared to the control. This suggests that faculty emphasis of campus learning resources can have a positive impact on student behavior. The effect of online supplemental learning materials and resources, including use of the CTLC, on student learning outcomes was found to be statistically insignificant ( p > .05).

  3. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  4. Biological rhythms

    Science.gov (United States)

    Halberg, F.

    1975-01-01

    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  5. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  6. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology.

    Science.gov (United States)

    Yuan, Zhaohe; Fang, Yanming; Zhang, Taikui; Fei, Zhangjun; Han, Fengming; Liu, Cuiyu; Liu, Min; Xiao, Wei; Zhang, Wenjing; Wu, Shan; Zhang, Mengwei; Ju, Youhui; Xu, Huili; Dai, He; Liu, Yujun; Chen, Yanhui; Wang, Lili; Zhou, Jianqing; Guan, Dian; Yan, Ming; Xia, Yanhua; Huang, Xianbin; Liu, Dongyuan; Wei, Hongmin; Zheng, Hongkun

    2017-12-22

    Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission

    DEFF Research Database (Denmark)

    Audouze, Karine; Taboureau, Olivier; Grandjean, Philippe

    2018-01-01

    The need to prevent developmental brain disorders has led to an increased interest in efficient neurotoxicity testing. When an epidemic of microcephaly occurred in Brazil, Zika virus infection was soon identified as the likely culprit. However, the pathogenesis appeared to be complex, and a larvi......The need to prevent developmental brain disorders has led to an increased interest in efficient neurotoxicity testing. When an epidemic of microcephaly occurred in Brazil, Zika virus infection was soon identified as the likely culprit. However, the pathogenesis appeared to be complex......). Especially in an acute situation like the microcephaly epidemic, where little toxicity documentation is available, new and innovative alternative methods, whether in vitro or in silico, must be considered. We have developed a network-based model using an integrative systems biology approach to explore...

  8. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  9. Mesoscopic biology

    Indian Academy of Sciences (India)

    Abstract. In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in ...

  10. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  11. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  12. Influence of Temperature on the Reproductive and Developmental Biology of Ontsira mellipes (Hymenoptera: Braconidae): Implications for Biological Control of the Asian Longhorned Beetle (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Golec, Julian R; Duan, Jian J; Hough-Goldstein, Judith

    2017-08-01

    Ontsira mellipes Ashmead (Hymenoptera: Braconidae) is a North American parasitoid species that develops on the invasive pest, Anoplophora glabripennis (Moltschulsky) (Coleoptera: Cerambycidae), under laboratory conditions and is currently being considered as a potential new-association biocontrol agent. To develop mass-rearing protocols and field-release strategies for this parasitoid, information on its reproductive biology in relation to temperature is needed. We determined the effect of temperature (10, 15, 20, 25, and 30 °C) on development, survivorship, and sex ratio, and its effect on the longevity, fecundity, and host attack rates (parasitism) of adults. Developmental time for parasitoid eggs to pupae decreased from 26.7 d to 6.1 d as temperature increased from 10 °C to 30 °C. While no pupae eclosed as adults at 10 °C, time of adult emergence from pupae decreased from 39.7 d to 12.2 d as temperature increased from 15 °C to 30 °C. Based on estimated lower development temperature threshold (11.1 °C), the degree-days required for one generation was estimated at 342.9. When female parasitoids were provided with host larvae, parasitism occurred at all temperatures and was maximized at 25 °C. Additionally, increasing temperatures significantly reduced the preoviposition period and longevity of female O. mellipes. In addition, combining these results with temperature data from areas in the United States currently infested with A. glabripennis, we estimated that O. mellipes can complete 1.2-3.7 generations per year. Findings from this study may be considered for the future development of effective mass rearing and augmentative release strategies of O. mellipes for biological control of A. glabripennis. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  13. The Gateway Hypothesis of substance abuse: developmental, biological and societal perspectives.

    Science.gov (United States)

    Kandel, Denise; Kandel, Eric

    2015-02-01

    The Gateway Hypothesis describes how tobacco or alcohol use precedes marijuana and other illicit drug use. We review the epidemiological data, explore the underlying molecular mechanisms in mice and discuss the societal implications of the hypothesis, including the use of e-cigarettes by young people. Our mouse model identifies biological processes underlying the hypothesis, showing that nicotine is a gateway drug that exerts a priming effect on cocaine through increased global acetylation in the striatum. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  14. Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use.

    Science.gov (United States)

    Carskadon, Mary A; Tarokh, Leila

    2014-10-01

    Adolescent development includes changes in the biological regulatory processes for the timing of sleep. Circadian rhythm changes and changes to the sleep-pressure system (sleep homeostasis) during adolescence both favor later timing of sleep. These changes, combined with prevailing social pressures, are responsible for most teens sleeping too late and too little; those who sleep least report consuming more caffeine. Although direct research findings are scarce, the likelihood of use and abuse of caffeine-laden products grows across the adolescent years due, in part, to excessive sleepiness. © 2014 International Life Sciences Institute.

  15. The future of Evo-Devo: the inaugural meeting of the Pan American Society for evolutionary developmental biology.

    Science.gov (United States)

    Lesoway, Maryna P

    2016-01-01

    What is the future of evolutionary developmental biology? This question and more were discussed at the inaugural meeting for the Pan American Society for Evolutionary Developmental Biology, held August 5-9, 2015, in Berkeley, California, USA. More than 300 participants attended the first meeting of the new society, representing the current diversity of Evo-Devo. Speakers came from throughout the Americas, presenting work using an impressive range of study systems, techniques, and approaches. Current research draws from themes including the role of gene regulatory networks, plasticity and the role of the environment, novelty, population genetics, and regeneration, using new and emerging techniques as well as traditional tools. Multiple workshops and a discussion session covered subjects both practical and theoretical, providing an opportunity for members to discuss the current challenges and future directions for Evo-Devo. The excitement and discussion generated over the course of the meeting demonstrates the current dynamism of the field, suggesting that the future of Evo-Devo is bright indeed. © 2016 Wiley Periodicals, Inc.

  16. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  18. Crusts: biological

    Science.gov (United States)

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  19. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  20. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease.

    Science.gov (United States)

    Chin, Alvin J; Saint-Jeannet, Jean-Pierre; Lo, Cecilia W

    2012-07-01

    To illustrate the impact developmental biology and genetics have already had on the clinical management of the million infants born worldwide each year with CHD, we have chosen three stories which have had particular relevance for pediatric cardiologists, cardiothoracic surgeons, cardiac anesthesiologists, and cardiac nurses. First, we show how Margaret Kirby's finding of the unexpected contribution of an ectodermal cell population - the cranial neural crest - to the aortic arch arteries and arterial pole of the embryonic avian heart provided a key impetus to the field of cardiovascular patterning. Recognition that a majority of patients affected by the neurocristopathy DiGeorge syndrome have a chromosome 22q11 deletion, have also spurred tremendous efforts to characterize the molecular mechanisms contributing to this pathology, assigning a major role to the transcription factor Tbx1. Second, synthesizing the work of the last two decades by many laboratories on a wide gamut of metazoans (invertebrates, tunicates, agnathans, teleosts, lungfish, amphibians, and amniotes), we review the >20 major modifications and additions to the ancient circulatory arrangement composed solely of a unicameral (one-chambered), contractile myocardial tube and a short proximal aorta. Two changes will be discussed in detail - the interposition of a second cardiac chamber in the circulation and the septation of the cardiac ventricle. By comparing the developmental genetic data of several model organisms, we can better understand the origin of the various components of the multicameral (multi-chambered) heart seen in humans. Third, Martina Brueckner's discovery that a faulty axonemal dynein was responsible for the phenotype of the iv/iv mouse (the first mammalian model of human heterotaxy) focused attention on the biology of cilia. We discuss how even the care of the complex cardiac and non-cardiac anomalies seen in heterotaxy syndrome, which have long seemed impervious to advancements in

  1. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  2. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  3. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  4. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  5. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry

    Directory of Open Access Journals (Sweden)

    Michael Brauchle

    2014-11-01

    Full Text Available Protein–protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications. Here we used the Designed Ankyrin Repeat Protein (DARPin scaffold to generate binders to fluorescent proteins and used them to modify biological systems directly at the protein level. DARPins binding to GFP or mCherry were selected by ribosome display. For GFP, binders with KD as low as 160 pM were obtained, while for mCherry the best affinity was 6 nM. We then verified in cell culture their specific binding in a complex cellular environment and found an affinity cut-off in the mid-nanomolar region, above which binding is no longer detectable in the cell. Next, their binding properties were employed to change the localization of the respective fluorescent proteins within cells. Finally, we performed experiments in Drosophila melanogaster and Danio rerio and utilized these DARPins to either degrade or delocalize fluorescently tagged fusion proteins in developing organisms, and to phenocopy loss-of-function mutations. Specific protein binders can thus be selected in vitro and used to reprogram developmental systems in vivo directly at the protein level, thereby bypassing some limitations of approaches that function at the DNA or the RNA level.

  6. Comparing Activity Patterns, Biological, and Family Factors in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Beutum, Monique Natalie; Cordier, Reinie; Bundy, Anita

    2013-01-01

    The association between motor proficiency and moderate to vigorous physical activity (MVPA) suggests children with developmental coordination disorder (DCD) may be susceptible to inactivity-related conditions such as cardiovascular diseases. The aim of this study was to compare children with and without DCD on physical activity patterns, activity…

  7. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  8. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  9. Biological factors controlling developmental duration, growth and metamorphosis of the larval green toad, Bufo viridis viridis

    Directory of Open Access Journals (Sweden)

    Gamal A. Bekhet

    2014-05-01

    Full Text Available The present study in a controlled laboratory setting provided important insights into both the degree of plasticity and the proximal environmental cues operating in the response of green toad tadpoles to pond drying, food level. It was concluded that timing of metamorphosis and size at metamorphosis were highly affected by pond duration. The effects of pond desiccation are reflected by shorter developmental duration and smaller size at metamorphosis as a result of increased crowding in the shallow tanks than tadpoles in the deep tanks. Bufo viridis raised on high food supplements grew faster than those raised on low food in low or high population density. In the tanks with decreased water and food levels, the tadpoles accelerate development and metamorphose earlier than tadpoles in higher food and water levels. The obtained data revealed that tadpoles grew faster under conditions of high population density than low one in either high or low food levels. Actual density had limited but significant effects on tadpole size and development. It also suggested that density regulation, acting on the tadpole stage, may be present in the population but was of less short-term importance than abiotic factors. Environmentally induced variation in developmental rates translated to changes in relative hind leg length. Hind leg length plasticity was positively correlated with growth rate plasticity. Finally, documenting the recent results of this study, B. viridis breed in temporary ponds and exhibited plasticity in developmental duration and growth rate in response to a change in water level.

  10. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm.

    Science.gov (United States)

    Rothwell, Gar W; Wyatt, Sarah E; Tomescu, Alexandru M F

    2014-06-01

    Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants. © 2014 Botanical Society of America, Inc.

  11. MORPHOGENESIS AND DEVELOPMENTAL BIOLOGY OF AFRICAN VIOLET (SAINTPAULIA IONANTHA H. WENDL.

    Directory of Open Access Journals (Sweden)

    Jaime A. TEIXEIRA DA SILVA

    2016-12-01

    Full Text Available African violet (Saintpaulia ionantha H. Wendl. has been domesticated, bred and commercialized. It is the most famous and popular of the Saintpaulia species, its ornamental value arising from its attractive leaves and flowers. African violet plants are easy to propagate by adventitious organ regeneration and are very sensitive to environmental factors including light, temperature, humidity, CO2 concentration and photoperiod. This review offers a short synthesis on advances made in conventional vegetative propagation by adventitious organ regeneration, select early historical in vitro developmental perspectives, and vegetative and reproductive development of African violet.

  12. How Single-Cell Genomics Is Changing Evolutionary and Developmental Biology.

    Science.gov (United States)

    Marioni, John C; Arendt, Detlev

    2017-10-06

    The recent flood of single-cell data not only boosts our knowledge of cells and cell types, but also provides new insight into development and evolution from a cellular perspective. For example, assaying the genomes of multiple cells during development reveals developmental lineage trees-the kinship lineage-whereas cellular transcriptomes inform us about the regulatory state of cells and their gradual restriction in potency-the Waddington lineage. Beyond that, the comparison of single-cell data across species allows evolutionary changes to be tracked at all stages of development from the zygote, via different kinds of stem cells, to the differentiating cells. We discuss recent insights into the evolution of stem cells and initial attempts to reconstruct the evolutionary cell type tree of the mammalian forebrain, for example, by the comparative analysis of neuron types in the mesencephalic floor. These studies illustrate the immense potential of single-cell genomics to open up a new era in developmental and evolutionary research.

  13. Variation in chemical components and biological activity of Pterocarya fraxinifolia Lam. stems at different developmental stages

    Directory of Open Access Journals (Sweden)

    M. Akhbari

    2017-07-01

    Full Text Available Background and objectives: Pterocarya fraxinifolia Lam. is a deciduous, fast-growing tree from walnut family. The stem barks and fruits of the plant have been used as diaphoretic in traditional medicine. Variation in the quantity and quality of the essential oil and extract of stems of the plant at different developmental stages was evaluated in addition to assessing the antimicrobial, cytotoxic and radical scavenging activities in the present study. Methods: Different developmental stages of the plant’s stem (i.e. vegetative, flowering, immature fruit and mature fruit were subjected to hydro-distillation for obtaining the essential oil. The methanol extract of the samples was obtained by Soxhlet apparatus. Chemical composition of the oils was analyzed by gas chromatography/mass spectroscopy (GC/MS. Antimicrobial activity of the oils and extracts were determined against three Gram-positive and five Gram-negative bacteria and two fungi by disc diffusion method. Antioxidant activity of the samples was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH and β-carotene assays. Total phenolics content of extracts was determined using Folin-Ciocalteau reagent and cytotoxic effect was determined by brine shrimp lethality bioassay. Results: Hexadecanoic acid was one of the major components in all essential oil samples. All samples showed good antimicrobial activity against tested strains. Antioxidant activity of the extracts was comparable to the synthetic standard (butylated hydroxytoluene. The highest total phenolic content and cytotoxic effect were detected for the mature fruit stage of the plant extract and essential oil, respectively. Conclusion: Showing considerable antioxidant and cytotoxic effects, suggested the plant as a good candidate for further investigations.

  14. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.

    Science.gov (United States)

    do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  15. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy

    Directory of Open Access Journals (Sweden)

    Ronaldo J. F. C. do Amaral

    2017-01-01

    Full Text Available The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  16. Introducing biological realism into the study of developmental plasticity in behaviour.

    Science.gov (United States)

    Groothuis, Ton G G; Taborsky, Barbara

    2015-01-01

    There is increasing attention for integrating mechanistic and functional approaches to the study of (behavioural) development. As environments are mostly unstable, it is now often assumed that genetic parental information is in many cases not sufficient for offspring to become optimally adapted to the environment and that early environmental cues, either indirectly via the parents or from direct experience, are necessary to prepare them for a specific environment later in life. To study whether these early developmental processes are adaptive and through which mechanism, not only the early environmental cues but also how they impinge on the later-life environmental context has therefore to be taken into account when measuring the animal's performance. We first discuss at the conceptual level six ways in which interactions between influences of different time windows during development may act (consolidation, cumulative information gathering and priming, compensation, buffering, matching and mismatching, context dependent trait expression). In addition we discuss how different environmental factors during the same time window may interact in shaping the phenotype during development. Next we discuss the pros and cons of several experimental designs for testing these interaction effects, highlighting the necessity for full, reciprocal designs and the importance of adjusting the nature and time of manipulation to the animal's adaptive capacity. We then review support for the interaction effects from both theoretical models and animal experiments in different taxa. This demonstrates indeed the existence of interactions at multiple levels, including different environmental factors, different time windows and between generations. As a consequence, development is a life-long, environment-dependent process and therefore manipulating only the early environment without taking interaction effects with other and later environmental influences into account may lead to wrong

  17. The rise of developmental genetics - a historical account of the fusion of embryology and cell biology with human genetics and the emergence of the Stem Cell Initiative.

    Science.gov (United States)

    Kidson, S H; Ballo, R; Greenberg, L J

    2016-05-25

    Genetics and cell biology are very prominent areas of biological research with rapid advances being driven by a flood of theoretical, technological and informational knowledge. Big biology and small biology continue to feed off each other. In this paper, we provide a brief overview of the productive interactions that have taken place between human geneticists and cell biologists at UCT, and credit is given to the enabling environment created led by Prof. Peter Beighton. The growth of new disciplines and disciplinary mergers that have swept away division of the past to make new exciting syntheses are discussed. We show how our joint research has benefitted from worldwide advances in developmental genetics, cloning and stem cell technologies, genomics, bioinformatics and imaging. We conclude by describing the role of the UCT Stem Cell Initiative and show how we are using induced pluripotent cells to carry out disease-in-the- dish studies on retinal degeneration and fibrosis.

  18. Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae, an important predator of cassidine beetles

    Directory of Open Access Journals (Sweden)

    Lucia Maria Paleari

    2013-03-01

    Full Text Available Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae, an important predator of cassidine beetles. Stiretrus decemguttatus is an important predator of two species of cassidine beetles, Botanochara sedecimpustulata (Fabricius, 1781 and Zatrephina lineata (Fabricius, 1787 (Coleoptera, Cassidinae, on the Marajó Island, Brazil. It attacks individuals in all development stages, but preys preferentially on late-instar larvae. Its life cycle in the laboratory was 43.70 ± 1.09 days, with an egg incubation period of six days and duration from nymph and adult stages of 16.31 ± 0.11 and 22.10 ± 1.67 days, respectively. The duration of one generation (T was 12.65 days and the intrinsic population growth rate (r 0.25. These data reveal the adjustment of the life cycle of S. decemgutattus with those of the two preys, but suggest greater impact on Z. lineata. However, no preference over cassidine species was shown in the laboratory. Up to 17 different color patterns can be found in adults of S. decemguttatus, based on combinations of three basic sets of color markings. Some of them resemble the markings of chrysomelids associated with Ipomoea asarifolia (Convolvulaceae and are possibly a mimetic ring. Three color patterns were identified in nymphs, none of which was associated with any specific adult color pattern.

  19. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  20. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Barnett, W.E.

    1975-01-01

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  1. Molecular developmental biology

    International Nuclear Information System (INIS)

    Bogorad, L.

    1986-01-01

    This book contains nine chapters. The chapter titles are: Pathology of soft tissue sarcomas: Diagnostic strategy for adult soft tissue sarcomas: Staging of soft tissue sarcomas: Surgical treatment of soft tissue sarcomas: Radiotherapy; Chemotherapy in advanced soft tissue sarcomas: Adjuvant chemotherapy for soft tissue sarcomas; Intra-arterial infusion and perfusion chemotherapy for soft tissue sarcomas of the extremities; and Phase II new drug trials in soft tissue sarcomas

  2. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature

    Science.gov (United States)

    Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive pest of serious concern in North America. To complement ongoing biological control efforts, Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently-described specialist parasitoid of ...

  3. Learning Biology by Designing

    Science.gov (United States)

    Janssen, Fred; Waarlo, Arend Jan

    2010-01-01

    According to a century-old tradition in biological thinking, organisms can be considered as being optimally designed. In modern biology this idea still has great heuristic value. In evolutionary biology a so-called design heuristic has been formulated which provides guidance to researchers in the generation of knowledge about biological systems.…

  4. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  5. [Biogeography: geography or biology?].

    Science.gov (United States)

    Kafanov, A I

    2009-01-01

    General biogeography is an interdisciplinary science, which combines geographic and biological aspects constituting two distinct research fields: biological geography and geographic biology. These fields differ in the nature of their objects of study, employ different methods and represent Earth sciences and biological sciences, respectively. It is suggested therefore that the classification codes for research fields and the state professional education standard should be revised.

  6. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology

    NARCIS (Netherlands)

    Zadesenets, Kira S.; Vizoso, Dita B.; Schlatter, Aline; Konopatskaia, Irina D.; Berezikov, Eugene; Scharer, Lukas; Rubtsov, Nikolay B.

    2016-01-01

    Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and

  7. Biological Correlates of Empathy

    Directory of Open Access Journals (Sweden)

    E. Timucin Oral

    2010-04-01

    Full Text Available Empathy can be defined as the capacity to know emotionally what another is experiencing from within the frame of reference of that other person and the capacity to sample the feelings of another or it can be metaphorized as to put oneself in another’s shoes. Although the concept of empathy was firstly described in psychological theories, researches studying the biological correlates of psychological theories have been increasing recently. Not suprisingly, dinamically oriented psychotherapists Freud, Kohut, Basch and Fenichel had suggested theories about the biological correlates of empathy concept and established the basis of this modality decades ago. Some other theorists emphasized the importance of empathy in the early years of lifetime regarding mother-child attachment in terms of developmental psychology and investigated its role in explanation of psychopathology. The data coming from some of the recent brain imaging and animal model studies also seem to support these theories. Although increased activity in different brain regions was shown in many of the brain imaging studies, the role of cingulate cortex for understanding mother-child relationship was constantly emphasized in nearly all of the studies. In addition to these studies, a group of Italian scientists has defined a group of neurons as “mirror neurons” in their studies observing rhesus macaque monkeys. Later, they also defined mirror neurons in human studies, and suggested them as “empathy neurons”. After the discovery of mirror neurons, the hopes of finding the missing part of the puzzle for understanding the biological correlates of empathy raised again. Although the roles of different biological parameters such as skin conductance and pupil diameter for defining empathy have not been certain yet, they are going to give us the opportunity to revise the inconsistent basis of structural validity in psychiatry and to stabilize descriptive validity. In this review, the

  8. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage.

    Science.gov (United States)

    Maes, Christa

    2017-02-01

    Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification. Copyright © 2016. Published by Elsevier Ltd.

  9. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology

    OpenAIRE

    Zadesenets, Kira S.; Vizoso, Dita B.; Schlatter, Aline; Konopatskaia, Irina D.; Berezikov, Eugene; Scharer, Lukas; Rubtsov, Nikolay B.

    2016-01-01

    Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs ...

  11. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  12. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  13. Biology of Blood

    Science.gov (United States)

    ... switch to the Professional version Home Blood Disorders Biology of Blood Overview of Blood Resources In This ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  14. Hormesis and plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: edwardc@schoolph.umass.edu; Blain, Robyn B. [Department of Public Health, Environmental Health Sciences Division, Pleasant Street, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)

    2009-01-15

    A database has been developed that demonstrates experimental evidence of hormesis. It includes information from a broad range of biological models, including plants, and information on study design, dose-response features, and physical/chemical properties of the agents. An assessment of plant hormetic dose responses is presented based on greater than 3000 plant endpoints. Plant hormetic dose responses were observed for numerous endpoints including disease incidence, reproductive indices, mutagenic endpoints, various metabolic parameters, developmental processes, and a range of growth indicators. Quantitative features of these dose responses typically display a maximum stimulatory response less than two-fold greater than controls and a width of the stimulatory response usually less than 10-fold in dose range. The database establishes that hormetic dose responses commonly occur in plants, are broadly generalizable, and have quantitative features similar to hormetic dose responses found for animals. - Hormesis commonly occurs within plant species.

  15. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  16. Biological Age Predictors

    OpenAIRE

    Jylh?v?, Juulia; Pedersen, Nancy L.; H?gg, Sara

    2017-01-01

    The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcr...

  17. Biological and Rearing Mother Influences on Child ADHD Symptoms: Revisiting the Developmental Interface between Nature and Nurture

    Science.gov (United States)

    Harold, Gordon T.; Leve, Leslie D.; Barrett, Douglas; Elam, Kit; Neiderhiser, Jenae M.; Natsuaki, Misaki N.; Shaw, Daniel S.; Reiss, David; Thapar, Anita

    2013-01-01

    Background Families of children with attention deficit hyperactivity disorder (ADHD) report more negative family relationships than families of children without ADHD. Questions remain as to the role of genetic factors underlying associations between family relationships and children’s ADHD symptoms, and the role of children’s ADHD symptoms as an evocative influence on the quality of relationships experienced within such families. Utilizing the attributes of two genetically sensitive research designs, the present study examined associations between biologically related and non-biologically related maternal ADHD symptoms, parenting practices, child impulsivity/activation, and child ADHD symptoms. The combined attributes of the study designs permit assessment of associations while controlling for passive genotype-environment correlation and directly examining evocative genotype-environment correlation (rGE); two relatively under examined confounds of past research in this area. Methods A cross-sectional adoption-at-conception design (Cardiff IVF Study; C-IVF) and a longitudinal adoption-at-birth design (Early Growth and Development Study; EGDS) were used. The C-IVF sample included 160 mothers and children (age 5–8 years). The EGDS sample included 320 linked sets of adopted children (age 6 years), adoptive-, and biologically-related mothers. Questionnaires were used to assess maternal ADHD symptoms, parenting practices, child impulsivity/activation, and child ADHD symptoms. A cross-rater approach was used across measures of maternal behavior (mother reports) and child ADHD symptoms (father reports). Results Significant associations were revealed between rearing mother ADHD symptoms, hostile parenting behavior, and child ADHD symptoms in both samples. Because both samples consisted of genetically-unrelated mothers and children, passive rGE was removed as a possible explanatory factor underlying these associations. Further, path analysis revealed evidence for

  18. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015

  19. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Evolutionary Biology Today - The Domain of Evolutionary Biology ... Keywords. Evolution; natural selection; biodiversity; fitness; adaptation. Author Affiliations. Amitabh Joshi1. Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research P.Box 6436, Jakkur Bangalore 560 065, India.

  20. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  1. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  2. Biological Therapies for Cancer

    Science.gov (United States)

    ... Page What is biological therapy? What is the immune system and what role does it have in biological therapy for cancer? ... trials (research studies involving people). What is the immune system and what role does it have in biological therapy for cancer? ...

  3. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  4. Biological Control in Agroecosystems

    Science.gov (United States)

    Batra, Suzanne W. T.

    1982-01-01

    Living organisms are used as biological pest control agents in (i) classical biological control, primarily for permanent control of introduced perennial weed pests or introduced pests of perennial crops; (ii) augmentative biological control, for temporary control of native or introduced pests of annual crops grown in monoculture; and (iii) conservative or natural control, in which the agroecosystem is managed to maximize the effect of native or introduced biological control agents. The effectiveness of biological control can be improved if it is based on adequate ecological information and theory, and if it is integrated with other pest management practices.

  5. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  6. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  7. Biologic fatigue in psoriasis.

    Science.gov (United States)

    Levin, Ethan C; Gupta, Rishu; Brown, Gabrielle; Malakouti, Mona; Koo, John

    2014-02-01

    Over the past 15 years, biologic medications have greatly advanced psoriasis therapy. However, these medications may lose their efficacy after long-term use, a concept known as biologic fatigue. We sought to review the available data on biologic fatigue in psoriasis and identify strategies to help clinicians optimally manage patients on biologic medications in order to minimize biologic fatigue. We reviewed phase III clinical trials for the biologic medications used to treat psoriasis and performed a PubMed search for the literature that assessed the loss of response to biologic therapy. In phase III clinical trials of biologic therapies for the treatment of psoriasis, 20-32% of patients lost their PASI-75 response during 0.8-3.9 years of follow-up. A study using infliximab reported the highest percentage of patients who lost their response (32%) over the shortest time-period (0.8 years). Although not consistently reported across all studies, the presence of antidrug antibodies was associated with the loss of response to treatment with infliximab and adalimumab. Biologic fatigue may be most frequent in those patients using infliximab. Further studies are needed to identify risk factors associated with biologic fatigue and to develop meaningful antidrug antibody assays.

  8. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  9. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  10. Biological tracer method

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  11. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Are Biology and Chemistry Out of Order?

    Science.gov (United States)

    Gaudin, Felix A.

    1984-01-01

    Discusses advantages and disadvantages of standard high school biology and chemistry course sequences. Relates these sequences to Piagetian developmental levels as well as to David Ausubel's cognitive theory. Suggests that the sequences be reexamined in light of issues considered. (JM)

  13. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  14. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  15. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  16. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  17. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  18. Biologic Patterns of Disability.

    Science.gov (United States)

    Granger, Carl V.; Linn, Richard T.

    2000-01-01

    Describes the use of Rasch analysis to elucidate biological patterns of disability present in the functional ability of persons undergoing medical rehabilitation. Uses two measures, one for inpatients and one for outpatients, to illustrate the approach and provides examples of some biological patterns of disability associated with specific types…

  19. Archives: Tropical Freshwater Biology

    African Journals Online (AJOL)

    Items 1 - 23 of 23 ... Archives: Tropical Freshwater Biology. Journal Home > Archives: Tropical Freshwater Biology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 23 of 23 Items ...

  20. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  1. Psoriasis : implications of biologics

    NARCIS (Netherlands)

    Lecluse, L.L.A.

    2010-01-01

    Since the end of 2004 several specific immunomodulating therapies: ‘biologic response modifiers’ or ‘biologics’ have been registered for moderate to severe psoriasis in Europe. This thesis is considering the implications of the introduction of the biologics for psoriasis patients, focusing on safety

  2. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  3. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  4. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  5. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  6. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair.

    Science.gov (United States)

    Pucéat, Michel

    2013-04-01

    The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  8. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  9. Biological Age Predictors

    Directory of Open Access Journals (Sweden)

    Juulia Jylhävä

    2017-07-01

    Full Text Available The search for reliable indicators of biological age, rather than chronological age, has been ongoing for over three decades, and until recently, largely without success. Advances in the fields of molecular biology have increased the variety of potential candidate biomarkers that may be considered as biological age predictors. In this review, we summarize current state-of-the-art findings considering six potential types of biological age predictors: epigenetic clocks, telomere length, transcriptomic predictors, proteomic predictors, metabolomics-based predictors, and composite biomarker predictors. Promising developments consider multiple combinations of these various types of predictors, which may shed light on the aging process and provide further understanding of what contributes to healthy aging. Thus far, the most promising, new biological age predictor is the epigenetic clock; however its true value as a biomarker of aging requires longitudinal confirmation.

  10. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  11. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology.

    Science.gov (United States)

    Zadesenets, Kira S; Vizoso, Dita B; Schlatter, Aline; Konopatskaia, Irina D; Berezikov, Eugene; Schärer, Lukas; Rubtsov, Nikolay B

    2016-01-01

    Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs of small metacentric chromosomes. We performed cytogenetic analyses for chromosomes of one commonly used inbred line of M. lignano (called DV1) and uncovered unexpected chromosome number variation in the form of aneuploidies of the largest chromosomes. These results prompted us to perform karyotypic studies in individual specimens of this and other lines of M. lignano reared under laboratory conditions, as well as in freshly field-collected specimens from different natural populations. Our analyses revealed a high frequency of aneuploids and in some cases other numerical and structural chromosome abnormalities in laboratory-reared lines of M. lignano, and some cases of aneuploidy were also found in freshly field-collected specimens. Moreover, karyological analyses were performed in specimens of three further species: Macrostomum sp. 8 (a close relative of M. lignano), M. spirale and M. hystrix. Macrostomum sp. 8 showed a karyotype that was similar to that of M. lignano, with tetrasomy for its largest chromosome being the most common karyotype, while the other two species showed a simpler karyotype that is more typical of the genus Macrostomum. These findings suggest that M. lignano and Macrostomum sp. 8 can be used as new models for studying processes of partial genome duplication in genome evolution.

  12. Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology.

    Directory of Open Access Journals (Sweden)

    Kira S Zadesenets

    Full Text Available Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs of small metacentric chromosomes. We performed cytogenetic analyses for chromosomes of one commonly used inbred line of M. lignano (called DV1 and uncovered unexpected chromosome number variation in the form of aneuploidies of the largest chromosomes. These results prompted us to perform karyotypic studies in individual specimens of this and other lines of M. lignano reared under laboratory conditions, as well as in freshly field-collected specimens from different natural populations. Our analyses revealed a high frequency of aneuploids and in some cases other numerical and structural chromosome abnormalities in laboratory-reared lines of M. lignano, and some cases of aneuploidy were also found in freshly field-collected specimens. Moreover, karyological analyses were performed in specimens of three further species: Macrostomum sp. 8 (a close relative of M. lignano, M. spirale and M. hystrix. Macrostomum sp. 8 showed a karyotype that was similar to that of M. lignano, with tetrasomy for its largest chromosome being the most common karyotype, while the other two species showed a simpler karyotype that is more typical of the genus Macrostomum. These findings suggest that M. lignano and Macrostomum sp. 8 can be used as new models for studying processes of partial genome duplication in genome evolution.

  13. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  14. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.

    Science.gov (United States)

    Kishi, Shuji

    2011-09-01

    Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and

  15. A timeless biology.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Chafin, Clifford; De Falco, Domenico; Torday, John S

    2018-05-01

    Contrary to claims that physics is timeless while biology is time-dependent, we take the opposite standpoint: physical systems' dynamics are constrained by the arrow of time, while living assemblies are time-independent. Indeed, the concepts of "constraints" and "displacements" shed new light on the role of continuous time flow in life evolution, allowing us to sketch a physical gauge theory for biological systems in long timescales. In the very short timescales of biological systems' individual lives, time looks like "frozen" and "fixed", so that the second law of thermodynamics is momentarily wrecked. The global symmetries (standing for biological constrained trajectories, i.e. the energetic gradient flows dictated by the second law of thermodynamics in long timescales) are broken by local "displacements" where time is held constant, i.e., modifications occurring in living systems. Such displacements stand for brief local forces, able to temporarily "break" the cosmic increase in entropy. The force able to restore the symmetries (called "gauge field") stands for the very long timescales of biological evolution. Therefore, at the very low speeds of life evolution, time is no longer one of the four phase space coordinates of a spacetime Universe: it becomes just a gauge field superimposed to three-dimensional biological systems. We discuss the implications in biology: when assessing living beings, the underrated role of isolated "spatial" modifications needs to be emphasized, living apart the evolutionary role of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Noise in biological circuits.

    Science.gov (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  17. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  18. ERLN Biological Focus Area

    Science.gov (United States)

    The Environmental Response Laboratory Network supports the goal to increase national capacity for biological analysis of environmental samples. This includes methods development and verification, technology transfer, and collaboration with USDA, FERN, CDC.

  19. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  20. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  1. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  2. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  3. Large Pelagics Biological Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Large Pelagics Biological Survey (LPBS) collects additional length and weight information and body parts such as otoliths, caudal vertebrae, dorsal spines, and...

  4. Fishery Biology Database (AGDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basic biological data are the foundation on which all assessments of fisheries resources are built. These include parameters such as the size and age composition of...

  5. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  6. Study of biological compartments

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  7. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  8. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  9. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  10. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  11. Standardization in synthetic biology.

    Science.gov (United States)

    Müller, Kristian M; Arndt, Katja M

    2012-01-01

    Synthetic Biology is founded on the idea that complex biological systems are built most effectively when the task is divided in abstracted layers and all required components are readily available and well-described. This requires interdisciplinary collaboration at several levels and a common understanding of the functioning of each component. Standardization of the physical composition and the description of each part is required as well as a controlled vocabulary to aid design and ensure interoperability. Here, we describe standardization initiatives from several disciplines, which can contribute to Synthetic Biology. We provide examples of the concerted standardization efforts of the BioBricks Foundation comprising the request for comments (RFC) and the Registry of Standardized Biological parts as well as the international Genetically Engineered Machine (iGEM) competition.

  12. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  13. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    . Some of the other important examples are chlorophyll, haemoglobin, myoglobin and cytochromes. The common feature in .... Biochemical Function (in vivo Studies). B. 12 functions in biological systems as a coenzyme. That is, it binds.

  14. Using the biological literature a practical guide

    CERN Document Server

    Schmidt, Diane

    2014-01-01

    IntroductionSearching the Biological LiteratureGeneral SourcesAssociationsBibliographiesClassification, Nomenclature, and SystematicsDictionaries and EncyclopediasDirectoriesField GuidesSeriesFull-Text SourcesGeneral WorksGuides for young ScientistsGuides to the LiteratureHandbooksHistoriesMathematics and StatisticsMethods and TechniquesTextbooks and TreatisesWriting GuidesPeriodicalsReviews of the LiteratureAbstracts and IndexesBiochemistry and BiophysicsMolecular and Cellular BiologyGenetics, Biotechnology, and Developmental BiologyMicrobiology and ImmunologyEcology, Evolution, and Animal BehaviorPlant BiologyAnatomy and PhysiologyEntomologyZoologyIndex.

  15. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Graphs in molecular biology

    Directory of Open Access Journals (Sweden)

    Falcon Seth

    2007-09-01

    Full Text Available Abstract Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network.

  17. Molecular Biology Database List.

    Science.gov (United States)

    Burks, C

    1999-01-01

    Molecular Biology Database List (MBDL) includes brief descriptions and pointers to Web sites for the various databases described in this issue as well as other Web sites presenting data sets relevant to molecular biology. This information is compiled into a list (http://www.oup.co.uk/nar/Volume_27/Issue_01/summary/ gkc105_gml.html) which includes links both to source Web sites and to on-line versions of articles describing the databases. PMID:9847130

  18. Teaching systems biology.

    Science.gov (United States)

    Alves, R; Vilaprinyo, E; Sorribas, A

    2011-03-01

    Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].

  19. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  20. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  2. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  3. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  4. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  5. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... computational approaches, about the relation between living and artificial systems, and about the implications of interdisciplinary research for science and society. The entry can be openly accessed at the webpage of the Stanford Encyclopaedia of Philosophy: https://plato.stanford.edu/entries/systems-synthetic-biology/...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...

  6. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  7. Stochastic Methods in Biology

    CERN Document Server

    Kallianpur, Gopinath; Hida, Takeyuki

    1987-01-01

    The use of probabilistic methods in the biological sciences has been so well established by now that mathematical biology is regarded by many as a distinct dis­ cipline with its own repertoire of techniques. The purpose of the Workshop on sto­ chastic methods in biology held at Nagoya University during the week of July 8-12, 1985, was to enable biologists and probabilists from Japan and the U. S. to discuss the latest developments in their respective fields and to exchange ideas on the ap­ plicability of the more recent developments in stochastic process theory to problems in biology. Eighteen papers were presented at the Workshop and have been grouped under the following headings: I. Population genetics (five papers) II. Measure valued diffusion processes related to population genetics (three papers) III. Neurophysiology (two papers) IV. Fluctuation in living cells (two papers) V. Mathematical methods related to other problems in biology, epidemiology, population dynamics, etc. (six papers) An important f...

  8. Assessing level of development and successional stages in biological soil crusts with biological indicators.

    Science.gov (United States)

    Lan, Shubin; Wu, Li; Zhang, Delu; Hu, Chunxiang

    2013-08-01

    Biological soil crusts (BSCs) perform vital ecosystem services, but the difference in biological components or developmental level still affects the rate and type of these services. In order to differentiate crust successional stages in quantity and analyze the relationship between crust developmental level and successional stages, this work determined several biological indicators in a series of different developmental BSCs in the Shapotou region of China. The results showed that crust developmental level (level of development index) can be well indicated by crust biological indicators. Photosynthetic biomass was the most appropriate to differentiate crust successional stages, although both photosynthetic biomass and respiration intensity increased with the development and succession of BSCs. Based on of the different biological compositions, BSCs were quantificationally categorized into different successional stages including cyanobacterial crusts (lichen and moss coverages 20 % but moss coverage 20 % but 75 %). In addition, it was found that cyanobacterial and microalgal biomass first increased as cyanobacterial crusts formed, then decreased when lots of mosses emerged on the crust surface; however nitrogen-fixing cyanobacteria and heterotrophic microbes increased in the later developmental BSCs. The structural adjustment of biological components in the different developmental BSCs may reflect the requirement of crust survival and material transition.

  9. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  10. Biological therapy of psoriasis

    Directory of Open Access Journals (Sweden)

    Sivamani Raja

    2010-01-01

    Full Text Available The treatment of psoriasis has undergone a revolution with the advent of biologic therapies, including infliximab, etanercept, adalimumab, efalizumab, and alefacept. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. These usually being well tolerated are being found useful in a growing number of immune-mediated diseases, psoriasis being just one example. The newest biologic, ustekinumab, is directed against the p40 subunit of the IL-12 and IL-23 cytokines. It has provided a new avenue of therapy for an array of T-cell-mediated diseases. Biologics are generally safe; however, there has been concern over the risk of lymphoma with use of these agents. All anti-TNF-α agents have been associated with a variety of serious and "routine" opportunistic infections.

  11. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...... mineral and the organic matrix in biomineralized calcite. High resolution powder diffraction was used to study how calcite in chalk, coccoliths, and mollusk shell is affected by the co-existent organic matrix. The calcified attachment organ in the saddle oyster, Anomia simplex serves as a brilliant...

  12. Topics in mathematical biology

    CERN Document Server

    Hadeler, Karl Peter

    2017-01-01

    This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability...

  13. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  14. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  16. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2009-08-01

    Full Text Available Abstract Background Human peripheral blood monocytes (Mo consist of subsets distinguished by expression of CD16 (FCγRIII and chemokine receptors. Classical CD16- Mo express CCR2 and migrate in response to CCL2, while a minor CD16+ Mo subset expresses CD16 and CX3CR1 and migrates into tissues expressing CX3CL1. CD16+ Mo produce pro-inflammatory cytokines and are expanded in certain inflammatory conditions including sepsis and HIV infection. Results To gain insight into the developmental relationship and functions of CD16+ and CD16- Mo, we examined transcriptional profiles of these Mo subsets in peripheral blood from healthy individuals. Of 16,328 expressed genes, 2,759 genes were differentially expressed and 228 and 250 were >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. CD16+ Mo were distinguished by upregulation of transcripts for dendritic cell (DC (SIGLEC10, CD43, RARA and macrophage (MΦ (CSF1R/CD115, MafB, CD97, C3aR markers together with transcripts relevant for DC-T cell interaction (CXCL16, ICAM-2, LFA-1, cell activation (LTB, TNFRSF8, LST1, IFITM1-3, HMOX1, SOD-1, WARS, MGLL, and negative regulation of the cell cycle (CDKN1C, MTSS1, whereas CD16- Mo were distinguished by upregulation of transcripts for myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93 and granulocyte markers (FPR1, GCSFR/CD114, S100A8-9/12. Differential expression of CSF1R, CSF3R, C1QR1, C3AR1, CD1d, CD43, CXCL16, and CX3CR1 was confirmed by flow cytometry. Furthermore, increased expression of RARA and KLF2 transcripts in CD16+ Mo coincided with absence of cell surface cutaneous lymphocyte associated antigen (CLA expression, indicating potential imprinting for non-skin homing. Conclusion These results suggest that CD16+ and CD16- Mo originate from a common myeloid precursor, with CD16+ Mo having a more MΦ – and DC-like transcription program suggesting a more advanced stage of differentiation. Distinct transcriptional programs, together

  17. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  18. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  19. Introduction to radiation biology

    International Nuclear Information System (INIS)

    Gensicke, F.

    1977-01-01

    The textbook is written with special regard to radiation protection of man. It shall enable the reader to assess the potential radiation risks to living organisms and lead him to an insight into radiation protection measures. The following topics are covered: physical fundamentals of ionizing radiations; physical and chemical fundamentals of biological radiation effects; radiation effects on cells, organs, organ systems, and whole animal organisms focussing on mammals and man; modification of radiation effects; chemical radiation protection; therapy of radiation injuries; radionuclide kinetics; biological radiation effects in connection with radiation hazards and with the limitation of radiation exposure. It is intended for vocational education of medical personnel

  20. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  2. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  3. On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology.

    Science.gov (United States)

    Kurz, H; Sandau, K; Christ, B

    1997-02-01

    Wilhelm Roux's doctoral thesis described the relationship between the angle and diameter of bifurcating blood vessels. We have re-read this work in the light of biophysics and developmental biology and found two remarkable aspects hidden among a multitude of observations, rules and exceptions to these rules. First, the author identified the major determinants involved in vascular development; genetics, cybernetics, and mechanics; moreover, he knew that he could not deal with the genetic and regulatory aspects, and could hardly treat the mechanical part adequately. Second, he was deeply convinced that the laws of physics determine the design of organisms, and that a necessity for optimality was inherent in development. We combined the analysis of diameter relationships with the requirement for optimality in a stochastic biophysical model, and concluded that a constant wall-stress condition could define a minimum wall-tissue optimum during arterial development. Hence, almost 120 years after Wilhelm Roux's pioneering work, our model indicates one possible way in which physical laws have determined the evolution of regulatory and structural properties in vessel wall development.

  4. Systems biology in animal sciences

    NARCIS (Netherlands)

    Woelders, H.; Pas, te M.F.W.; Bannink, A.; Veerkamp, R.F.; Smits, M.A.

    2011-01-01

    Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes

  5. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds. K Hussian Reddy. General Article Volume 4 Issue 6 June 1999 pp 67-77 ...

  6. Fusion of biological membranes

    Indian Academy of Sciences (India)

    small hemifusion diaphragm. To obtain a direct view of the fusion process, we have carried out extensive simulations of two bilayers, composed of block copolymers, which are immersed in a solvent which favors one of the blocks. As in the biological case, the membranes are placed under tension. This is essential as fusion ...

  7. Biological dose estimation

    African Journals Online (AJOL)

    a radiation. •. In exposure. Biological dose estimation involving low-dose. S. JANSEN, G. J. VAN HUYSSTEEN. Summary. Blood specimens were collected from 8 people 18 days after they had been accidentally exposed to a 947,2 GBq iridium-. 192 source during industrial application. The equivalent whole-body dose ...

  8. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Coordination Compounds in Biology equatorial ligand, there are two axial ligands in most B. 12 derivatives. Derivatives of B12. The various derivatives of B. 12 result most commonly from changes in the axial ligands bound to cobalt. Often it is convenient to draw a greatly abbreviated structure for a B. 12 molecule using a ...

  9. Tree biology and dendrochemistry

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle

    1996-01-01

    Dendrochemistry, the interpretation of elemental analysis of dated tree rings, can provide a temporal record of environmental change. Using the dendrochemical record requires an understanding of tree biology. In this review, we pose four questions concerning assumptions that underlie recent dendrochemical research: 1) Does the chemical composition of the wood directly...

  10. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  11. Next-generation biology

    DEFF Research Database (Denmark)

    Rodrigues da Fonseca, Rute Andreia; Albrechtsen, Anders; Themudo, Goncalo Espregueira Cruz

    2016-01-01

    we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing...

  12. Radiation biology at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    This paper gives a broad overview of radiation biology at Chalk River Nuclear Laboratories (CRNL). The research group consists of 8 professionals and approximately 12 support staff. Objectives of the group are listed. Current research programs discussed are: 1) recombinant dna technology; 2) the hyperthermia program; 3) cancer-prone families; 4) animal studies; and 5) assessment of radiation hazards

  13. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  14. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Evolutionary Biology Today - What do Evolutionary Biologists do? Amitabh Joshi. Series Article Volume 8 Issue 2 February 2003 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Cryptochromes and Biological Clocks

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Cryptochromes and Biological Clocks. V R Bhagwat. General Article Volume 7 Issue 9 September 2002 pp 36-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/09/0036-0048. Keywords.

  16. Situeret interesse i biologi

    DEFF Research Database (Denmark)

    Dohn, Niels Bonderup

    2006-01-01

    Interesse hævdes at spille en vigtig rolle i læring. Med udgangspunkt i interesseteori og situeret læring har jeg foretaget et studium i en gymnasieklasse med biologi på højt niveau, med henblik på at identificere hvilke forhold der har betydning for hvad der fanger elevers interesse. Jeg har...

  17. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological ... The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in ...

  18. Plant Systems Biology (editorial)

    Science.gov (United States)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  19. Evolution, Entropy, & Biological Information

    Science.gov (United States)

    Peterson, Jacob

    2014-01-01

    A logical question to be expected from students: "How could life develop, that is, change, evolve from simple, primitive organisms into the complex forms existing today, while at the same time there is a generally observed decline and disorganization--the second law of thermodynamics?" The explanations in biology textbooks relied upon by…

  20. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  1. Systems biology at work

    NARCIS (Netherlands)

    Martins Dos Santos, V.A.P.; Damborsky, J.

    2010-01-01

    In his editorial overview for the 2008 Special Issue on this topic, the late Jaroslav Stark pointedly noted that systems biology is no longer a niche pursuit, but a recognized discipline in its own right “noisily” coming of age [1]. Whilst general underlying principles and basic techniques are now

  2. Diversity in Biological Molecules

    Science.gov (United States)

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  3. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  4. Biology=Sinh Vat.

    Science.gov (United States)

    Hung, Nguyen Manh, Ed.

    This volume contains 32 biology self-study learning packets designed primarily for Indochinese students in grades 9 to 12. The materials could be used by "English as a Second Language" teachers who may/may not speak one of the Indochinese languages, or by mainstream teachers who have a number of low-English-proficiency Indochinese students in…

  5. Allometry and astro biology

    International Nuclear Information System (INIS)

    Sertorio, L.; Renda, E.

    2009-01-01

    Allometric laws expressing power and lifespan as a function of mass for both inorganic and organic systems are analyzed. This way of dealing with complexity unveils striking analogies between domains of science that we are used to consider conceptually irreducible to each other and therefore can be considered a new vision of astro biology.

  6. Molecular Biology of Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  7. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Amitabh Joshi studies and teaches evolutionary genetics and population ecology at the Jawaharlal. Nehru Centre for Advanced. Scientific Research,. Bangalore. His current research interests are in life- history evolution, the evolutionary genetics of biological clocks, and small population and meta population dynamics.

  8. Antiprotons get biological

    CERN Multimedia

    2003-01-01

    After its final run in September, the first results of the Antiproton Cell Experiment (ACE) look very promising. It was the first experiment to take data on the biological effects of antiproton beams to evaluate the potential of antiprotons in radiation therapy.

  9. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  10. Entropy in Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy in Biology. Jayant B Udgaonkar. General Article Volume 6 Issue 9 September 2001 pp 61-66. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0061-0066. Author Affiliations.

  11. Biological science in conservation

    Science.gov (United States)

    David M. Johns

    2000-01-01

    Large-scale wildlands reserve systems offer one of the best hopes for slowing, if not reversing, the loss of biodiversity and wilderness. Establishing such reserves requires both sound biology and effective advocacy. Attempts by The Wildlands Project and its cooperators to meld science and advocacy in the service of conservation is working, but is not without some...

  12. Biological trade and markets.

    Science.gov (United States)

    Hammerstein, Peter; Noë, Ronald

    2016-02-05

    Cooperation between organisms can often be understood, like trade between merchants, as a mutually beneficial exchange of services, resources or other 'commodities'. Mutual benefits alone, however, are not sufficient to explain the evolution of trade-based cooperation. First, organisms may reject a particular trade if another partner offers a better deal. Second, while human trade often entails binding contracts, non-human trade requires unwritten 'terms of contract' that 'self-stabilize' trade and prevent cheating even if all traders strive to maximize fitness. Whenever trading partners can be chosen, market-like situations arise in nature that biologists studying cooperation need to account for. The mere possibility of exerting partner choice stabilizes many forms of otherwise cheatable trade, induces competition, facilitates the evolution of specialization and often leads to intricate forms of cooperation. We discuss selected examples to illustrate these general points and review basic conceptual approaches that are important in the theory of biological trade and markets. Comparing these approaches with theory in economics, it turns out that conventional models-often called 'Walrasian' markets-are of limited relevance to biology. In contrast, early approaches to trade and markets, as found in the works of Ricardo and Cournot, contain elements of thought that have inspired useful models in biology. For example, the concept of comparative advantage has biological applications in trade, signalling and ecological competition. We also see convergence between post-Walrasian economics and biological markets. For example, both economists and biologists are studying 'principal-agent' problems with principals offering jobs to agents without being sure that the agents will do a proper job. Finally, we show that mating markets have many peculiarities not shared with conventional economic markets. Ideas from economics are useful for biologists studying cooperation but need

  13. CASPIAN BIOLOGICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    M. K. Guseynov

    2015-01-01

    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  14. Integrating Concepts in Biology

    Science.gov (United States)

    Luckie, Douglas B; Hoskinson, Anne-Marie; Griffin, Caleigh E; Hess, Andrea L; Price, Katrina J; Tawa, Alex; Thacker, Samantha M

    2017-01-01

    The purpose of this study was to examine the educational impact of an intervention, the inquiry-focused textbook Integrating Concepts in Biology ( ICB ), when used in a yearlong introductory biology course sequence. Student learning was evaluated using three published instruments: 1) The Biology Concept Inventory probed depth of student mastery of fundamental concepts in organismal and cellular topics when confronting misconceptions as distractors. ICB students had higher gains in all six topic categories (+43% vs. peers overall, p concepts, like experts. The frequency with which ICB students connected deep-concept pairs, or triplets, was similar to peers; but deep understanding of structure/function was much higher (for pairs: 77% vs. 25%, p < 0.01). 3) A content-focused Medical College Admission Test (MCAT) posttest compared ICB student content knowledge with that of peers from 15 prior years. Historically, MCAT performance for each semester ranged from 53% to 64%; the ICB cohort scored 62%, in the top quintile. Longitudinal tracking in five upper-level science courses the following year found ICB students outperformed peers in physiology (85% vs. 80%, p < 0.01). © 2017 D. B. Luckie et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    Science.gov (United States)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  16. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  17. [Cell biology and cosmetology].

    Science.gov (United States)

    Traniello, S; Cavalletti, T

    1991-01-01

    Cellular biology can become the natural support of research in the field of cosmetics because it is able to provide alternative experimental models which can partially replace the massive use of laboratory animals. Cultures of human skin cells could be used in tests investigating irritation of the skin. We have developed an "in vitro" experimental model that allows to evaluate the damage caused by the free radicals to the fibroblasts in culture and to test the protective action of the lipoaminoacids. Experimenting on human cell cultures presents the advantage of eliminating the extrapolation between the different species, of allowing a determination of the biological action of a substance and of evaluating its dose/response effect. This does not mean that "in vitro" experimenting could completely replace experimenting on living animals, but the "in vitro" model can be introduced in the realisation of preliminary screenings.

  18. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  19. The Biological Universe

    Science.gov (United States)

    Dick, Steven J.

    1999-12-01

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. The Biological Universe provides a rich and colorful history of the attempts during the twentieth century to answer questions such as whether "biological law" reigns throughout the universe and whether there are other histories, religions, and philosophies outside those on Earth. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a "biophysical cosmology" that seeks confirmation no less than physical views of the universe. This book will fascinate astronomers, historians of science, biochemists, and science fiction readers.

  20. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  1. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  2. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  3. Elements in biological AMS

    International Nuclear Information System (INIS)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14 C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  4. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  5. Mammalian Synthetic Biology

    OpenAIRE

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-01-01

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-pote...

  6. Reevaluating synthesis by biology.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2010-06-01

    The two cornerstones of synthetic biology are the introduction of the new technology of chemical DNA synthesis and its subsequent emphasis on the use of standardized biological parts in the construction of genetic systems aimed at eliciting of desired cellular behavior. A number of high-impact applications have been proposed for this technology, notable among them being the biological synthesis of valuable compounds for chemical or pharmaceutical use. To this end, synthetic biologists propose assembling metabolic pathways in toto by combining genes isolated from a variety of sources. While pathway construction is similar to approaches established long ago by Metabolic Engineering, the two methods deviate significantly when it comes to pathway optimization. Synthetic biologists opt for gene-combinatorial methods whereby large numbers of pathways, comprising several combinations of genes from different sources, and their mutants, are evaluated in search for an optimal pathway configuration. Metabolic engineering, on the contrary, aims to optimize pathways by tuning the activity of the intermediate reaction steps. Both, rational methods based on kinetics and regulation, as well as combinatorial methods, typically in this order, are used to this end. We argue that a systematic approach consisting of fine-tuning the properties of individual pathway components, prominently enzymes, is a superior strategy to searches spanning large genetic spaces in engineering optimal microbes for the production of chemical and pharmaceutical products. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Biologics for tendon repair☆

    Science.gov (United States)

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  8. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.

    1993-01-01

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  9. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  10. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  11. Biologics in spine arthrodesis.

    Science.gov (United States)

    Kannan, Abhishek; Dodwad, Shah-Nawaz M; Hsu, Wellington K

    2015-06-01

    Spine fusion is a tool used in the treatment of spine trauma, tumors, and degenerative disorders. Poor outcomes related to failure of fusion, however, have directed the interests of practitioners and scientists to spinal biologics that may impact fusion at the cellular level. These biologics are used to achieve successful arthrodesis in the treatment of symptomatic deformity or instability. Historically, autologous bone grafting, including iliac crest bong graft harvesting, had represented the gold standard in spinal arthrodesis. However, due to concerns over potential harvest site complications, supply limitations, and associated morbidity, surgeons have turned to other bone graft options known for their osteogenic, osteoinductive, and/or osteoconductive properties. Current bone graft selection includes autograft, allograft, demineralized bone matrix, ceramics, mesenchymal stem cells, and recombinant human bone morphogenetic protein. Each pose their respective advantages and disadvantages and are the focus of ongoing research investigating the safety and efficacy of their use in the setting of spinal fusion. Rh-BMP2 has been plagued by issues of widespread off-label use, controversial indications, and a wide range of adverse effects. The risks associated with high concentrations of exogenous growth factors have led to investigational efforts into nanotechnology and its application in spinal arthrodesis through the binding of endogenous growth factors. Bone graft selection remains critical to successful fusion and favorable patient outcomes, and orthopaedic surgeons must be educated on the utility and limitations of various biologics in the setting of spine arthrodesis.

  12. Biological heart valves.

    Science.gov (United States)

    Ciubotaru, Anatol; Cebotari, Serghei; Tudorache, Igor; Beckmann, Erik; Hilfiker, Andres; Haverich, Axel

    2013-10-01

    Cardiac valvular pathologies are often caused by rheumatic fever in young adults, atherosclerosis in elderly patients, or by congenital malformation of the heart in children, in effect affecting almost all population ages. Almost 300,000 heart valve operations are performed worldwide annually. Tissue valve prostheses have certain advantages over mechanical valves such as biocompatibility, more physiological hemodynamics, and no need for life-long systemic anticoagulation. However, the major disadvantage of biological valves is related to their durability. Nevertheless, during the last decade, the number of patients undergoing biological, rather than mechanical, valve replacement has increased from half to more than three-quarters for biological implants. Continuous improvement in valve fabrication includes development of new models and shapes, novel methods of tissue treatment, and preservation and implantation techniques. These efforts are focused not only on the improvement of morbidity and mortality of the patients but also on the improvement of their quality of life. Heart valve tissue engineering aims to provide durable, "autologous" valve prostheses. These valves demonstrate adaptive growth, which may avoid the need of repeated operations in growing patients.

  13. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    Directory of Open Access Journals (Sweden)

    Schlegel Karl A

    2010-10-01

    Full Text Available Abstract Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL; however, osteonecrosis of the jaw (ONJ is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP-related and denosumab (anti-RANKL antibody-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment. Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to

  14. Neglect of Biological Rhythms in High School Biology Texts.

    Science.gov (United States)

    Ahlgren, Andrew; Nelson, Julie Ann

    1979-01-01

    This article developed from a survey of the five most popular biology texts which promote the theory of invariant homeostasis rather than biological rhythms. The popular fad of "birthdate biorhythms" is discussed in relation to providing education on biological rhythms and its legitimacy to the public. (SA)

  15. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  16. Is Our Biology to Blame?

    Science.gov (United States)

    Schneider, Scott

    1977-01-01

    Brief analyses of three recent examples of biological determinism: sex roles, overpopulation, and sociobiology, are presented in this article. Also a brief discussion of biological determinism and education is presented. (MR)

  17. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  18. American Institute of Biological Sciences

    Science.gov (United States)

    ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Peer ... Biology Classifieds Get Involved AIBS on Diversity Diversity Diversity Leadership Award Diversity Scholars Outreach Directory News Newsroom Contact ...

  19. Biological treatment of polluted lands

    International Nuclear Information System (INIS)

    Le Brun, S.

    2005-01-01

    Several techniques of lands cleansing exist; they include the thermal techniques, the biological treatment or the disposal. The Biogenie firm is specialized in the biological cleansing of soils on and outside site. (O.M.)

  20. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...

  1. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  2. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  3. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  4. Biological targeting of radionuclides

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Glasgow Univ.

    1993-01-01

    Targeted radionuclide therapy in several forms has now been investigated in the clinic for more than 10 years. Despite some promising indications, targeted radiotherapy has not yet had a large impact on cancer therapy. Theoretical analysis shows that tumour cure would not often be expected using existing treatments. Addition of external-beam irradiation appears to be a robust strategy, which is appropriate in a wide range of situations. In future, many new agents will be made available by progress in molecular biology. However, integration of targeted radionuclide therapy with other modalities, especially radiotherapy, may still be required. (Author)

  5. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    1975-01-01

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  6. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  7. [The biologization of ethics].

    Science.gov (United States)

    Moreno Lax, Alejandro

    2010-01-01

    Three ethics exist as a condition of possibility of any possible ethics, following a material and biological foundation. This content argument (not logical-formal) supposes a refutation of the naturalistic fallacy that the analytical philosophy attributes to Hume, in three areas of the ethical human experience: body, society and nature. These are: the ethics of the species [J. Habermas], the ethics of liberation [E. Dussel] and the ethics of the responsibility [H. Jonas]. This material argument is a philosophical foundation to considering for three types of applied ethics: medical bioethics, development ethics and environmental ethics.

  8. Traceability of biologicals

    DEFF Research Database (Denmark)

    Vermeer, Niels S; Spierings, Irina; Mantel-Teeuwisse, Aukje K

    2015-01-01

    INTRODUCTION: Traceability is important in the postmarketing surveillance of biologicals, since changes in the manufacturing process may give rise to product- or batch-specific risks. With the expected expansion of the biosimilar market, there have been concerns about the ability to trace...... not support the routine recording of batch information. Expected changes in supply chain standards provide opportunities to systematically record detailed exposure information. Spontaneous reporting systems are the most vulnerable link in ensuring traceability, due to the manual nature of data transfer...

  9. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  10. Elements in biological AMS

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  11. Plutonium and transplutonian biology

    International Nuclear Information System (INIS)

    Lafuma, Jacques

    1975-01-01

    The present state of knowledge in the field of plutonium and transplutonian biology is reviewed. The physico-chemical properties of these substances, the conditions in which they can contaminate human beings, their behaviour on mammals, their toxic effects and the correlative contamination treatment technique are analyzed successively. Plutonium and transplutonians, although relatively toxic, have as yet never caused severe injuries to humans. They cannot be transmitted to man through alimentary chains and constitute a hazard only for those who handle them. In this last case, the existing protection techniques offer such a high degree of efficiency that virtually all risk of contamination is eliminated [fr

  12. Biological effects of hyperthermia

    International Nuclear Information System (INIS)

    Okumura, Hiroshi

    1980-01-01

    Biological effects of hyperthermia and application of hyperthermia to cancer therapy were outlined. As to independent effects of hyperthermia, heat sensitivity of cancer cells, targets of hyperthermia, thermal tolerance of cancer cells, effects of pH on hyperthermic cell survival, effects of hyperthermia on normal tissues, and possibility of clinical application of hyperthermia were described. Combined effect of hyperthermia and x-irradiation to enhance radiosensitivity of cancer cells, its mechanism, effects of oxygen on cancer cells treated with hyperthermia and irradiation, and therapeutic ratio of combined hyperthermia and irradiation were also described. Finally, sensitizers were mentioned. (Tsunoda, M.)

  13. Mathematics and biology

    International Nuclear Information System (INIS)

    Khan, I.A.

    1991-06-01

    In India and in so many other countries, the science students are generally separated into two main streams: one opting mathematical sciences, the other studying biological sciences. As a result, medicos and biologists have no adequate knowledge of mathematical sciences. It causes a great drawback to them in order to be perfect and updated in their profession, due to the tremendous application of mathematics in bio-sciences, now-a-days. The main aim of this article is to emphasize on the need of the time to produce the mathematico-biologists in abundance for the better service of mankind. (author)

  14. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  15. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  16. Learning Biology with Plant Pathology.

    Science.gov (United States)

    Carroll, Juliet E.

    This monograph contains 10 plant pathology experiments that were written to correspond to portions of a biology curriculum. Each experiment is suitable to a biology topic and designed to encourage exploration of those biological concepts being taught. Experiments include: (1) The Symptoms and Signs of Disease; (2) Koch's Postulates; (3)…

  17. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  18. <=ryptochromes and Biological Clocks -36 ...

    Indian Academy of Sciences (India)

    production. Such repetition of biological phenomena in a peri- odic manner constitutes a 'biological rhythm'. Many biological rhythms are synchronized with solar day .... Photoactive pigment. Photosynthetic pigments of phytochrome bacteria associated with GFP. LHC = Light harvesting complex of green plants. NPH = Non ...

  19. Cameroon Journal of Experimental Biology

    African Journals Online (AJOL)

    The Cameroon Journal of Experimental Biology is the official journal of the Cameroon Forum for Biological Sciences (CAFOBIOS). It is an interdisciplinary journal for the publication of original research papers, short communications and review articles in all fields of experimental biology including biochemistry, physiology, ...

  20. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  1. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  2. [The Biology of Learning].

    Science.gov (United States)

    Campo-Cabal, Gerardo

    2012-01-01

    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  3. Biology with neutron radiation

    International Nuclear Information System (INIS)

    Zaccai, Giuseppe

    1993-01-01

    Neutron diffraction, elastic and inelastic neutron scattering experiments provide important information on the structure, interactions and dynamics of biological molecules. This arises from the unique properties of the neutron and of its interaction with matter. Coherent and incoherent neutron scattering amplitudes and cross-sections are very different for H and 2 H (deuterium). Deuterium labelling by chemical or biochemical methods and H 2 O: 2 H 2 O exchange is the basis of high resolution crystallography experiments to locate functionally important H-atoms in protein molecules. It is also very important in low resolution crystallography and small angle scattering experiments to solve large complex structures, such as protein-nucleic acid complexes or biological membrane systems, by using contrast variation techniques. The energies of neutrons with a wavelength of the order of 1 - 10 A are similar to thermal energies and inelastic neutron scattering experiments have been done with different energy resolutions (≥∼ 1 μeV) to characterise the functional dynamics of proteins in solution and in membranes. (author)

  4. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  5. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  6. Evolutionary biology of harvestmen (Arachnida, Opiliones).

    Science.gov (United States)

    Giribet, Gonzalo; Sharma, Prashant P

    2015-01-07

    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.

  7. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  8. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  9. Computer Simulation of Embryonic Systems: What can a virtual embryo teach us about developmental toxicity? (LA Conference on Computational Biology & Bioinformatics)

    Science.gov (United States)

    This presentation will cover work at EPA under the CSS program for: (1) Virtual Tissue Models built from the known biology of an embryological system and structured to recapitulate key cell signals and responses; (2) running the models with real (in vitro) or synthetic (in silico...

  10. CG-MS/MS Analyses of Biological Samples in Support of Developmental Toxic Effects on Whole-Body Exposure of Rats to GB

    Science.gov (United States)

    2015-03-01

    GA ), sarin (isopropyl methylphosphonofluoridate; GB), soman (pinacolyl methylphosphonofluoridate; GD), and cylcosarin (cyclohexyl...ECBC Edgewood Chemical Biological Center GA ethyl N,N-dimethylphosphoramidocyanidate; tabun GB isopropyl methylphosphonofluoridate; sarin GC gas ...STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: This report documents the results of gas

  11. Human biology of taste.

    Science.gov (United States)

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  12. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  13. National Biological Monitoring Inventory

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized

  14. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.

    2013-02-01

    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.

  15. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  16. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  17. Biological aspects of chemoradiotherapy

    International Nuclear Information System (INIS)

    Bourhis, J.; Mornex, F.

    1998-01-01

    Radio-chemotherapy combinations, especially their concomitant associations, are widely used in the treatment of cancer. The development of these associations has been so far related more to clinical research than to laboratory experiments. The biological basis of the use of these agents relies on their complementarity which concerns the cellular and molecular mechanisms involved in lethality (hypoxia, sensitivity throughout the cycle, DNA repair, apoptosis), spatial and temporal cooperation, etc. Laboratory experiments can determine favorable conditions for additivity, or supra-additivity, but also for infra-additive interactions as well as real antagonism which should be avoided in the clinic. It is however often difficult to transfer this information into the clinic since the conditions which allow additivity or supra-additivity are generally very narrow, and unlikely to be realised in the patient. General clinical conditions are more compatible with infra-additive interactions. (author)

  18. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  19. Biologic poisons for pain.

    Science.gov (United States)

    Reisner, Lori

    2004-12-01

    Pain therapies from natural sources date back thousands of years to the use of plant and animal extracts for a variety of painful conditions and injuries. We certainly are all familiar with modern uses of plant-derived analgesic compounds such as opium derivatives from papaverum somniferum and salicylates from willow bark (Salix species). Local anesthetics were isolated from coca leaves in the late 1800s. Sarapin, derived from carnivorous pitcher plants, has been injected for regional analgesia in human and veterinary medicine, but efficacy is controversial. Biologic organisms can play important roles in developing an understanding of pain mechanisms, either from isolation of compounds that are analgesic or of compounds that produce pain, hyperalgesia, and allodynia.

  20. Evolution of Biological Complexity

    Science.gov (United States)

    Goldstein, Raymond E.

    It is a general rule of nature that larger organisms are more complex, at least as measured by the number of distinct types of cells present. This reflects the fitness advantage conferred by a division of labor among specialized cells over homogeneous totipotency. Yet, increasing size has both costs and benefits, and the search for understanding the driving forces behind the evolution of multicellularity is becoming a very active area of research. This article presents an overview of recent experimental and theoretical work aimed at understanding this biological problem from the perspective of physics. For a class of model organisms, the Volvocine green algae, an emerging hypothesis connects the transition from organisms with totipotent cells to those with terminal germ-soma differentiation to the competition between diffusion and fluid advection created by beating flagella. A number of challenging problems in fluid dynamics, nonlinear dynamics, and control theory emerge when one probes the workings of the simplest multicellular organisms.

  1. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  2. Nanoelectronics Meets Biology

    Science.gov (United States)

    Lieber, Charles

    2012-02-01

    Nanoscale materials enable unique opportunities at the interface between the physical and life sciences, and the interface between nanoelectronic devices and biological systems makes possible communication between these two diverse systems at the length scale relevant to biological function. In this presentation, the development of nanowire nanoelectronic devices and their application as powerful tools for the life sciences will be discussed. First, a brief introduction to nanowire nanoelectronic devices as well as comparisons to other electrophysiological tools will be presented to illuminate the unique strengths and opportunities enabled at the nanoscale. Second, illustration of detection capabilities including signal-to-noise and applications for real-time label-free detection of biochemical markers down to the level of single molecules will be described. Third, the use of nanowire nanoelectronics for building interfaces to cells and tissue will be reviewed. Multiplexed measurements made from nanowire devices fabricated on flexible and transparent substrates recording signal propagation across cultured cells, acute tissue slices and intact organs will be illustrated, including quantitative analysis of the high simultaneous spatial and temporal resolution achieved with these nanodevices. Specific examples of subcellular and near point detection of extracellular potential will be used to illustrate the unique capabilities, such as recording localized potential changes due to neuronal activities simultaneously across many length scales, which provide key information for functional neural circuit studies. Last, emerging opportunities for the creation of powerful new probes based on controlled synthesis and/or bottom-up assembly of nanomaterials will be described with an emphasis on nanowire probes demonstrating the first intracellular transistor recordings, and the development of ``cyborg'' tissue. The prospects for blurring the distinction between nanoelectronic

  3. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  4. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course.

    Science.gov (United States)

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-yr research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent to which students' data interpretations were valid and/or generative. By analyzing small-group audio recordings during in-class activities, we demonstrated how students used instructor-provided models to build and refine data interpretations. Often, students used models to broaden the scope of data interpretations, tying conclusions to a biological significance. Coding analysis revealed several strategies and challenges that were common among students in this collaborative setting. Spontaneous argumentation was present in 82% of transcripts, suggesting that data interpretation using models may be a way to elicit this important disciplinary practice. Argumentation dialogue included frequent co-construction of claims backed by evidence from data. Other common strategies included collaborative decoding of data representations and noticing data patterns before making interpretive claims. Focusing on irrelevant data patterns was the most common challenge. Our findings provide evidence to support the feasibility of supporting students' data-interpretation skills within a large lecture course. © 2016 P. Zagallo et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. The Physics behind Systems Biology

    Directory of Open Access Journals (Sweden)

    Radde Nicole E.

    2016-12-01

    Full Text Available Systems Biology is a young and rapidly evolving research field, which combines experimental techniques and mathematical modeling in order to achieve a mechanistic understanding of processes underlying the regulation and evolution of living systems. Systems Biology is often associated with an Engineering approach: The purpose is to formulate a data-rich, detailed simulation model that allows to perform numerical (‘in silico’ experiments and then draw conclusions about the biological system. While methods from Engineering may be an appropriate approach to extending the scope of biological investigations to experimentally inaccessible realms and to supporting data-rich experimental work, it may not be the best strategy in a search for design principles of biological systems and the fundamental laws underlying Biology. Physics has a long tradition of characterizing and understanding emergent collective behaviors in systems of interacting units and searching for universal laws. Therefore, it is natural that many concepts used in Systems Biology have their roots in Physics. With an emphasis on Theoretical Physics, we will here review the ‘Physics core’ of Systems Biology, show how some success stories in Systems Biology can be traced back to concepts developed in Physics, and discuss how Systems Biology can further benefit from its Theoretical Physics foundation.

  6. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  7. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-01-11

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018. Published by Elsevier Ltd.

  8. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  9. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  10. Biological Psychiatry Congress 2015

    Directory of Open Access Journals (Sweden)

    H Temmingh

    2015-08-01

    Full Text Available List of Abstract Titles and authors: 1. Psychosis: A matter of mental effort? M Borg, Y Y van der Zee, J H Hsieh, H Temmingh, D J Stein, F M Howells 2.In search of an affordable, effective post-discharge intervention: A randomised control trial assessing the influence of a telephone-based intervention on readmissions for patients with severe mental illness in a developing country U A Botha, L Koen, M Mazinu, E Jordaan, D J H Niehaus 3. The effect of early abstinence from long-term methamphetamine use on brain metabolism using 1H-magnetic resonance spectro-scopy (1H-MRS A Burger, S Brooks, D J Stein, F M Howells 4. The effect of in utero exposure to methamphetamine on brain metabolism in childhood using 1H-magnetic resonance spectroscopy (1H-MRS A Burger, A Roos, M Kwiatkowski, D J Stein, K A Donald, F M Howells 5. A prospective study of clinical, biological and functional aspects of outcome in first-episode psychosis: The EONKCS Study B Chiliza, L Asmal, R Emsley 6. Stimulants as cognitive enhancers - perceptions v. evidence in a very real world H M Clark 7. Pharmacogenomics in antipsychotic drugs Ilse du Plessis 8. Serotonin in anxiety disorders and beyond Ilse du Plessis 9. HIV infection results in ventral-striatal reward system hypo-activation during cue processing S du Plessis, M Vink, J A Joska, E Koutsilieri, A Bagadia, D J Stein, R Emsley 10. Disease progression in schizophrenia: Is the illness or the treatment to blame? R Emsley, M J Sian 11. Serotonin transporter variants play a role in anxiety sensitivity in South African adolescents  S M J Hemmings, L I Martin, L van der Merwe, R Benecke, K Domschke, S Seedat 12. Iron deficiency in two children diagnosed with multiple sclerosis: Report on whole exom sequencing S Janse van Rensburg, R van Toorn, J F Schoeman, A Peeters, L R Fisher, K Moremi, M J Kotze 13. Benzodiazepines: Practical pharmacokinetics P Joubert 14. What to consider when prescribing psychotropic medications G Lippi 15

  11. INNOVATION IN ACCOUNTING BIOLOGIC ASSETS

    OpenAIRE

    Stolуarova M. A.; Shcherbina I. D.

    2016-01-01

    The article describes the innovations in the classification and measurement of biological assets according to IFRS (IAS) 41 "Agriculture". The difficulties faced by agricultural producers using standard, set out in article. The classification based on the adopted amendments, according to which the fruit-bearing plants, previously accounted for as biological assets are measured at fair value are included in the category of fixed assets. The structure of biological assets and main means has bee...

  12. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  13. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  14. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  15. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  16. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  17. Regulatory Biology: Depressed Metabolic States

    Science.gov (United States)

    Holton, E. M. (Editor)

    1973-01-01

    Exobiological aspects of depressed metabolism and thermoregulation are discussed for subsequent development of biological space flight experiments. Included is a brief description of differential hypothermia in cancer chemotherapy.

  18. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    .... Phytoplankton and seaweeds are discussed together in chapters on photosynthesis, growth and productivity, and geographical distribution, in order to provide an integrated picture of the biology...

  19. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  20. Synthetic biology for therapeutic applications.

    Science.gov (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  1. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  2. [Biology molecular of glioblastomas].

    Science.gov (United States)

    Franco-Hernández, C; Martínez-Glez, V; Rey, J A

    2007-10-01

    Glioblastomas, the most frequent and malignant human brain tumors, may develop de novo (primary glioblastoma) or by progression from low-grade or anapalsic astrocytoma (secondary glioblastoma). The molecular alteration most frequent in these tumor-like types is the loss of heterozygosity on chromosome 10, in which several genes have been identified as tumors suppressor. The TP53/MDM2/P14arf and CDK4/RB1/ P16ink4 genetic pathways involved in cycle control are deregulated in the majority of gliomas as well as genes that promote the cellular division, EGFR. Finally the increase of growth and angiogenics factors is also involved in the development of glioblastomas. One of the objectives of molecular biology in tumors of glial ancestry is to try to find the genetic alterations that allow to approach better the classification of glioblastomas, its evolution prediction and treatment. The new pathmolecular classification of gliomas should improve the old one, especially being concerned about the oncogenesis and heterogeneity of these tumors. It is desirable that this classification had clinical applicability and integrates new molecular findings with some known histological features with pronostic value. In this paper we review the most frequent molecular mechanisms involved in the patogenesis of glioblastomas.

  3. Mesangial cell biology

    International Nuclear Information System (INIS)

    Abboud, Hanna E.

    2012-01-01

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  4. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  5. Eosinophils in glioblastoma biology

    Directory of Open Access Journals (Sweden)

    Curran Colleen S

    2012-01-01

    Full Text Available Abstract Glioblastoma multiforme (GBM is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review.

  6. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  7. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  8. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2013-01-15

    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  9. Pathogenesis and biology.

    Science.gov (United States)

    Winkler, Frank

    2018-01-01

    Metastasis to the brain is an increasing complication of solid cancers. Fortunately, our understanding of its pathogenesis has greatly increased in the last decade, with crucial insights into the molecular and cellular determinants of successful brain colonization; some aspects remain less well understood. The latter include the exact features of brain metastasis-initiating cancer cells, and a potential premetastatic niche. It is clear that a brain-arrested cancer cell has to master a sequence of steps to eventually grow to a clinically relevant brain metastasis. Various brain-specific cell types and molecular niches promote or hinder brain colonization in a dynamic and reciprocal manner. After mandatory extravasation and colonization of a brain-specific perivascular niche, the cancer cell can stay dormant, or further grow by dynamic interactions with cerebral blood vessels. In addition, the activation of certain molecular pathways on site of the cancer cell which are related to growth, motility, survival, and adaptation to the brain environment appears also important, given their characteristic modification in brain metastases of patients. A deeper understanding of the most vulnerable steps of the brain metastatic cascade may foster the development of novel preventive approaches, and that of core biologic mechanisms for macrometastatic growth and persistence will help to develop better therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  11. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    Science.gov (United States)

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  12. "Protected biological control"- Biological pest management in the greenhouse industry

    NARCIS (Netherlands)

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management

  13. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    Science.gov (United States)

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  14. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  15. Complexity: the organizing principle at the interface of biological (dis ...

    Indian Academy of Sciences (India)

    We then introduce a developmental and an evolutionary understanding of what it means for biological systems to be complex.We propose that the complexity of living systems can be understood through two interdependent structural properties: multiscalarity of interconstituent mechanisms and excitability of the biological ...

  16. Medical-biological problems

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains data on operational and emergency staff of the Chernobyl nuclear power plant who were exposed to radiation as a consequence of the reactor accident, the size of the doses received and consequences for health. 203 persons were found to have acute radiation sickness. Of the 22 patients suffering from an extremely severe degree of acute radiation sickness, 19 died. Of the 23 patients with severe bone marrow syndrome, 7 died. For the majority of patients, clinical recovery occurred toward the end of the second month following the accident. The main harmful factor for all victims was the relatively uniform gamma- and beta-radiation effect in a dosage exceeding 1 Gy and, in the case of 35 people exceeding 4 Gy. Radiation damage to wide areas of the skin was one of the main factors contributing to the overall severe condition of the patients, and was a determining factor in the main fatal complications. A preliminary evaluation of the use of some biochemical and immunological tests in the event of accidental exposure to radiation and the methods of treatment and preliminary assessment of their effectiveness are presented. Another part of the report contains data on the doses from radiation exposure to the population of the town of Pripyat' until the time of evacuation and to the population in the 30 km zone around Chernobyl' nuclear power plant and radiation consequences of the accident for the population of different regions in the European part of the USSR, especially the problems related to the contamination of food products. The last part of the report gives some data on the organization of medical examinations of the population from the region around the Chernobyl' plant and on the long-term programmes for the medical and biological monitoring of the population and personnel

  17. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  18. Egyptian Journal of Biology: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Address for manuscripts via email: samyzalat@hotmail.com via post: Professor Samy Zalat, Egyptian-British Biological Society, Department of Zoology, Suez Canal University, Ismailia, Egypt. Instructions for authors. Manuscripts for the Egyptian Journal of Biology should normally not exceed 15 typed ...

  19. Computational aspects of systematic biology.

    Science.gov (United States)

    Lilburn, Timothy G; Harrison, Scott H; Cole, James R; Garrity, George M

    2006-06-01

    We review the resources available to systematic biologists who wish to use computers to build classifications. Algorithm development is in an early stage, and only a few examples of integrated applications for systematic biology are available. The availability of data is crucial if systematic biology is to enter the computer age.

  20. Marine Biology and Human Affairs

    Science.gov (United States)

    Russell, F. S.

    1976-01-01

    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  1. An Integrated Approach to Biology

    Indian Academy of Sciences (India)

    An Integrated Approach to Biology. Aniket Bhattacharya. Keywords. Zoology, genomics, schistoso- miasis, schistosome genomics, praziquantel, origin of clothing. Zoology, being a basic bioscience, is essential for a better understanding of applied biological disciplines. A sound back- ground in zoology can often be the key ...

  2. Biological Implications of Artificial Illumination.

    Science.gov (United States)

    Wurtman, Richard J.

    1968-01-01

    Environmental lighting exerts profound biologic effects on humans and other mammals, in addition to providing the visual stimulus. Light acts on the skin to stimulate the synthesis of Vitamin D. It also acts, through the eyes, to control several glands and many metabolic processes. Light, or its absence, "induces" certain biologic functions. Light…

  3. Do-it-yourself biology

    NARCIS (Netherlands)

    Golinelli, Stefano; Ruivenkamp, Guido

    2016-01-01

    Do-it-yourself biology, or garage biology, is a set of practices through which lay people can practice biotechnology and thus also challenge the exclusive control exercised on biotech R&D by Big Bio. This article describes how garage biologists aim to radically transform biotechnological

  4. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072 ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.686, year: 2015

  5. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  6. Archives: Egyptian Journal of Biology

    African Journals Online (AJOL)

    Items 1 - 17 of 17 ... Archives: Egyptian Journal of Biology. Journal Home > Archives: Egyptian Journal of Biology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 17 of 17 Items ...

  7. Systems Biology and Livestock Science

    NARCIS (Netherlands)

    Pas, te M.F.W.; Woelders, H.; Bannink, A.

    2011-01-01

    Systems Biology is an interdisciplinary approach to the study of life made possible through the explosion of molecular data made available through the genome revolution and the simultaneous development of computational technologies that allow us to interpret these large data sets. Systems Biology

  8. Structural Biology Guides Antibiotic Discovery

    Science.gov (United States)

    Polyak, Steven

    2014-01-01

    Modern drug discovery programs require the contribution of researchers in a number of specialist areas. One of these areas is structural biology. Using X-ray crystallography, the molecular basis of how a drug binds to its biological target and exerts its mode of action can be defined. For example, a drug that binds into the active site of an…

  9. Towards Logical Designs In Biology

    Indian Academy of Sciences (India)

    Towards Logical Designs in Biology. Garima Agarwal. General Article Volume 12 Issue 2 February 2007 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/02/0029-0038. Keywords. Synthetic biology; logic gates; regulatory modules; gene circuits. Author Affiliations.

  10. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  12. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  13. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  14. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  15. From Biology to Quality (BQ)

    DEFF Research Database (Denmark)

    Nielsen, Michael Engelbrecht; Ingerslev, Hans-Christian

    2011-01-01

    “Quality is never an accident; it is always the result of high intention, sincere effort, intelligent direction and skilful execution; it represents the wise choice of many alternatives.” (William A. Foster) The quality of fish meat is dependent upon a wide range of biological and non-biological ...

  16. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  17. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  18. Molecular biology of tick acetylcholinesterases.

    Science.gov (United States)

    Temeyer, Kevin Bruce

    2018-01-01

    Ticks vector many pathogens with major health and economic impacts and have developed resistance to most acaricides used for tick control. Organophosphate (OP) acaricides target acetylcholinesterase (AChE) critical to tick central nervous system function. Mutations producing tick AChEs resistant to OPs were characterized; but tick OP-resistance is not fully elucidated, due to remarkable complexity of tick cholinergic systems. Three paralogous tick AChEs exhibiting differences in primary structure and biochemical kinetics are encoded by amplified genes with developmentally regulated expression. Gene silencing data suggest tick AChEs are functional complements in vivo, and transcriptomic and genomic data suggest existence of additional tick AChEs. Cholinergic systems are crucial in neural transmission and are also regulators of vertebrate immune function. Ticks exhibit prolonged intimate host contact, suggesting adaptive functions for tick cholinergic system complexity. AChE was recently reported in tick saliva and a role in manipulation of host immune responses was hypothesized. Physiological roles and genetic control of multiple tick AChEs requires further elucidation and may provide unique opportunities to understand and manipulate cholinergic involvement in biological systems.

  19. Biological novelty in the anthropocene.

    Science.gov (United States)

    Fuentes, Marcelino

    2018-01-21

    It is well known that humans are creating new variants of organisms, ecosystems and landscapes. Here I argue that the degree of biological novelty generated by humans goes deeper than that. We use property rules to create exclusivity in cooperation among humans, and between humans and other biological entities, thus overcoming social dilemmas and breaking barriers to cooperation. This is leading to novel forms of cooperation. One of them is the human control, modification and replication of whole ecosystems. For the first time, there exist ecosystems with functional design, division of labor and unlimited heredity. We use mental representation and language as new mechanisms of inheritance and modification that apply to an increasing variety of biological and non-biological entities. As a result, the speed, depth and scale of biological innovation are unprecedented in the history of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Redesigning Introductory Biology: A Proposal

    Directory of Open Access Journals (Sweden)

    Eileen Gregory

    2011-03-01

    Full Text Available With the increasing complexity and expansion of the biological sciences, there has been a corresponding increase in content in the first-year introductory biology course sequence for majors. In general this has resulted in courses that introduce students to large amounts of material and leave little time for practicing investigative science or skill development. Based on our analysis of data compiled from 742 biology faculty at a variety of institutions across the United States, we verified that there is strong agreement on the content appropriate for introductory biology courses for majors. Therefore, we propose that faculty teaching these courses focus primarily on the topics identified in this study, and redesign their courses to incorporate active learning strategies that emphasize the investigative nature of biology and provide opportunities for skill development.

  1. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  2. Synthetic biology: engineering molecular computers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  3. Quantum biology of the retina.

    Science.gov (United States)

    Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J

    2014-08-01

    The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  4. Organisational closure in biological organisms.

    Science.gov (United States)

    Mossio, Matteo; Moreno, Alvaro

    2010-01-01

    The central aim of this paper consists in arguing that biological organisms realize a specific kind of causal regime that we call "organisational closure"; i.e., a distinct level of causation, operating in addition to physical laws, generated by the action of material structures acting as constraints. We argue that organisational closure constitutes a fundamental property of biological systems since even its minimal instances are likely to possess at least some of the typical features of biological organisation as exhibited by more complex organisms. Yet, while being a necessary condition for biological organization, organisational closure underdetermines, as such, the whole set of requirements that a system has to satisfy in order to be taken as a paradigmatic example of organism. As we suggest, additional properties, as modular templates and control mechanisms via dynamical decoupling between constraints, are required to get the complexity typical of full-fledged biological organisms.

  5. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  6. Biology and Economics: Metaphors that Economists usually take from Biology

    Directory of Open Access Journals (Sweden)

    Danny García Callejas

    2007-10-01

    Full Text Available Adam Smith, Alfred Marshall, Stanley Jevons, Karl Marx, Francois Quesnay and Joseph Schumpeter all have at least one thing in common: they used biological metaphors when speaking about economics. Nonetheless, today, this relation subsists and biology and economics are viewed as complementary sciences that have a lot to gain from joint research in fields like: evolutionary economics, economic growth, cognitive economics and environmental and ecological economics, among others. This paper, divided in four sections, will show this conclusion and explain that biology and economics are more sisters than strangers

  7. Molecular biology and reproduction.

    Science.gov (United States)

    McDonough, P G

    1999-03-01

    Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future

  8. Biological modulation of tectonics

    Science.gov (United States)

    Sleep, N. H.; Bird, D. K.

    2008-12-01

    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  9. Measuring cell identity in noisy biological systems

    Science.gov (United States)

    Birnbaum, Kenneth D.; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measure dSpec, which measures the effect of noise on specificity. Using global gene expression data from the mouse brain, plant root and human white blood cells, we show that Spec identifies genes with variable expression levels that are nonetheless highly specific of particular cell types. When samples from different individuals are used, dSpec measures genes’ transcriptional plasticity in each cell type. Our approach is broadly applicable to mapped gene expression measurements in stem cell biology, developmental biology, cancer biology and biomarker identification. As an example of such applications, we show that Spec identifies a new class of biomarkers, which exhibit variable expression without compromising specificity. The approach provides a unifying theoretical framework for quantifying specificity in the presence of noise, which is widely applicable across diverse biological systems. PMID:21803789

  10. Daily animal exposure and children's biological concepts.

    Science.gov (United States)

    Geerdts, Megan S; Van de Walle, Gretchen A; LoBue, Vanessa

    2015-02-01

    A large body of research has focused on the developmental trajectory of children's acquisition of a theoretically coherent naive biology. However, considerably less work has focused on how specific daily experiences shape the development of children's knowledge about living things. In the current research, we investigated one common experience that might contribute to biological knowledge development during early childhood-pet ownership. In Study 1, we investigated how children interact with pets by observing 24 preschool-aged children with their pet cats or dogs and asking parents about their children's daily involvement with the pets. We found that most of young children's observed and reported interactions with their pets are reciprocal social interactions. In Study 2, we tested whether children who have daily social experiences with animals are more likely to attribute biological properties to animals than children without pets. Both 3- and 5-year-olds with pets were more likely to attribute biological properties to animals than those without pets. Similarly, both older and younger children with pets showed less anthropocentric patterns of extension of novel biological information. The results suggest that having pets may facilitate the development of a more sophisticated, human-inclusive representation of animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  12. Digital 'faces' of synthetic biology.

    Science.gov (United States)

    Friedrich, Kathrin

    2013-06-01

    In silicio design plays a fundamental role in the endeavour to synthesise biological systems. In particular, computer-aided design software enables users to manage the complexity of biological entities that is connected to their construction and reconfiguration. The software's graphical user interface bridges the gap between the machine-readable data on the algorithmic subface of the computer and its human-amenable surface represented by standardised diagrammatic elements. Notations like the Systems Biology Graphical Notation (SBGN), together with interactive operations such as drag & drop, allow the user to visually design and simulate synthetic systems as 'bio-algorithmic signs'. Finally, the digital programming process should be extended to the wet lab to manufacture the designed synthetic biological systems. By exploring the different 'faces' of synthetic biology, I argue that in particular computer-aided design (CAD) is pushing the idea to automatically produce de novo objects. Multifaceted software processes serve mutually aesthetic, epistemic and performative purposes by simultaneously black-boxing and bridging different data sources, experimental operations and community-wide standards. So far, synthetic biology is mainly a product of digital media technologies that structurally mimic the epistemological challenge to take both qualitative as well as quantitative aspects of biological systems into account in order to understand and produce new and functional entities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Agroterrorism, Biological Crimes, and Biological Warfare Targeting Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Terry M.; Logan-Henfrey, Linda; Weller, Richard E.; Kellman, Brian

    2000-04-12

    There is a rising level of concern that agriculture might be targeted for economic sabotage by terrorists. Knowledge gathered about the Soviet Union biological weapons program and Iraq following the Gulf War, confirmed that animals and agricultural crops were targets of bioweapon development. These revelations are particularly disturbing in light of the fact that both countries are States Parties to the Biological and Toxin Weapons Convention that entered into force in 1975. The potential for misusing biotechnology to create more virulent pathogens and the lack of international means to detect unethical uses of new technologies to create destructive bioweapons is of increasing concern. Disease outbreaks, whether naturally occurring or intentionally, involving agricultural pathogens that destroy livestock and crops would have a profound impact on a country's infrastructure, economy and export markets. This chapter deals with the history of agroterrorism, biological crimes and biological warfare directed toward animal agriculture, specifically, horses, cattle, swine, sheep, goats, and poultry.

  15. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  16. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  17. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  18. Chemical reporters for biological discovery.

    Science.gov (United States)

    Grammel, Markus; Hang, Howard C

    2013-08-01

    Functional tools are needed to understand complex biological systems. Here we review how chemical reporters in conjunction with bioorthogonal labeling methods can be used to image and retrieve nucleic acids, proteins, glycans, lipids and other metabolites in vitro, in cells as well as in whole organisms. By tagging these biomolecules, researchers can now monitor their dynamics in living systems and discover specific substrates of cellular pathways. These advances in chemical biology are thus providing important tools to characterize biological pathways and are poised to facilitate our understanding of human diseases.

  19. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R

    2014-01-01

    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  20. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially......) popular responsesto them succeed, and whether the objections are ultimately persuasive.2. Given that synthetic biology is a new technology, there is a certain degree of uncertainty about its ultimate effects, and many perceive the technology as risky. I discuss two common approaches in risk regulation...

  1. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  2. Biological Effects after Prenatal Irradiation

    International Nuclear Information System (INIS)

    Streffer, C.

    2004-01-01

    epidemiological studies with humans. in general the magnitude of cancer risk from in-utero exposures may be similar to that from radiation exposures in early childhood. This is especially the case when the follow-up is extended to adulthood. RBE values for fast neutrons as well as DREF values have been reported for various biological endpoints after exposures at various developmental stages. These will be discussed. (Author)

  3. Biological Methods and Manual Development

    Science.gov (United States)

    EPA scientists conduct research to develop and evaluate analytical methods for the identification, enumeration, evaluation of aquatic organisms exposed to environmental stressors and to correlate exposures with effects on chemical and biological indicators

  4. Biological anti-TNF drugs

    DEFF Research Database (Denmark)

    Prado, Mônica Simon; Bendtzen, Klaus; Andrade, Luis Eduardo Coelho

    2017-01-01

    is frequently caused by antibodies against immune-biologicals, known as anti-drug antibodies (ADA). ADA that neutralize circulating immune-biologicals and/or promote their clearance can reduce treatment efficacy. Furthermore, ADA can induce adverse events by diverse immunological mechanisms. This review...... provides a comprehensive overview of ADA in rheumatoid arthritis patients treated with anti-TNF immune-biologicals, and explores the concept of therapeutic drug monitoring (TDM) as an effective strategy to improve therapeutic management. Expert opinion: Monitoring circulating ADA and therapeutic immune......-biological drugs is helpful when evaluating patients with secondary failure. However, immunological tests for ADA vary considerably regarding their ability to detect different types of ADA. Several assays are not designed to determine ADA-induced drug neutralizing capacity, and they may report clinically non...

  5. Biological Sample Monitoring Database (BSMDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biological Sample Monitoring Database System (BSMDBS) was developed for the Northeast Fisheries Regional Office and Science Center (NER/NEFSC) to record and...

  6. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information...

  7. Systems biology of human atherosclerosis.

    Science.gov (United States)

    Shalhoub, Joseph; Sikkel, Markus B; Davies, Kerry J; Vorkas, Panagiotis A; Want, Elizabeth J; Davies, Alun H

    2014-01-01

    Systems biology describes a holistic and integrative approach to understand physiology and pathology. The "omic" disciplines include genomics, transcriptomics, proteomics, and metabolic profiling (metabonomics and metabolomics). By adopting a stance, which is opposing (yet complimentary) to conventional research techniques, systems biology offers an overview by assessing the "net" biological effect imposed by a disease or nondisease state. There are a number of different organizational levels to be understood, from DNA to protein, metabolites, cells, organs and organisms, even beyond this to an organism's context. Systems biology relies on the existence of "nodes" and "edges." Nodes are the constituent part of the system being studied (eg, proteins in the proteome), while the edges are the way these constituents interact. In future, it will be increasingly important to collaborate, collating data from multiple studies to improve data sets, making them freely available and undertaking integrative analyses.

  8. Molecular biology of the cell

    National Research Council Canada - National Science Library

    Alberts, Bruce; Walter, Peter; Raff, Martin; Roberts, Keith; Lewis, Julian; Johnson, Alexander

    2007-01-01

    .... By extracting fundamental concepts and meaning from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers...

  9. Molecular biomimetics: nanotechnology through biology

    Science.gov (United States)

    Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K.-Y.; Schulten, Klaus; Baneyx, François

    2003-09-01

    Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

  10. VT Biodiversity Project - Biological Hotspots

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is the result of an effort to map biological "hotspots" in Vermont based on the "element occurrences" in the Nongame and Natural...

  11. Yeast genetics and molecular biology

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book covers subjects and the following titles: cell biology; RNA processing and translation; organelle biogenesis; cell division cycle; mating physiology; recombination and repair; retro-transposition; and metabolic regulating mechanisms

  12. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  13. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  14. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  15. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information is of...

  16. Text mining for systems biology.

    Science.gov (United States)

    Fluck, Juliane; Hofmann-Apitius, Martin

    2014-02-01

    Scientific communication in biomedicine is, by and large, still text based. Text mining technologies for the automated extraction of useful biomedical information from unstructured text that can be directly used for systems biology modelling have been substantially improved over the past few years. In this review, we underline the importance of named entity recognition and relationship extraction as fundamental approaches that are relevant to systems biology. Furthermore, we emphasize the role of publicly organized scientific benchmarking challenges that reflect the current status of text-mining technology and are important in moving the entire field forward. Given further interdisciplinary development of systems biology-orientated ontologies and training corpora, we expect a steadily increasing impact of text-mining technology on systems biology in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biological control of toxic cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, L

    2016-04-01

    Full Text Available harmful algal blooms and their impacts in over 30 countries. Biological control is a method of introducing natural enemies to control an organism and has been more successful using microorganisms....

  18. Biological Markers and Salivary Cortisol

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Gunnarsson, Lars-Gunnar; Harris, Anette

    2011-01-01

    This chapter focuses on salivary cortisol in relation to biological markers. Specifically, associations with conventional cardiovascular risk factors and metabolic abnormalities (body mass index, waist circumference, waist/hip ratio, lipid status, glucose, blood pressure, heart rate and heart rate...

  19. Integration of culture and biology in human development.

    Science.gov (United States)

    Mistry, Jayanthi

    2013-01-01

    The challenge of integrating biology and culture is addressed in this chapter by emphasizing human development as involving mutually constitutive, embodied, and epigenetic processes. Heuristically rich constructs extrapolated from cultural psychology and developmental science, such as embodiment, action, and activity, are presented as promising approaches to the integration of cultural and biology in human development. These theoretical notions are applied to frame the nascent field of cultural neuroscience as representing this integration of culture and biology. Current empirical research in cultural neuroscience is then synthesized to illustrate emerging trends in this body of literature that examine the integration of biology and culture.

  20. [Important issues of biological safety].

    Science.gov (United States)

    Onishchenko, G G

    2007-01-01

    The problem of biological security raises alarm due to the real growth of biological threats. Biological security includes a wide scope of problems, the solution of which becomes a part of national security as a necessary condition for the constant development of the country. A number of pathogens, such as human immunodeficiency virus, exotic Ebola and Lassa viruses causing hemorrhagic fever,rotaviruses causing acute intestinal diseases, etc. were first discovered in the last century. Terrorist actions committed in the USA in 2001 using the anthrax pathogen made the problem of biological danger even more important. In Russian Federation, biological threats are counteracted through the united state policy being a part of general state security policy. The biological Security legislation of Russian Federation is chiefly based on the 1992 Federal Law on Security. On the basis of cumulated experience, the President of Russia ratified Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond on 4 December, 2003. The document determines the main directions and stages of the state development in the area of chemical and biological security. The Federal target program Russian Federation's National Program for Chemical and Biological Security is being developed, and its development is to be completed soon in order to perfect the national system for biological security and fulfill Basics of Russian Federation's State Policy for Chemical and Biological Security for the Period through 2010 and Beyond, ratified by the President. The new global strategy for control over infectious diseases, presented in the materials of Saint Petersburg summit of the Group of Eight, as well as the substantive part of its elements in Sanitary International Standards, are to a large degree an acknowledgement of the Russian Federation's experience and the algorithm for fighting extremely dangerous infections. This Russia's experience has

  1. BIOLOGY OF SOME NEUROMUSCULAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Gerta Vrbova

    2004-12-01

    unit is slower. The rate of maturation is critical for the survival of both motoneurone and muscle and that events that interfere with the time course of maturation cause both motoneurone and muscle fibre death. The proposal that the SMN gene/protein is involved in the process to developmental changes in cells and therefore crucial for their survival is put forward. The understanding of the developmental changes and their influence on motoneurone and muscle survival may help to devise therapeutic interventions. These may include a protection of the motoneurone cell body during a critical period of its development by reducing its excitability or enhancing its defences by upregulating heat shock proteins, b stabilizing neuromuscular junctions to enhance and prolong the retrograde influences from the muscle that affect motoneurone survival, c protecting muscle fibres from apoptosis, as well as stimulating their maturation by activity appropriate to their younger age that results from their delayed development.These approaches should be considered in addition to or in conjunction with possible interference with the gene and its product.In order to understand and possibly interfere/treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. In this presentation I would illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1 Duchenne muscular dystrophy, and 2 Spinal muscular atrophy.

  2. Biological Activities of Hydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    S. Güniz Küçükgüzel

    2007-08-01

    Full Text Available There has been considerable interest in the development of novel compounds with anticonvulsant, antidepressant, analgesic, antiinflammatory, antiplatelet, antimalarial, antimicrobial, antimycobacterial, antitumoral, vasodilator, antiviral and antischistosomiasis activities. Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Therefore, many researchers have synthesized these compounds as target structures and evaluated their biological activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities.

  3. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  4. Biological and microbial fuel cells

    OpenAIRE

    Scott, Keith; Yu, Eileen Hao; Ghangrekar, Makarand Madhao; Erable, Benjamin; Duţeanu, Narcis Mihai

    2012-01-01

    Biological fuel cells have attracted increasing interest in recent years because of their applications in environmental treatment, energy recovery, and small-scale power sources. Biological fuel cells are capable of producing electricity in the same way as a chemical fuel cell: there is a constant supply of fuel into the anode and a constant supply of oxidant into the cathode; however, typically the fuel is a hydrocarbon compound present in the wastewater, for example. Microbial fuel cells (M...

  5. Issues in Biological Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...

  6. Market study: Biological isolation garment

    Science.gov (United States)

    1975-01-01

    The biological isolation garment was originally designed for Apollo astronauts to wear upon their return to earth from the moon to avoid the possibility of their contaminating the environment. The concept has been adapted for medical use to protect certain patients from environmental contamination and the risk of infection. The nature and size of the anticipated market are examined with certain findings and conclusions relative to clinical acceptability and potential commercial viability of the biological isolation garment.

  7. Nanoscale technology in biological systems

    CERN Document Server

    Greco, Ralph S; Smith, R Lane

    2004-01-01

    Reviewing recent accomplishments in the field of nanobiology Nanoscale Technology in Biological Systems introduces the application of nanoscale matrices to human biology. It focuses on the applications of nanotechnology fabrication to biomedical devices and discusses new physical methods for cell isolation and manipulation and intracellular communication at the molecular level. It also explores the application of nanobiology to cardiovascular diseases, oncology, transplantation, and a range of related disciplines. This book build a strong background in nanotechnology and nanobiology ideal for

  8. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  9. Biological origins of color categorization

    OpenAIRE

    Skelton, Alice E.; Catchpole, Gemma; Abbott, Joshua T.; Bosten, Jenny M.; Franklin, Anna

    2017-01-01

    The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants’ categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mappe...

  10. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Compositional Modeling of Biological Systems

    OpenAIRE

    Zámborszky, Judit

    2010-01-01

    Molecular interactions are wired in a fascinating way resulting in complex behavior of bio-logical systems. Theoretical modeling provides us a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological systems calls for conceptual tools that manage the combinatorial explosion of the set of possible interac-tions. A suitable conceptual tool to attack complexity is compositionality, already success-fully used in the process algebra field ...

  12. Information Visualization for Biological Data.

    Science.gov (United States)

    Czauderna, Tobias; Schreiber, Falk

    2017-01-01

    Visualization is a powerful method to present and explore a large amount of data. It is increasingly important in the life sciences and is used for analyzing different types of biological data, such as structural information, high-throughput data, and biochemical networks. This chapter gives a brief introduction to visualization methods for bioinformatics, presents two commonly used techniques in detail, and discusses a graphical standard for biological networks and cellular processes.

  13. Evolution of Biologics Screening Technologies

    OpenAIRE

    Matthew J. Gardener; Peter Cariuk; Tristan J. Vaughan

    2013-01-01

    Screening for biologics, in particular antibody drugs, has evolved significantly over the last 20 years. Initially, the screening processes and technologies from many years experience with small molecules were adopted and modified to suit the needs of biologics discovery. Since then, antibody drug discovery has matured significantly and is today investing earlier in new technologies that commercial suppliers are now developing specifically to meet the growing needs of large molecule screening...

  14. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  15. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  16. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  17. Biology, Genetics, and Environment

    Science.gov (United States)

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  18. Review of domestic radiation biology research

    International Nuclear Information System (INIS)

    Zheng Chun; Song Lingli; Ai Zihui

    2011-01-01

    Radiation biology research in China during the past ten years are reviewed. It should be noticed that radiation-biology should focus on microdosimetry, microbeam application, and radiation biological mechanism. (authors)

  19. Cameroon Journal of Experimental Biology: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Instructions to Authors The Cameroon Journal of Experimental Biology (Cameroon J. Exp. Biol.) welcomes contributions in all fields of experimental biology including biochemistry, physiology, pharmacology, toxicology, pathology, environmental biology, microbiology, parasitology, phytochemistry, food ...

  20. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders

    NARCIS (Netherlands)

    Boyman, O.; Kaegi, C.; Akdis, M.; Bavbek, S.; Bossios, A.; Chatzipetrou, A.; Eiwegger, T.; Firinu, D.; Harr, T.; Knol, E.|info:eu-repo/dai/nl/090565800; Matucci, A.; Palomares, O.; Schmidt-Weber, C.; Simon, H. U.; Steiner, U. C.; Vultaggio, A.; Akdis, C. A.; Spertini, F.

    2015-01-01

    Biologic agents (also termed biologicals or biologics) are therapeutics that are synthesized by living organisms and directed against a specific determinant, for example, a cytokine or receptor. In inflammatory and autoimmune diseases, biologicals have revolutionized the treatment of several

  1. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Some nonlinear challenges in biology

    International Nuclear Information System (INIS)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-01-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher–Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'. (open problem)

  3. Marine biology, intertidal ecology, and a new place for biology.

    Science.gov (United States)

    Benson, Keith R

    2015-01-01

    At the present time, there is considerable interest for the physical setting of science, that is, its actual 'place' of practice. Among historians of biology, place has been considered to be a crucial component for the study of ecology. Other historians have noted the 'built' environments (laboratories) for the study of biology along the seashore, even referring to these places in terms more applicable to vacation sites. In this paper, I examine the place of intertidal ecology investigations, both in terms of the physical space and the built space. Part of the examination will investigate the aesthetic aspect of the Pacific Coast, part will evaluate the unique character of the intertidal zone, and part will consider the construction of natural laboratories and built laboratories as characteristic places for biology.

  4. Reproductive biology in the era of genomics biology.

    Science.gov (United States)

    Bazer, Fuller W; Spencer, Thomas E

    2005-08-01

    Current and emerging technologies in reproductive biology, including assisted reproductive technologies and animal cloning, are discussed in the context of the impact of genomics era biology. The discussion focuses on the endocrinology associated with establishment and maintenance of pregnancy, fetal-placental development, lactation, and neonatal survival. Various aspects of uterine biology, including development during the neonatal period and function in adult females, are discussed with respect to reproductive efficiency. It is clear that combining strategies for use of conventional animal models for studying the reproductive system with new genomics technologies will provide exceptional opportunities in discovery research involving data integration and application of functional genomics to benefit animal agriculture and the biomedical community. New and emerging biotechnologies and comparative genomics approaches will greatly advance our understanding of genes that are critical to development of the reproductive system and to key events at each stage of the reproductive cycle of females and males.

  5. Biological Scaling Problems and Solutions in Amphibians.

    Science.gov (United States)

    Levy, Daniel L; Heald, Rebecca

    2015-08-10

    Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Attachment theory: a biological basis for psychotherapy?

    Science.gov (United States)

    Holmes, J

    1993-10-01

    John Bowlby bemoaned the separation between the biological and psychological approaches in psychiatry, and hoped that attachment theory, which brings together psychoanalysis and the science of ethology, would help bridge the rift between them. Recent findings in developmental psychology have delineated features of parent-infant interaction, especially responsiveness, attunement, and modulation of affect, which lead to either secure or insecure attachment. Similar principles can be applied to the relationship between psychotherapist and patient--the provision of a secure base, the emergence of a shared narrative ('autobiographical competence'), the processing of affect, coping with loss--these are common to most effective psychotherapies and provide the basis for a new interpersonal paradigm within psychotherapy. Attachment theory suggests they rest on a sound ethological and hence biological foundation.

  7. Cognition and biology: perspectives from information theory.

    Science.gov (United States)

    Wallace, Rodrick

    2014-02-01

    The intimate relation between biology and cognition can be formally examined through statistical models constrained by the asymptotic limit theorems of communication theory, augmented by methods from statistical mechanics and nonequilibrium thermodynamics. Cognition, often involving submodules that act as information sources, is ubiquitous across the living state. Less metabolic free energy is consumed by permitting crosstalk between biological information sources than by isolating them, leading to evolutionary exaptations that assemble shifting, tunable cognitive arrays at multiple scales, and levels of organization to meet dynamic patterns of threat and opportunity. Cognition is thus necessary for life, but it is not sufficient: An organism represents a highly patterned outcome of path-dependent, blind, variation, selection, interaction, and chance extinction in the context of an adequate flow of free energy and an environment fit for development. Complex, interacting cognitive processes within an organism both record and instantiate those evolutionary and developmental trajectories.

  8. Biological Dual-Use Research and Synthetic Biology of Yeast.

    Science.gov (United States)

    Cirigliano, Angela; Cenciarelli, Orlando; Malizia, Andrea; Bellecci, Carlo; Gaudio, Pasquale; Lioj, Michele; Rinaldi, Teresa

    2017-04-01

    In recent years, the publication of the studies on the transmissibility in mammals of the H5N1 influenza virus and synthetic genomes has triggered heated and concerned debate within the community of scientists on biological dual-use research; these papers have raised the awareness that, in some cases, fundamental research could be directed to harmful experiments, with the purpose of developing a weapon that could be used by a bioterrorist. Here is presented an overview regarding the dual-use concept and its related international agreements which underlines the work of the Australia Group (AG) Export Control Regime. It is hoped that the principles and activities of the AG, that focuses on export control of chemical and biological dual-use materials, will spread and become well known to academic researchers in different countries, as they exchange biological materials (i.e. plasmids, strains, antibodies, nucleic acids) and scientific papers. To this extent, and with the aim of drawing the attention of the scientific community that works with yeast to the so called Dual-Use Research of Concern, this article reports case studies on biological dual-use research and discusses a synthetic biology applied to the yeast Saccharomyces cerevisiae, namely the construction of the first eukaryotic synthetic chromosome of yeast and the use of yeast cells as a factory to produce opiates. Since this organism is considered harmless and is not included in any list of biological agents, yeast researchers should take simple actions in the future to avoid the sharing of strains and advanced technology with suspicious individuals.

  9. Industrial chemical exposure: guidelines for biological monitoring

    National Research Council Canada - National Science Library

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  10. Activins in reproductive biology and beyond.

    Science.gov (United States)

    Wijayarathna, R; de Kretser, D M

    2016-04-01

    Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female

  11. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  12. Biological origins of color categorization.

    Science.gov (United States)

    Skelton, Alice E; Catchpole, Gemma; Abbott, Joshua T; Bosten, Jenny M; Franklin, Anna

    2017-05-23

    The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants' categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mapped infants' categorical recognition memory for hue onto a stimulus array used previously to document the color lexicons of 110 nonindustrialized languages. Following familiarization to a given hue, infants' response to a novel hue indicated that their recognition memory parses the hue continuum into red, yellow, green, blue, and purple categories. Infants' categorical distinctions aligned with common distinctions in color lexicons and are organized around hues that are commonly central to lexical categories across languages. The boundaries between infants' categorical distinctions also aligned, relative to the adaptation point, with the cardinal axes that describe the early stages of color representation in retinogeniculate pathways, indicating that infant color categorization may be partly organized by biological mechanisms of color vision. The findings suggest that color categorization in language and thought is partially biologically constrained and have implications for broader debate on how biology, culture, and communication interact in human cognition.

  13. Biologic therapy of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Damjanov Nemanja

    2009-01-01

    Full Text Available Rheumatoid arthritis (RA and juvenile idiopathic/rheumatoid arthritis (JIA are chronic, inflammatory, systemic, auto-immune diseases characterized by chronic arthritis leading to progressive joint erosions. The individual functional and social impact of rheumatoid arthritis is of great importance. Disability and joint damage occur rapidly and early in the course of the disease. The remarkably improved outcomes have been achieved initiating biologic therapy with close monitoring of disease progression. Biologic agents are drugs, usually proteins, which can influence chronic immune dysregulation resulting in chronic arthritis. According to the mechanism of action these drugs include: 1 anti-TNF drugs (etanercept, infiximab, adalimumab; 2 IL-1 blocking drugs (anakinra; 3 IL-6 blocking drugs (tocilizumab; 4 agents blocking selective co-stimulation modulation (abatacept; 5 CD 20 blocking drugs (rituximab. Biologics targeting TNF-alpha with methotrexate have revolutionized the treatment of RA, producing significant improvement in clinical, radiographic, and functional outcomes not seen previously. The new concept of rheumatoid arthritis treatment defines early diagnosis, early aggressive therapy with optimal doses of disease modifying antirheumatic drugs (DMARDs and, if no improvement has been achieved during six months, early introduction of biologic drugs. The three-year experience of biologic therapy in Serbia has shown a positive effect on disease outcome.

  14. Unifying Quantum Physics with Biology

    Science.gov (United States)

    Goradia, Shantilal

    2014-09-01

    We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.

  15. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  16. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  17. Electron holography of biological samples.

    Science.gov (United States)

    Simon, P; Lichte, H; Formanek, P; Lehmann, M; Huhle, R; Carrillo-Cabrera, W; Harscher, A; Ehrlich, H

    2008-01-01

    In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.

  18. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Renee Wei-Yan Chow

    2017-04-01

    Full Text Available The zebrafish (Danio rerio is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.

  19. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  20. Systems biology of cellular rhythms.

    Science.gov (United States)

    Goldbeter, A; Gérard, C; Gonze, D; Leloup, J-C; Dupont, G

    2012-08-31

    Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.

  1. [Affective disorders and biological rhythms].

    Science.gov (United States)

    Le Strat, Y; Ramoz, N; Gorwood, P

    2008-06-01

    Disruptions of circadian rhythms are described in affective disorders, including unipolar and bipolar disorder, but also seasonal affective disorder. Sleep-wake and hormone circadian rhythms are among the most quoted examples. Depression could be conceptualized as a desynchronization between the endogenous circadian pacemaker and the exogenous stimuli, such as sunlight and social rhythms. Accordingly, Clock genes have been studied and the literature suggests that variants in these genes confer a higher risk of relapse, more sleep disturbances associated with depression, as well as incomplete treatment response. Most of therapeutic interventions in depression have an impact on biological rhythms. Some of them exclusively act via a biological pathway, such as sleep deprivation or light therapy. Some psychosocial interventions are specifically focusing on social rhythms, particularly in bipolar disorder, in which the promotion of stabilization is emphasized. Finally, all antidepressant medications could improve biological rhythms, but some new agents are now totally focusing this novel approach for the treatment of depression.

  2. Biological variability of glycated hemoglobin.

    Science.gov (United States)

    Braga, Federica; Dolci, Alberto; Mosca, Andrea; Panteghini, Mauro

    2010-11-11

    The measurement of glycated hemoglobin (HbA(1c)) has a pivotal role in monitoring glycemic state in diabetic patients. Furthermore, the American Diabetes Association has recently recommended the use of HbA(1c) for diabetes diagnosis, but a clear definition of the clinically allowable measurement error is still lacking. Information on biological variability of the analyte can be used to achieve this goal. We systematically reviewed the published studies on the biological variation of HbA(1c) to check consistency of available data in order to accurately define analytical goals. The nine recruited studies were limited by choice of analytic methodology, population selection, protocol application and statistical analyses. There is an urgent need to determine biological variability of HbA(1c) using a specific and traceable assay, appropriate protocol and appropriate statistical evaluation of data. 2010 Elsevier B.V. All rights reserved.

  3. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations......, as model systems to understand the fundamental properties of biomembranes. The properties of lipid bilayers can be studied at different time and length scales. For some properties it is sufficient to envision a membrane as an elastic sheet, while for others it is important to take into account the details...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  4. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The biology of cultural conflict

    Science.gov (United States)

    Berns, Gregory S.; Atran, Scott

    2012-01-01

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives—how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour—but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment. PMID:22271779

  6. Application of neutrons in biology

    International Nuclear Information System (INIS)

    Cser, L.

    1982-01-01

    Applications of neutron scattering to determine the structure of biological macromolecules are reviewed. A theoretical and experimental introduction to neutron scattering and its mathematical description is given. The analysis of crystal structure using neutron scattering and the problem of Fourier reconstruction of structure are discussed. Some special problems concerning biological materials are described. The isotope effect of neutron scattering is applied to determine and identify the hydrogen atoms in biological macromolecules. Some examples illustrating the structure determination of amino acids and proteins are given. Mathematical methods of evaluation of small angle neutron scattering experiments and applications to investigate E. coli ribosome are described. New developments and new research trends are also reviewed. (D.Gy.)

  7. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  8. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  9. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    Science.gov (United States)

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  10. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  11. A roadmap for island biology

    DEFF Research Database (Denmark)

    Patino, Jairo; Whittaker, Robert J.; Borges, Paulo A.V.

    2017-01-01

    to identify 50 fundamental questions for the continued development of the field. Location: Worldwide. Methods: We adapted a well-established methodology of horizon scanning to identify priority research questions in island biology, and initiated it during the Island Biology 2016 conference held in the Azores...... patterns (five questions in total); island ontogeny and past climate change (4); island rules and syndromes (3); island biogeography theory (4); immigration–speciation–extinction dynamics (5); speciation and diversification (4); dispersal and colonization (3); community assembly (6); biotic interactions (2...

  12. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  13. Fractals in biology and medicine

    Science.gov (United States)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.

  14. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  15. Biological consequences of nuclear war

    International Nuclear Information System (INIS)

    Dubinin, N.P.

    1986-01-01

    Irradiation probability due to radionuclide fallout is shown to exceed 1 Gy even for the territories which have not been affected by nuclear weapons direct explosions. If some people survive in the nuclear war, their heredity would be affected. Genetic consequences of nuclear war complete the process of Homo sapiens disappearance from the Earth. Space weapons development will deteriorate the prospects of civilization ruin as a result of biological aftereffects of nuclear war and possible application of new arms, as well as chemical and biologic weapons

  16. Foreword: Biology/embodiment/desire.

    Science.gov (United States)

    Terry, Jennifer; Willey, Angela

    2018-04-03

    The sexological roots of "lesbian" and the "queer" turn from biologized categories of sexual difference pose an exciting set of questions and tensions for thinking about queer feminism and biological meanings. This issue seeks to open space to explore how we might reconcile assumptions about "female same-sex sexuality" that often accompany "lesbian" with queer and trans-feminist treatments of science, embodiment, and desiring, while at the same time insisting on the importance of an undertheorized dyke legacy for thinking the at-once material and political nature of sexuality.

  17. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  18. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  19. [Biologic treatments for hereditary diseases].

    Science.gov (United States)

    Yang, Jing; Xie, Yangli; Chen, Lin

    2015-06-01

    Hereditary disease, especially monogenic disease is one of the major causes for malformation and disability of children. Most hereditary diseases have no effective therapy besides clinical symptomatic treatment. Biological techniques targeting casual genes or related signaling genes, such as transgenic, RNA interfere, genome editing, have been successfully applied in treating some hereditary diseases. However, most biological, treatments were carried out in animals, further confirmation of the effectiveness and safety of these therapies, and development of more therapeutic approaches based on mechanisms are needed before clinical trials.

  20. Mitochondria in biology and medicine

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Rasmussen, Lene Juel

    2012-01-01

    pathologies (Luft, 1994). Since 1959, the understanding of mitochondrial cytopathies has evolved immensely and mitochondrial cytopathies are now known to be the largest group of metabolic diseases and to be resulting in a wide variety of pathologies. "Mitochondria in Biology and Medicine" was the title...... of the first annual conference of Society of Mitochondrial Research and Medicine - India. The conference was organized by A. S. Sreedhar, Keshav Singh and Kumarasamy Thangaraj, and was held at The Centre for Cellular and Molecular Biology (CCMB) Hyderabad, India, during 9-10 December 2011. The conference...